
Reconciling Security and Communication Efficiency in
Federated Learning

Anonymous Author(s)
Affiliation
Address
email

Abstract

Cross-device Federated Learning is an increasingly popular machine learning1

setting to train a model by leveraging a large population of client devices with2

high privacy and security guarantees. However, communication efficiency remains3

a major bottleneck when scaling federated learning to production environments,4

particularly due to bandwidth constraints during uplink communication. In this5

paper, we formalize and address the problem of compressing client-to-server model6

updates under the Secure Aggregation primitive, a core component of Federated7

Learning pipelines that allows the server to aggregate the client updates without8

accessing them individually. In particular, we adapt standard scalar quantization9

and pruning methods to Secure Aggregation and propose Secure Indexing, a10

variant of Secure Aggregation that supports quantization for extreme compression.11

We establish state-of-the-art results on LEAF benchmarks in a secure Federated12

Learning setup with up to 40× compression in uplink communication and no13

meaningful loss in utility compared to uncompressed baselines.14

1 Introduction15

Federated Learning (FL) is a distributed machine learning (ML) paradigm that trains a model across16

a number of participating entities holding local data samples. In this work, we focus on cross-device17

FL that harnesses a large number (hundreds of millions) of edge devices with disparate characteristics18

such as availability, compute, memory, or connectivity resources (Kairouz et al., 2019).19

Two challenges to the success of cross-device FL are privacy and scalability. FL was originally20

motivated for improving privacy since data points remain on client devices. However, as with21

other forms of ML, information about training data can be extracted via membership inference or22

reconstruction attacks on a trained model (Carlini et al., 2021a,b; Watson et al., 2022), or leaked23

through local updates (Melis et al., 2019; Geiping et al., 2020). Consequently, Secure Aggregation24

(SECAGG) protocols were introduced to prevent the server from directly observing individual client25

updates, which is a major vector for information leakage (Bonawitz et al., 2019). Additional26

mitigations such as Differential Privacy (DP) may be required to offer further protection against27

attacks (Dwork et al., 2006; Abadi et al., 2016), as discussed in Section 5.28

Ensuring scalability to hundreds of populations of heterogeneous clients is the second challenge29

for FL. Indeed, wall-clock training times are highly correlated with increasing model and batch30

sizes (Huba et al., 2022), even with recent efforts such as FedBuff (Nguyen et al., 2022), and commu-31

nication overhead between the server and clients dominates model convergence time. Consequently,32

compression techniques were used to reduce the communication bandwidth while maintaining model33

accuracy. However, a fundamental problem has been largely overlooked in the literature: in their na-34

tive form, standard compression methods such as scalar quantization and pruning are not compatible35

with SECAGG. This makes it challenging to ensure both privacy and communication efficiency.36

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.



Figure 1: Summary of the proposed approach for one FL round, where we omit the round dependency
and Differential Privacy (DP) for clarity. Blue boxes denote standard steps and red boxes denote
additional steps for uplink compression. Client i computes local model update gi, compresses it with
the compression operator q, and encrypts it by adding a random mask mi in the compressed domain,
hence reducing the uplink bandwidth (steps 2–4). The server recovers the aggregate in the compressed
domain by leveraging any SECAGG protocol (steps 7–13, with a TEE-based SECAGG). Since the
decompression operator d is linear, the server can convert the aggregate back to the non-compressed
domain, up to compression error (step 12). As with the model weights θ, the compression operator
q are also periodically updated and broadcast by the server (step 14). In Section 3, we apply the
proposed method to scalar quantization and pruning without impacting SECAGG and propose Secure
Indexing, a variant of SECAGG for extreme uplink compression with product quantization.

In this paper, we address this gap by adapting compression techniques to make them compatible with37

SECAGG. We focus on compressing uplink updates from clients to the server for three reasons. First,38

uplink communication is more sensitive and so is subject to a high security bar, whereas downlink39

updates broadcast by the server are deemed public. Second, upload bandwidth is generally more40

restricted than download bandwidth. For instance, according to the most recent FCC1 report, the41

ratio of download to upload speeds for DSL and cable providers2 in the US ranges between 3×42

to 20× (FCC, 2021). Finally, efficient uplink communication brings several benefits beyond speeding43

up convergence: lowering communication cost reduces selection bias due to under-sampling clients44

with limited connectivity, improving fairness and inclusiveness. It also shrinks the carbon footprint of45

FL, the fraction of which attributable to communication can reach 95% (Qiu et al., 2021).46

In summary, we present the following contributions in this paper:47

• We highlight the fundamental mismatch between two critical components of the FL stack:48

SECAGG protocols and uplink compression mechanisms.49

• We formulate solutions by imposing a linearity constraint on the decompression operator, as50

illustrated in Figure 1 in the case of TEE-based SECAGG.51

• We adapt the popular scalar quantization and (random) pruning compression methods for52

compatibility with the FL stack that require no changes to the SECAGG protocol.53

• For extreme uplink compression without compromising security, we propose Secure Index-54

ing (SECIND), a variant of SECAGG that supports product quantization.55

2 Compression Techniques56

In this subsection, we consider a matrix W ∈ RCin×Cout representing the weights of a linear layer to57

introduce three major compression methods (scalar quantization, pruning and product quantization)58

with distinct compression/accuracy tradeoffs and identify the challenges SECAGG faces to be readily59

amenable to these popular compression algorithms. We discuss product quantization below and refer60

the reader to Appendix A.3 for a detailed description of scalar quantization and pruning approaches.61

1US Federal Communications Commission.
2FL is typically restricted to using unmetered connections, usually over Wi-Fi (Huba et al., 2022).

