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Abstract

Diffusion-based imitation learning improves Behavioral Cloning (BC) on multi-
modal decision-making, but comes at the cost of significantly slower inference
due to the recursion in the diffusion process. It urges us to design efficient policy
generators while keeping the ability to generate diverse actions. To address this
challenge, we propose AdaFlow, an imitation learning framework based on flow-
based generative modeling. AdaFlow represents the policy with state-conditioned
ordinary differential equations (ODEs), which are known as probability flows. We
reveal an intriguing connection between the conditional variance of their training
loss and the discretization error of the ODEs. With this insight, we propose a
variance-adaptive ODE solver that can adjust its step size in the inference stage,
making AdaFlow an adaptive decision-maker, offering rapid inference without
sacrificing diversity. Interestingly, it automatically reduces to a one-step generator
when the action distribution is uni-modal. Our comprehensive empirical evaluation
shows that AdaFlow achieves high performance with fast inference speed.
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Figure 1: AdaFlow is a fast imitation learning policy. It adaptively adjust the number of simulation steps when
generating actions. For low-variance states, it functions as a one-step action generator. For high-variance states,
it employs more steps to ensure accurate action generation. This adaptive approach enables AdaFlow to achieve
an average generation speed close to one step per task completion.

1 Introduction

Imitation Learning (IL) is a widely adopted method in robot learning [1, 2]. In IL, an agent is given a
demonstration dataset from a human expert finishing a certain task, and the goal is for it to complete
the task by learning from this dataset. IL is notably effective for learning complex, non-declarative
motions, yielding remarkable successes in training real robots [3–6].
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Figure 2: Illustrating the computation adaptivity of AdaFlow (orange) on simple regression task. In the upper
portion of the image, we use Diffusion Policy (DDIM) and AdaFlow to predict y given x, with deterministic
y = 0 when x ≤ 0, and bimodal y = ±x when x > 0. Both DDIM and AdaFlow fit the demonstration data
well. However, the simulated ODE trajectory learned by Diffusion-Policy with DDIM (red) is not straight no
matter what x is. By contrast, the simulated ODE trajectory learned by AdaFlow with fixed step (blue) is a
straight line when the prediction is deterministic (x ≤ 0), which means the generation can be exactly done
by one-step Euler discretization. At the bottom, we show that AdaFlow can adaptively adjust the number of
simulation steps based on the x value according to the estimated variance at x.

The primary approach for IL is Behavioral Cloning (BC) [7–10], where the agent is trained with
supervised learning to acquire a deterministic mapping from states to actions. Despite its simplicity,
vanilla BC struggles to learn diverse behaviors in states with many possible actions [10, 11, 6, 12].
To improve it, various frameworks have been proposed. For instance, Implicit BC [12] learns an
energy-based model for each state and searches the actions that minimize the energy with optimization
algorithms. Diffuser [13, 14] and Diffusion Policy [6] adopts diffusion models [15, 16] to generate
diverse actions, which has become the default method for training on large-scale robotics data [17–20].

The computational cost of the learned policies at the execution stage is important for an IL framework
in a real-world deployment. Unfortunately, none of the previous frameworks enjoys both efficient
inference and diversity. Although energy-based models and diffusion models can generate multi-
modal action distributions, they require recursive processes to generate the actions. These recursive
processes usually involve tens (or even hundreds) of queries before reaching their stopping criteria.

In this paper, we propose a new IL framework, named AdaFlow, that learns a dynamic generative
policy that can autonomously adjust its computation on the fly, thus cheaply outputs multi-modal
action distributions to complete the task. AdaFlow is inspired by recent advancements in flow-based
generative modeling [21–24]. We learn probability flows, which are essentially ordinary differential
equations (ODEs), to represent the policies. These flows are powerful generative models that precisely
capture the complicated distributions, but similar to energy-based models and diffusion models, they
still require multiple recursive iterations to simulate the ODEs in the inference stage.

