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Abstract

Medical image reconstruction from measurement data is a vital but challenging
inverse problem. Deep learning approaches have achieved promising results, but
often requires paired measurement and high-quality images, which is typically
simulated through a forward model, i.e., retrospective reconstruction. However,
training on simulated pairs commonly leads to performance degradation on real
prospective data due to the retrospective-to-prospective gap caused by incomplete
imaging knowledge in simulation. To address this challenge, this paper introduces
imaging Knowledge-Informed Dynamic Optimal Transport (KIDOT), a novel dy-
namic optimal transport framework with optimality in the sense of preserving
consistency with imaging physics in transport, that conceptualizes reconstruction
as finding a dynamic transport path. KIDOT learns from unpaired data by modeling
reconstruction as a continuous evolution path from measurements to images, guided
by an imaging knowledge-informed cost function and transport equation. This
dynamic and knowledge-aware approach enhances robustness and better leverages
unpaired data while respecting acquisition physics. Theoretically, we demonstrate
that KIDOT naturally generalizes dynamic optimal transport, ensuring its mathe-
matical rationale and solution existence. Extensive experiments on MRI and CT
reconstruction demonstrate KIDOT’s superior performance. Code is available at
https://github.com/TaoranZheng717/KIDOT.

1 Introduction

Medical imaging techniques like Magnetic Resonance Imaging (MRI) and Computed Tomography
(CT) are vital tools for visualizing internal anatomy, yet reconstructing high-fidelity images from
the acquired measurements remains a significant challenge [1, 2]. This process is fundamentally
an ill-posed inverse problem inferring a complete, clean image from often incomplete and noisy
measurement data. Classical reconstruction algorithms, such as filtered back-projection or iterative
methods [3-7], typically rely on precise mathematical modeling of the image acquisition physics,
incorporating essential imaging knowledge. However, accurately capturing complex factors present
in real-world scenarios (e.g., noise, non-ideal sampling) within these models remains challenging.
Consequently, the performance of traditional methods can degrade significantly when this knowledge
is incomplete or imperfect, yielding images with noise or residual artifacts.

Deep learning (DL) has emerged as a powerful alternative [§—10], achieving state-of-the-art re-
sults by learning complex mappings directly from data. However, the predominant supervised DL
paradigm[11-13] faces a critical bottleneck: the requirement for large datasets of perfectly registered
pairs of low-quality input measurements and their corresponding high-quality ground truth images.
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(a) KIDOT framework: leveraging imaging knowledge to guide the dynamic OT process (b) Retrospective-prospective gap in MRI reconstruction

Figure 1: (a) Core concept of KIDOT: modeling image reconstruction as a continuous evolution from
a prospective degraded distribution PP to a high quality image distribution Q, guided by dynamic OT.
(b) The retrospective-prospective gap in MRI: a visual comparison of k-space data from retrospective
simulations versus real prospective undersampling (top), and their corresponding k-space reconstruc-
tions via supervised learning (bottom).

Obtaining such perfectly aligned data in clinical practice is often difficult, costly, or ethically con-
strained. Furthermore, many real-world datasets inherently lack perfect pairing due to patient motion,
or differences in acquisition protocols between low-quality and high-quality scans [14, 15].

To circumvent the lack of real paired data, a common practice [16, 17] is to generate simulated
low-quality data using simplified imaging knowledge (e.g., adding modeled noise, applying idealized
undersampling masks) from available high-quality images, creating artificial pairs for supervised
training. However, a significant gap often exists between these simulations and real-world prospective
measurements. Figure 1(b) shows examples of the retrospective-prospective gap in MRI, where
k-space data from retrospective simulations (left) differ from that of prospective acquisitions (right)
in sampling patterns and reconstructed high-frequency regions. Retrospective simulations often
idealize the true data acquisition process, struggling to fully capture the complex noise and genuine
artifact characteristics inherent in real-world prospective measurements. Models trained solely on
such simulated pairs, therefore, often exhibit a performance drop when deployed in prospective
clinical settings, highlighting their sensitivity to distribution shifts arising from the disparity between
simulated and real-world imaging knowledge. Ideally, a reconstruction method should effectively
leverage all available data resources, including potentially large amounts of unpaired real measure-
ments and real high-quality images, while robustly incorporating reliable imaging knowledge. This
motivates exploring frameworks capable of learning from unpaired distributions in a physics-aware
manner. Optimal Transport (OT) [18, 19] offers a principled mathematical approach for transporting
probability distributions or finding mappings between them, with the potential to learn from unpaired
data. However, conventional applications of OT often adopt a static perspective, learning a direct
map and potentially overlooking the dynamic physical processes inherent in image reconstruction.

To tackle the above challenges, this paper introduces imaging Knowledge-Informed Dynamic Optimal
Transport (KIDOT), a novel framework for unpaired medical image reconstruction. KIDOT integrates
imaging knowledge, primarily through the forward physical model, directly into a dynamic OT
formulation. As conceptually depicted in Fig. 1(a), instead of learning a static transformation, KIDOT
models reconstruction as a continuous evolution path from the measurement distribution (IP) to the
target image distribution (Q). This evolution is guided by an instantaneous cost function and governed
by a transport equation, both incorporating imaging knowledge, ensuring the transport path remains
consistent with the physics throughout the transformation. This dynamic, knowledge-informed
approach enables more realistic modeling, suited for leveraging unpaired data while remaining
grounded in the physics of image acquisition. To translate KIDOT into practice, we introduce a neural
network implementation strategy that learns from a combination of unpaired real and paired simulated
medical images. Furthermore, the theoretical underpinnings of KIDOT, including the rationale and
the existence of its learned transport solution, are established, validating its mathematical rigor.



The main contributions of this work are threefold: 1) We propose the KIDOT framework, which
uniquely integrates imaging physics into both the cost function and transport equation of dynamic OT
for prospective medical image reconstruction. To the best of our knowledge, this is the first dynamic
OT framework that integrates medical imaging physics, with optimality in the sense of preserving
consistency with imaging knowledge throughout its transport path. 2) We develop a practical
implementation algorithm of KIDOT based on neural networks, enabling it to learn to reconstruct
from unpaired medical image data. Theoretical analysis for KIDOT is established, showing its
rationale and the existence of the learned transport solution. 3) We demonstrate the practical
effectiveness and superior performance of KIDOT through extensive experiments on challenging
MRI and CT reconstruction tasks, particularly showcasing its advantages in handling prospectively
acquired and unpaired clinical data.

2 Background

Prospective medical image reconstruction. Medical imaging seeks to reconstruct internal struc-
tures from indirect, often noisy measurements. This task is fundamentally an ill-posed inverse
problem: determining an underlying image x given observed data y. The relationship is typically
modeled as y = A(x) 4+ n, where A represents the forward model dictated by the imaging physics
(e.g., the Radon transform in CT [20] or the partial Fourier transform in MRI [21]), and n accounts for
measurement noise and errors. Current approaches to solving such inverse problems can be broadly
categorized into three types. Classical iterative methods [3, 4] minimize the difference between
predicted and measured data, guided by the physical model A and incorporating prior assumptions
about the image x (e.g., sparsity [3] or low-rank structure [4]) via regularization:

& = argmin||A(z) — y||* + \R(z), 6

where R (x) is the regularization term, and ) is the trade-off parameter. While grounded in physics,
these methods may struggle to recover fine details from limited or noisy data. More recently, deep
learning techniques [22—-26] have shown promise, learning direct mappings from measurements y
to images x. These data-driven models can achieve high accuracy and speed but typically require
large datasets of paired examples (i.e., measurement y and corresponding ground truth image ).
Hybrid approaches [11, 27] attempt to combine the strengths of both data- and model-driven methods,
integrating physical models within neural network architectures. However, like purely data-driven
methods, they usually depend on the availability of paired training data. A significant practical
challenge arises because acquiring such perfectly aligned, high-quality reference images alongside
clinical measurements is often difficult or impossible (e.g., obtaining perfectly matched low-dose and
standard-dose CT scans). This common scenario, where only measurements y are readily available
without corresponding high-quality x, defines the challenging prospective inverse problem setting
that remains underexplored [16, 17].

