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Abstract
Foundation models such as large language models have achieved remarkable performance by leveraging massive
centralized datasets and compute. However, concerns around data privacy, governance, and trust motivate new
agentic workflows where multiple parties (agents) collaboratively develop models without central custodians. We
propose a decentralized framework for verifiable multi-agent model training that integrates federated learning,
distributed ledger technologies, and knowledge distillation. In our approach, each participant maintains local data
and models, contributing updates that are logged on a tamper-proof DAG ledger for transparency and account-
ability. A voting-based consensus mechanism enables multi-agent governance, ensuring only high-quality model
updates are merged. To aggregate knowledge from diverse sources, we employ cross-silo knowledge distilla-
tion, including distilling large teacher models (e.g. LLaMA, BioGPT) into smaller models in a federated setting.
Empirical evaluations on collaborative learning scenarios – including named entity recognition (F1=96.23%),
medical code classification (F1=79.11%), and question-answering tasks – demonstrate that our decentralized
training achieves performance comparable to centralized methods while preserving privacy and trust. This work
advances agentic AI by enabling next-generation foundation model development through privacy-preserving,
trustable collaboration.

1. Introduction
Recent progress in AI has been propelled by foundation
models trained on vast centralized datasets, exemplified
by large language models (LLMs) like GPT-4. How-
ever, centralization poses challenges in data privacy, scal-
ability, and trust in model development. High-stakes do-
mains (e.g. healthcare) demand collaborative model train-
ing approaches that keep data decentralized and ensure
verifiability of contributions. Meanwhile, the emergence
of agentic AI—autonomous AI agents that can plan, act,
and collaborate (as seen in ReAct and AutoGPT frame-
works)—suggests a future where AI systems themselves
coordinate complex workflows. Harnessing this paradigm
for model development requires new workflows that allow
multiple agents or institutions to jointly train AI models in
a trustless environment.

Federated learning (FL) offers a starting point by enabling
distributed training without sharing raw data. In classical
FL, a central server aggregates model updates from clients
(participants), mitigating data privacy concerns. However,
standard FL assumes a trusted server and lacks mechanisms
for transparent accountability or peer governance. Further-
more, training large foundation models in a federated man-
ner presents challenges in communication and heterogene-
ity. Prior work has begun exploring federated training for
LLMs, but ensuring trust among participants remains an

open problem.

In this paper, we propose a novel decentralized and verifi-
able collaborative learning framework that enables mul-
tiple agents to jointly develop foundation models while pre-
serving privacy and establishing trust. Our approach inte-
grates three key components: (1) Privacy-preserving de-
centralization via a peer-to-peer federated learning pro-
tocol with no central coordinator, (2) Verifiable ledger-
based trust mechanisms using a distributed ledger to
immutably log model updates and cryptographically ver-
ify contributor identities, and (3) Multi-agent governance
through a consensus process wherein participants vote to
accept or reject proposed model updates. Additionally, we
leverage knowledge distillation to combine insights from
diverse models or tasks: for example, distilling knowledge
from large expert models into a collaboratively learned
model.

Our contributions are summarized as follows: (i) We design
a decentralized training architecture that combines IOTA’s
Directed Acyclic Graph (DAG) ledger (Tangle) (Popov,
2018) and IPFS storage (Benet, 2014) to enable transpar-
ent, auditable model sharing without a centralized server.
(ii) We implement a voting-based update validation scheme
that empowers multiple agents to govern the training pro-
cess collectively, improving robustness against low-quality
or malicious updates. (iii) We demonstrate through ex-
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periments on natural language processing tasks that our
approach achieves high accuracy (e.g. NER F1 96.23%,
ICD coding F1 79.11%) on par with centralized baselines,
while inherently providing data privacy and an audit trail
of model provenance. By facilitating trustworthy collabo-
ration among distributed agents, our work paves the way
for next-generation agentic workflows in foundation model
development.

2. Related Work
Federated Learning and Decentralized Training: Fed-
erated learning allows collaborative model training across
clients holding private data. Early work by McMahan et al.
(2017) introduced the FedAvg algorithm for averaging dis-
tributed model updates from decentralized data. Subse-
quent research has addressed challenges like communica-
tion efficiency, statistical heterogeneity, and scalability to
large models. Recent efforts (Sani et al., 2024) demonstrate
the feasibility of federated training for large language mod-
els, showing that with appropriate strategies performance
can approach centralized training. Our work builds on the
FL paradigm but removes the central server, instead using
a peer-to-peer ledger for coordination and trust.