2



Product Quantization. Product quantization (PQ) is a compression technique developed for nearest-62

neighbor search (Jégou et al., 2011) that can be applied for model compression (Stock et al., 2020).63

Here, we show how we can re-formulate PQ to represent model updates. We focus on linear layers64

and refer the reader to Stock et al. (2020) for adaptation to convolutions. Let the block size be d (say,65

8), the number of codewords be k (say, 256) and assume that the number of input channels, Cin, is a66

multiple of d. To compress W with PQ, we evenly split its columns into subvectors or blocks of size67

d× 1 and learn a codebook via k-means to select the k codewords used to represent the Cin ×Cout/d68

blocks of W . PQ with block size d = 1 amounts to non-uniform scalar quantization with log2 k69

bits per weight. The PQ-compressed matrix W is represented with the tuple (C,A), where C is the70

codebook of size k × d and A gives the assignments of size Cin × Cout/d. Assignments are integers71

in [0, k − 1] and denote which codebook a subvector was assigned to. To decompress the matrix72

(up to reshaping), we index the codebook with the assignments, written in PyTorch-like notation as73

Ŵ = C[A]. There are several obstacles to making PQ compatible with SECAGG. First, each client74

may have a different codebook, and direct access to these codebooks is needed to decode each client’s75

message. Even if all clients share a (public) codebook, the operation to take assignments to produce76

an (aggregated) update is not linear, and so cannot be directly wrapped inside SECAGG.77

3 Method78

In this section, we propose solutions to reconcile security (SECAGG) and communication efficiency.79

Our approach is to modify compression techniques to share some hyperparameters globally across all80

clients so that aggregation can be done by uniformly combining each client’s response, while still81

ensuring that there is scope to achieve accurate compressed representations. As detailed below, each82

of the proposed methods offers the same level of security as standard SECAGG without compression.83

3.1 Secure Aggregation and Compression84

We propose to compress the uplink model updates gi through a compression operator q, whose85

parameters are round-dependent but the same for all clients participating in the same round. Then,86

we will add a random mask mi to each compressed client update q(gi) in the compressed domain,87

thus effectively reducing uplink bandwidth while ensuring that hi = q(gi) + mi is statistically88

indistinguishable from any other representable value in the finite group (see Appendix A.2). In89

this setting, SECAGG allows the server to recover the aggregate of the client model updates in the90

compressed domain:
∑

i q(gi). If the decompression operator d is linear, the server is able to recover91

the aggregate in the non-compressed domain, up to compression error, as illustrated in Figure 1:92

d

(∑
i

hi −
∑
i

mi

)
= d

(∑
i

q(gi)

)
=
∑
i

d(q(gi)) ≈
∑
i

gi.

The server periodically updates the compression and de-compression operator parameters, either93

from the aggregated model update, which is deemed public, or by emulating a client update on some94

similarly distributed public data. Once these parameters are updated, the server broadcasts them to the95

clients for the next round. This adds overhead to the downlink communication payload, however, this96

is negligible compared to the downlink model size to transmit. For instance, for scalar quantization, q97

is entirely characterized by one fp32 scale and one int32 zero-point per layer, the latter of which is98

unnecessary in the case of a symmetric quantization scheme. Finally, this approach is compatible with99

both synchronous FL methods such as FedAvg (McMahan et al., 2017) and asynchronous methods100

such as FedBuff (Nguyen et al., 2022) as long as SECAGG maintains the mapping between the101

successive versions of quantization parameters and the corresponding client updates.102

3.2 Application103

Next, we show how we adapt scalar quantization and random pruning with no changes required to104

SECAGG. We illustrate our point with TEE-based SECAGG while these adapted uplink compression105

mechanisms are agnostic of the SECAGG mechanism. Finally, we show how to obtain extreme uplink106

compression by proposing a variant of SECAGG, which we call SECIND. This variant supports107

product quantization and is provably secure. In the following discussion, we refer the reader to108

Appendix A.2 for additional context related to SECAGG such as finite group sizes and mask seeds.109

3



3.2.1 Scalar Quantization and Secure Aggregation110

A model update matrix gi compressed with b-bit scalar quantization is given by an integer represen-111

tation in the range [0, 2b − 1] and by the quantization parameters scale (s) and zero-point (z). A112

sufficient condition for the decompression operator to be linear is to broadcast common quantization113

parameters per layer for each client. Denote q(gi) as the integer representation of quantized client114

model update gi corresponding to a particular layer for client 1 ≤ i ≤ N . Set the scale of the115

decompression operator to s and its zero-point to z/N . The decompression operating on a quantized116

weight wq is linear given by wq 7→ s× (wq − z
N ). Then, the server is able to decompress as follows:117

d

(∑
i

q(gi)

)
= s

∑
i

q(gi)−
z

N
=
∑
i

(s(q(gi))− z) ≈
∑
i

gi

Recall that all operations are performed in a finite group. Therefore, to avoid overflows at aggregation118

time, we quantize with a bit-width b but take SECAGG bit-width p > b, thus creating a margin for119

potential overflows. This approach is related to the fixed-point aggregation described in (Bonawitz120

et al., 2019; Huba et al., 2022), but we calibrate the quantization parameters and perform the121

calibration per layer and periodically, unlike the related approaches.122

Privacy, Security and Bandwidth. Scales and zero points are determined from public data on the123

server. Downlink overhead is negligible: the server broadcasts the per-layer quantization parameters.124

The upload bandwidth is p bits per weight, where p is the SECAGG finite group size. Since the masks125

mi are chosen in the integer range [0, 2p − 1], any masked integer representation taken modulo 2p is126

statistically indistinguishable from any other vector.127

3.2.2 Pruning and Secure Aggregation128

To enable linear decompression with random pruning, all clients will share a common pruning mask129

for each round. This can be communicated compactly before each round as a seed for a pseudo-130

random function. This pruning mask seed is different from the SECAGG mask seed described in131

Appendix A.2 and has a distinct role. Each client uses the pruning seed to reconstruct a pruning132

mask, prunes their model update gi, and only needs to encrypt and transmit the unpruned parameters.133

The trade-off here is that some parameters are completely unobserved in a given round, as opposed134

to traditional pruning. SECAGG operates as usual and the server receives the sum of the tensor of135

unpruned parameters computed by participating clients in the round, which it can expand using136

the mask seed. We denote the pruning operator as ϕ applied to the original model update gi,137

and the decompression operator as d applied to a compressed tensor ϕ(gi). Decompression is an138

expansion operation equivalent to multiplication with a sparse permutation matrix Pi whose entries139

are dependent on the i’th client’s mask seed. Crucially, when all clients share the same mask seed140

within each round, we have Pi = P for all i and linearity of decompression is maintained:141

d

(∑
i

ϕ(gi)

)
= P

(∑
i

ϕ(gi)

)
=
∑
i

Piϕ(gi) =
∑
i

d(ϕ(gi)) ≈
∑
i

gi.

