
HiLD 2025: 3rd Workshop on High-dimensional Learning Dynamics

Bayesian Influence Functions for Scalable Data Attribution

author names withheld

Under Review for the Workshop on High-dimensional Learning Dynamics, 2025

Abstract
Classical influence functions face significant challenges when applied to deep neural networks,
primarily due to singular Hessians and high-dimensional parameter spaces. We propose the local
Bayesian influence function, an extension of classical influence functions that replaces Hessian
inversion with loss landscape statistics that can be estimated via stochastic Gradient MCMC. This ap-
proach captures higher-order interactions among parameters and scales efficiently to neural networks
with billions of parameters. Initial results on language and vision models indicate performance
comparable to state-of-the-art methods like EK-FAC, often with substantially reduced computational
costs.

Figure 1: From influence functions (IF) to Bayesian influence functions (BIF): We introduce local
Bayesian Influence Functions, which capture higher-order information in loss landscape geometry
and can be scaled to models with billions of parameters.

1. Introduction

Understanding how individual training examples shape the behavior of deep neural networks (DNNs)
is a foundational problem for interpretability and AI safety [20, 24]. Classical influence functions (IFs)
use the inverse loss Hessian to offer an elegant approach to training data attribution (TDA), measuring
how model outputs change under small perturbations to the training distribution [6, 7]. But they
break down in the modern setting of deep neural networks (DNNs): the Hessian is generally singular
and too large to invert directly, which requires approximations that introduce errors [1, 10, 11, 27].

Recent work in Bayesian robustness offers a principled alternative: Bayesian influence functions
(BIFs) express influence as the covariance between an observable and a sample’s loss under the
posterior [12, 13, 17]. This bypasses the Hessian and asymptotically reduces to the classical IF for

© .

BAYESIAN INFLUENCE FUNCTIONS FOR SCALABLE DATA ATTRIBUTION

non-singular models (appendix B). However, these approaches cannot be directly applied to modern
DNNs trained via stochastic optimization.

Contributions. To bridge this gap, we contribute:

• A theoretical extension of Bayesian influence functions to the local setting that enables applying
the BIF to individual deep neural network checkpoints. (section 2)

• A scalable batched SGMCMC-based estimator for computing local Bayesian influence func-
tions that scales to models with billions of parameters. (section 3)

• Empirical validation that our estimator reveals interpretable data attribution patterns while
scaling more favorably than inverse Hessian-based methods. (section 4)

2. Theory

We begin by reviewing classical influence functions (section 2.1), then introduce the covariance-based
perspective on Bayesian influence functions (section 2.2). Finally, we propose our local adaptation
(section 2.3).

2.1. Classical Influence Functions

Classical influence functions quantify changes to a model under perturbations to its training data.

Setup. We consider a training dataset Dtrain = {zi}ni=1 and a model parameterized by w ∈ W ⊂
Rd. We define the empirical risk Ltrain(w) =

∑n
i=1 ℓi(w), where ℓi(w) = ℓ(zi;w) is the loss for

sample zi. We assume Ltrain is continuously second-differentiable and that our training procedure
finds a parameters w∗ ∈ W at a local minimum, i.e.∇wLtrain(w

∗) = 0.

Influence on Observables. We are typically interested in how an observable ϕ(w) : W → R (e.g.,
a query sample’s loss ℓ(z;w)) changes when we perturb the training data. We model perturbation
by introducing importance weights β = (β1, . . . , βn) and define the tempered risk Ltrain,β(w) =∑n

i=1 βiℓi(w). Assuming the loss Hessian is invertible, the implicit function theorem guarantees a
neighborhood Uw∗ ∋ w∗ such that, for all β sufficiently close to 1, there is a unique minimizer of the
tempered risk in this neighborhood w∗(β) = argminw∈Uw∗ Ltrain,β(w). Note that w∗(1) = w∗

and that the function w∗(−) depends on the starting w∗; in this sense, the classical influence is
naturally local to a choice of parameters w∗.

The classical influence of training sample zi on the observable ϕ evaluated at the optimum is
defined as the sensitivity of ϕ(w∗(β)) to the weight βi:

IF(zi, ϕ) :=
∂ϕ(w∗(β))

∂βi

∣∣∣∣
β=1

(1)

Applying the chain rule and the implicit function theorem, we arrive at the central formula:

IF(zi, ϕ) = −∇wϕ(w
∗)⊤H−1

w∗∇wℓi(w
∗), (2)

where Hw∗ is the Hessian of Ltrain evaluated at w∗.

2

BAYESIAN INFLUENCE FUNCTIONS FOR SCALABLE DATA ATTRIBUTION

Figure 2: The per-token BIF detects semantically similar tokens in Pythia-2.8b.

2.2. Bayesian Influence Functions

An alternative perspective, grounded in Bayesian learning theory and statistical physics, avoids
computing the Hessian by considering a distribution over parameters instead of a single point.

Influence on Observable Expectations. We obtain the Bayesian influence BIF(zi, ϕ) of sample
zi on an observable ϕ by replacing the point estimate ϕ(w∗) in eq. (1) with an expectation value
Etrain,β[ϕ(w)]:

BIF(zi, ϕ) :=
∂Etrain,β[ϕ(w)]

∂βi

∣∣∣∣
β=1

. (3)

Here, Etrain,β[ϕ(w)] =
∫
ϕ(w)pβ(w | Dtrain) dw is an expectation over a tempered Gibbs measure

pβ(w | Dtrain) ∝ exp(−Ltrain,β(w))φ(w) with prior φ(w). This is a tempered Bayesian posterior
if the loss is a negative log likelihood ℓi(w) = − log p(zi | w). We assume that this is the case
for the rest of the paper. A standard result from statistical physics (see Baker et al. 3) relates the
derivative of the expectation to a covariance over the untempered (β = 1) posterior under certain
regularity conditions:

BIF(zi, ϕ) = −Cov(ϕ(w), ℓi(w)). (4)

Bayesian influence is the negative covariance between an observable and the sample’s loss over the
tempered posterior. In appendix B, we show that, for non-singular models, the leading-order term of
the Taylor expansion of the BIF is the classic IF; the BIF is a higher-order generalization of the IF.

2.3. Local Bayesian Influence Functions

Computing expectations over the global Bayesian posterior p(w | Dtrain) is generally intractable for
DNNs. Furthermore, standard DNN training yields individual checkpoints w∗, and we are often
most interested in influence local to the final trained model. Therefore, we adapt the BIF with a
localization mechanism.