Distributed Ledger and Trust in Collaboration:
Blockchain and distributed ledger technologies (DLTs)
have been proposed to enhance security and trust in
federated learning. By logging transactions immutably,
a ledger can verify the provenance of model updates and
prevent tampering. However, traditional blockchains (e.g.
Ethereum) suffer from throughput and cost limitations for
frequent model updates. We adopt IOTA’s DAG-based
ledger (the Tangle) (Popov, 2018), which offers feeless
transactions and high scalability, to record model update
metadata. Prior works have used IOTA and similar DLTs
for secure data sharing in IoT and healthcare settings,
showing the potential for lightweight consensus without
miners. Our framework leverages a DLT not just for
security but also to enable a consensus-driven workflow
where participants actively validate each update.

In conjunction with the ledger, we use IPFS for de-
centralized storage of large model artifacts. IPFS pro-
vides content-addressable, peer-to-peer file sharing (Benet,
2014), which has been integrated with blockchain in previ-
ous systems to manage data in distributed machine learn-
ing. By using IPFS, we avoid expensive on-chain storage;
only small hash pointers are recorded on IOTA, similar to
techniques in prior work. This ensures that even large foun-
dation model checkpoints can be shared efficiently and ver-
ified by hash.

Knowledge Distillation and Multi-Source Learning:
Knowledge distillation (Hinton et al., 2015) is a technique

where a “student” model learns to imitate the outputs of a
“teacher” model, often to compress a large model’s knowl-
edge into a smaller one. In federated settings, distilla-
tion has been explored to aggregate knowledge without ex-
changing weights, for instance by sharing soft predictions
(Li & Wang, 2019). Our approach uses distillation in two
ways: (a) to allow participants with heterogeneous models
to share knowledge, and (b) to incorporate external knowl-
edge from large foundation models. For example, we show
that a federation of agents can distill answers generated by
powerful models like LLaMA (Touvron et al., 2023) and
BioGPT (Luo et al., 2022) into a more compact model suit-
able for distributed training. This multi-source learning
via distillation complements gradient-based update aggre-
gation, enabling what we term an “agentic ensemble” of
models contributing to a joint task.

Agentic AI and Collaborative Autonomy: The notion of
autonomous AI agents coordinating tasks has gained popu-
larity through approaches like ReAct (Yao et al., 2022) and
autonomous GPT-based systems (AutoGPT) (Yang et al.,
2023). These works illustrate how LLMs can be endowed
with decision-making and tool-use capabilities to accom-
plish goals in a more open-ended, self-directed manner. In
our context, each participant in the collaborative training
network can be viewed as an autonomous agent that not
only trains on local data but also evaluates and decides on
others’ contributions. Our framework’s consensus mech-
anism instantiates a simple form of multi-agent negotia-
tion: agents vote on whether a candidate model update
should be accepted. This resonates with the vision of agen-
tic workflows where AI systems interact under certain rules
to achieve a collective objective. Our work bridges that vi-
sion with federated learning by providing the infrastructure
(ledger, protocols) for such agent interactions to result in a
coherent, high-performing global model.

3. Proposed Framework
Figure 1 illustrates the overall architecture of the pro-
posed collaborative training framework, representing a de-
centralized agentic workflow for foundation model train-
ing. The system consists of multiple participant nodes
(agents) connected in a peer-to-peer network. Each agent
possesses a local dataset and maintains its own model in-
stance. Training progresses in iterative rounds without any
central server: in each round, one or more agents propose
model updates which other agents then verify.

Decentralized Update Sharing: When an agent finishes a
local training epoch (or other trigger conditions are met), it
generates an update ∆w (e.g., model weight differences or
a complete new model version). Instead of sending this to
a server, the agent announces the update to the network by
publishing a message to a pub-sub channel (for example,
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Figure 1. System architecture of the decentralized agentic frame-
work. Each agent trains locally and shares model updates using
IPFS and IOTA. Voting through Matrix ensures collaborative val-
idation. Knowledge distillation enables cross-agent knowledge
transfer and global model improvement.

using a Matrix peer-to-peer messaging room). The update
payload itself (which could be tens or hundreds of MBs for
a large model) is uploaded to IPFS, which returns a content-
addressed hash (CID). The agent then creates a transaction
on the IOTA ledger containing metadata: the CID of the
update, a digital signature (using the agent’s private key,
tied to a Decentralized Identifier), and references to two
previous ledger transactions. Posting this transaction “an-
chors” the update in the ledger’s DAG, making it visible to
all participants. The use of IOTA’s Tangle means each new
update helps validate prior updates; thus agents inherently
contribute to consensus by issuing transactions.