AdaFlow differs from existing flow generative models like Rectified Flow [25] and Consistency
Models [26], by utilizing the initially learned ODE to maintain low training and inference costs,
and function as a one-step generator for deterministic target distributions. In contrast, both of these
methods require an additional distillation or reflow [25] process to achieve fast inference. To improve
the efficiency, we propose an adaptive ODE solver based on the finding that the simulation error of
the ODE is closely related to the variance of the training loss at different states. We let the action
generation model to output an additional variance scalar alongside the action it produces. During the
execution of the policy, we change the step size according to the variance predicted at the current
state. Equipping the flow-based policy with the proposed adaptive ODE solver, AdaFlow wisely
allocates computational resources, yielding high efficiency without sacrificing the diversity provided
by the flow-based generative models. Specifically, in states with deterministic action distributions,
AdaFlow generates the action in one step – as efficient as naive BC.

Empirical results across multiple benchmarks demonstrate that AdaFlow achieve consistently good
performance across success rate with high execution efficiency. Specifically, our contributions are:

2



• We proposed AdaFlow as a generative model-based policy for decision making tasks, capable
of generating actions almost as quickly as a single model inference pass.

• We conducted comprehensive experiments across decision making tasks, including
navigation and robot manipulation, utilizing benchmarks such as LIBERO [27] and
RoboMimic [10]. AdaFlow consistently outperforms existing state-of-the-art models, de-
spite requiring 10x less inference times to generate actions.

• We offer a theoretical analysis of the overall error in action generation by AdaFlow, providing
a bound that ensures precision and reliability.

2 Related Work

Diffusion/Flow-based Generative Models and Adaptive Inference Diffusion models [28, 16,
15, 29] succeed in various applications, e.g., image/video generation [30–33], audio generation [34],
point cloud generation [35–38], etc.. However, numerical simulation of the diffusion processes
typically involve hundreds of steps, resulting in high inference cost. Post-hoc samplers have been
proposed to solve this issue [39–44] by transforming the diffusion process into marginal-preserving
probability flow ODEs, yet they still use the same number of inference steps for different states.
Although adaptive ODE solvers, such as adaptive step-size Runge-Kutta [45], exist, they cannot
significantly reduce the number of inference steps. In comparison, the adaptive sampling strategy of
AdaFlow is specifically designed based on intrinsic properties of the ODE learned rectified flow, and
can achieve one-step simulation for most of the states, making it much faster for decision-making
tasks in real-world applications. Recently, new generative models [21, 25, 22, 23, 46, 24, 26, 47] have
emerged. These models directly learn probability flow ODEs by constructing linear interpolations
between two distributions, or learn to distill a pretrained diffusion model [26, 47] with an additional
distillation training phase. Empirically, these methods exhibit more efficient inference due to their
preference of straight trajectories. Among them, Rectified flow achieves one step generation with
reflow, a process to straighten the ODE. However, it requires a costly synthetic data construction.

By contrast, AdaFlow only leverages the initially learned ODE, but still keeps cheap training and
inference costs that are similar to behavior cloning. We achieve this by unveiling a previously
overlooked feature of these flow-based generative models: they act as one-step generators for
deterministic target distributions, and their variance indicates the straightness of the probability flows
for a certain state. Leveraging this feature, we design AdaFlow to automatically change the level of
action modalities given on the states.

Diffusion Models for Decision Making For decision making, diffusion models obtain success as
in other applications areas [48–51]. In a pioneering work, Janner et al. [13] proposed “Diffuser”,
a planning algorithm with diffusion models for offline reinforcement learning. This framework
is extended to other tasks in the context of offline reinforcement learning [52], where the training
dataset includes reward values. For example, Ajay et al. [14] propose to model policies as conditional
diffusion models. The application of DDPM [16] and DDIM [43] on visuomotor policy learning for
physical robots [6] outperforms counterparts like Behavioral Cloning. Freund et al. [53] exploits two
coupled normalizing flows to learn the distribution of expert states, and use that as a reward to train
an RL agent for imitation learning. AdaFlow admits a much simpler training and inference pipeline
compared with it. Despite the success of adopting generative diffusion models as decision makers
in previous works, they also bring redundant computation, limiting their application in real-time,
low-latency decision-making scenarios for autonomous robots. AdaFlow propose to leverage rectified
flow instead of diffusion models, facilitating adaptive decision making for different states while
significantly reducing computational requirements. In this work, similar to Diffusion Policy [6],
we focus on offline imitation learning. While AdaFlow could theoretically be adapted for offline
reinforcement learning, we leave it for future works.