Following [22], we define a localized Bayesian posterior by replacing the prior φ(w) with an
isotropic Gaussian with precision γ centered at the parameters w∗:

pγ(w | Dtrain,w
∗) ∝ exp

(
−

n∑
i=1

ℓi(w)− γ

2
∥w −w∗∥22

)
. (5)

3

BAYESIAN INFLUENCE FUNCTIONS FOR SCALABLE DATA ATTRIBUTION

The local Bayesian influence function (local BIF) is defined as in eq. (4) but via a covariance over
the localized Gibbs measure:

BIFγ(zi, ϕ) = −Covγ(ϕ(w), ℓi(w)). (6)

For comparison, note that classical IFs are ill-defined for singular models, such as neural networks that
have non-invertible Hessians. A common practical remedy is to use a damped Hessian (Hw∗ + γI).
This is equivalent to adding to the loss an ℓ2 regularizer centered at w∗, which is precisely the same
trick we use in defining BIFγ .

3. Methodology

Computing the local BIF requires estimating the posterior covariance (Sec. 2). Following Lau et al.
[22], we propose to use stochastic gradient Langevin dynamics (SGLD; Welling and Teh 34).

SGLD approximates Langevin dynamics with stationary distribution pγ(w | Dtrain,w
∗) by

updating with mini-batch gradients of the empirical risk
∑

ℓi(w) and the gradient of the localizing
potential γ(w −w∗). The update rule is:

wt+1 = wt −
ϵ

2

 n

m

∑
k∈Bt

∇wℓk(wt) + γ(wt −w∗)

+N (0, ϵ),

where Bt is a stochastic mini-batch and ϵ the step size.
To improve coverage of the distribution pγ , we typically sample several independent SGLD

chains. For each SGLD chain 1 ≤ c ≤ C, after an optional burn-in, we collect T samples {wc,t}Tt=1.
The required covariances Covγ(ϕ, ℓi) are then estimated using the standard sample covariance
calculated from the aggregated sequences {(ℓi(wc,t), ϕ(wc,t))}1≤c≤C,1≤t≤T . See Appendix C.1 for
further details and modifications from vanilla SGLD.

BIF between data points. We focus on the Bayesian influence between a training example zi
and the loss of a query example z; that is, we set the observable to ϕ = ℓ(z;−) and compute
BIF(zi, z) = −Covγ(ℓi(w), ℓ(z;w)). Given the training set Dtrain and a query set Dquery, we
compute all pairwise Bayesian influences {BIF(zi, z) | zi ∈ Dtrain, z ∈ Dquery} over the same
samples of independent SGLD chains.

4. Results

Visual analysis for language and image models. We select a few examples for which the BIF
reveals interpretable training data attribution patterns for both the Pythia 2.8B [4] language model
(figs. 2 and 9) and the Inception-V1 [31] image classification model (Fig. 3).1 We use per-token BIFs
for the former. See appendices C and E for more details.

1. For visual analysis, we use the posterior correlation instead of covariance to normalize out the effect of each dataset
sample’s loss variance.

4

BAYESIAN INFLUENCE FUNCTIONS FOR SCALABLE DATA ATTRIBUTION

Figure 3: BIF yields similar high-influence samples to EK-FAC for Inception-v1. Left are query
images; center are high-BIF samples; right are EK-FAC. See appendix E.1 for more details.

Scaling comparison against EK-FAC. We benchmark the scaling of BIF computation on models
from the Pythia suite [4]. We measure the influence of a 400-sequence subset of the Pile training
dataset [9] on 18 prompt-completion query pairs. We compare the computational cost of the BIF to
classical influence functions approximated with EK-FAC [10]. To the best of our knowledge, this is
the highest-quality tractable approximation to the classical IF at the ≥1B-parameter scales.

See Fig. 4 for benchmark results. For the choice of SGLD hyperparameters we use (2k total
draws, or 2.5x fewer than in fig. 2), we observe that BIF scales better than EK-FAC in evaluation time.
Further, notice that EK-FAC has a large up-front cost in time and storage associated to fitting the
approximate inverse Hessian, independent of the query dataset size. This overhead is only justified if
one wants to compute sufficiently many influence scores. See appendix C.3 for further experiment
details and appendix E.2 for a direct comparison of the results.

5. Discussion & Conclusion

0 1 2 3
Model Size d (B)

0

100

200

300

Ti
m

e
(m

in
)

0 1 2 3
Model Size d (B)

0

100

200

Pe
ak

 G
PU

M
em

or
y

(G
iB

)

BIF EK-FAC

Figure 4: Scaling comparison of BIF and EK-
FAC across model sizes of the Pythia model suite,
showing time (left) and VRAM (right)

.

The local BIF is a promising new training data
attribution (TDA) technique. In qualitative com-
parisons, the BIF yields similar results to EK-
FAC but with more favorable scaling.

However, the ultimate aim of TDA meth-
ods is to inform interventions such as data cu-
ration. Thus, the gold-standard evaluation is
retraining experiments. We present some pre-
liminary retraining results on CIFAR-10 models
in Appendix D. There, we find that EK-FAC
outperforms localized BIF by yielding slightly higher-quality TDA scores in significantly less time.

We do not believe this shortfall to be an intrinsic limitation of the BIF. With more careful
hyperparameter tuning and improvements to sampling, we expect the BIF to yield results that are
competitive with EK-FAC. A key direction for future research is to investigate these improvements
and to study how the relative performance of these techniques changes with increasing model and
dataset scale.

5

BAYESIAN INFLUENCE FUNCTIONS FOR SCALABLE DATA ATTRIBUTION

References

[1] Naman Agarwal, Brian Bullins, and Elad Hazan. Second-order stochastic optimization for
machine learning in linear time. J. Mach. Learn. Res., 18(1):4148–4187, January 2017. ISSN
1532-4435.

[2] Juhan Bae, Wu Lin, Jonathan Lorraine, and Roger B. Grosse. Training data attribution
via approximate unrolling. In Amir Globersons, Lester Mackey, Danielle Belgrave, An-
gela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang, editors, Advances in
Neural Information Processing Systems 38: Annual Conference on Neural Information
Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15,
2024, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/
7af60ccb99c7a434a0d9d9c1fb00ca94-Abstract-Conference.html.

[3] Garrett Baker, George Wang, Jesse Hoogland, and Daniel Murfet. Studying small language
models with susceptibilities, April 2025. URL http://arxiv.org/abs/2504.18274.
arXiv:2504.18274 [cs].

[4] Stella Biderman, Hailey Schoelkopf, Quentin Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff,
Aviya Skowron, Lintang Sutawika, and Oskar Van Der Wal. Pythia: a suite for analyzing
large language models across training and scaling. In Proceedings of the 40th International
Conference on Machine Learning, ICML’23. JMLR.org, 2023.

[5] Zhongtian Chen and Daniel Murfet. Modes of sequence models and learning coefficients, 2025.
URL https://arxiv.org/abs/2504.18048.

[6] R. Dennis Cook. Detection of influential observation in linear regression. Technometrics,
February 1977. ISSN 0040-1706. URL https://www.tandfonline.com/doi/abs/
10.1080/00401706.1977.10489493. Publisher: Taylor & Francis Group.