Privacy, Security and Bandwidth. Since the mask is random, no information leaks from the pruning142

mask. The downlink overhead (the server broadcasts one integer mask seed) is negligible. The upload143

bandwidth is simply the size of the sparse client model updates. Finally, there is no loss in security144

since each client uses standard SECAGG mechanism on the non-pruned entries.145

3.2.3 Product Quantization and Secure Indexing146

We next describe the Secure Indexing (SECIND) primitive, and discuss how to instantiate it. Recall147

that with PQ, each layer has its own codebook C as explained in Section 3. Let us fix one particular148

layer compressed with codebook C, containing k codewords. We assume that C is common to all149

clients participating in the round. Consider the assignment matrix of a given layer (Ai)m,n for client i.150

From these, we seek to build the assignment histograms Hm,n ∈ Rk that satisfy151

Hm,n[r] =
∑
i

1
(
Ai

m,n = r
)
,

4



Algorithm 1 Secure Indexing (SECIND)
1: procedure SECUREINDEXING(C) ▷ This happens inside the TEE
2: Receive common codebook C from server ▷ C is periodically updated by the server
3: Initialize histograms Hm,n to 0 ▷ Each histogram for block (m,n) has size k
4: for each client i do
5: Receive and decrypt assignment matrix Ai

6: for each block index (m,n) do
7: r ← Ai

m,n ▷ Recover assignment of client i for block (m,m)
8: Hm,n[r]← Hm,n[r] + 1 ▷ Update global count for codeword index r

9: Send back histograms Hm,n to the server

Figure 2: We adapt scalar quantization (SQ) and pruning to the SECAGG protocol to enable efficient
and secure uplink communications. We also present results for product quantization (PQ) under the
proposed novel SECIND protocol. The x axis is log-scale and represents the uplink message size.
Baseline refers to SECAGG FL run without any uplink compression, displayed as a horizontal line for
easier comparison. Model size is indicated in the plot titles. Uncompressed client updates are as large
as the models when p = 32 (see Appendix A.2, represented as stars).

where the indicator function 1 satisfies 1
(
Ai

m,n = r
)
= 1 if Ai

m,n = r and 0 otherwise. A Secure152

Indexing primitive will produce Hm,n while ensuring that no other information about client assign-153

ments or partial aggregations is revealed. The server receives assignment histograms from SECIND154

and is able to recover the aggregated update for each block indexed by (m,n) as
∑

r Hm,n[r] · C[r].155

We describe how SECIND can be implemented with a TEE in Algorithm 1. Each client encrypts156

the assignment matrix, for instance with additive masking as described in Section A.2, and sends157

it to the TEE via the server. Hence, the server does not have access to the plaintexts client-specific158

assignments. TEE decrypts each assignment matrix and for each block indexed by (m,n) produces159

the assignment histogram. Compared to SECAGG, where the TEE receives an encrypted seed per160

client (a few bytes per client) and sends back the sum of the masks mi (same size as the considered161

model), SECIND receives the (masked) assignment matrices and sends back histograms for each162

round. SECIND implementation feasibility is briefly discussed in Appendix A.7.163

Privacy, Security and Bandwidth. Codebooks are computed from public data while individual164

assignments are never revealed to the server. The downlink overhead of sending the codebooks is165

negligible and for more details, please refer to Appendix A.6.3. The upload bandwidth in the TEE166

implementation is the assignment size, represented in k bits (the number of codewords). For instance,167

with a block size d = 8 and k = 32 codewords, assignment storage costs are 5 bits per 8 weights,168

which converts to 0.625 bits per weight. The tradeoff compared to non-secure PQ is the restriction to169

a global codebook for all clients (instead of one tailored to each client), and the need to instantiate170

SECIND instead of SECAGG. Since the assignments are encrypted before being sent to the TEE,171

there is no loss in security. Here, any encryption mechanism (not necessarily relying on additive172

masking) would work.173

4 Experiments174

In this section, we numerically evaluate the performance of the proposed approaches when adapted175

to SECAGG protocols. We study the relationship between uplink compression and model accuracy176

5



for the LEAF benchmark tasks. In addition, for scalar and product quantization we also analyze the177

impact of refresh rate for compression parameters on overall model performance.178

4.1 Experimental Setup179

We closely follow the setup of Nguyen et al. (2022) and use the FLSim library for our experiments .180

All experiments are run on a single V100 GPU 16 GB (except for Sent140 where we use one V100181

32 GB) and typically take a few hours to run. More experiment details can be found in Appendix A.4.182

Tasks. We run experiments on three datasets from the LEAF benchmark (Caldas et al., 2018):183

CelebA (Liu et al., 2015), Sent140 (Go et al., 2009) and FEMNIST (LeCun and Cortes, 2010). For184

CelebA, we train the same convolutional classifier as Nguyen et al. (2022) with BatchNorm layers185

replaced by GroupNorm layers and 9,343 clients. For Sent140, we train an LSTM classifier for binary186

sentiment analysis with 59, 400 clients. Finally, for FEMNIST, we train a GroupNorm version of the187

ResNet18 (He et al., 2016) for digit classification with 3,550 clients. For all compression methods,188

we do not compress biases and norm layers for their small overhead.189

Baselines. We focus here on the (synchronous) FedAvg approach although, as explained in Section 3,190

the proposed compression methods can be readily adapted to asynchronous FL aggregation protocols.191

As done in the literature, we keep the number of clients per round to at most 100, a small fraction of192

the total considered population size (Chen et al., 2019; Charles et al., 2021). We report the average193

and standard deviation of accuracy over three independent runs for all tasks at different uplink byte194

sizes corresponding to various configurations of the compression operator.195

Implementation Details. The downlink overhead of sending the per-layer codebooks for product196

quantization is negligible as shown in Appendix A.6.3. Finally, the convergence time in terms of197

rounds is similar for PQ runs and the non-compressed baseline, as illustrated in Appendix A.6.4.198

Note that outside a simulated environment, the wall-clock time convergence for PQ runs would be199

lower than the baseline since uplink communication would be more efficient, hence faster.200