Optimal transport and its applications in medical image reconstruction. OT offers a robust
mathematical framework for comparing probability distributions via the minimal cost required to
transform one into another [18, 28, 29]. Static OT finds an optimal coupling 7 between source P and
target Q distributions that minimizes the expected transport cost [18]:

inf  Eg yoxlc(z,y)], 2

ceitf o) By [e(z, y)] @

where c is the cost function, and II is the set of joint distributions with marginals P, Q. Extending this,
dynamic OT models the continuous evolution from P to Q over time [18, 19]. Dynamic OT seeks a

velocity field v(¢, z(t)) that optimally transports particles from an initial distribution z(0) ~ P to a
final distribution (1) ~ Q. This is achieved by finding v that minimizes the action functional:

inf B {/0 %Hv(t, a:(t))||2dt} St d%t) — ot 2(t), 2(0) ~ P, z(1) ~ Q. (3)

The OT principles have proven valuable for inverse problems lacking paired data, e.g., natural image
processing [30-34]. In medical imaging, static OT has been explored to address the challenges of
unpaired or misaligned clinical data. For example, [35, 36] use static OT to derive a CycleGAN frame-
work for learning from unpaired data. [37] further integrates variational methods with reconstruction
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Figure 2: Illustration of the KIDOT framework. KIDOT employs a sequence of transformations 7""/,
governed by a learned transport equation driven by the medical image reconstruction model, to map
measurement y from the prospective degraded domain to the reconstructed domain. The transport
process is guided by the KIDOT objective function, which critically incorporates imaging knowledge
by enforcing data consistency along the transport path. Simultaneously, it promotes distribution
matching between the reconstructed domain and the target high-quality domain using potentials yg.

and Wasserstein-1 distance for unpaired learning in CT. [38, 39] preserve structural consistency
[38] or incorporate contextual features [39] in OT-based generative models. Static OT has also been
utilized for aligning and synthesizing different MRI sequences to enhance reconstruction quality [40].
More recently, dynamic OT has been explored for semi-supervised problems, FSBM [41] utilizes a
distance-preserving objective to build a dynamic transport process in Schrodinger bridge framework.

Despite these advances, prior OT-based methods in medical imaging often utilize generic costs (e.g.,
Euclidean distance) disconnected from the underlying image formation physics, or employ static
OT which considers only the source and target distributions, without modeling the dynamics of the
transformation between them. We introduce a novel constraint and objective by requiring the dynamic
OT path to be consistent with the physical forward model of the imaging system. This embeds crucial
domain knowledge directly into the transport dynamics, offering an imaging-informed alternative to
standard dynamic OT formulations for inverse problems.

3 Imaging Knowledge-Informed Dynamic Optimal Transport

Given measurement distribution P and high quality image distribution QQ in prospective medical
image reconstruction, this paper aims to model a principled evolution from an initial state y ~ [P to
corresponding target state = ~ Q. Dynamic OT provides a framework for modeling the evolution
between probability distributions, characterized by a transport cost and governing transport dynamics.
Conventional dynamic OT often assumes the transport cost is based on a standard metric distance
(e.g., Euclidean distance), optimizing for the shortest path length. However, in inverse problems,
e.g., medical image reconstruction, a more physically meaningful cost might relate the evolving
estimate to the observed measurements via the forward model, and this cost may not be a standard
metric. Meanwhile, the physical knowledge should also be incorporated into the transport dynamics.
This necessitates adapting the dynamic OT framework. Towards this goal, we propose an imaging
Knowledge-Informed Dynamic Optimal Transport (KIDOT) approach for prospective medical image
reconstruction. As illustrated in Fig. 2, in KIDOT, we design a transport cost reflecting local
consistency with the imaging physics at each point along the evolution. Meanwhile, the dynamics
of KIDOT, represented by the transport equation, is driven by the gradient flow of inverse problems
that incorporate imaging knowledge. We also develop a practical implementation based on neural
networks for KIDOT, enabling it to learn from unpaired real measurements for prospective medical
image reconstruction. Next, we elaborate on these components in detail.

3.1 Dynamic Transport Cost Informed by Imaging Knowledge

In static OT, the objective is to find a coupling 7 between source [P and target QQ distributions that
minimizes an average transport cost (Eq. (2)). To effectively apply OT to imaging inverse problems,
where measurements y are related to an underlying image x by a forward model y ~ A(x), the



cost function c(z, y) should encode this physical relationship. Therefore, instead of using generic
distances, we propose an imaging-informed cost based on data fidelity: c(z,y) = ||y — A(z)||1. This
cost directly quantifies the discrepancy between an observed measurement y and the measurement
predicted by the forward model A on a candidate image x.

Yet, how to define the transport cost in the dynamic setting is difficult. A key challenge arises because
our imaging-informed cost ¢(z,y) = ||y — A(x)]|1 is generally not a metric. Consequently, the
standard dynamic OT formulation based on minimizing path length defined based on a metric is un-
suitable. As an alternative, we propose to minimize the expected value of an integrated instantaneous
cost over potential paths:

1
inf Ep [/ e(I, Ip) dt] ,  where c(z,y) = ||y — A(z)||1- “4)
v 0

Here, the dynamics % = v(t, I;) are governed by the velocity field v, and I, represents the path
evolving from an initial measurement /y. This objective seeks dynamics v such that, on average, the
evolving path I; maintains consistency with its specific originating measurement [, (via the forward

model A) throughout the entire time interval [0, 1]. We next analyze the rationale of this cost.

Rationale analysis. To evaluate the suitability of minimizing such an integrated cost, we analyze
its behavior in the Euclidean space. Considering paths connecting a starting point y to an endpoint ,
we examine which path minimizes the integral of the instantaneous Euclidean distance between the
point on the path s(¢) and the fixed endpoint 2. We have the following theorem.

Theorem 3.1 (Existence and Geometry of Minimizer for L? Distance Integral). Let z,y € R"
be distinct points and let M > ||x — y||2 be a constant. Define the feasible set of paths Xy as
Xar = {s € AC([0,1],R™) | 8(0) =y, s(1) = z,||8'||cc < M}, where AC(|0,1],R™) is the space
of absolutely continuous paths. Then, an optimal solution s* € X to problem

1
inf / Is(t) — ] 2t ®)

SEX
exists and its geometric trajectory {s*(t) | t € [0, 1]} is the straight line segment connecting y and x.

The proof is provided in Appendix A.2. This theorem indicates that when the static cost is taken as the
squared Euclidean distance, minimizing the proposed dynamic transport cost recovers the standard
straight-line path, consistent with the conventional dynamic OT. This suggests that minimizing this
integral formulation could be a reasonable way to define transport dynamics based on general cost,
including our non-metric, imaging knowledge-informed data-fidelity cost.

3.2 Transport Equation Guided by Imaging Knowledge

We now specify the dynamics that governs the transformation path I; from measurements to re-
constructed images, guided by imaging knowledge. Our approach draws inspiration from inverse
problems, which commonly minimize an objective that combines data consistency with a regu-
larization term R (/) encoding prior knowledge about the desired image. The continuous-time
gradient flows of the inverse problems naturally provide a principled evolution dynamic. Specifically,
minimizing Eq. (1) via gradient flow leads to the following ordinary differential equation (ODE):

i,

T —(A"(A(I;) — Io) + VR(Iy)), (©)

where [ represents the initial measurement y, A* is the adjoint of the forward operator .4, and
VR (I;) is the gradient of the regularization term evaluated at the current state I;. This ODE describes
a path moving away from simple measurements towards reconstructions that better satisfy both data
fidelity and prior constraints. We adopt this gradient flow to define the velocity field v(¢, I;) that
drives the transport in our KIDOT framework. Note that the regularization R is difficult to define and
is often learned based on paired data in a supervised manner in previous methods. By taking Eq. (6)
as the transport equation, our KIDOT will provide an approach to learn the regularization/prior from
prospective unpaired data.