3 AdaFlow for Imitation Learning

To yield an agent that enjoys both multi-modal decision-making and fast execution, we pro-
pose AdaFlow, an imitation learning framework based on flow-based generative policy. The merits of
AdaFlow lie in its adaptive ability: it identifies the behavioral complexity at a state before allocating
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computation. If the state has a deterministic choice of action, it outputs the required action rapidly;
otherwise, it spends more inference time to take full advantage of the flow-based generative policy.
This handy adaptivity is made possible by leveraging a combination of elements: 1) a special property
of the flow 2) a variance estimation neural network and 3) a variance-adaptive ODE solver. We
formally introduce the whole framework in the sequel.

3.1 Flow-Based Generative Policy

Given the expert dataset D =
{
(s(i), a(i))

}n

i=1
, our goal is to learn a policy πθ that can generate

trajectories following the target distribution πE . πθ can be induced from a state-conditioned flow-
based model,

dzt = vθ(zt, t | s)dt, z0 ∼ N (0, I). (1)
Here, s is the state and the velocity field is parameterized by a neural network θ that takes the state as
an additional input. To capture the expert distribution with the flow-based model, the velocity field
can be trained by minimizing a state-conditioned least-squares objective,

L(θ) = E
(s,a)∼D

x0∼N(0,I)

[∫ 1

0

∥a− x0 − vθ(xt, t | s)∥22 dt
]
, (2)

where xt is the linear interpolation between x0 and x1 = a:

xt = ta+ (1− t)x0. (3)

We should differentiate zt which is the ODE trajectory in (1) from the linear interpolation xt. They
do not overlap unless all trajectories of ODE (1) are straight. See Liu et al. [21] for more discussion.

With infinite data sampled from πE , unlimited model capacity and perfect optimization, it is guaran-
teed that the policy πθ generated from the learned flow matches the expert policy πE [21].

3.2 The Variance-Adaptive Nature of Flow

Typically, to sample from the distribution πθ at state s, we start with a random sample z0 from the
Gaussian distribution and simulate the ODE (Eq. (1)) with multi-step ODE solvers to get the action.
For example, we can exploit N -step Euler discretization,

zti+1
= zti +

1

N
vθ (zti , ti | s) , ti =

i

N
, 0 ≤ i < N. (4)

After running the solver, z1 is the generated action. This solver requires inference with the network N
times for decision making in every state. Moreover, a large N is needed to obtain a smaller numerical
error.

However, different states may have different levels of difficulty in deciding the potential actions.
For instance, when traveling from a city A to another city B, there could be multiple ways for
transportation, corresponding to a multi-modal distribution of actions. After the way of transportation
is chosen, the subsequent actions to take will be almost deterministic. This renders using a uniform
Euler solver with the same number of inference steps N across all the states a sub-optimal solution.
Rather, it is preferred that the agent can vary its decision-making process as the state of the agent
changes. The challenge is how to quantitatively estimate the complexity of a state and employ the
estimation to adjust the inference of the flow-based policy.

Variance as a Complexity Indicator We notice an intriguing property of the policy learned by
rectified flow, which connects the complexity of a state with the training loss of the flow-based policy:
if the distribution of actions is deterministic at a state s (i.e., a Dirac distribution), the trajectory of
rectified flow ODE is a straight line, i.e., a single Euler step yields an exact estimation of z1.
Proposition 3.1. Let v∗ be the optimum of Eq. (2) . If varπE

(a | s) = 0 where a ∼ πE(· | s), then
the learned ODE conditioned on s is

dzt = v∗(zt, t | s)dt = (a− z0)dt, ∀t ∈ [0, 1], (5)

whose trajectories are straight lines pointing to z1 and hence can be calculated exactly with one step
of Euler step:

z1 = z0 + v∗(z0, 0 | s).
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Algorithm 1 AdaFlow: Execution
1: Input: Current state s, minimal step size ϵmin, error threshold η, pre-trained networks vθ and σϕ.