Let ∆w
(t)
i denote the model update from agent i at round

t. Instead of sending ∆w
(t)
i to a central server, the agent

publishes it to a peer-to-peer network:

∆w
(t)
i = w

(t)
i − w

(t−1)
i

The update is uploaded to IPFS, generating a content-
addressed hash h

(t)
i = Hash(∆w

(t)
i ), and a transaction is

created on the IOTA ledger with this hash.

Immutable Logging and Identity: By reading the ledger,
any participant can retrieve a chronological log of all pro-
posed updates. Because each transaction is signed and

linked, the history forms an immutable audit trail. Iden-
tities of agents are managed via DIDs (Decentralized IDs)
embedded in ledger transactions, which allows attributing
each contribution to a pseudonymous but consistent iden-
tity. This discourages malicious behavior, as misbehaving
agents (e.g., submitting bogus updates) can be identified
and potentially blacklisted. The ledger thus provides ac-
countability and provenance tracking for model evolution.
Notably, unlike a traditional blockchain, IOTA’s feeless de-
sign keeps this logging lightweight: agents only incur a
minor computational cost for anti-spam proof-of-work and
no monetary fees.

Multi-Agent Validation and Consensus: A core feature
of our framework is that model updates are not automat-
ically accepted. We implement a voting-based consensus
mechanism inspired by trust in multi-agent systems. When
an agent receives notification of a new update, it fetches
the update from IPFS using the provided hash and evalu-
ates it on a validation dataset. This could be the agent’s
own private validation set or a shared public validation set
agreed upon in advance. The agent then casts a vote (e.g.,
by submitting a signed message or a ledger transaction) in-
dicating acceptance or rejection of the update. An update
remains in a tentative state until a quorum of agents (for
example, a majority of the participants) have evaluated it
within a fixed window. If the required number of positive
votes is reached, the update is considered approved and is
merged into the global model state. Otherwise, the update
is aborted or postponed.

Each agent j evaluates the update ∆w
(t)
i using a validation

function Vj(·), and casts a binary vote v
(t)
j ∈ {0, 1}. The

update is accepted if:

N∑
j=1

v
(t)
j ≥ Q

where Q is the quorum threshold (e.g., Q = ⌈N/2⌉).

This consensus process ensures that only high-quality con-
tributions (those that improve or at least do not significantly
degrade the model’s performance) are integrated. It is espe-
cially crucial in an open collaboration where some agents
might have noisy data or even act adversarially. By requir-
ing agreement, the system adds a layer of robustness on top
of standard federated averaging. In effect, model aggrega-
tion becomes meritocratic: an update’s influence depends
on peer validation, not just its submission.

Incentives and Agent Behavior: Although a full incen-
tive mechanism is beyond our current scope, we anticipate
that the transparent logging and validation could naturally
encourage cooperative behavior. Agents gain trust or repu-
tation as their contributions get consistently accepted (this
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reputation could be quantified by tracking successful up-
dates per agent). In contrast, an agent whose updates are
frequently rejected might lose trust, which could lead oth-
ers to scrutinize or ignore its future proposals. In a prac-
tical deployment, one could incorporate token rewards or
reputation scores on the ledger to further incentivize use-
ful contributions, similar to how miners are rewarded in
blockchains. Our framework lays the groundwork for such
extensions by having the necessary data (who contributed
which update, and how it was evaluated) recorded on an
immutable ledger.

Integrating Knowledge Distillation: Beyond gradient up-
dates, our workflow allows knowledge transfer through dis-
tillation, broadening the ways agents collaborate. For in-
stance, agents can exchange synthesized data or soft pre-
dictions to teach each other. In our experiments, we ex-
plore a use-case where two large models serve as teachers:
a general-purpose LLM (LLaMA) and a domain-specific
model (BioGPT) generate answers to a set of questions.
These answers are then used by agents as training data to
distill a student model that can perform the QA task. The
distillation process is carried out in a distributed manner:
each agent only sees a subset of the Q&A pairs, yet by
sharing the distilled model updates and validating them,
the agents collectively produce a single student model that
captures knowledge from both teachers. This showcases
that our framework can support multi-source learning, ef-
fectively merging expertise from different models held by
different parties.