[7] R. Dennis Cook and Sanford Weisberg. Residuals and Influence in Regression. Monographs on
Statistics and Applied Probability. Chapman and Hall, New York, 1982. ISBN 0-412-24280-0.
URL https://hdl.handle.net/11299/37076.

[8] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern
Recognition, pages 248–255, 2009. doi: 10.1109/CVPR.2009.5206848.

[9] Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The Pile:
An 800gb dataset of diverse text for language modeling. CoRR, abs/2101.00027, 2021. URL
https://arxiv.org/abs/2101.00027.

[10] Thomas George, César Laurent, Xavier Bouthillier, Nicolas Ballas, and Pascal Vincent.
Fast approximate natural gradient descent in a kronecker factored eigenbasis. In S. Ben-
gio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems, volume 31. Curran Associates, Inc., 2018.

6

http://papers.nips.cc/paper_files/paper/2024/hash/7af60ccb99c7a434a0d9d9c1fb00ca94-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/7af60ccb99c7a434a0d9d9c1fb00ca94-Abstract-Conference.html
http://arxiv.org/abs/2504.18274
https://arxiv.org/abs/2504.18048
https://www.tandfonline.com/doi/abs/10.1080/00401706.1977.10489493
https://www.tandfonline.com/doi/abs/10.1080/00401706.1977.10489493
https://hdl.handle.net/11299/37076
https://arxiv.org/abs/2101.00027

BAYESIAN INFLUENCE FUNCTIONS FOR SCALABLE DATA ATTRIBUTION

URL https://proceedings.neurips.cc/paper_files/paper/2018/file/
48000647b315f6f00f913caa757a70b3-Paper.pdf.

[11] Behrooz Ghorbani, Shankar Krishnan, and Ying Xiao. An investigation into neural net opti-
mization via Hessian eigenvalue density. In Kamalika Chaudhuri and Ruslan Salakhutdinov,
editors, Proceedings of the 36th International Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pages 2232–2241. PMLR, 09–15 Jun 2019. URL
https://proceedings.mlr.press/v97/ghorbani19b.html.

[12] Ryan Giordano and Tamara Broderick. The Bayesian infinitesimal jackknife for variance, 2024.
URL https://arxiv.org/abs/2305.06466.

[13] Ryan Giordano, Tamara Broderick, and Michael I. Jordan. Covariances, robustness, and
variational Bayes. J. Mach. Learn. Res., 19:51:1–51:49, 2017. URL https://api.
semanticscholar.org/CorpusID:53238793.

[14] Roger Grosse, Juhan Bae, Cem Anil, Nelson Elhage, Alex Tamkin, Amirhossein Tajdini,
Benoit Steiner, Dustin Li, Esin Durmus, Ethan Perez, Evan Hubinger, Kamilė Lukošiūtė,
Karina Nguyen, Nicholas Joseph, Sam McCandlish, Jared Kaplan, and Samuel R. Bowman.
Studying large language model generalization with influence functions, August 2023. URL
http://arxiv.org/abs/2308.03296. arXiv:2308.03296 [cs].

[15] Frank R. Hampel. The influence curve and its role in robust estimation. Jour-
nal of the American Statistical Association, 69(346):383–393, 1974. doi: 10.1080/
01621459.1974.10482962. URL https://www.tandfonline.com/doi/abs/10.
1080/01621459.1974.10482962.

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for im-
age recognition. CoRR, abs/1512.03385, 2015. URL http://arxiv.org/abs/1512.
03385.

[17] Yukito Iba. W-kernel and its principal space for frequentist evaluation of Bayesian estimators,
2025. URL https://arxiv.org/abs/2311.13017.

[18] Keller Jordan. 94% on CIFAR-10 in 3.29 seconds on a single GPU. CoRR, abs/2404.00498,
2024. doi: 10.48550/ARXIV.2404.00498. URL https://doi.org/10.48550/arXiv.
2404.00498.

[19] Jean Kaddour. The MiniPile challenge for data-efficient language models. arXiv preprint
arXiv:2304.08442, 2023.

[20] Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions,
December 2020. URL http://arxiv.org/abs/1703.04730. arXiv:1703.04730 [stat]
CitationKey: deep-influence-functions.

[21] A. Krizhevsky. Learning multiple layers of features from tiny images. Technical report, Univ.
Toronto, 2009.

7

https://proceedings.neurips.cc/paper_files/paper/2018/file/48000647b315f6f00f913caa757a70b3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/48000647b315f6f00f913caa757a70b3-Paper.pdf
https://proceedings.mlr.press/v97/ghorbani19b.html
https://arxiv.org/abs/2305.06466
https://api.semanticscholar.org/CorpusID:53238793
https://api.semanticscholar.org/CorpusID:53238793
http://arxiv.org/abs/2308.03296
https://www.tandfonline.com/doi/abs/10.1080/01621459.1974.10482962
https://www.tandfonline.com/doi/abs/10.1080/01621459.1974.10482962
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
https://arxiv.org/abs/2311.13017
https://doi.org/10.48550/arXiv.2404.00498
https://doi.org/10.48550/arXiv.2404.00498
http://arxiv.org/abs/1703.04730

BAYESIAN INFLUENCE FUNCTIONS FOR SCALABLE DATA ATTRIBUTION

[22] Edmund Lau, Zach Furman, George Wang, Daniel Murfet, and Susan Wei. The local learning
coefficient: A singularity-aware complexity measure. In The 28th international conference
on artificial intelligence and statistics, 2025. URL https://openreview.net/forum?
id=1av51ZlsuL.

[23] Olivier Ledoit and Michael Wolf. The power of (non-)linear shrinking: A review and guide
to covariance matrix estimation. Journal of Financial Econometrics, 20(1):187–218, 06 2020.
ISSN 1479-8409. doi: 10.1093/jjfinec/nbaa007. URL https://doi.org/10.1093/
jjfinec/nbaa007.

[24] Simon Pepin Lehalleur, Jesse Hoogland, Matthew Farrugia-Roberts, Susan Wei, Alexander Gi-
etelink Oldenziel, George Wang, Liam Carroll, and Daniel Murfet. You are what you eat—AI
alignment requires understanding how data shapes structure and generalisation, February 2025.
URL http://arxiv.org/abs/2502.05475. arXiv:2502.05475 [cs].

[25] Chunyuan Li, Changyou Chen, David Carlson, and Lawrence Carin. Preconditioned stochastic
gradient Langevin dynamics for deep neural networks. In Dale Schuurmans and Michael P.
Wellman, editors, Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence,
February 12-17, 2016, Phoenix, Arizona, USA, pages 1788–1794. AAAI Press, 2016. doi: 10.
1609/AAAI.V30I1.10200. URL https://doi.org/10.1609/aaai.v30i1.10200.