4.2 Results and Comparison with Prior Work201

Results for efficient and secure uplink communications are displayed in Figure 2, where PQ yields a202

consistently better trade-off curve between model update size and accuracy. For instance, on CelebA,203

PQ achieves ×30 compression with respect to the non-compressed baseline at iso-accuracy. The204

iso-accuracy compression rate is ×32 on Sent140 and ×40 on FEMNIST (see Appendix for detailed205

tables). Scalar quantization accuracy degrades significantly for larger compression rates due to206

the overflows at aggregation as detailed in Appendix A.6.1. Pruning gives intermediate tradeoffs207

between scalar quantization and product quantization. The line of work that develops FL compression208

techniques mainly includes FetchSGD (Rothchild et al., 2020) although the authors do not mention209

SECAGG. Their results are not directly comparable to ours due to non-matching experimental setups210

(e.g., datasets and architectures). However, Figure 6 in the appendix of Rothchild et al. (2020)211

mentions upload compression rates at iso-accuracy that are weaker than those obtained with PQ.212

5 Conclusion213

In this paper, we reconcile efficiency and security for uplink communication in Federated Learning.214

We propose to adapt existing compression mechanisms such as scalar quantization and pruning to215

the secure aggregation protocol by imposing a linearity constraint on the decompression operator.216

Our experiments demonstrate that we can adapt both quantization and pruning mechanisms to217

obtain a high degree of uplink compression with minimal degradation in performance and higher218

security guarantees. For achieving the highest rates of compression, we introduce SECIND, a variant219

of SECAGG well-suited for TEE-based implementation that supports product quantization while220

maintaining a high security bar. While our primary focus is on enabling efficient and secure uplink221

communication, our proposed approaches are compatible with user-level DP. For instance, DP noise222

can be added natively by the TEE with our modified random pruning or scalar quantization approaches.223

For PQ and SECIND, it would require, however, to transfer the aggregation to TEE or to design a DP224

mechanism in the assignment space, since DP noise must be added by the TEE and not by the server.225

For future work, we plan to investigate this further, and also extend our work to other federated226

learning scenarios such as asynchronous federated learning.227

6



References228

Martín Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov, Kunal Talwar, and229

Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC230

Conference on Computer and Communications Security (CCS), page 308–318, 2016.231

Mohammad Mohammadi Amiri, Deniz Gunduz, Sanjeev R. Kulkarni, and H. Vincent Poor. Federated232

learning with quantized global model updates, 2020.233

James Henry Bell, Kallista A Bonawitz, Adrià Gascón, Tancrède Lepoint, and Mariana Raykova.234

Secure single-server aggregation with (poly) logarithmic overhead. In Proceedings of the 2020235

ACM SIGSAC Conference on Computer and Communications Security (CCS), pages 1253–1269,236

2020.237

Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John Guttag. What is the state of238

neural network pruning? In Proceedings of Machine Learning and Systems (MLSys), volume 2,239

pages 129–146, 2020.240

Kallista A. Bonawitz, Fariborz Salehi, Jakub Konečný, Brendan McMahan, and Marco Gruteser.241

Federated learning with autotuned communication-efficient secure aggregation. In 53rd Asilomar242

Conference on Signals, Systems, and Computers (ACSCC), pages 1222–1226. IEEE, 2019.243

Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing: Improvements and extensions. In244

Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security245

(CCS), page 1292–1303, 2016.246

Sebastian Caldas, Peter Wu, Tian Li, Jakub Konečný, H. Brendan McMahan, Virginia Smith, and247

Ameet Talwalkar. LEAF: A benchmark for federated settings. CoRR, abs/1812.01097, 2018.248

Nicholas Carlini, Steve Chien, Milad Nasr, Shuang Song, Andreas Terzis, and Florian Tramèr.249

Membership inference attacks from first principles. CoRR, abs/2112.03570, 2021a.250

Nicholas Carlini, Florian Tramèr, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine251

Lee, Adam Roberts, Tom B. Brown, Dawn Song, Úlfar Erlingsson, Alina Oprea, and Colin Raffel.252

Extracting training data from large language models. In Michael Bailey and Rachel Greenstadt,253

editors, 30th USENIX Security Symposium, pages 2633–2650, 2021b.254

Zachary Charles, Zachary Garrett, Zhouyuan Huo, Sergei Shmulyian, and Virginia Smith. On255

large-cohort training for federated learning, 2021.256

Mingqing Chen, Rajiv Mathews, Tom Ouyang, and Françoise Beaufays. Federated learning of257

out-of-vocabulary words, 2019.258

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep neural259

networks with binary weights during propagations, 2015.260

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity in261

private data analysis. In Proceedings of the Third Conference on Theory of Cryptography, page262

265–284, 2006.263

FCC. The eleventh Measuring Broadband America fixed broadband report, 2021. URL264

https://www.fcc.gov/reports-research/reports/measuring-broadband-america/265

measuring-fixed-broadband-eleventh-report.266

Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and Michael Moeller. Inverting gradients—267

How easy is it to break privacy in federated learning? In Advances in Neural Information268

Processing Systems (NeurIPS), volume 33, pages 16937–16947, 2020.269

Alec Go, Richa Bhayani, and Lei Huang. Twitter sentiment classification using distant supervision.270

CS224N Project Report, Stanford, 2009.271

Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. Deep learning with272

limited numerical precision. In Proceedings of the 32nd International Conference on Machine273

Learning (ICML), volume 37, pages 1737–1746, 2015.274

7

https://www.fcc.gov/reports-research/reports/measuring-broadband-america/measuring-fixed-broadband-eleventh-report
https://www.fcc.gov/reports-research/reports/measuring-broadband-america/measuring-fixed-broadband-eleventh-report
https://www.fcc.gov/reports-research/reports/measuring-broadband-america/measuring-fixed-broadband-eleventh-report


Babak Hassibi and David G. Stork. Second order derivatives for network pruning: Optimal Brain275

Surgeon. In Advances in Neural Information Processing Systems, volume 5, pages 164–171, 1992.276

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image277

recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, (CVPR),278

pages 770–778, 2016.279

Dzmitry Huba, John Nguyen, Kshitiz Malik, Ruiyu Zhu, Mike Rabbat, Ashkan Yousefpour, Carole-280