Combining the proposed integrated cost (Eq. (4)) with the imaging-knowledge-guided dynamics
(Eq. (6)), the KIDOT formulation seeks the optimal regularization R by solving:

1
inf B, p [/ 1o — A(Ly)|1 dt
R 0

) dl;

st

In problem (7), the objective function minimizes the expected cost along the trajectory, while the

constraints enforce that the evolution follows the defined dynamics that starts from the distribution

of input measurements P, and ultimately transforms it into the target distribution of high-quality

images Q at time ¢ = 1. This formulation integrates imaging knowledge into both the transport cost

and equation, forming an imaging knowledge-informed dynamic OT model. We note that while the

gradient flow in Eq. (6) serves as our main example, the KIDOT framework is inherently flexible

and can readily accommodate more advanced optimization flows, e.g., proximal gradient flows, to
incorporate the imaging knowledge into the transport equation in more different ways.

(7N
= _(A*(A(It) — I()) + VR(It)), I() ~ P, .[1 ~ Q

3.3 Practical Implementation Based on Neural Networks

This section focuses on the practical solution to KIDOT problem (7). Since the optimization variable
is a function in the KIDOT problem, we parameterize it using neural networks to ease implementation.

Parametrization and relaxation. For convenience, we directly parameterize V'R using a neural
network H 4 with parameters ¢. To solve problem (7), another challenge is the ODE-based constraint
with initial and ending distribution constraints, making optimization difficult. To tackle this challenge,
we apply a relaxation to the ending distribution to seek an approximation of the optimal solution.
Specifically, given an initial state Iy ~ P, we produce I; using ODE by I, £ ’7:;([0) = Iy —

JHAA(L) = Ip) + Hy(I,)]dr,

By denoting the distribution of 7 (Io) as 7, (P), the constraint I; ~ Q becomes 7., (P) = Q,
equivalent to W (7;}# (P),Q) = 0 where W is the 1-Wasserstein distance. By introducing the
Lagrange relaxation, problem (7) becomes

inf (6], P, Q) 2 C(¢) + AWL(T 4 (P),Q), ®

where C(¢) = Ej,p [ fol c(ﬁf([o), Iy) dt}. Leveraging the Kantorovich-Rubinstein duality [18] for
the W distance, we further transform the optimization problem to

igf{c(¢)+/\ sup (Ew@[@(ﬂi)]—EIONP[W(EI(Io))D}’ )

llelleip<1

where || - ||1ip is the Lipschitz norm.

Discretization and training. To solve the above problem, we also parameterize ¢ using a neural
network ¢y with parameters . The integral to produce 7:;([0) and the cost are approximated
numerically via a discrete sum over N time steps 0 = g < t; < --- < ty = 1, with a step size
t;+1 —t; = 1/N. Using a forward Euler discretization for the ODE in Eq. (7), the evolution at each
discrete step becomes I, , = I;, — & (A*(A(Ly,) — Io) + Hs(Ly,)), where I, = Ij. Let ’Tdf (Io)
denote the state Iy, , obtained after 7 + 1 such steps. Substituting these into the dual objective Eq. (9)
and discretizing the time integral, we arrive at the following loss function for training:

N-1
Lxor(¢, ) = Ep % D lly = AT @)l + Apa(T3" ()| = ABglwa(w)].  (10)
1=0

Lxipor can be implemented on unpaired mini-batch samples of the unpaired prospective medical
images. In medical image reconstruction, the simulation measurements produced by the forward
model .4 on high-quality medical images are also available for training, serving as partially paired
data P,,;,. For these data, we apply a supervised training loss as

ESUP(¢) = E(yp,xp)mPpa“. [‘/—-'(7;]\]_1 (yp)7 I[))L (11)



where F(-,-) is a standard supervised loss function (e.g., L1 or Ly distance), encouraging the
predicted endpoint 7:;” ~'(yp) to match the known ground truth z,,. The final training objective is

ir(;f Sl;p Lxipor (¢, 0) + vLsup(9), (12)

where + is a hyperparameter. Eq. (12) is optimized by alternately updating ¢ and 6 through gradient
descent and ascent, respectively. We provide the detailed training algorithm in Appendix A.1.

Theoretical analysis. We now study the existence of an optimal solution to the formulation
presented in Eq. (8). We make the assumptions: Al) Measures P and Q have compact support,
and the parameter set K C R¢ is non-empty and compact. A2) 7;}5”, — 7;5 pointwise whenever

¢n — ¢ and there exists h € L'([0,1]) such that [¢(T} (y),y)| < h(t) forall nand t € [0,1]. A3)
supyere | T4 |oo < 00. A4) For fixed y, the cost function c(y, -) is continuous in its second argument.

Theorem 3.2 (Existence of Minimizer for KIDOT Objective). Suppose the assumptions Al-A4 hold,
then there exists a minimizer for the optimization problem inf ¢ i J(P| A, P, Q).

The proof is provided in Appendix A.3. This theorem confirms that the KIDOT objective is well-
defined and that a set of optimal parameters ¢* guiding the transport path exists.

4 Experiments

We conduct experiments encompassed simulated MRI data, prospectively acquired real-world MRI
data, and prospectively acquired clinical CT data. Full experimental details and supplementary results
are available in Appendix B due to space limit.

Simulated MRI data. Our experiments on simulated MRI data utilized the publicly accessible
fastMRI multi-coil knee dataset [42]. We selected 2500 fully sampled MRI slices, partitioning
them into 1000 for training, 500 for validation, and 1000 for testing. Undersampled measurements
were simulated using k-space masks corresponding to a 4x acceleration factor. A key aspect of this
evaluation was to assess KIDOT’s robustness to scenarios where test data characteristics differ from
training data, a common challenge in prospective clinical deployment. To achieve this, we generated
two distinct sets of undersampled inputs: one set, with specific sampling patterns, was used for
training supervised baselines, while a different set of sampling patterns was employed for testing
to mimic prospective acquisition conditions. For this dataset, the core transport network 7 within
KIDOT was implemented using an unfolding architecture based on E2E-VarNet [12].

Quantitative results on the simulated MRI dataset are presented in Table 1. KIDOT demonstrates
superior performance across all evaluated metrics, encompassing both image fidelity measures (PSNR
and SSIM) and perceptual quality indicators (FID [43] and KID [44]). These scores outperform
conventional methods like CS-wavelet [45, 46], supervised learning models like E2E-VarNet [12],
contemporary unpaired learning techniques such as OT-CycleGAN [35], UAR [37] and FSBM [41],
as well as strong diffusion-based models like DDS [47]. This highlights KIDOT’s effectiveness in
producing reconstructions that achieve both high fidelity to the ground truth and strong perceptual
realism, even under these challenging simulated prospective conditions. Visual comparisons, further
illustrating these improvements, are provided in Appendix B.8.

Table 1: Quantitative comparison on the simulated MRI dataset (4x acceleration). Metrics include
PSNR, SSIM (higher is better 1), FID, and KID x 100 (lower is better ). Best results are bolded.

Method PSNR 1 SSIM 1 FID | KID %100 |
CS-wavelet [45] 29.17 0.7981 95.76 5.77
E2E-VarNet [12] 32.56 0.8372 24.35 1.29
OT-CycleGAN [35] 26.45 0.7751 156.43 7.25
UAR [37] 33.01 0.8425 19.56 1.05
FSBM [41] 26.52 0.7634 113.62 6.03
DDS [47] 31.27 0.8136 29.46 1.65
KIDOT (ours) 33.31 0.8518 10.68 0.83




Real prospective MRI data. To further assess KIDOT’s performance in realistic clinical scenarios,
we utilized a multi-contrast brain MRI dataset acquired prospectively using a 3.0T United Imaging
scanner equipped with a 32-channel head coil. Our experiments centered on the T2-FLAIR weighted
sequence, which was undersampled with a 10x acceleration factor. The dataset, comprising images
of size 256 x 256 x 176, was divided into 3077 training, 1860 validation, and 3077 test slices. A key
challenge with this dataset is the separate acquisition of undersampled data and their corresponding
fully sampled references, a common practice that often introduces inherent spatial misalignments
between them. Consequently, standard pixel-wise fidelity metrics such as PSNR or SSIM are less
reliable for evaluating performance on the test set.