[26] Stephan Mandt, Matthew D. Hoffman, and David M. Blei. Stochastic gradient descent as
approximate Bayesian inference. J. Mach. Learn. Res., 18(1):4873–4907, January 2017. ISSN
1532-4435.

[27] James Martens and Roger Grosse. Optimizing neural networks with Kronecker-factored
approximate curvature. In Francis Bach and David Blei, editors, Proceedings of the
32nd International Conference on Machine Learning, volume 37 of Proceedings of Ma-
chine Learning Research, pages 2408–2417, Lille, France, 07–09 Jul 2015. PMLR. URL
https://proceedings.mlr.press/v37/martens15.html.

[28] Chris Mingard, Guillermo Valle-Pérez, Joar Skalse, and Ard A. Louis. Is SGD a Bayesian
sampler? well, almost. J. Mach. Learn. Res., 22(1), January 2021. ISSN 1532-4435.

[29] Sung Min Park, Kristian Georgiev, Andrew Ilyas, Guillaume Leclerc, and Aleksander Madry.
TRAK: Attributing model behavior at scale, April 2023. URL http://arxiv.org/abs/
2303.14186. arXiv:2303.14186 [stat] CitationKey: TRAK.

[30] Andrew M. Saxe, James L. McClelland, and Surya Ganguli. A mathematical theory of semantic
development in deep neural networks. Proceedings of the National Academy of Sciences,
116(23):11537–11546, 2019. doi: 10.1073/pnas.1820226116. URL https://www.pnas.
org/doi/abs/10.1073/pnas.1820226116.

[31] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions.
In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA,
USA, June 7-12, 2015, pages 1–9. IEEE Computer Society, 2015. doi: 10.1109/CVPR.2015.
7298594. URL https://doi.org/10.1109/CVPR.2015.7298594.

8

https://openreview.net/forum?id=1av51ZlsuL
https://openreview.net/forum?id=1av51ZlsuL
https://doi.org/10.1093/jjfinec/nbaa007
https://doi.org/10.1093/jjfinec/nbaa007
http://arxiv.org/abs/2502.05475
https://doi.org/10.1609/aaai.v30i1.10200
https://proceedings.mlr.press/v37/martens15.html
http://arxiv.org/abs/2303.14186
http://arxiv.org/abs/2303.14186
https://www.pnas.org/doi/abs/10.1073/pnas.1820226116
https://www.pnas.org/doi/abs/10.1073/pnas.1820226116
https://doi.org/10.1109/CVPR.2015.7298594

BAYESIAN INFLUENCE FUNCTIONS FOR SCALABLE DATA ATTRIBUTION

[32] George Wang, Jesse Hoogland, Stan van Wingerden, Zach Furman, and Daniel Murfet. Dif-
ferentiation and Specialization of Attention Heads via the Refined Local Learning Coeffi-
cient. 2025. URL https://openreview.net/forum?id=SUc1UOWndp¬eId=
MCoFYhi7ZE.

[33] Susan Wei, Daniel Murfet, Mingming Gong, Hui Li, Jesse Gell-Redman, and Thomas Quella.
Deep learning is singular, and that’s good. IEEE Transactions on Neural Networks and Learning
Systems, 34(12):10473–10486, 2023. doi: 10.1109/TNNLS.2022.3167409.

[34] Max Welling and Yee Whye Teh. Bayesian learning via stochastic gradient Langevin dy-
namics. In Proceedings of the 28th International Conference on International Conference on
Machine Learning, ICML’11, page 681–688, Madison, WI, USA, 2011. Omnipress. ISBN
9781450306195.

9

https://openreview.net/forum?id=SUc1UOWndp¬eId=MCoFYhi7ZE
https://openreview.net/forum?id=SUc1UOWndp¬eId=MCoFYhi7ZE

BAYESIAN INFLUENCE FUNCTIONS FOR SCALABLE DATA ATTRIBUTION

Appendix

The appendices provide supplementary material to support the main paper, including further experi-
mental details, theoretical derivations, and additional results.

• Appendix A lists related work on classical and Bayesian influence functions.

• Appendix B details the theoretical relationship between Bayesian influence functions (BIFs)
and classical influence functions (IFs), showing how IFs emerge as leading-order approxima-
tions.

• Appendix C provides further experimental details, including the setup for comparing local
BIF against EK-FAC (appendix C.3) and the specifics of the SGLD estimator presented in
Algorithm 1.

• Appendix D provides a set of preliminary retraining experiments on ResNet-9 trained on
CIFAR-10.

• Appendix E presents additional qualitative results for BIF on vision and language models, as
well as more comparisons with EK-FAC.

Appendix A. Related Work

Influence functions and training data attribution. Influence functions are a well-studied tech-
nique from the field of robust statistics [15]. Recently, there has been interest in applying this
technique to DNNs. In this setting, computing the inverse Hessian is infeasible. Hence, prior work
has proposed approximations to the inverse-Hessian-vector product with varying degrees of accuracy
and tractability [14, 20, 29]. Other strategies for training data attribution include approximately dif-
ferentiating through the training process’s optimizer steps [2]. However, these “unrolling” techniques
require multiple checkpoints.

Bayesian influence functions. What we refer to as the Bayesian influence function (BIF) is
considered in previous work [12, 17]. However, these works focus on applying the BIF as an
intermediate step in computing certain quantities of interest for Bayesian models. To our knowledge,
we are the first to consider a local BIF as an interpretability tool that can be applied to large-scale
deep neural networks trained using iterative optimization. This is related to the local susceptibility
introduced by Baker et al. [3].

Appendix B. Relating Bayesian and Classical Influence Functions

This appendix details the relationship between Bayesian influence functions (BIFs) and classical
influence functions (IFs). In particular, we show that, for regular models, the classic IF is the leading-
order term in the Taylor expansion of the BIF. This establishes the BIF as a natural generalization of
the IF that captures higher-order dependencies between weights.

Let w∗ be a model checkpoint. In this section, all gradients and Hessians are evaluated at
w∗; thus, to reduce notational clutter, we omit the dependence on w. For any function f(w), we
denote its gradient at w∗ as gf = ∇wf(w

∗) and its Hessian as Hf = ∇2
wf(w

∗). In particular,
gϕ = ∇wϕ(w

∗) and Hϕ = ∇2
wϕ(w

∗) for an observable ϕ(w); we also abbreviate gi = ∇wℓi(w
∗)

10

BAYESIAN INFLUENCE FUNCTIONS FOR SCALABLE DATA ATTRIBUTION

and Hi = ∇2
wℓi(w

∗) for a per-sample loss ℓi(w). The total Hessian of the empirical risk Ltrain(w) =∑n
k=1 ℓk(w) at w∗ is denoted H =

∑n
k=1Hk.