2: Initialize z0 ∼ N (0, I), t = 0.
3: while t < 1 do
4: Compute step size

ϵt = Clip

(
η

σϕ(zt, t | s)
, [ϵmin, 1− t]

)
.

5: Update t← t+ ϵt, zt ← zt + ϵtvθ(zt, t | s).
6: end while
7: Execute action a = z1.

Note that the straight trajectories of (5) satisfies zt = ta+ (1− t)z0, which makes it coincides with
the linear interpolation xt. As show in [21], this happens only when all the linear trajectories do not
intersect on time t ∈ [0, 1).

More generally, we can expect that the straightness of the ODE trajectories depends on how determin-
istic the expert policy πE is. Moreover, the straightness can be quantified by a conditional variance
metric defined as follows:

σ2(x, t | s) = var(a− x0 | xt = x, s) (6)

= E
[
∥a− x0 − v∗(xt, t | s)∥2 | xt = x, s

]
.

Proposition 3.2. Under the same condition as Proposition 3.1, we have σ2(zt, t | s) = 0 from (5).

The proof of the above propositions is in Appendix A.1. To summarize, the variance of the state-
conditioned loss function at (zt, t) can be an indicator of the multi-modality of actions. When the
variance is zero, the flow-based policy can generate the expected action with only one query of the
velocity field, saving a huge amount of computation. In Section 3.3, we will show the variance can be
used to bound the discretization error, thereby enabling the design of an adaptive ODE solver.

Variance Estimation Network In practice, the conditional variance σ2(x, t | s) can be empirically
approximated by a neural network σ2

ϕ(x, t | s) with parameter ϕ. Once the neural velocity vθ is
learned, we can estimate σϕ by minimizing the following Gaussian negative log-likelihood loss:

min
ϕ

E
[ ∫ 1

0

∥a− x0 − vθ(xt, t|s)∥2

2σ2
ϕ(xt, t|s)

+ log σ2
ϕ(xt, t|s)dt

]
. (7)

We adopt a two-stage training strategy by first training the velocity network vθ then the variance
estimation network σϕ. In practice, the second stage just involves fine-tuning a few linear layers on
top of the trained velocity network. Alternatively, we can optimize both the variance estimation and
action generation simultaneously, which can extend training time. Our experiments show that joint
training and two-stage training yield comparable performance.

3.3 Variance-Adaptive Flow-Based Policy

Because the variance indicates the straightness of the ODE trajectory, it allows us to develop an
adaptive approach to set the step size to yield better estimation with lower error during inference.

To derive our method, let us consider to advance the ODE with step size ϵt at zt:

zt+ϵt = zt + ϵtv
∗(zt, t | s). (8)

The problem is how to set the step size ϵt properly. If ϵt is too large, the discretized solution will
significantly diverge from the continuous solution; if ϵt is too small, it will take excessively many
steps to compute.

We propose an adaptive ODE solver based on the principle of matching the discretized marginal
distribution pt of zt from (8), and the ideal marginal distribution p∗t when following the exact ODE
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(1). This is made possible with a key insight below showing that the discretization error can be
bounded by the conditional variance σ2(zt, t | s).
Proposition 3.3. Let p∗t be the marginal distribution of the exact ODE dzt = v∗(zt, t | s)dt. Assume
zt ∼ pt = p∗t and pt+ϵt the distribution of zt+ϵt following (8). Then we have

W2(p
∗
t+ϵt , pt+ϵt)

2 ≤ ϵ2tEzt∼pt
[σ2(zt, t | s)],

where W2 denotes the 2-Wasserstein distance.