For thiS dataset, the transport l‘letwork 7:17 in KIDOT Table 2: Quantitative Comparison on the Real

was parameterized using an unfolding architecture  Prospective MRI Data (10x acceleration).

based on PromptMR [13]. Given the inherent spa- Metrics include FID and KID x 100 (lower is
tial misalignments, which render pixel-wise metrics  better |). Best results are bolded.

unreliable, our evaluation on this dataset focused on

distribution-based metrics: FID and KID. Further- Method FID| KIDx100/]
more, we conducted a rigorous benchmark against  ~g_yavelet [45] 6775 334
a state-of-the-art DDS model under three practical gog_varNet [12] 65.27 283
strategies: using a pre-trained model, fine-tuning it promptMR [13] 2952 1.46
on our data, and training it from scratch. As detailed OT-CycleGAN [35] 221.83 10.94
in Table 2, KIDOT achieved the leading FID and UAR [37] 29.09 1.23
KID scores, outperforming both supervised and un- FSBM [41] 147.62 7.13
supervised baselines. KIDOT surpasses all DDS vari- DDS (Pre-trained) [47] 62.94 2.71
ants, which highlights a key advantage: its physics- ng E?Omtscrag)j& %m gg% %gz
: : : : : : me-tune . .
informed dynamics provide a powerful inductive bias, KIDOT (ours) 5826 112

making it more data-efficient and robust, especially
when real training data is limited. Visual results pre-
sented in Figure 3 corroborates these quantitative findings. On representative test slices, KIDOT
reconstructions exhibit clear anatomical detail, effective noise suppression, and reduced Gibbs arti-
facts. Particularly in challenging areas (e.g., highlighted region in red), KIDOT demonstrates superior
preservation of fine structures compared to other approaches. Notably, as FSBM is not tailored for
medical imaging and its visual results were poor, we omitted its visualizations for brevity.

Reference

OT-CycleGAN UAR DDS (Fine-tuncd) KIDOT
Figure 3: Qualitative comparison of MR reconstruction methods on the prospectively acquired United Imaging
brain dataset (T2-FLAIR, 10x acceleration). KIDOT demonstrates enhanced detail recovery (e.g., red box).

Clinical prospective CT data. We finally evaluated KIDOT on a challenging clinical low-dose CT
(LDCT) task, utilizing a dataset of prospectively acquired abdominal scans from 30 consented patients
under Institutional Review Board approval. The LDCT protocol involved an approximate 10-fold
reduction in radiation dose compared to the corresponding normal-dose CT (NDCT) scans. Crucially,
differences in scan parameters and acquisition directions between the LDCT and NDCT protocols



resulted in significant spatial misalignments between the image pairs, a common complication in
prospective clinical studies. From 28,251 available slices, 2,420 were selected for this evaluation. To
benchmark KIDOT against methods reliant on aligned data, we generated simulated low-dose CT
(SLDCT) images from the NDCT scans, injecting compound Gaussian and Poisson noise into the
uncorrupted projections by using the method in [48, 49]. The transport network 7, within KIDOT
for this task was based on the ISTA-Net architecture [50].

Due to the substantial spatial misalignments inherent Table 3: Quantitative comparison on Clin-
in the dataset, performance was also primarily evalu- jcal Prospective CT Data (10-fold reduc-
ated using the distribution-based metrics FID and KID.  tion). FID/KID are reported (lower is bet-
Table 3 presents the quantitative comparison. KIDOT  ter |). Best results are highlighted in bold.
achieves the best scores among all evaluated methods,

outperforming conventional approaches like BM3D, su- Method FID| KIDx100}
pervised deep learning models such as REDCNN and BM3D [51] 100.82 6.12
the baseline ISTA-Net, and unpaired methods includ- REDCNN [52] 46.43 1.93
ing OT-CycleGAN and UAR. This demonstrates KI- ISTA-Net [50] 24.86 1.59
DOT'’s strong capability to learn effective mappings for OT-CycleGAN [35] 63.54 3.28
dynamic image reconstruction even from severely mis- UAR [37] 23.82 1.45
aligned input distributions, reflecting its potential utility FSBM [41] 68.42 3.61
in practical clinical scenarios. Figure 4 provides qualita- KIDOT (ours) 22.25 1.32

tive results of LDCT data processed and the reconstruc-
tion achieved by various methods, including KIDOT,

underscoring the challenges posed by noise and the need for robust handling of real-world data
complexities like misalignment. Among these, KIDOT’s reconstruction (bottom-right) particularly
stands out, demonstrating superior noise suppression and enhanced preservation of fine anatomical
details compared to other approaches.

REDCNN OT-CycleGAN KIDOT
Figure 4: Qualitative results for LDCT reconstruction on clinical prospective data. Comparison illustrates noise
reduction and detail enhancement achieved by KIDOT.

Ablation Study. We conduct an ablation study on
the fastMRI knee dataset (4x acceleration) to evaluate
the effectiveness of each component in KIDOT. We

Table 4: Ablation study on the fastMRI
knee dataset (4x acceleration).

compared four different configurations: (1) training ~ Method PSNR  SSIM
with only supervised loss Lgyp in Eq. (11), (2) training Lsup 3256 0.8372
with the loss associated with ¢y in Eq. (10) and Lgyp, Lsup + 9o 3200 0.8422
denoted as Lgup + g, (3) adding the transport cost Lsup + 0g + Cnal 33.01  0.8425
Chinal = [ly = A(T;" ()| for the final output i KIDOT 3331 0.8518

Eq. (10) to Lsup + e, denoted as Lsup + ¢ + Ctinal,
(4) using whole loss (KIDOT). Table 4 (upper two rows)
shows that adding the potential network (g to the supervised baseline resulted in performance
improvements. These gains indicate that ¢y successfully guides the learning process towards better
alignment with the target data distribution. It can be observed from Table 4 that incorporating the



imaging-knowledge-informed transport cost to the final output can further improve performance.
Furthermore, our full KIDOT model that enforces consistency to imaging knowledge throughout
the transport process, further improves the results, demonstrating the effectiveness of our imaging
knowledge-informed dynamic OT for medical image reconstruction. The key difference between (3)
and (4) lies in when and how the imaging- knowledge-informed cost is applied. The third setting
represents an ablation where the physics-consistency cost is applied only to the final output of the
N-step transport path. In contrast, our full KIDOT model enforces this physics consistency throughout
the entire dynamic transport process, integrating the cost over all intermediate steps of the trajectory.

5 Conclusion and Limitations

We presented KIDOT, a novel framework for prospective medical image reconstruction. Our key
innovation is framing reconstruction as a dynamic transport process whose learned path is explicitly
constrained by imaging physics. Theoretical analysis and extensive experiments show the rationale
and effectiveness of KIDOT. While KIDOT demonstrates promising results, it relies on the availability
of the physical forward model (i.e., .A), which may limit its application when the information of .A
is missing. Meanwhile, the computational cost associated with simulating the dynamic transport
path via numerical ODE integration can be higher than static methods. We will investigate more
techniques in our framework to tackle these limitations in the future.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See Section 3 and Appendix A for theoretical results and Section 4 for
experimental results.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Section 5 explicitly discusses the limitations of our method.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
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* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.
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tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Justification: Complete proofs are included in the supplementary material. In Section 3 of
the main paper, we provide the full set of assumptions.
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The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Please refer to Appendix. And the source code will be publicly released
following possible publication.
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The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The fastMRI dataset is publicly available, and we will provide open access to
the real prospective datasets later.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section 4 in the main paper and Appendix provide details on the experimental
settings.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Statistical significance (p-values from t-tests comparing KIDOT to key base-
lines) is reported in Appendix, detailing results from multiple runs.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please refer to Appendix. Experiments were performed using PyTorch on an
NVIDIA 4090 GPU.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics and confirm that our research
has been conducted in conformance with these guidelines.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Please refer to Section 1.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Work does not involve pretrained generative models, scraped data, or other
components that could pose risks of misuse. The method is specific to medical reconstruction
tasks and is not directly applicable to general content generation.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We use the fastMRI dataset [42] (under MIT license). The corresponding
papers are properly cited and licenses are acknowledged in our code and paper.