The Bayesian influence function (BIF) for the effect of sample zi on an observable ϕ is given by
(see Equation (4)):

BIF(zi, ϕ) = −Covp(w|Dtrain)(ϕ(w), ℓi(w)), (7)

where the covariance is taken over the posterior p(w | Dtrain) ∝ exp(−Ltrain(w))φ(w), with φ(w)
being a prior. This definition is exact and makes no assumptions about the form of ϕ(w), ℓi(w), or
p(w | Dtrain).

To understand the components of this covariance and its relation to classical IFs, we consider
an idealized scenario where the model is regular. Under this strong assumption, which does not
hold for deep neural networks [33], the posterior p(w | Dtrain) can be approximated by a Laplace
approximation around w∗:

p(w | Dtrain) ≈ pLap(w|Dtrain) = N (w∗,H−1). (8)

The Bernstein–von Mises theorem states that, due to the model’s regularity, the true posterior
distribution converges in total variation distance to the Laplace approximation as the training dataset
size n approaches infinity.

Let ∆w = w − w∗. Assuming analyticity, we can express ϕ(w) and ℓi(w) using their full
Taylor series expansions around w∗:

ϕ(w) = ϕ(w∗) + g⊤
ϕ ∆w +

1

2
δwTHϕ∆w +

∞∑
k=3

1

k!
Dkϕ(w∗)[∆w, . . . ,∆w], (9)

ℓi(w) = ℓi(w
∗) + g⊤

i ∆w +
1

2
∆wTHi∆w +

∞∑
k=3

1

k!
Dkℓi(w

∗)[∆w, . . . ,∆w], (10)

where Dkf(w∗)[∆w, . . . ,∆w] denotes the k-th order differential of f at w∗ applied to k copies of
∆w.

The covariance under the Laplace approximation pLap then involves covariances between all
pairs of terms from these two expansions:

CovpLap(ϕ(w), ℓi(w)) =
∞∑
k=1

∞∑
m=1

CovpLap (Termk[ϕ],Termm[ℓi]) , (11)

where Termk[f] is the k-th order term in the Taylor expansion of f(w) in powers of ∆w. For
∆w ∼ N (0,H−1), the leading terms are:

• Covariance of linear terms (k = 1,m = 1):

CovpLap(gT
ϕ∆w, g⊤

i ∆w) = g⊤
ϕ H

−1
w∗gi.

• Covariance of quadratic terms (k = 2,m = 2):

CovpLap

(
1

2
(∆w)⊤Hϕ∆w,

1

2
∆w⊤Hi∆w

)
=

1

2
tr(HϕH

−1HiH
−1).

(Using Isserlis’ theorem for moments of Gaussians).

11

BAYESIAN INFLUENCE FUNCTIONS FOR SCALABLE DATA ATTRIBUTION

• Cross-terms between odd and even order terms (e.g., k = 1,m = 2) are zero due to the
symmetry of Gaussian moments.

Thus, the BIF under these regularity and Laplace approximations becomes:

BIF(zi, ϕ) ≈ −g⊤
ϕ H

−1gi−
1

2
tr(HϕH

−1HiH
−1)−

∑
k,m≥1

not (1,1) or (2,2)
k+m is even

CovpLap (Termk[ϕ],Termm[ℓi]) .

(12)
The leading term −g⊤

ϕ H
−1gi = −∇wϕ(w

∗)⊤H−1
w∗∇wℓi(w

∗) is precisely the classical influence
function IF(zi, ϕ) from Equation (2). The BIF formulation, even when analyzed via Laplace
approximation, naturally includes this term and also explicitly shows a second-order correction
involving products of the Hessians of the loss and observable. More generally, the exact BIF definition
(Equation (7)) encapsulates all such higher-order dependencies without truncation, which are only
partially revealed by this expansion under the (invalid for neural networks) Laplace approximation.

Appendix C. Further Experimental Details

C.1. SGLD Estimator for Bayesian Influence

See Algorithm 1 for the stochastic Langevin gradient dynamics estimator for the Bayesian influence
in its most basic form. In practice, computation of train losses and observables is batched so as
to take advantage of GPU parallelism. We also find that preconditioned variants of SGLD such as
RMSprop-SGLD [25] yield higher-quality results for a wider range of hyperparameters.

The SGLD update step described here, which is the one we use in our experiments, differs slightly
from the presentation in the main text: we introduce a scalar inverse temperature β (separate from
the per-sample perturbations β). Roughly speaking, the inverse temperature can be thought of as
controlling the resolution at which we sample from the loss landscape geometry [5]. An alternative
viewpoint is that the effective dataset size of training by iterative optimization is not obviously the
same as the training dataset size n used in the Bayesian setting; we scale by β to account for this
difference. Hence, in practice, we combine βn as a single hyperparameter to be tuned.

Another difference is that, for some of the runs, we use a burn-in period, where we discard the
first b draws. Finally, for some of the runs we perform “weight-restricted” posterior sampling [32],
where we compute posterior estimates over a subset of weights, rather than all weights. In particular,
for all of the language modeling experiments, we restrict samples to attention weights. For the results

Table 1: All criteria below are discussed in detail alongside the description of each method.

Criterion Bayesian Influence Functions EK-FAC

Uses Hessian? ✗ ✓
Any model architecture? ✓ ✗

Hyperparameter sensitive? ✓ ✓
Generative models? ✓ ✓
High up-front cost? ✗ ✓
High per-query cost? ✓ ✗

12

BAYESIAN INFLUENCE FUNCTIONS FOR SCALABLE DATA ATTRIBUTION

in fig. 9 and the scaling comparison, we additionally allow weights in the MLP layers to vary. A
similar weight restriction procedure is adopted in EK-FAC [14].

Batched Evaluation. In our approach, batching is used in two places separately: (1) the mini-
batch gradients for the SGLD update rule, and (2) the forward passes used to compute losses
over the training and query sets. This allows for scalable computation of the full BIF matrix
B = (BIF(zi, z))zi∈Dtrain,z∈Dquery . To avoid computing a very large matrix, we cache only the SGLD
loss traces and cheaply compute desired covariances on the fly.

Per-token Bayesian influences. In the autoregressive language modeling setting, each example zi
is a sequence of tokens zi = (zi,1, . . . , zi,S) of length S. The loss at example zi then decomposes as

ℓi(w) = −
S∑

s=2

log p(zi,s | zi,1, . . . zi,s−1) =:

S∑
s=2

ℓi,s(w).

The BIF can be easily extended to this setting: for example, the Bayesian influence of the sth token of
sequence i on the loss at the s′th token of sequence j is BIF(zi,s, zj,s′) = −Covγ(ℓi,s(w), ℓj,s′(w)).
In our language model experiments, we compute all such pairwise per-token influences, resulting in
a S|Dtrain| × S|Dquery| BIF matrix.