We provide the proof in Appendix A.2. Hence, given a threshold η, to ensure that an error of
W2(p

∗
t+ϵt , pt+ϵt)

2 ≤ η2, we can bound the step size by ϵt ≤ η/σ(zt, t | s). Because ϵt at time t
should not be large than 1− t, we suggest the following rule for setting the step size ϵt at zt at time t:

ϵt = Clip

(
η

σ(zt, t | s)
, [ϵmin, 1− t]

)
, (9)

where we impose an additional lower bound ϵmin to avoid ϵt to be unnecessarily small. Besides, the
proposed adaptive strategy guarantees to instantly arrive at the terminal point when σ2(zt, t | s) = 0
as ϵt = 1 − t. Moreover, it aligns with Section. 3.2 since for states with deterministic actions, it
sets ϵ0 = 1 to generate the action in one step. We incorporate the above insights to the execution in
Algorithm 1.

Global Error Analysis Proposition 3.3 provides the local error at each Euler step. In the following,
we provide an analysis of the overall error for generating z1 when we simulate ODE while following
the adaptive rule (9). To simplify the notation, we drop the dependency on the state s, and write
v∗t (·) = v∗(·, t | s).
Assumption 3.4. Assume ∥v∗t ∥Lip ≤ L for t ∈ [0, 1], and the solutions of dzt = vt(zt)dt has
bounded second curvature ∥z̈t∥ ≤M for t ∈ [0, 1].

This is a standard assumption in numerical analysis, under which Euler’s method with a constant step
size of ϵmin admits a global error of order O(ϵmin).

Proposition 3.5. Under Assumption 3.4, assume we follow Euler step (8) with step size ϵt in (9),
starting from z0 = x0 ∼ p∗0. Let pt be the distribution of zt we obtained in this way, and p∗t that
of xt in (3). Note that p∗1 is the true data distribution. Set η = Mηϵ

2
min/2 for some Mη > 0, and

ϵmin = 1/Nmax.

Let Nada be the number of steps we arrive at z1 following the adaptive schedule. We have

W2(p
∗
1, p1) ≤ C × Nada

Nmax
× ϵmin,

where C is a constant depending on M , Mη and L.

The idea is that the error is proportional to Nada

Nmax
, suggesting that the algorithm claims an improved

error bound in the good case when it takes a smaller number of steps than the standard Euler method
with constant step size ϵmin. We provide the proof in Appendix A.3.

Discussion of AdaFlow and Rectified Flow. Rectified Flow operates in two stages: the first is
learning an ordinary differential equation (ODE), and the second involves a technique called "reflow"
used to straighten the learned trajectory. Theoretically, reflow allows for one-step action generation.
However, using reflow introduces two major drawbacks: 1) It significantly prolongs training time,
particularly because generating the required pseudo noise-data pairs through ODE simulation is
computationally expensive; 2) It leads to poorer generation quality due to straightened ODE. In
contrast, our method utilizes only the original ODE, eliminating the need for an additional reflow or
distillation process, and consistently achieves more accurate action generation.

4 Experiments

We conducted comprehensive experiments on four sets of tasks: 1) a simple 1D toy example to
demonstrate the computational adaptivity of AdaFlow; 2) a 2D navigation problem; and two robot
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manipulation task suites on 3) RoboMimic [14] following past works [6] and 4) LIBERO [3], provide
diverse and realistic scenarios for evaluation.

Our results show that AdaFlow improves the success rate of completing both navigation and manipu-
lation tasks, outperforming state-of-the-art methods such as BC and its variants, as well as Diffusion
Policy, across a range of tasks. Additionally, AdaFlow drastically reduces the inference cost. Further
experiments demonstrate that AdaFlow is robust to changes in hyperparameters and can adaptively
adjust its inference speed according to different states, ensuring efficient and reliable performance.

BC Diffusion Policy Rectified Flow AdaFlow
Behavior Diversity ✗ ✓ ✓ ✓
Fast Action Generation ✓ ✗ ✓ ✓
No Distillation / Reflow ✓ ✓ ✗ ✓

Table 1: Comparison between BC, Diffusion Policy, Rectified Flow and AdaFlow.

4.1 Regression

We start with a 1D regression task designed to demonstrate the adaptivity nature of AdaFlow. The
goal is to learn a mapping from x to y where

y =

{
0 for x ≤ 0

±x for x > 0.
(10)

Note that y | x is deterministic when x ≤ 0 and stochastic otherwise. The training and testing data
are uniformly sampled from the ground-truth function with x ∈ [−5, 5]. Details about the setup and
the hyperparameters are provided in Appendix.