Jean Wu, Hongyuan Zhan, Pavel Ustinov, Harish Srinivas, Kaikai Wang, Anthony Shoumikhin,281

Jesik Min, and Mani Malek. Papaya: Practical, private, and scalable federated learning. In282

Proceedings of Conference on Systems and Machine Learning Foundation (MLSys), 2022.283

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard, Hartwig284

Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for efficient285

integer-arithmetic-only inference. In Proceedings of the IEEE Conference on Computer Vision and286

Pattern Recognition (CVPR), pages 2704–2713, June 2018.287

Hervé Jégou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest neighbor search.288

IEEE Trans. Pattern Anal. Mach. Intell., 33(1):117–128, 2011.289

Yuang Jiang, Shiqiang Wang, Bong Jun Ko, Wei-Han Lee, and Leandros Tassiulas. Model pruning290

enables efficient federated learning on edge devices. CoRR, abs/1909.12326, 2019.291

Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin292

Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, Rafael G. L.293

D’Oliveira, Hubert Eichner, Salim El Rouayheb, David Evans, Josh Gardner, Zachary Garrett,294

Adrià Gascón, Badih Ghazi, Phillip B. Gibbons, Marco Gruteser, Zaid Harchaoui, Chaoyang295

He, Lie He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Javidi, Gauri Joshi,296

Mikhail Khodak, Jakub Konečný, Aleksandra Korolova, Farinaz Koushanfar, Sanmi Koyejo,297

Tancrède Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard Nock, Ayfer Özgür, Rasmus298

Pagh, Mariana Raykova, Hang Qi, Daniel Ramage, Ramesh Raskar, Dawn Song, Weikang Song,299

Sebastian U. Stich, Ziteng Sun, Ananda Theertha Suresh, Florian Tramèr, Praneeth Vepakomma,300

Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X. Yu, Han Yu, and Sen Zhao. Advances301

and open problems in federated learning, 2019.302

Jakub Konečný, H. Brendan McMahan, Felix X. Yu, Peter Richtarik, Ananda Theertha Suresh, and303

Dave Bacon. Federated learning: Strategies for improving communication efficiency. In NIPS304

Workshop on Private Multi-Party Machine Learning, 2016.305

Raghuraman Krishnamoorthi. Quantizing deep convolutional networks for efficient inference: A306

whitepaper. CoRR, abs/1806.08342, 2018.307

Yann Le Cun, John S. Denker, and Sara A. Solla. Optimal brain damage. In Proceedings of the 2nd308

International Conference on Neural Information Processing Systems, page 598–605, 1989.309

Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010. URL http://yann.310

lecun.com/exdb/mnist/.311

Xiaorui Liu, Yao Li, Jiliang Tang, and Ming Yan. A double residual compression algorithm for312

efficient distributed learning. In The 23rd International Conference on Artificial Intelligence and313

Statistics (AISTATS), volume 108 of PMLR, pages 133–143, 2020.314

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In315

IEEE International Conference on Computer Vision (ICCV), pages 3730–3738, 2015.316

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Arcas.317

Communication-efficient learning of deep networks from decentralized data. In Proceedings of the318

20th International Conference on Artificial Intelligence and Statistics (AISTATS), volume 54 of319

PMLR, pages 1273–1282, 2017.320

Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly Shmatikov. Exploiting unintended321

feature leakage in collaborative learning. In 2019 IEEE Symposium on Security and Privacy (S&P),322

pages 691–706, 2019.323

8

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/


John Nguyen, Kshitiz Malik, Hongyuan Zhan, Ashkan Yousefpour, Michael Rabbat, Mani Malek,324

and Dzmitry Huba. Federated learning with buffered asynchronous aggregation. In Proceedings of325

The 25th International Conference on Artificial Intelligence and Statistics (AISTATS), volume 151326

of PMLR, pages 3581–3607, 2022.327

Constantin Philippenko and Aymeric Dieuleveut. Preserved central model for faster bidirectional328

compression in distributed settings. In Advances in Neural Information Processing Systems329

(NeurIPS), volume 34, pages 2387–2399, 2021.330

Xinchi Qiu, Titouan Parcollet, Javier Fernandez-Marques, Pedro Porto Buarque de Gusmao, Daniel J331

Beutel, Taner Topal, Akhil Mathur, and Nicholas D Lane. A first look into the carbon footprint of332

federated learning. arXiv preprint arXiv:2102.07627, 2021.333

Daniel Rothchild, Ashwinee Panda, Enayat Ullah, Nikita Ivkin, Ion Stoica, Vladimir Braverman,334

Joseph Gonzalez, and Raman Arora. FetchSGD: Communication-efficient federated learning with335

sketching. In Proceedings of the 37th International Conference on Machine Learning (ICML),336

volume 119 of PMLR, pages 8253–8265, 2020.337

Felix Sattler, Simon Wiedemann, Klaus-Robert Müller, and Wojciech Samek. Robust and338

communication-efficient federated learning from non-i.i.d. data. IEEE Transactions on Neural339

Networks and Learning Systems, 31:3400–3413, 2020.340

Pierre Stock, Armand Joulin, Rémi Gribonval, Benjamin Graham, and Hervé Jégou. And the bit goes341

down: Revisiting the quantization of neural networks. In International Conference on Learning342

Representations (ICLR), 2020.343

Hanlin Tang, Chen Yu, Xiangru Lian, Tong Zhang, and Ji Liu. DOUBLESQUEEZE: Parallel stochastic344

gradient descent with double-pass error-compensated compression. In Proceedings of the 36th345

International Conference on Machine Learning (ICML), volume 97 of PMLR, pages 6155–6165,346

2019.347

Thijs Vogels, Sai Praneeth Karimireddy, and Martin Jaggi. PowerSGD: Practical low-rank gradient348

compression for distributed optimization. In Advances in Neural Information Processing Systems349

(NeurIPS), volume 32, pages 14236–14245, 2019.350

Lauren Watson, Chuan Guo, Graham Cormode, and Alexandre Sablayrolles. On the importance of351

difficulty calibration in membership inference attacks. In International Conference on Learning352

Representations (ICLR), 2022.353

Chien-Sheng Yang, Jinhyun So, Chaoyang He, Songze Li, Qian Yu, and Salman Avestimehr. Light-354