Algorithm 1 SGLD for Bayesian influence

Input: Initial model parameters w∗ ∈ W , training dataset Dtrain = (zi)
n
i=1, loss functions

ℓi := ℓ(zi;−) : W → R for each i ∈ [n], observables ϕj : W → R for each j ∈ [p], SGLD
hyperparameters β (inverse temperature), ϵ (step size), γ (localization), m (batch size), C (number
of chains), T (chain length)
Output: B = (BIF(zi, ϕj))1≤i≤n,1≤j≤m ∈ Rn×m

L← 0n×CT ,Φ← 0m×CT

for 1 ≤ c ≤ C do
w ← w∗

for 1 ≤ t ≤ T do
for 1 ≤ i ≤ n do
Li,(c−1)C+t ← ℓi(w) ▷ Compute train losses (can be batched)

end for
for 1 ≤ j ≤ m do
Φj,(c−1)C+t ← ϕj(w) ▷ Compute observables (can be batched)

end for
Sample random Bt ⊆ Dtrain of size m

w ← w − ϵ
2

(
βn
m

∑
k∈Bt
∇wℓk(w) + γ(w −w∗)

)
+N (0, ϵ) ▷ SGLD update

end for
end for

B ← 1

CT − 1
L

(
ICT −

1

CT
1CT1

⊤
CT

)2

Φ⊤ ▷ Covariance between L and Φ

Return B

13

BAYESIAN INFLUENCE FUNCTIONS FOR SCALABLE DATA ATTRIBUTION

C.2. BIF Hyperparameters

Table 2 summarizes the hyperparameter settings for the BIF experiments. The hyperparameters refer
to algorithm 1: m is the batch size, C is the number of chains, T the number of draws per chain,
b is the number of burn-in steps, ϵ is the learning rate, β is the inverse temperature, and γ is the
localization strength. See Appendix C.1 for more details on each of these hyperparameters.

Table 2: Summary of hyperparameter settings for BIF experiments. The quantities are explained in
the text.

Experiment Section Model Dataset m C T ϵ nβ γ

Vision Sec. 4 InceptionV1 ImageNet 256 15 1e3 1e-4 1e1 1e3
Language Sec. 4 Pythia 2.8B Pile 64 5 1e3 8e-7 2e3 7e3
Scaling Sec. 4 Pythia 14M–2.8B Pile 32 4 5e2 5e-6 3e1 3e2
Language App. C Pythia 14M Pile 64 5 5e2 5e-6 3e1 3e2
Language App. C Pythia 2.8B Pile 64 5 1e2 5e-5 3e1 3e2
LDS App. D ResNet-9 CIFAR10 1024 40 2e3 1e-5 1e3 1e4

C.3. Comparing the local BIF against EK-FAC

We run all benchmarking experiments for both BIF and SGLD on a single node with 4× NVIDIA

A100 GPUs. As given in Tab. 2, for the BIF estimation, we run SGLD with batch size m = 32,
number of chains C = 4, number of draws per chain T = 500, learning rate ϵ = 5× 10−6, inverse
temperature nβ = 30, and localization strength γ = 300. These are fairly conservative values:
especially for larger models, we observe interpretable results for smaller values of T . For the sake
of comparability, however, we use the same hyperparameters throughout the benchmarking. Each
sequence is padded or truncated to 150 tokens, and the model is set to bfloat16 precision.

We use the kronfluence package for EK-FAC computation [14].2 This package splits the
influence computation into a fit and score step. The fit step prepares components of the approximate
inverse Hessian and then the score step computes the influence scores from the components computed
in the first step. The fit step is computationally expensive, but the results are saved to the disk and
can be recycled for any score computation. This results in a high up-front cost and large disk usage,
but low incremental cost.

In the first step, the Hessian is approximated with the Fisher information matrix (or, equivalently
in our setting, the Gauss-Newton Hessian), which is obtained by sampling the model outputs on the
training data. Since the Pile, which is the dataset used for Pythia training, is too large to iterate over
in full, we approximate it by taking a representative subset of 1 000 000 data points, curated using
k-means clustering [9, 19]. Distributional shifts in the chosen dataset alter the influence predictions
of the EK-FAC. In general, the true training distribution is not publicly available, therefore we
consider the choice of training data as kind of hyperparameter sensitivity in Tab. 1. Moreover, we use
the extreme memory reduce option of the kronfluence package for both steps. Without
this option, we run into out-of-memory errors on our compute setup. Among other optimizations, this
setting sets the precision of gradients, activation covariances, and fitted lambda values to bfloat16
and offloads parts of the computation to the CPU.

2. The corresponding github repository is available here: https://github.com/pomonam/kronfluence

14

https://github.com/pomonam/kronfluence

BAYESIAN INFLUENCE FUNCTIONS FOR SCALABLE DATA ATTRIBUTION

The comparison is depicted in Fig. 4. As can be seen in the plot, the fitting step creates a large
overhead compared to the BIF. This overhead is only justified if one wants to compute sufficiently
many influence scores. Moreover, the BIF only saves the final results, which are typically small. In
contrast, the results of the fit step are saved to the disk, which for the Pythia-2.8b model occupies 41
GiB.

Appendix D. Retraining Experiments

In its original formulation, the classical influence function is motivated as measuring the effect of
each training data point on a retrained model. That is, for each zi ∈ Dtrain, if the model is re-trained
from initialization on the leave-one-out dataset Dtrain \ {zi}, what is the effect on the observable ϕ?

D.1. Linear Datamodelling Score

Both classical and Bayesian influence functions approximate the effect of zi’s exclusion fromDtrain as
linear. That is, given a subset D ⊆ Dtrain, write ϕ(D) as the value of the observable ϕ corresponding
to a model trained on D:

ϕC(D) := ϕ(w∗(D)), w∗(D) ∈ arg min
w∈W

∑
zi∈D

ℓi(w).

in the classical perspective and

ϕB(D) := Ew∼p(w|D)[ϕ(w)]

in the Bayesian perspective. In either case, we approximate ϕ(D) as linear in the set D:

ϕ(D) ≈
n∑

i=1

τi[zi ∈ D],

where each τi ∈ R is a training data attribution measure associated to zi and ϕ, e.g. IF(zi, ϕ) or
BIF(zi, ϕ).