AdaFlow can achieve 1-step generation for deterministic states. Figure 2 (top-right) shows the
generation trajectories of Diffusion Policy and AdaFlow with 5 step. Notably, when x ≤ 0, AdaFlow
generates straight trajectories and is therefore able to predict y with a single step, aligning our analysis
in Proposition 3.1 and 3.2. In contrast, Diffusion Policy generates curved trajectories when step = 5,
and hence cannot predict y accurately with a single step. The bottom of Figure 2 shows the estimated
variance by AdaFlow across x ∈ [−5, 5], which accurately aligns with the expected variance. In
addition, as x increases, AdaFlow adaptively increases the required number of simulation steps.

4.2 Navigating a 2D Maze

We create two sets of maze navigation tasks to validate AdaFlow’s performance of modeling multi-
modal behavior. In particular, we create two single-task environments where the agent starts and ends
at a fixed point and two multi-task environments where the agent can start and end at different points.
All four environments are simulated in D4RL Maze2D [54] using MuJoCo. The environments and
demonstrations are visualized in Figure 7.

Method NFE↓ Maze 1 Maze 2 Maze 3 Maze 4
Needs reflow
Rectified Flow 1 0.82 1.00 1.00 0.80
BC 1 1.00 1.00 0.92 0.76
BC-GMM 1 0.84 1.00 0.88 0.72
Diffussion Policy 1 0.00 0.32 0.16 0.08
Diffussion Policy 5 0.58 1.00 0.84 0.76
Diffussion Policy 20 0.62 0.98 0.84 0.82
AdaFlow 1.56 0.98 1.00 0.96 0.86

Table 2: Performance on maze navigation tasks. The
table showcases the success rate for each model across
different maze complexities. The highest success rate for
each task are highlighted in bold. NFE denotes Number
of Function Evaluations.

AdaFlow
(NFE=1.12)

BC 
(NFE=1)

Diff-π
(NFE=1)

Diff-π
(NFE=20)

EndStart

Figure 3: Generated trajectories. We visualize the
trajectories generated by different policies, with the
agent’s starting point fixed.
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Method NFE↓ Lift Can Square Transport ToolHang Push-T

ph mh ph mh ph mh ph mh ph ph

Rectified Flow (Needs reflow) 1 1.00 1.00 0.94 1.00 0.94 0.92 0.90 0.76 0.88 0.92

LSTM-GMM 1 1.00 1.00 1.00 1.00 0.95 0.86 0.76 0.62 0.67 0.69
IBC 1 0.79 0.15 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.75
BET 1 1.00 1.00 1.00 1.00 0.76 0.68 0.38 0.21 0.58 -
Diffusion Policy 1 0.04 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04
Diffusion Policy 2 0.64 0.98 0.52 0.66 0.56 0.12 0.84 0.68 0.68 0.34
Diffusion Policy 100 1.00 1.00 1.00 1.00 1.00 0.97 0.90 0.72 0.90 0.91
AdaFlow 1.17 1.00 1.00 1.00 0.96 0.98 0.96 0.92 0.80 0.88 0.96

Table 3: Success rate on RoboMimic Benchmark. The highest success rate for each task are highlighted in bold.

Put the black bowl at 
the front on the plate

Put the middle black 
bowl on the plate

Put the middle black bowl 
on top of the cabinet

Stack the front black on the 
black bowl in the middle

EndStart

Open the top drawer 
of the cabinet

Put the black bowl at 
the back on the plate

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6

Figure 4: LIBERO tasks. We visualize the demonstrated trajectories of the robot’s end effector.