SecAgg: Rethinking secure aggregation in federated learning. In Proceedings of Conference on355

Systems and Machine Learning Foundation (MLSys), 2022.356

Mingchao Yu, Zhifeng Lin, Krishna Narra, Songze Li, Youjie Li, Nam Sung Kim, Alexander Schwing,357

Murali Annavaram, and Salman Avestimehr. GradiVeQ: Vector quantization for bandwidth-efficient358

gradient aggregation in distributed CNN training. In Proceedings of the 32nd International359

Conference on Neural Information Processing Systems (NeurIPS), page 5129–5139, 2018.360

Shuai Zheng, Ziyue Huang, and James T. Kwok. Communication-efficient distributed blockwise361

momentum SGD with error-feedback. In Proceedings of the 33rd International Conference on362

Neural Information Processing Systems (NeurIPS), page 11450–11460, 2019.363

Shuchang Zhou, Zekun Ni, Xinyu Zhou, He Wen, Yuxin Wu, and Yuheng Zou. DoReFa-Net: Training364

low bitwidth convolutional neural networks with low bitwidth gradients. CoRR, abs/1606.06160,365

2016.366

9



A Appendix367

A.1 Related Work368

Communication is identified as a primary efficiency bottleneck in FL, especially in the cross-device369

FL setting (Kairouz et al., 2019). This has led to significant interest in reducing FL’s communication370

requirements. In what follows, we might refer to any local model update in a distributed training371

procedure as a gradient, including model updates computed following multiple local training steps.372

Bi-directional Compression. In addition to uplink gradient compression, a line of work also focuses373

on downlink model compression. In a non-distributed setup, Zhou et al. (2016); Courbariaux et al.374

(2015) demonstrates that it is possible to meaningfully train with low bit-width models and gradients.375

In FL, Jiang et al. (2019) proposes adapting the model size to the device to reduce both communication376

and computation overhead. Since the local models are perturbed due to compression, researchers377

propose adapting the optimization algorithm for better convergence (Liu et al., 2020; Sattler et al.,378

2020; Tang et al., 2019; Zheng et al., 2019; Amiri et al., 2020; Philippenko and Dieuleveut, 2021).379

Finally, pre-conditioning models during FL training can allow for quantized on-device inference, as380

demonstrated for non-distributed training by Gupta et al. (2015); Krishnamoorthi (2018). As stated381

in Section 1, we do not focus on downlink model compression since uplink bandwidth is the main382

communication bottleneck and since SECAGG only involves uplink communication.383

Aggregation in the Compressed Domain. In the distributed setting, Yu et al. (2018) propose384

to leverage both gradient compression and parallel aggregation by performing the ring all-reduce385

operation in the compressed domain and decompressing the aggregate. To do so, the authors exploit386

temporal correlations of the gradients to design a linear compression operator. Another method,387

PowerSGD (Vogels et al., 2019), leverages a fast low-rank gradient compressor. However, both388

aforementioned methods are not evaluated in the FL setup and do not mention SECAGG. Indeed, the389

proposed methods focus on decentralized communication between the workers by leveraging the390

all-reduce operation. Moreover, Power SGD incorporates (stateful) error feedback on all distributed391

nodes, which is not readily adaptable to cross-device FL in which clients generally participate in392

a few (not necessarily consecutive) rounds. Finally, Rothchild et al. (2020) proposes FetchSGD, a393

compression method relying on a CountSketch, which is compatible with SECAGG.394

A.2 Secure Aggregation395

SECAGG refers to a class of protocols that allow the server to aggregate client updates without396

accessing them individually. While SECAGG alone does not entirely prevent client data leakage, it is397

a powerful and widely-used component of current at-scale cross-device FL implementations (Kairouz398

et al., 2019). Two main approaches exist in practice: software-based protocols relying on Multiparty399

Computation (MPC) (Bonawitz et al., 2019; Bell et al., 2020; Yang et al., 2022), and those that400

leverage hardware implementations of Trusted Execution Environments (TEEs) (Huba et al., 2022).401

SECAGG relies on additive masking, where clients protect their model updates gi by adding a uniform402

random mask mi to it, guaranteeing that each client’s masked update is statistically indistinguishable403

from any other value. At aggregation time, the protocol ensures that all the masks are canceled out.404

For instance, in an MPC-based SECAGG, the pairwise masks cancel out within the aggregation itself,405

since for every pair of users i and j, after they agree on a matched pair of input perturbations, the406

masks mi,j and mj,i are constructed so that mi,j = −mj,i. Similarly and as illustrated in Fig. 1, in a407

TEE-based SECAGG, the server receives hi = gi +mi from each client as well as the sum of the408

masks
∑

i mi from the TEE and recovers the sum of the updates as409 ∑
i

gi =
∑
i

hi −
∑
i

mi.

DP noise. Regarding the addition of DP noise, while our primary focus is on enabling efficient and410

secure uplink communication, we emphasize that the proposed approaches are compatible with user-411

level DP. For instance, at the cost of increasing the complexity of the trusted computing base, DP noise412

can be added natively by the TEE with our modified random pruning or scalar quantization approaches.413

For PQ and SECIND, we can have the TEE to add noise in the assignment space (i.e., outputting414

a noisy histogram), or to map the histogram to the codeword space and add noise there. Each option415

offers a different tradeoff between privacy, trust, and accuracy; we leave detailed evaluation to future416

10



work. it would require, however, to transfer the aggregation to TEE or to design a DP mechanism417

in the assignment space, since DP noise must be added by the TEE and not by the server.418

Finite Group. SECAGG requires that the plaintexts—client model updates—be elements of a finite419

group, while the inputs are real-valued vectors represented with floating-point types. This requirement420

is usually addressed by converting client updates to fixed-point integers and operating in a finite421

domain (modulo 2p) where p is typically set in prior literature to 32 bits. The choice of SECAGG422

bit-width p must balance communication costs with the accuracy loss due to rounding and overflows.423

Minimal Complexity. TEE-based protocols offer greater flexibility in how individual client updates424

can be processed; however, the code executed inside TEE is part of the trusted computing base (TCB)425

for all clients. In particular, it means that this code must be stable, auditable, defects- and side-channel-426

free, which severely limits its complexity. Hence, in practice, we prefer compression techniques that427

are either oblivious to SECAGG’s implementation or require minimal changes to the TCB.428

A.3 Compression Methods429

A.3.1 Scalar Quantization430

Uniform scalar quantization maps floating-point weight w to 2b evenly spaced bins, where b is431

the number of bits. Given a floating-point scale s > 0 and an integer shift parameter z called the432

zero-point, we map any floating-point parameter w to its nearest bin indexed by {0, . . . , 2b − 1}:433

w 7→ clamp(round(w/s) + z, [0, 2b − 1]).