Guidelines:
* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The primary new asset is the source code for our model. We plan to release
this code publicly, accompanied by a README file detailing installation, dependencies,
training/evaluation scripts.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

 The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]

Justification: The use of Real Prospective CT Data from human subjects was approved by
an Institutional Review Board (IRB).

Guidelines:
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* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core methodology of KIDOT does not involve the use of Large Language
Models (LLMs) as an important, original, or non-standard component.
Guidelines:
* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Proofs and Algorithm

A.1 KIDOT Training Algorithm

Algorithm 1 KIDOT Training Algorithm

Input: Real prospective degraded dataset Y (samples y ~ Y); high-quality dataset X (samples
x ~ X); unfolding transport network 74 and potential network ¢g; learning rates o4, ag; number of
critic updates per generator update N,.
1: while ¢ has not converged do
fork=1,--- ,N.do
% Training potential network pg.
Sample mini-batch {y()}% | from Y and {z")} 2, from X.

3
4
5 Evolve {y)} to {72” ~!(yY))} using discrete transport equation for N steps.
O B , B .
6: Compute critic loss: Lo 52— po(x9)) = £ 37071 0T (y9)).
7: Update critic parameters: 6 < 0 + ayVgLp.
8 end for
9: % Training unfolding transport network 7T.
10:  Sample mini-batch {y)}7_ | from Y.
11:  Evolve {y)} along paths {7;;’ (y)}N 52 and to endpoint {7T;N’1 ().
12:  Compute generator loss:

B N—1 ; e o ;
3 Ly T (S04 I — ATEON L~ Aeo(TEY (09))).
14:  if paired data is used then

15: Sample mini-batch {(y,(,j ), x,(,j ))}f:pl from Ppqir-.
5 =l )

16: £¢ — [:4) + Blp Zj:pl ]:(7?;1\, 1(y1(7J))7x1(0]))'

17:  endif

18:  Update generator parameters: ¢ <— ¢ — agV oLy,
19: end while

A.2 Proof of Theorem 3.1

Theorem A.1 (Existence and Geometry of Minimizer for L? Distance Integral). Let z,y € R" be
distinct points and let M > ||x — y||2 be a constant. Define the feasible set of paths Xy; as

Xy = {s € AC([0,1],R™) | 5(0) = y,5(1) = 2, ||8"]| 0 < M},

where AC([0, 1], R™) denotes the space of absolutely continuous paths. Consider the optimization
problem
1
inf Is], where I[s :/ Is(8) — y|2dt. (13)
seEX 0
Then, an optimal solution s* € X to problem (13) exists, and its geometric trajectory {s*(t) | t €
[0, 1]} coincides with the straight line segment connecting y and x.

Proof: The proof proceeds in two parts. First, we establish the existence of an optimal solution.
Second, we prove that the geometric trajectory of any such optimal solution must be the straight line
segment connecting y and x.

Part 1: Existence of Optimal Solution

We equip the space of continuous functions C([0, 1], R™) with the supremum norm || « ||, Where
| flloo = supyefo11 [1f(£)[|2. We next show that the feasible set X is nonempty and compact in this

space and that the functional I[s] is continuous, thus obtaining the existence of an optimal solution.
1) Non-emptiness of X;;. Consider the straight line path so(t) = (1 — t)y + tz. It is absolutely
continuous, s¢(0) = y, and so(1) = x. Its derivative is s{,(t) = « — y a.e., with ||s((¢)[|2 = ||z — y/|2-
Since M > ||z — yl|2, we have ||sp[loc = ||z — yll2 < M. Thus, s9 € Xas, and the feasible set is
nonempty.
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2) Compactness of X, (in C([0,1],R™)). We apply the Arzela-Ascoli theorem by verifying that
Xy is closed, uniformly bounded, and equicontinuous.

* Uniform Lipschitz Bound: The condition ||s’||o, < M implies that every path s € X is Lipschitz
continuous with a uniform Lipschitz constant M, i.e., ||s(t1) — s(t2)|l2 < M|t; — to] for all
t1,12 € [0, 1].

* Closedness: Let {s,}52, C Xy be a sequence converging uniformly to s € C([0,1],R"), i.e
llsn, — S|l — 0. The limit function s is continuous. Pointwise convergence implies s(0) =
lim;, 00 $,(0) = y and s(1) = lim,, o0 $5, (1) = . Taking the limit in the Lipschitz condition
HSn(t1) — Sn(tQ)”Q S M|t1 — tzl yields ||S(t1) — S(tg)”z S M|t1 — t2| for all tl, tg S [0, 1]. This
shows s is M-Lipschitz continuous. By Rademacher’s theorem, a Lipschitz continuous function
is differentiable almost everywhere, and at points where it is differentiable, its derivative s'(t)
satisfies ||s’(t)||]2 < M. This implies that s is absolutely continuous and its supremum norm
satisfies ||s'||oc < M. Thus, s € Xy, proving that X} is closed in C([0, 1], R™).

* Uniform Boundedness: For any s € Xp; and ¢ € [0,1], ||s(t)]]2 < [|s(0)]|2 + |Is(t) — s(0)]|2 <

llyllz2 + M|t — 0] < |ly|l2 + M. Hence, ||s||z= < |y|l2 + M for all s € Xy, making the set
uniformly bounded.

» Equicontinuity: Since all functions in X, share the same Lipschitz constant M, the family X,
is equicontinuous. Specifically, for any € > 0, choose § = ¢/M (M > 0). Then for all s € Xy,
|t1 — tg‘ <0 1mphes ||S(t1) — S(fg)”g < M|If1 — tgl < M6 =ce.

By the Arzela-Ascoli theorem, X}/ is compact in C'([0, 1], R™).
3) Continuity of the Functional I[s]. Let s,, — s uniformly in C([0, 1], R™). Then

s = 161 < [ Thont®) =18~ o) - wlBl
- / [($n(t) — 5(8), 8 (8) + () — 2]t
< / 3n(t) — s(0)l2llsn () + () — 2y[adt.

sn(t) + s(t) — 2y]|2 is bounded by some constant C’. Therefore,

1 1
Ilsu] = 1) € [ lsn(t) = s(0)]adt < € [l = st = s, = s
0 0
As |8y, — $|joc — 0, we have |I[s,,] — I[s]| — 0. Hence, I[s] is continuous on C([0, 1], R™) with
the supremum norm.

4) Existence Conclusion. By the Weierstrass Extreme Value Theorem, a continuous real-valued
functional (I[s]) defined on a non-empty compact set (X)) attains its minimum value on that set.
Therefore, there exists at least one optimal solution s* € X; for problem (13).

Part 2: Geometry of the Optimal Trajectory

Let s* € X be an optimal solution, which exists by Part 1. We show that its geometric trajectory
must be the straight line segment connecting y and x. Let I denote this line segment:

I={zeR"|3s€0,1], z=(1—8)y + sz}.
For any ¢ € [0, 1], let ¢(t) = proj,(s*(t)) be the orthogonal projection of s*(¢) onto I.

Assume, for the sake of contradiction, that the geometric trajectory of s* is not the line segment I.
This implies that the set T = {¢ € [0, 1] | s*(t) ¢ I} has a positive Lebesgue measure. For ¢t € T,
s*(t) # q(t). By the property of orthogonal projection (Pythagorean theorem), for any ¢ € [0, 1]:

Is*(t) = wli3 = Is*(t) — a(O)]13 + lla(®) — yl3.
|

Since [|s*(t) — q(t)|13 > 0, we have ||s*(t) — y[|3 > [|q(t) — y||3 for all ¢ € [0, 1]. Crucially, for
t € T, since s*(t) # q(t), we have ||s*(t) — q(¢ )H% > 0, which implies the strict inequality:
Is*(t) = yll3 > lla(t) = yll3, VteT.
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Now, we integrate over [0, 1] obtaining
1
1= [ 50 - ylide = [ 70— ylBae+ [ (0~ ylBar
0 T [0,1\T
> [ a0 i+ [ ate) - ol
T [0,1\T

=A|mm—yﬁw=1m-

where the inequality is because 7" has a positive Lebesgue measure. Thus, we have [s*] > I|q].
Next, we verify that the projected path ¢(t) is feasible, i.e., ¢ € Xy.