AdaFlow achieves high diversity and success with low NFE; Diffusion Policy and BC lag in
comparison. We compare AdaFlow against baseline methods in Table 2. We additionally visualize
the rollout trajectories from each learned policy in Figure 3 as a qualitative comparison of the learned
behavior across different methods. From the results, we see that AdaFlow with an average Number
of Function Evaluation (NFE) of 1.56 NFE can achieve highly diverse behavior and high success
rate in the meantime. By contrast, Diffusion Policy only demonstrates diverse behavior when NFE is
larger than 5 and falls behind in success rate even with 20 NFE compared to AdaFlow. BC, on the
other hand, has high success rate while performing relatively poorly in terms of behavior diversity.

4.3 Robot Manipulation Tasks

Experiment Setup To further validate how AdaFlow performs on practical robotics tasks, we
compare AdaFlow against baselines on a Push-T task [6], the RoboMimic [10] benchmark (Lift, Can,
Square, Transport, ToolHang) and the LIBERO [27] benchmark. For the Push-T task and the tasks in
RoboMimic, we follow the exact experimental setup described in Diffusion Policy [6]. Following the
Diffusion Policy, we add three additional baseline methods: 1) LSTM-GMM, BC with the LSTM
model and a Gaussian mixture head, 2) IBC, the implicit behavioral cloning [12], an energy-based
model for generative decision-making, and 3) BET [11]. For the LIBERO tasks, we pick a subset
of six Kitchen tasks and follow the setup described in the LIBERO paper (Check Figure 4 for the
description of the six tasks).

Method NFE↓ Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Average

Rectified Flow (Needs reflow) 1 0.90 0.82 0.98 0.82 0.82 0.96 0.88

Diffusion Policy 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Diffusion Policy 2 0.00 0.58 0.36 0.66 0.36 0.32 0.38
Diffusion Policy 20 0.94 0.84 0.98 0.78 0.82 0.92 0.88
AdaFlow 1.27 0.98 0.80 0.98 0.82 0.90 0.96 0.91

Table 4: Success Rate on LIBERO Benchmark. The highest success rate for each task are highlighted in bold.

AdaFlow consistently outperforms competitors in varied robot manipulation tasks with high
efficiency. The results of the Push-T task and the RoboMimic benchmark are summarized in Table 3.
From the table, we observe that AdaFlow consistently achieves comparable or higher success rates
across different challenging manipulation tasks, compared against all baselines, with only an average
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NFE of 1.17. Note that Diffusion Policy, while showing high success rates using NFE = 100, falls
behind when NFE = 1. Results for the six LIBERO tasks are presented in Table 4. Aligning with
findings from our previous experiments, AdaFlow once again outperforms BC and Diffusion Policy
in terms of success rate with an average NFE of 1.27. We additionally visualize the variance predicted
by AdaFlow in Figure 5. It can be seen that the model identifies the high variance when the robot’s
end-effector is close to the object or target area, matching the variance from the demonstration data.

4.4 Ablation Study

We valid how AdaFlow performs against baselines regarding the training and inference efficiency. In
addition, we examine how critical the variance estimation network is.

Ground Truth Variance

Predicted Variance

10

Figure 5: Predicted variance. We visualize the variance predicted by AdaFlow.
The variance is computed on states from the expert’s demonstration and av-
eraged over all simulation steps (e.g., t from 0 to 1). Then we normalize the
variance to [0, 1] by the largest variance found at all states.

DS

SR

Epoch

SR
SR

NFE NFE

D
S

BC Diffusion Policy AdaFlow (Ours)

Epoch

NFE (𝜂)

SR
SR

DS

SR

Epoch

SR
SR

NFE NFE

D
S

BC Diffusion Policy AdaFlow (Ours)

Figure 6: Ablation studies on
AdaFlow.

Higher Training and Inference Efficiency. Figure 6 (top) examines changes in success rate relative
to the NFE. AdaFlow maintains a high success rate with a very low NFE, whereas the Diffusion
Policy generally requires more than three NFE to perform well. Although BC performs well with one
NFE, it demonstrates very limited behavioral diversity and struggles to model multi-modal behavior.
Figure 6 (bottom) illustrates training efficiency by displaying the success rate over epochs. It shows
that AdaFlow has a better area-under-curve than Diffusion Policy, indicating faster learning. As
expected, due to its simplicity, Behavioral Cloning (BC) achieves the best learning efficiency.