Given teacher outputs {y(t)}Tt=1 from LLaMA and
BioGPT, the student model fs is trained to minimize the
distillation loss:

Ldistill =

T∑
t=1

KL(fs(x(t)) ∥ y(t))

where KL is the Kullback-Leibler divergence between stu-
dent and teacher output distributions.

4. Experiments
We evaluate the proposed framework on three collaborative
learning scenarios spanning typical NLP tasks. The exper-
iments address two key questions: (1) Can decentralized
training with our trust mechanisms achieve model perfor-
mance comparable to centralized training? (2) Does the
multi-agent consensus effectively safeguard against detri-
mental updates without hindering learning progress?

Setup: We simulate a network of N = 5 agents (to emu-
late five institutions or autonomous systems) collaborating
on each task. All experiments are implemented using Py-
Torch with the federated/deliberation logic built atop the

IOTA and IPFS APIs. Each agent runs on a separate pro-
cess (with one GPU per agent for efficiency) and commu-
nicates through an off-chain messaging service (we used
a private Matrix server for controlled simulation). Model
updates are shared and logged via a local IOTA testnet de-
ployed for the experiments. For consensus, we set the vot-
ing quorum to > 3 out of 5 agents (i.e., at least 4 votes
needed to accept an update), and a validation window of 5
epochs. If an update is rejected, the proposing agent con-
tinues training on its local data and may re-submit in a later
round.

Tasks and Models: (1) Named Entity Recognition (NER):
Agents jointly train a named entity tagger for clinical text.
We use a bidirectional Transformer (base-sized) with a to-
ken classification head. Each agent has access to a portion
of a medical NER dataset (simulated by partitioning the
2010 i2b2/VA Clinical Challenge dataset, which contains
de-identified patient notes annotated with entities like prob-
lems, tests, treatments). The data is non-iid: some agents’
data is rich in lab test entities, others in diagnoses, etc., mir-
roring realistic heterogeneity. (2) ICD-10 Code Classifica-
tion: Agents train a text classification model to assign ICD-
10 diagnostic codes based on patient discharge summaries.
We use a PubMedBERT-based classifier. The MIMIC-III
clinical notes dataset is partitioned among agents, each
with a different subset of hospital departments to reflect
distribution shift. (3) Question Answering (QA) via Distil-
lation: This scenario has agents learning to answer medical
questions by distilling knowledge from two large models.
One teacher is LLaMA-7B (Touvron et al., 2023) with gen-
eral world knowledge, and the other is BioGPT (Luo et al.,
2022) specialized in biomedicine. We compile a set of
500 frequently asked medical questions (covering disease
symptoms, treatments, drug information, etc.) and obtain
answers from both LLaMA and BioGPT for each question.
These teacher answers are treated as ground truth for train-
ing a smaller Q&A model (a 330M-parameter GPT-style
model). Each agent gets a random slice of the Q&A pairs
for training; no agent sees all answers, necessitating col-
laboration to capture the full breadth of knowledge.

Baseline and Metrics: For each task, we compare our
decentralized approach against conventional baselines: (a)
centralized training on the combined data (upper bound),
and (b) standard federated averaging (with a central server)
without our ledger or voting (to isolate the effect of the
trust mechanisms). We report standard evaluation metrics:
F1 score for NER and ICD coding (micro-averaged over
entities or codes), and for QA we use BLEU score and an
embedding-based similarity (BERTScore) to compare the
generated answers with the teacher-provided answers. All
results are averaged over 3 independent runs.

Results: Table 1 summarizes the performance. For NER,
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the collaborative model achieved an F1 of 96.23, essen-
tially matching the centralized baseline (96.8) and outper-
forming standard federated averaging (95.4). For ICD clas-
sification, our model reached 79.11 F1, close to the central-
ized 80.3 and exceeding federated averaging’s 77.5. These
results indicate that the overhead of consensus and ledger
logging did not impede learning; on the contrary, by filter-
ing out noisy updates, the final model quality was slightly
improved over naive FL. The voting mechanism rejected
about 8% of proposed updates in NER and 12% in ICD; on
manual inspection, many rejected updates were indeed out-
liers that temporarily hurt validation performance (likely
due to an agent’s small or biased local data).