* Boundary Conditions: Since s*(0) = y € I and s*(1) = = € I, their projections are themselves:
q(0) = proj;(y) = y and ¢(1) = proj;(x) = .

* Absolute Continuity and Speed Bound: The orthogonal projection onto a convex set (like the line
segment I or the line containing it) is 1-Lipschitz (non-expansive), i.e., ||proj;(a) — proj; (b)|l2 <
lla — bl|2. Therefore,

lg(t1) — q(t2)ll2 = [[proj; (s (1)) — proj; (s™(t2))ll2 < [Is™ (t1) — s™(t2)]|2-

Since s* € X); is M-Lipschitz, ¢(t) is also M-Lipschitz. This implies ¢(¢) is absolutely continuous
and almost everywhere differentiable, its derivative satisfies ||¢'(t)||2 < M almost everywhere,
hence, ||¢||cc < M.

Thus, ¢(t) belongs to the feasible set X'»;. We have now found a feasible path ¢ € X, such that
I[q] < I[s*]. This contradicts the assumption that s* is an optimal solution (minimizer) for problem
(13). Therefore, the geometric trajectory of any optimal solution s* must be the straight line segment
connecting y and x.

]

A.3 Proof of Theorem A.2

We make the assumptions: Al) Measures P and Q have compact support, and the parameter set
K C R%is non-empty and compact. A2) 7:;" — ’7; pointwise whenever ¢,, — ¢ and there exists

h € L*([0,1]) such that |c(Tf (y),y)| < h(t) forall nand t € [0,1]. A3) supyeg || 74 ]loo < 00
A4) For fixed y, the cost function ¢(y, -) is continuous in its second argument.

Theorem A.2 (Existence of Minimizer for KIDOT Objective). Suppose the assumptions Al-A4 hold,
then there exists a minimizer for the optimization problem

1
inf J(¢|\,P,Q) :=Ep,p U c(ﬁf([o),lo)dt} + AW1(Ty4(P), Q). (14)
pEK 0

Proof: Let {7 } bea minimizing sequence such that

lim J(T} | \P)= inf J(TL| A\ P). (15)

n—oQ

Since ¢,, € K, where K is compact and finite-dimensional, there exists a convergent subsequence,
up to sub-sequences, (still indexed by n) such that ¢,, — ¢* for some ¢* € K. By assumption, this
implies pointwise convergence:

7;;5” (y) — 7;; (y) forally e P, te[0,1].

We next show that ’7:; is a minimizer of (14). By the continuity of ¢(y, -) in its second argument, we
have

1 1
/ c(y,’mfﬂ (y))dt — / c(y,’ﬁg* (y))dt.
0 0
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Moreover, since ]c(y, T3, (y))‘ is uniformly bounded by an integrable function A(t), the Dominated
Convergence Theorem yields

n—oo

1 1

lim Ep [/ oy, T}, (v)dt| = Bz [/ e(y T () ] (16)
0 0

Next, for any ¢ € Cy(R¥), we observe

| [o@ T )58~ [ @) dT) 58] < [1o(TE, ) = 0T )| dBly) >0,

which implies that (7 )4P converges narrowly to (7. )P asn — oo.

Additionally, since sup y¢ jc ||7;f oo < o0, we apply Dominated Convergence Theorem once again to
obtain

[ el 72,04 = [ Nl d(75) 8] 0.

By [53, Theorem 5.11], narrow convergence and convergence of first moments together imply that
W1 ((7:;”)#]?, (7;5* )#P) — 0.
By the triangle inequality, it follows that

lim W1 (Q,(75,)#P) = W1i(Q, (T4.)#P). (17)

n—oo

Combining Eq. (15), (16), (17), we obtain
1
J(T§ | A, P) =Ep [ /0 c(y, T4 (y))dt} + AW (Q, (T4 )4 P)

X 1
XD i By [/O oy T4, (1)) dt] + AW (Q. (T, )4P)

n—oo
= nh_{réo J(TE, | A P)

=2 inf J(7T} | \.B).

This completes the proof that 7;;* is a minimizer of (14).

B Additional Experiments

B.1 Implementation Details and Baselines

This section introduces the compared methods and detailed settings in our experiments.

Implementation details. We trained distinct KIDOT models tailored to each specific datasets
(simulated MRI data, real prospective MRI data and clinical prospective CT data). Optimization
utilized the RMSProp algorithm with differential learning rates: 1 x 10~* for the transport network
(Ty) and 2 x 10~ for the potential network (g). The inner iteration parameter N, was consistently
set to 1. A learning rate decay schedule applied a factor of 10 reduction after each block of 30 training
epochs. The underlying architecture for 7,4 was adapted based on the dataset: using the E2E-VarNet
backbone [12] for simulated MRI data, the PromptMR backbone [13] for real prospective MRI data,
and the MC-CDic backbone [50] for clinical prospective CT data. Experiments were performed using
PyTorch on an NVIDIA 4090 GPU. The source code will be publicly released following possible
publication.
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Representative compared methods. In MRI reconstruction experiments, we conducted compar-
isons against several existing methods, including the traditional CS-wavelet [45], two representative
deep learning unfolding networks, E2E-VarNet [12] and PromptMR [13], a diffusion-based method
(DDS [47]) and three comparative methods based on OT: OT-CycleGAN [35], UAR [37] and
FSBM [41].

For CT reconstruction, our set of comparison methods consists of the traditional BM3D [51], two
representative deep learning methods (ISTA-Net [50], an unfolding network, and REDCNN [52]),
and three OT-based approaches, OT-CycleGAN [35], UAR [37] and FSBM [41].

Motivation for Transport Network Implementation Our motivation for the implementation of
the transport network, 74, is guided by three core principles: leveraging task-specific knowledge,
ensuring fair comparisons, and demonstrating the broad applicability of our KIDOT framework.

First, we utilize backbones incorporated with task-specific knowledge. In medical image reconstruc-
tion, different imaging modalities, such as MRI and CT, possess unique physical properties and
data characteristics. For example, MRI heavily relies on multi-coil acquisition, where effectively
leveraging the physical information from coil sensitivity maps is often critical for optimal reconstruc-
tion. Meanwhile, the imaging mechanism in CT and MRI are different. CT images are produced by
Radon Transform and MR images are produced by Fourier Transform. This necessity to incorporate
modality-specific knowledge has led the research community to develop specialized, state-of-the-art
architectures for each task. To evaluating the performance of our approach for each task, we adopt
the state-of-the-art architectures for each task. Note that, for MRI, E2E-VarNet is more light-weight
than PromptMR, and we use E2E-VarNet for simulated MRI for the sake of efficient computation.

Second, we ensure a fair comparison in each experiment. For any given task, the transport network in
our KIDOT framework uses the same backbone architecture as the corresponding supervised baseline
it is compared against. For example, when comparing with E2E-VarNet on the simulated MRI dataset,
our KIDOT model also uses an E2E-VarNet-based architecture for its transport network 7.

Finally, this approach allows us to demonstrate the versatile usage of KIDOT on different backbones.
By deliberately choosing backbones that are identical or highly similar to the supervised baselines,
we effectively isolate the contribution of our framework. This ensures that the observed performance
gain is attributable to our novel knowledge-informed dynamic optimal transport formulation itself,
rather than simply employing a more powerful (and different) network architecture.

B.2 Datasets Details

Simulated MRI data. All images were center-cropped to 320x320 pixels. We simulated undersam-
pled measurements by applying k-space masks equivalent to a 4 x acceleration factor. A key aspect
of this evaluation was to assess KIDOT’s robustness to scenarios where test data characteristics differ
from training data, a common challenge in prospective clinical deployment. To achieve this, we
generated two distinct sets of undersampled inputs: one set, with specific sampling patterns, was
used for training supervised baselines, while a different set of sampling patterns was employed for
testing to mimic prospective acquisition conditions. Specifically, the test mask was generated by
randomly flipping 3% of the entries in the training mask. Examples of these distinct masks are shown
in Figure. 5.