The tuple (s, z) is often referred to as the quantization parameters (qparams). With b = 8, we recover434

the popular int8 quantization scheme (Jacob et al., 2018), while setting b = 1 yields the extreme435

case of binarization (Courbariaux et al., 2015). The quantization parameters s and z are usually436

calibrated after training a model with floating-point weights using the minimum and maximum values437

of each layer. The compressed representation of weights W consists of the qparams and the integer438

representation matrix Wq where each entry is stored in b bits. Decompressing any integer entry wq439

of Wq back to floating point is performed by applying the (linear) operator wq 7→ s× (wq − z).440

Challenge. The discrete domain of quantized values and the finite group required by SECAGG are441

not natively compatible because of the overflows that may occur at aggregation time. For instance,442

consider the extreme case of binary quantization, where each value is replaced by a bit. We can443

represent these bits in SECAGG with p = 1, but the aggregation will inevitably result in overflows.444

A.3.2 Pruning445

Pruning is a class of methods that remove parts of a model such as connections or neurons according446

to some pruning criterion, such as weight magnitude (Le Cun et al. (1989); Hassibi and Stork (1992);447

see Blalock et al. (2020) for a survey). Konečný et al. (2016) demonstrate client update compression448

with random sparsity for federated learning. Motivated by previous work and the fact that random449

masks do not leak information about the data on client devices, we will leverage random pruning450

of client updates in the remainder of this paper. A standard method to store a sparse matrix is the451

coordinate list (COO) format3, where only the non-zero entries are stored (in floating point or lower452

precision), along with their integer coordinates in the matrix. This format is compact, but only for a453

large enough compression ratio, as we store additional values for each non-zero entry. Decompression454

is performed by re-instantiating the uncompressed matrix with both sparse and non-sparse entries.455

Challenge. Pruning model updates on the client side is an effective compression approach as456

investigated in previous work. However, the underlying assumption is that clients have different457

masks, either due to their seeds or dependency on client update parameters (e.g. weight magnitudes).458

This is a challenge for SECAGG as aggregation assumes a dense compressed tensor, which is not459

possible to construct when the coordinates of non-zero entries are not the same for all clients.460

A.4 Experimental Details461

In this section, we provide further details of the experimental setup described in Section 4.1 and462

the hyper-parameters used for all the runs in Table 1. For all the tasks, we use a mini-batch SGD463

3See the torch.sparse documentation.

11

https://pytorch.org/docs/stable/sparse.html


Figure 3: Impact of the refresh rate of the compression operator by the server on the CelebA dataset.
Left: for scalar quantization (quantization parameters), where we fix the quantization bit-width b = 8
(p denotes the SECAGG bit-width). Right: for product quantization (codebooks), where k denotes
the number of codewords and d the block size.

optimizer for local training at the client and FEDAVG optimizer for global model update on the server.464

The LEAF benchmark is released under the BSD 2-Clause License.465

Baselines. We run hyper-parameter sweeps to tune the client and server learning rates for the466

uncompressed baselines. Then, we keep the same hyper-parameters in all the runs involving uplink467

compression. We have observed that tuning the hyper-parameters for each compression factor does468

not provide significantly different results than using those for the uncompressed baselines, in addition469

to the high cost of model training involved.470

Compression details. For scalar quantization, we use per-tensor quantization with MinMax ob-471

servers. We use the symmetric quantization scheme over the integer range [−2b−1, 2b−1 − 1]. For472

pruning, we compute the random mask separately for each tensor, ensuring all pruned layers have473

the same target sparsity in their individual updates. For product quantization, we explore various474

configurations by choosing the number of codewords per layer k in {8, 16, 32, 64} and the block475

size d in {4, 9, 18}. We automatically adapt the block size for each layer to be the largest allowed476

one that divides Cin (in the fully connected case).477

Table 1: Hyper-parameters used for all the experiments including baselines. η is the learning rate.

Dataset Users per round Client epochs Max. server epochs ηSGD ηFedAvg

CelebA 100 1 30 0.90 0.08
Sent140 100 1 10 5.75 0.24
FEMNIST 5 1 5 0.01 0.24

A.5 Experimental Results478

We provide various additional experimental results that are referred to in the main paper.479

A.6 Ablation Studies480

We investigate the influence of the frequency of updates of the compression operator q for scalar481

quantization and pruning, and study the influence of the SECAGG bit-width p on the number of482

overflows for scalar quantization.483

Update frequency of the compression operators. In Figure 3, we show that for scalar quantization,484

the update periodicity only plays a role with low SECAGG bit-width values p compared to the485

quantization bit-width b. For product quantization, the update periodicity plays an important role486

for aggressive compression setups corresponding to large block sizes d or to a smaller number of487

codewords k. For pruning, we measure the impact of masks that are refreshed periodically. We488

observe that if we refresh the compression operator more frequently, staleness is reduced, leading to489

accuracy improvements. We present our findings in Appendix A.6.5.490

12



Overflows for scalar quantization. As discussed in Section 3.2.1, we choose the SECAGG bit-491

width p to be greater than quantization bit-width b in order to avoid aggregation overflows. While it492

suffices to set p to be ⌈log2 nc⌉ more than b, where nc is the number of clients participating in the493

round, reducing p is desirable to reduce uplink size. We study the impact of p on the percentage of494

parameters that suffer overflows and present our findings in Appendix A.6.1.495

A.6.1 Aggregation overflows with Scalar Quantization496

We discussed the challenge of aggregation overflows of quantized values with restricted SECAGG497

finite group size in Section A.3.1 and noted in Section 3.2.1 that it suffices for SECAGG bit-width p498

to be greater than quantization bit-width b by at most ⌈log2 N⌉, where N is the number of clients499

participating in a given round. However, the overflow margin increases the client update size by p− b500

per weight. To optimize this further, we explore the impact of p on aggregation overflows and501

accuracy, and present the results in Table 2. As expected, we observe a decrease in percentage of502

weights that overflow during aggregation with the increase in the overflow margin size. However,503

while there is some benefit to non-zero overflow margin size, there is no strong correlation between504

the overflow margin size and accuracy, indicating the potential to achieve better utility even in the505

presence of overflows.506

Table 2: Percentage of aggregation overflows (among all model parameters) for the CelebA dataset
over various SQ configurations. b is Quantization bit-width, p is SECAGG bit-width, p− b is overflow
margin size in bits.