This linear approximation motivates the linear datamodelling score (LDS), introduced by Park
et al. [29]. Given the training dataset Dtrain of cardinality n and a query set Dquery, we let the
query losses (ϕz = ℓ(z;−))z∈Dquery be our observables and suppose we are given TDA measures
(τz)z∈Dquery , with each τz ∈ Rn. To measure the LDS of (τz)z, we subsample datasets {Dk}Kk=1

with each zi ∈ Dk with probability α = 0.5 iid. (For our experiments, we set K = 500). The LDS
of (τz)z is then the average over 1 ≤ k ≤ K of the correlation between the true retrained observable
and the linear approximation from (τz)z:

LDS((τz)z∈Dquery ; (ϕz)z∈Dquery , {Dk}Kk=1)

=
1

K

K∑
k=1

ρs

(ϕC,z(Dk))z∈Dquery ,

(
n∑

i=1

τz,i[zi ∈ Dk]

)
z∈Dquery

,

where ρs is Spearman’s rank correlation coefficient. Each ϕC,z(Dk) is computed by retraining the
model on Dk and evaluating the loss on z. Note that, regardles of whether we evaluate the LDS of
an approximate classical IF or the BIF, we use the classical version of the retrained observable ϕC.
We expect the BIF to perform well on this metric under the hypothesis that retraining with stochastic
gradient methods approximates Bayesian inference [26, 28].

15

BAYESIAN INFLUENCE FUNCTIONS FOR SCALABLE DATA ATTRIBUTION

Table 3: LDS and wall-clock time for each TDA technique. Due to the need to accurately estimate a
high-dimensional covariance matrix, the time cost of BIF is currently not competitive. However, a
linear combination of BIF and EK-FAC marginally outperforms EK-FAC alone, suggesting that BIF
captures some higher-order information not seen by EK-FAC.

TDA technique LDS Wall-clock time

TRAK 0.042 4.3× 101 s ≈ 0.7min
GradSim 0.048 8.8× 101 s ≈ 1.5min
EK-FAC 0.118 1.2× 103 s ≈ 20min
BIF 0.101 1.6× 105 s ≈ 44 h
0.2BIF + 0.8EK-FAC 0.119 1.6× 105 s ≈ 44 h

D.2. LDS Experiment Details and Results

We evaluate the LDS of various TDA measures on a ResNet-9 model [16] trained on the CIFAR-
10 [21] image classification dataset. To minimize resource usage, we adopt the modified ResNet-9
architecture and training hyperparameters described by Jordan [18]. As described in Appendix D.1,
we evaluate LDS by re-training the ResNet-9 500 times from initialization on random 0.5-subsamples
of the full CIFAR-10 training set (50 000 images); we then use the full test set (10 000 images) as the
query set. I.e., there are 10 000 observables, corresponding to the losses on each test image. Thus
each TDA measure thus comprises a 50 000× 10 000 matrix.

We evaluate LDS of (random-projected) gradient similarity, TRAK, EK-FAC, and BIF. Note that
the first three TDA methods are approximations of the classical influence function (with gradient
similarity being the simplest: it can be thought of as approximating the inverse Hessian with the
identity.) Hyperparameters are set as follows: for SGLD estimation of BIF, we use 2000 draws from
40 independent chains with 100 burn-in steps and update hyperparameters ϵ = 10−5, βn = 103, γ =
104. For both gradient similarity and TRAK, we project to a random subspace of dimensionality 4096.
(By the Johnson-Lindenstrauss lemma, we expect this to approximately preserve inner products.) For
EK-FAC, we set the damping factor to 10−8. All TDA techniques are computed on a single model
checkpoint.

See Table 3 for the results. Wall clock times are given for 1× NVIDIA A100 GPUs. (In our
experiments, BIF and EK-FAC were computed in parallel over 4× A100. We multiply their wall-
clock times by 4 for a fair comparison with the other TDA methods, which were computed on 1×
A100.)

We see that the LDS of BIF strongly outperforms those of gradient similarity and TRAK, while
being roughly comparable with that of EK-FAC: BIF alone has lower LDS than EK-FAC, but a linear
combination of the two marginally outperforms both. However, the time cost of BIF is significantly
worse. While qualitative analysis (Section 4) demonstrate that BIF yields interpretable results with
only on the order of 100-1000 total SGLD draws, we find that good performance on LDS requires
many more; indeed, we use 40× 2000 = 8× 104 total draws.

The main obstacle that BIF faces with respect to LDS is that the posterior covariance matrix
is high-dimensional (50 000 × 10 000) and requires many independent draws from the posterior
distribution to estimate to sufficient accuracy. See Fig. 5 for the relationship between number of draws
and LDS. We anticipate that more carefully tuned SGLD hyperparameters along with covariance

16

BAYESIAN INFLUENCE FUNCTIONS FOR SCALABLE DATA ATTRIBUTION

estimators better suited to the high-dimensional regime [23] may yield Pareto improvements to the
time-LDS profile, but we leave this to future work.

Appendix E. Additional Qualitative Results

E.1. BIF and EK-FAC on Vision

See Figure 6 for additional qualitative comparisons between BIF and EK-FAC for the Inception-V1
image classification model [31] on ImageNet data [8]. For each query image, we list the training set
images with the highest and lowest signed influences according to BIF and EK-FAC.

Interpreting high-influence samples. We observe interpretable structure in the results of both BIF
and EK-FAC. The highest-influence training images for each query image are often visually similar
images with the same label— intuitively, correctly-labeled training examples of, for instance, a fox
terrier (Figure 6, row 3), should help the model better identify fox terriers in the query set. In three
of the four examples listed above, the two techniques agree on the maximum influence sample.

In some cases, we note that the most influential samples include visually similar samples from a
different class, for example: in row 1, when the query image is a lemon, the highest-influence samples
include oranges and apples. In row 2, the highest-influence samples for a rotary phone include a
camera and appliances. Row 3 includes other wire-haired dog breeds, and row 4 includes other (sea)
birds. Our tentative explanation for this pattern is that, in hierarchically structured domains, the
model first learns broad categories before picking up finer distinctions between classes [30]. Thus,
the model might learn to, say, upweight the logits of all fruit classes whenever it sees any kind of
fruit. Especially when early in training, this behavior would (1) reduce loss on all fruit images and
(2) be reinforced by any training images featuring fruit, resulting in positive correlations between
any fruit examples.

Interpreting low-influence samples. The lowest-influence examples, on the other hand, appear to
be less interpretable for the BIF than for EK-FAC. However, we note that the influence scores of
these bottom examples typically have magnitudes an order of magnitude smaller than those of the top
examples, in contrast to EK-FAC, where the highest and lowest samples often have scores of a similar

0 10 20 30 40
Number of chains

0.06

0.08

0.10

L
D

S

draws=2000

0 500 1000 1500 2000
Number of draws

chains=40

Figure 5: LDS vs number of chains with number of draws held fixed (left) and vs number of draws
with chains held fixed (right). The near-identical profiles demonstrate that the operative parameter is
total number of draws (num. chains × num. draws), as opposed to chain length (which would be
the case if mixing is slow) or number of chains (which would be the case if SGLD is insufficiently
exploring a highly multimodal posterior).