Table 1. Comparison of model performance
(F1/BLEU/BERTScore) across tasks under different train-
ing paradigms.

Task Centralized Standard FL Ours (Decentralized)
NER (F1) 96.8 95.4 96.23
ICD-10 Classification (F1) 80.3 77.5 79.11
QA (BLEU) 0.495 0.467 0.482
QA (BERTScore F1) 0.924 0.901 0.913

Table 2. Glossary of Key Terms and Notations used in our frame-
work.

Symbol / Term Description
∆w

(t)
i Model update from agent i at round t

CID Content Identifier from IPFS
DID Decentralized Identifier (for pseudonymous contribution)
Ldistill Knowledge distillation loss
v
(t)
j Vote from agent j at round t

BERTScore Semantic similarity metric used for QA evaluation

For the QA distillation task, the student model trained
in our framework achieved a BLEU score of 0.482 and
BERTScore (F1) of 0.913 against the teacher answers. This
approaches the agreement between the two teacher models
themselves (LLaMA vs BioGPT answers had BLEU 0.51
and BERTScore 0.924 on average), indicating the student
successfully absorbed knowledge from both. Figure 2 visu-
alizes a subset of results with an answer similarity heatmap:
each cell shows the similarity between the student’s answer
and one teacher’s answer for a given question. We ob-
serve the student aligns closely with whichever teacher had
higher confidence on that question, demonstrating effective
integration of both sources. Notably, the collaboratively
distilled model slightly outperformed a baseline distilla-
tion done with centralized data collection (by about +1.5
BLEU), likely because the diverse perspectives of agents
(each seeing different Q&A pairs) acted as a form of en-
semble teaching.

Beyond accuracy, our framework provides traceability.
Figure 3 presents a radar chart contrasting our approach
with standard FL across several qualitative criteria: data
privacy, trustworthiness, resilience to bad updates, and

Figure 2. Heatmap of answer similarity in the QA distillation task.
Each row corresponds to a sample question and compares the stu-
dent model’s answer to the answers from the two teacher mod-
els (LLaMA and BioGPT). Brighter cells indicate higher similar-
ity (measured by BERTScore). The student’s outputs correlate
strongly with the teacher that had domain expertise for the ques-
tion (e.g., BioGPT for biomedical specifics), reflecting successful
knowledge merging.

computational cost. Our method scores high in privacy (no
raw data exchanged) and trust (immutable logs and con-
sensus), whereas standard FL lacks verifiability. Resilience
is also higher due to voting filtering out bad updates. The
trade-off comes in slightly increased computation and com-
munication overhead for validation and ledger operations.
These results underscore that our approach achieves com-
petitive model performance while substantially improving
the governance of collaborative training.

5. Conclusion
We presented a framework for advancing agentic AI
through decentralized and verifiable collaboration in train-
ing foundation models. By fusing federated learning with
distributed ledger technology and multi-agent consensus,
the approach enables multiple parties to jointly train mod-
els without relinquishing data or requiring central trust.
Our experiments on diverse NLP tasks demonstrate that
this workflow can achieve high-performance models com-
parable to centralized training, while offering strong guar-
antees of privacy, traceability, and resilience. The inte-
gration of knowledge distillation further allows leverag-
ing large pre-trained models within the collaborative set-
ting, broadening the applicability to multi-task and multi-
domain scenarios.

This work opens several avenues for future research.
One direction is to implement more sophisticated incen-
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Figure 3. Radar chart comparing our decentralized verifiable
learning (solid line) against standard federated learning (dashed
line) on key factors: (a) Privacy preservation, (b) Trust and trans-
parency, (c) Robustness to malicious or low-quality updates, (d)
Computational/communication efficiency. Our approach signifi-
cantly improves governance and trust at a modest overhead cost.

tive mechanisms (e.g., token rewards or reputation scor-
ing) to encourage truthful participation among autonomous
agents. Another is to explore dynamic agent populations,
where agents may join or leave the federation, requir-
ing adaptive consensus strategies. We also plan to apply
this framework to real-world cross-institution collabora-
tions (e.g., hospitals co-training medical AI) to evaluate its
effectiveness at scale and under real network conditions.
Ultimately, by empowering distributed agents to work to-
gether on model development with trust, we move closer
to a future of AI characterized by collaborative intelligence
and shared benefits.
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