b p p− b Overflows (% of parameters) Accuracy

4 4 0 3.71±1.53 49.33±2.03
4 5 1 1.43±0.55 50.44±1.77
4 6 2 0.68±0.43 49.67±1.56
4 7 3 0.17±0.12 51.58±0.66
4 8 4 0.06±0.00 87.30±0.36
4 9 5 0.06±0.00 89.19±0.20
4 10 6 0.06±0.00 88.52±0.07
4 11 7 0.05±0.00 87.68±1.24

8 8 0 2.28±0.11 82.11±0.90
8 9 1 1.06±0.06 90.49±0.27
8 10 2 0.39±0.04 90.97±0.50
8 11 3 0.14±0.01 91.08±0.45
8 12 4 0.06±0.00 91.29±0.13
8 13 5 0.04±0.00 90.49±0.93
8 14 6 0.02±0.00 91.31±0.24
8 15 7 0.01±0.00 91.19±0.33

A.6.2 Weighted aggregation and Scalar Quantization507

Following the setup of Nguyen et al. (2022), we weight each client update by the number of samples508

the client trained on. Denoting the weight associated with the client i with ωi and following the same509

notations as in Section 3.1, weighted update is obtained as hi = (q(gi) × ωi) +mi. Since this is510

a synchronous FL setup, we do not set staleness factor. This weighted aggregation has no impact511

on pruning and product quantization, but can lead to overflows with scalar quantization. Therefore,512

we skip the weighting of quantized parameters of client updates and only weight non-quantized513

parameters (such as bias). For completion, we study with unweighted aggregation of client updates514

(including bias parameters) for scalar quantization experiments and present the result in Table ??. As515

expected, these results are similar to the ones with weighted aggregation.516

A.6.3 PQ Codebook Size is Negligible517

We demonstrate in Table 3 that the overhead of sending codebooks (for all layers) is negligible518

compared to the model size. When the model is very small (CelebA model is 114 KB), reducing k519

and d makes the overhead negligible without hurting performance.520

13



Table 3: Cost of broadcasting codebooks (for downlink communications) is negligible compared to
model sizes. Recall that k denotes the number of codebooks and d the block size.

Dataset Codebook size k Block size d Codebooks size (% of model size)

CelebA

8 4 0.6 KB (0.5%)
8 18 2.5 KB (2.2%)

64 4 4.2 KB (3.7%)
64 18 14.6 KB (12.8%)

Sent140

8 4 0.9 KB (0.0%)
8 18 2.3 KB (0.0%)

64 4 5.4 KB (0.0%)
64 18 15.4 KB (0.1%)

FEMNIST

8 4 2.6 KB (0.0%)
8 18 11.2 KB (0.0%)

64 4 20.8 KB (0.0%)
64 18 89.8 KB (0.2%)

0 500 1000 1500 2000
Round

0.2

0.4

0.6

0.8

A
gg

re
ga

tio
n 

lo
ss

Convergence (CelebA)

Baseline
PQ (d=4)
PQ (d=9)
PQ (d=18)

Figure 4: Number of rounds to convergence is similar for PQ-compressed runs compared to the
non-compressed baseline (on CelebA). Note that outside a simulated environment, the wall-clock
time convergence for PQ runs would be lower than the baseline since uplink communications would
be faster.

A.6.4 Convergence Curves521

We also provide convergence curves for PQ-compressed and baseline runs to demonstrate similar522

number of rounds needed to convergence in Figure 4.523

A.6.5 Performance impact of sparsity mask refresh524

In addition to scalar and product quantization as described in Section A.6, we also conduct experi-525

ments with varying the interval for refreshing pruning masks. We consider two levels of sparsity, 50%526

and 99% and our experiments are on the CelebA dataset. We present our results in Figure 5. Overall527

we find that the model accuracy is robust to the update periodicity unless at very high sparsities, where528

accuracy decreases when mask refresh periodicity increases. This is important for future directions529

such as in asynchronous FL where clients have to maintain the same mask across successive global530

updates.531

A.7 SECIND Implementations532

SECIND can be extended to other settings, such as multi-party computation (using two or more533

servers to operate on shares of the input), where each client can send evaluations of distributed point534

functions to encode each assignment (Boyle et al., 2016). These are represented compactly, but535

14



1 4 16 64 256
Update periodicity (rounds)

80

85

90

A
cc

ur
ac

y 
(%

)

Pruning

50% sparsity
99% sparsity

Figure 5: Impact of pruning mask refresh intervals on model performance for the CelebA dataset.
Note that the effect of refreshing the pruning masks is more apparent at higher sparsity levels, and
generalization performance decreases when masks are stale for longer during training.

may require longer codewords to overcome the overheads. We leave the study of such software536

implementations of SECIND to future work.537

15


	Introduction
	Compression Techniques
	Method
	Secure Aggregation and Compression
	Application
	Scalar Quantization and Secure Aggregation
	Pruning and Secure Aggregation
	Product Quantization and Secure Indexing


	Experiments
	Experimental Setup
	Results and Comparison with Prior Work

	Conclusion
	Appendix
	Related Work
	Secure Aggregation
	Compression Methods
	Scalar Quantization
	Pruning

	Experimental Details
	Experimental Results
	Ablation Studies
	Aggregation overflows with Scalar Quantization
	Weighted aggregation and Scalar Quantization
	PQ Codebook Size is Negligible
	Convergence Curves
	Performance impact of sparsity mask refresh

	SecInd Implementations