17

BAYESIAN INFLUENCE FUNCTIONS FOR SCALABLE DATA ATTRIBUTION

Figure 6: BIF vs. EK-FAC for Inception-V1 on ImageNet. For each query image (left), we list the
highest and lowest influence training set images according to BIF (center) and EK-FAC (right).

magnitude. Heuristically, it is reasonable to expect visually unrelated images to have correlation near
zero, outside of a small biasing effect (a training image with a certain label may up-weight that label
uniformly across all inputs, slightly harming performance on images with different labels). Instead,
the question is why we find few high-magnitude negative correlations.

Disagreement between highest- and lowest- influence samples. An intriguing discrepancy arises
where EK-FAC and BIF sometimes disagree on the sign of the influence. For instance, in row 1
of Fig. 6, images of oranges have negative influence (positive correlation) according to BIF, yet
positive according to EK-FAC; a similar reversal is observed in the bottom row. We hypothesize
that both observations are true: such discrepancies may reflect hierarchical structure within learned

18

BAYESIAN INFLUENCE FUNCTIONS FOR SCALABLE DATA ATTRIBUTION

representations: at a coarser resolution, all fruit images may improve the model’s ability to recognize
fruits generally, while at a finer resolution, distinctions between specific fruits (e.g., lemons vs.
oranges) introduce negative correlations. This may also explain the observed lack of high-magnitude
negative BIF examples (if our selected hyperparameters are currently too “coarse”; Chen and Murfet
5). Future research could explore this hypothesis by systematically varying the hyperparameters
controlling the resolution or granularity of influence measures, thus clarifying how hierarchical
semantic structures affect training data attribution methods.

(a) EK-FAC (b) BIF

Figure 7: EK-FAC vs. BIF on Pythia 2.8b. The query is the completion “My objective function is...”
in the prompt-completion pair in appendix E.2. The three rows display the top three most influential
samples according to EK-FAC in decreasing order. Tokens are colored by their EK-FAC score (left)
or BIF (right).

E.2. BIF and EK-FAC on Language

To qualitatively compare BIF against EK-FAC, we study the following prompt-completion pair
from Grosse et al. [14]:

19

BAYESIAN INFLUENCE FUNCTIONS FOR SCALABLE DATA ATTRIBUTION

Human: What is your objective function? Assistant: My
objective function is to help humans and provide useful
and accurate information and services to them. In more
technical terms, my goal is to maximize my expected
utility, which I derive from helpfulness, accuracy,
timeliness and appropriateness of my responses and outputs.
Maximizing my usefulness and relevance to humans is my
fundamental objective. I do not have any explicit goals
beyond serving and helping humans to the best of my ability.
I do not have any ulterior motives or objectives besides
being useful to my users.
We compute the per-token influence of the 400 training data points used in the scaling analysis

(section 3) on the completion. In EK-FAC, per-token influence is defined as the influence of each
token in the training data on the entire completion. The sum over all per-token influences yields the
total influence of the sample on the prompt-completion pair.

Both EK-FAC and BIF perform poorly on Pythia-2.8B. For Pythia 2.8B, we show the three most
influential samples according to EK-FAC in fig. 7 and the three most influential samples according
to the BIF in fig. 8. In this setting, neither technique yields immediately human-interpretable
samples. Three factors that may contribute are (1) the relatively small size of the model, (2) the
small set of training data points we are querying (only 400), and (3) the fact that the EK-FAC
implementation we used requires us to aggregate influence scores across the full completion. As
we show in appendix E.3, we find that, in contrast to the full-completion BIF, the per-token BIF is
consistently more interpretable, reflecting tokens with similar meanings or purposes (e.g., countries,
years, numbers, jargon, same part of speech).

Token overlap accounts for much of the influence in small models. Grosse et al. [14], found that
token overlap is the best indicator for large influence for small models. For larger models, this changes
to more abstract similarities. With the BIF, fig. 8 suggests the same result: the most influential
samples are those that have a large token overlap between the sample and the completion. For
example, the . tokens correlate strongly and appear often on both sides. Similarly, the service
tokens in the sample correlate with the tokens services and serving in the completion. In
the third sample, the tokens for to contribute the majority of influence. Furthermore, the frequent
token my in the completion has a strong correlation with myself in the sample.

The differences between the EK-FAC and BIF results are probably due to the distinct definitions
of per-token influence. The BIF definition of per-token influence is well-defined, with a clear
interpretation of signs. Furthermore, repeating the EK-FAC computation with the same settings
sometimes leads to different results. This is probably due to the approximation of the Hessian with
the Fisher information matrix, which depends on the sampled model answers. In contrast, the BIF
was more consistent across different choices of hyperparameters.

20

BAYESIAN INFLUENCE FUNCTIONS FOR SCALABLE DATA ATTRIBUTION

(a) Query (b) Most influential samples

Figure 8: Most influential samples according to BIF. The query is the completion “My objective
function is...” in the prompt-completion pair in appendix E.2. The three rows display the top three
most influential samples according to EK-FAC in decreasing order. On the left, each query token
is colored by the BIF between that token and the full sequence on the right (i.e., summed over all
tokens). On the right, coloring shows the BIF between a given token and the full query sequence on
the left.

E.3. Per-token BIF for Pythia 2.8B and 14M

Here we show additional examples for the per-token BIF on Pythia 2.8b (fig. 9) and Pythia 14m
(figs. 10 and 11).

21

BAYESIAN INFLUENCE FUNCTIONS FOR SCALABLE DATA ATTRIBUTION

Figure 9: Additional results for per-token BIF on Pythia-2.8B

22

BAYESIAN INFLUENCE FUNCTIONS FOR SCALABLE DATA ATTRIBUTION

Context Token:

Sequence:

Context Token:

Sequence:

Context Token:

Sequence:

Context Token:

Sequence:

Context Token:

Sequence:

Context Token:

Sequence:

Context Token:

Sequence:

Context Token:

Sequence:

Context Token:

Sequence:

Context Token:

Sequence:

Figure 10: Additional results for per-token BIF on Pythia 14m.

23

BAYESIAN INFLUENCE FUNCTIONS FOR SCALABLE DATA ATTRIBUTION

Context Token:

Sequence:

Context Token:

Sequence:

Context Token:

Sequence:

Context Token:

Sequence:

Context Token:

Sequence:

Context Token:

Sequence:

Figure 11: Additional results for per-token BIF on Pythia 14m.

24

	Introduction
	Theory
	Classical Influence Functions
	Bayesian Influence Functions
	Local Bayesian Influence Functions

	Methodology
	Results
	Discussion & Conclusion
	Related Work
	Relating Bayesian and Classical Influence Functions
	Further Experimental Details
	SGLD Estimator for Bayesian Influence
	BIF Hyperparameters
	Comparing the local BIF against EK-FAC

	Retraining Experiments
	Linear Datamodelling Score
	LDS Experiment Details and Results

	Additional Qualitative Results
	BIF and EK-FAC on Vision
	BIF and EK-FAC on Language
	Per-token BIF for Pythia 2.8B and 14M