Real prospective MRI data. For real prospective MRI data experiments, we used a multi-contrast
MRI dataset acquired on a 3.0T United Imaging scanner equipped with a 32-channel receiver head
coil. We selected the T2-FLAIR weighted sequence from this dataset. The T2-FLAIR images were
acquired using a 2D Inversion Recovery (IR) sequence with the following parameters: TR=6000 ms,
TE=396.44 ms, and volume size 256x256x176. The dataset was partitioned into training, validation,
and test sets consisting of 3077, 1860, and 3077 slices, respectively.

Clinical prospective CT data. For our clinical prospective CT reconstruction evaluation, we
utilized a dataset of real Low-Dose CT (LDCT) and Normal-Dose CT (NDCT) images. Data acquisi-
tion was approved by the Institutional Review Board of the xxx hospital. Each subject underwent
triple-phase CT scans—arterial, portal venous, and delayed—on a United Imaging Healthcare (UIH)
uCT960+ 320-slice helical scanner (rotation time 0.5 s/rotation, pitch 0.9937, collimation 80 mm;
reconstructed via UIH ulnnovation-CT Explorer R001). Scans exhibited similar anatomical structures
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Retrospective '
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(a) Visualization of simulated images (b) Visualization of sampling mask

Figure 5: (a) Visualization of simulated images: the first column shows fully sampled images,
the second column is used for supervised learning, the third column represents the undersampled
prospective data, and the fourth column shows the residuals (difference between supervised and
prospective images). (b) Visualization of simulated images:the first row is the retrospective mask,
and the second row is the prospective mask.

and consistent slice counts but differed in contrast enhancement. The dataset involved 30 consented
patients with breathing training. Bolus tracking was used (abdominal aorta, 150 HU threshold).
NDCT scans (head-to-foot, 100 kVp, 213 mAs DL 2) were triggered at 16s, 50s, and 120s post-
threshold. LDCT scans (foot-to-head, 80 kVp, 47 mAs, 1/10th NDCT dose) followed immediately.
Slice counts varied (98-645), yielding 28,251 512x512 abdominal LDCT/NDCT images. We used a
subset of 2420 pairs.

Given the potential for anatomical misalignment in real prospective acquisitions (due to different
scan directions/timings), we also generated perfectly-paired Simulated Low-Dose CT (SLDCT)
images by adding noise in the projection domain. We inject compound Gaussian and Poisson noise
into the uncorrupted projections by using the method in [48, 49]. The incident scale photon flux is
40000.We adopt a fan-beam geometry to simulate the uncorrupted projections from the CT images.
The geometrical parameters for projection were: source-to-isocenter distance 570.0 mm, source-
to-detector distance 962.9 mm, image size 512 x 512 (with pixel spacing 0.6934 x 0.6934 mm?),
detector bin number 864, detector bin width 1.0336 mm, and 1200 projection views acquired over a
360-degree orbit.

To visualize the characteristics of these different CT data types and the discrepancy between our
simulated low-dose data and real clinical low-dose data, we provide examples in Figure 6. From
left to right, the figure shows: the normal dose image, the generated simulated low dose image, a
corresponding real low dose image from our prospective dataset, and the residual image calculated as
the difference between the SLDCT and LDCT images (SLDCT - LDCT). This residual highlights
aspects of real low-dose noise and artifacts not fully captured by our simulation model.

B.3 Additional Ablation Studies
B.3.1 Effect of Different Number of Discretization Steps NV

We conduct an ablation study to investigate the sensitivity of our method to the number of discretiza-
tion steps N, which is a key hyperparameter in our framework. The choice of N represents a critical
trade-off between the fidelity of the ODE approximation and the associated computational cost. A
smaller N can lead to a coarse and inaccurate discretization of the continuous transport path, resulting
in suboptimal reconstruction quality. Conversely, a large NV increases the computational burden, as
inference time and memory grow linearly with IV, and can also introduce training instability due to
the risk of gradient exploding or vanishing in deeper backpropagation paths.

This analysis is performed on the real prospective MRI data with a 10x acceleration factor to find
the optimal balance. The results are reported in Table 5. As shown, the reconstruction quality,
measured by both FID and KID, consistently improves as [V increases from 6 to 12, achieving the
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Figure 6: Comparison of Normal dose, Simulated low dose, and Real low dose CT Images with
Residual images calculated as the difference between the SLDCT and LDCT images.

optimal results at NV = 12. However, when we further increase the number of steps to N = 15, the
performance begins to degrade. This degradation is likely attributable to the increased possibility
of gradient exploding/vanishing during training. Based on this analysis, we fix N = 12 for our
experiments.

Table 5: Comparison of different number of discretization steps N on the Real Prospective MRI
Data (10x acceleration). Best results are bolded.

discretization steps N | FID | KIDx100 |

6 35.31 2.01
9 30.06 1.62
12 28.26 1.12
15 29.23 1.31

B.3.2 Sensitivity to the Supervised Trade-off Parameter ~

We analyze the sensitivity of KIDOT to the supervised trade-off parameter « using simulated MRI data
(4x acceleration). As shown in Table 6, the choice of v impacts KIDOT’s performance metrics. We
observe a general trend where increasing ~y from 1 leads to consistent improvements in reconstruction
quality (higher PSNR and SSIM) and fidelity (lower FID and KID). The best results across all
evaluated metrics are achieved when v = 10*. Further increasing the trade-off parameter to v = 10°
results in a slight degradation across all metrics compared to v = 10%. Based on this result, we fix
v = 10* in our experiments.

Table 6: Comparison of different trade-off parameter v on the Simulated MRI data (4 x acceleration).
Best results are bolded.

trade-off parameter v | PSNR 1 SSIM1 FID | KIDx100 |

1 30.87 0.7815 54.82 2.47
10 31.71 0.7987 37.74 1.52
102 32.28 0.8204  29.52 1.38
103 33.04 0.8408 17.23 1.01
10* 33.31 0.8518 10.68 0.83
10° 33.10 0.8490 15.39 0.97
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B.3.3 Effect of Different Lagrange Multiplier A

We investigate the effect of the Lagrange multiplier A on KIDOT’s performance using simulated
MRI data (4 x acceleration). Table 7 summarizes the results for different values of \. We observe
that the choice of A has an impact on both reconstruction quality and fidelity metrics. Notably, the
optimal performance across all evaluated metrics (highest PSNR/SSIM and lowest FID/KID) is
achieved with a Lagrange multiplier of A = 1. Increasing A beyond this value leads to a consistent
and substantial degradation in performance. As ) increases to 102, PSNR and SSIM decrease, while
FID and KIDx 100 values increase drastically, indicating a considerable loss of image fidelity and
introduces more artifacts. Based on these results, we fix A = 1 for our experiments.

Table 7: Comparison of different Lagrange multiplier A on the Simulated MRI data. (4 x accelera-
tion). Best results are bolded.

Lagrange multiplier A | PSNR+ SSIM1 FID | KIDx100 |

0.5 33.07 0.8469  18.43 1.01
1 33.31 0.8518  10.68 0.83
2 32.94 0.8457  20.14 1.07
5 32.87 0.8436  26.69 1.25
10 27.62 0.8132 113.43 6.21

102 26.15 0.7518  178.59 7.33

B.3.4 Effect of the Physical Forward Operator 4 in Transport Equation

We conducted an ablation study to evaluate the importance of explicitly incorporating the physical
forward operator A within our KIDOT framework. This comparison was performed on the simulated
MRI data with a 4x acceleration factor. The setting "w/o A" indicates that the physical forward
operator was removed from the transport equation, or the network architecture 7. As summarized in
Table 8, including the physical forward operator A leads to a substantial improvement in reconstruc-
tion quality and fidelity. Comparing the setting "w A" to "w/o A", we observe that incorporating .A
results in a notable increase in PSNR (33.31 vs 30.88) and SSIM (0.8518 vs 0.8174). The fidelity
metrics are improved, with FID decreasing from 36.53 to 10.68, and KID x 100 decreasing from 1.48
to 0.83. These results clearly demonstrate the crucial role of the physical forward operator in guiding
the reconstruction process and highlight its contribution to KIDOT’s superior performance.

Table 8: Results of the method w/wo physical forward operator .4 on the Simulated MRI data (4 x
acceleration). Best results are bolded.

Setting | PSNR1 SSIM+ FID| KIDx100 |

wA 33.31 0.8518 10.68 0.83
wlo A | 30.88 0.8174  36.53 1.48

B.4 Statistical Significance Analysis

We perform statistical significance tests to compare baseline methods against our proposed KIDOT
method on the simulated MRI dataset with 4 x acceleration. Table 9 summarizes the p-values from
these tests. Each test compares the results of a baseline method directly against KIDOT.

For image-level quality metrics (PSNR and SSIM), p-values are computed via paired t-tests on the
per-image metric values. Specifically, for each image, we obtain the metric values from all runs for
both methods, then conduct paired t-tests across the set of images, thus accounting for within-image
variability and dependencies between paired samples.

For distribution-based fidelity metrics (FID and KID x 100), which are traditionally computed once
per dataset, we obtain multiple samples for statistical testing using a bootstrap resampling procedure
over the test images within each run. The FID and KID scores computed on these bootstrap samples
form the basis for independent two-sample t-tests comparing baseline methods with KIDOT.
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As shown in Table 9, all p-values fall below the conventional significance threshold of 0.05. Notably,
comparisons against CS-wavelet, E2E-VarNet, and OT-CycleGAN yield p-values < 0.001 across all
metrics, indicating strong statistical significance. For UAR, p-values range from 0.009 (KID x100) to
0.024 (PSNR), still demonstrating significant improvements by KIDOT. These results collectively
confirm that KIDOT outperforms all tested baselines on the simulated MRI dataset with high statistical
confidence.

Table 9: Statistical significance (p-values) of baseline methods compared to KIDOT on the Simulated
MRI data (4 x acceleration). Lower p-values indicate more significant differences. P-values are from
independent t-tests.

Method | PSNR SSIM FID KID <100

CS-wavelet <0.001 <0.001 <0.001 <0.001

E2E-VarNet <0.001 <0.001 <0.001 <0.001

OT-CycleGAN | < 0.001 < 0.001 < 0.001 < 0.001
UAR 0.024 < 0.001 < 0.001 0.009

B.5 Training Cost Curves for Three Datasets

In Figure 7, we display the cost curves over three datasets (i.e., simulated MRI data, real prospective
MRI data and clinical prospective CT data) of 74 and ¢y in the training process. The 7 cost curve is
normalized to [0, 1]. ¢y cost is scaled to [0, 1] and then take the negative.

Simulated MRI data Real prospective MRI data Clinical prospective CT data

Cost (Scaled)
°
B3

°

Cost (Scaled)
S
Cost (Scaled)
°
S

°

0.0

Epoch Epoch Epoch

Figure 7: The training cost curves for two datasets. The cost of 7 is scaled to [0, 1]. The cost of yy
is scaled to [0, 1] and then takes the negative.

B.6 Performance in Low-data Regimes

To evaluate the robustness of our method under data scarcity, we conduct an additional ablation study
in a low-data regime. We intentionally restrict the amount of available training data by using reduced
subsets of the simulated MRI dataset. Specifically, we train our model and the baselines on only 20%
and 10% of the original paired data.

The results are presented in Table 10. In both settings, our KIDOT framework consistently outper-
forms the E2E-VarNet and UAR baselines across all metrics. This improved performance under
data scarcity can be directly attributed to the regularization imposed by KIDOT’s physics-informed
constraints. Unlike purely data-driven methods that are prone to overfitting on small datasets, our
framework’s adherence to the physical model provides a robust inductive bias, significantly reducing
its dependency on the volume of training data and enhancing its generalization capability.
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Table 10: Performance comparison in low-data regimes on the Simulated MRI data. We train all
methods using 20% and 10% of the original training paired data. Best results for each setting are
bolded.

Data Method | PSNRT SSIMt FID| KIDx100

E2E-VarNet 30.97 0.7978  72.43 4.02

20% UAR 31.30 0.8054 40.32 2.95
KIDOT (Ours) | 31.75 0.8131 31.61 2.32
E2E-VarNet 29.92 0.7681 9241 6.07

10% UAR 30.64 0.7857 87.07 5.68
KIDOT (Ours) | 30.88 0.7952 73.14 4.11

B.7 Generalization to More Aggressive Out-of-Distribution (OOD) or Heterogeneous Data

To further investigate the robustness and generalization capabilities of our model, we conducted
two challenging cross-domain experiments on the fastMRI dataset, evaluating performance on both
cross-anatomy and cross-contrast tasks. These experiments are designed to assess how well the
models learn the fundamental principles of MRI reconstruction, rather than simply memorizing
features specific to the training data distribution.

Cross-Anatomy (Knee — Brain). In this setup, the models are tasked with reconstructing brain
images after being trained on knee data. For the supervised baseline (E2E-VarNet), we used paired
knee scans for training. For our unpaired method, KIDOT, we trained it using unpaired data consisting
of high-quality knee scans and low-quality brain scans. Both models were then evaluated on their
ability to reconstruct brain scans. As shown in Table 11, KIDOT significantly outperforms E2E-
VarNet, demonstrating its ability to generalize anatomical knowledge.

Table 11: Generalization performance on the Cross-Anatomy (Knee — Brain) task. Best results are
bolded.

Method | PSNRT SSIM?T FID| KIDx100 |
E2E-VarNet 33.82 0.7880  80.21 4.24
KIDOT (Ours) | 34.62 0.8145 26.87 1.53

Cross-Contrast (T1 — T2). Similarly, this experiment tests generalization across different MRI
contrasts. The models were trained on a dataset of unpaired high-quality T1-weighted brain scans and
low-quality T2-weighted brain scans. The evaluation was then performed on the task of reconstructing
T2-weighted brain scans. The results are presented in Table 12. Again, KIDOT shows superior
performance, indicating its robustness to variations in image contrast.

Table 12: Generalization performance on the Cross-Contrast (T1 — T2) task. Best results are bolded.

Method | PSNRT SSIM1 FID| KIDx100
E2E-VarNet 3206 08229 31.29 1.42
KIDOT (Ours) | 32.48  0.8348 29.74 133

The superior performance of KIDOT in both of these challenging OOD scenarios provides strong
evidence for the benefit of its physics-guided inductive bias. This bias encourages the model to
learn a generalizable reconstruction process grounded in the principles of MR imaging, rather than
overfitting to the specific anatomical or contrast features of the training domain. While a standard
supervised baseline performs well on in-domain data, it struggles when faced with a significant
domain shift, as its learned prior is purely data-driven and less generalizable.

30



B.8 Additional Visual Results

B.8.1 Additional Visual Comparison on Simulated MRI Data

Figure 8 presents additional visual comparisons on simulated MRI data, highlighting that our method
reconstructs clearer structural details with fewer artifacts in the regions of interest (red boxes).

Reference CS-wavelet E2E-varnet OT-CycleGAN UAR
Figure 8: Visual comparison on Simulated MRI data.

B.8.2 Additional Visual Comparison on Real Prospective MRI data

Figures 9 and 10 display more visual results of the compared methods.

Zero Filling Reference CS-wavelet E2E-varnet

PromptMR OT-CycleGAN

Figure 9: Visual comparison on Real prospective MRI data.
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Reference

Zero Filling

PromptMR OT-CycleGAN

Figure 10: Visual comparison on Real prospective MRI data.

B.8.3 Additional Visual Comparison on Clinical Prospective CT Data

Figures 11 and 12 displays additional visual results of the compared methods on the clinical prospec-
tive CT data. As shown in the regions of interest, our method (KIDOT) achieves a better trade-off
between noise suppression and structural detail preservation.

Reference

REDCNN OT-CycleGAN
Figure 11: Visual comparison on Clinical prospective CT data.
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Reference ISTA-Net

UAR
Figure 12: Visual comparison on Clinical prospective CT data.

REDCNN OT-CycleGAN
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