Robustness to η. In Figure 6, the NFEs in AdaFlow are calculated at various η values. It shows
that AdaFlow is robust to changes in η.

On the Importance of Variance Estimation. In Table 5, we provide the performance of AdaFlow
with and without the variance estimation network on the four mazes from Section 4.2. From the
results, it is clear that the variance estimation network not only makes inference faster, but can also
lead to better performance.

Maze1 Maze1 Maze3 Maze4

w/o Variance Estimation 0.78 1.00 0.92 0.80
AdaFlow (Ours) 0.98 1.00 0.96 0.86

Table 5: Ablation study on the use of estimated variance to determine inference steps. Euler sampler is used for
AdaFlow without variance estimation.
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5 Conclusion

We present AdaFlow, a novel imitation learning algorithm adept at efficiently generating diverse and
adaptive policies, addressing the trade-off between computational efficiency and behavioral diversity
inherent in current models. Through extensive experimentation across various settings, AdaFlow
demonstrated superior performance across multiple dimensions including success rate, behavioral
diversity, and training/execution efficiency. This work lays a robust foundation for future research on
adaptive imitation learning methods in real-world scenarios.
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A Appendix

A.1 Proof of Proposition 3.1 and Proposition 3.2.

PROOF 1. varπE
(a|s) = 0 means that the action a = a equals a deterministic value a given s.

With xt = ta+ (1− t)x0, note that

a− x0 =
1

1− t
(a− xt).

Therefore, a− x0 is deterministically decided by xt and s. This yields

v∗(x, t | s) = E[a− x0 | xt = x] =
1

1− t
(a− x).

Therefore, we have

dzt = v∗(zt, t | s) =
1

1− t
(a− zt)dt.

Solving ODE this yields

zt = ta+ (1− t)z0 = (1− t)v∗(z0, 0 | s).
Differentiating it also yields

zt = (a− z0)dt.

We also have σ2(x, t | s) again because a− x0 is deterministic given xt and s:

σ2(x, t | s) = var(a− x0 | xt = x, s) = 0.

A.2 Proof of Proposition 3.3

PROOF 2. Following the property of rectified flow, the distribution of x1 = ta+(1− t)x0 coincides
with pt for all t ∈ [0, 1]. Hence, we can assume that zt = xt ∼ p∗t . In this case, we have
zt+ϵt = xt + ϵtv

∗(zt, t | s) and xt+ϵt = xt + ϵt(a− x0). We have

W2(p
∗
t+ϵt , pt+ϵt)

2

≤ E
[
∥zt+ϵt − xt+ϵt∥

2
2

]
= E

[
E
[
∥zt+ϵt − xt+ϵt∥

2
2 | xt

]]
= E

[
E
[
∥ϵtv∗(zt, t | s)− ϵt(a− x0)∥22 | xt

]]
= ϵ2tEzt∼pt

[σ2(zt, t | s)].

A.3 Proof of Proposition 3.5

PROOF 3. Assume the adaptive algorithm visits the time grid of 0 = t0, t1, . . . , tN = 1.

Define zti
t be the result when we implement the adaptive discretization algorithm upto ti and then

switch to follow the exact ODE afterward, that is, we have dzti
t = vt(z

ti
t )dt for t ≥ ti. In this way,

we have z1
t = zt, and z0

t = z∗
t , where z∗

t is the trajectory of the exact ODE dz∗
t = v∗t (z

∗
t )dt.

From Lemma A.1, we have∥∥∥zti−1

1 − zti
1

∥∥∥ ≤ exp(L(1− ti))
∥∥∥zti

ti − z
tt−1

ti

∥∥∥ .
Let ptit be the distribution of zti

t . Then we have p1t = pt and p0t = p∗t . Then

W2(p
ti−1

1 , pti1 ) ≤ E
[∥∥∥zti−1

1 − zti
1

∥∥∥2]1/2
= exp(L(1− ti))E

[∥∥∥zti−1

ti − zti
ti

∥∥∥2]1/2
= exp(L(1− ti))max(η, ϵ2minM/2)

= Cϵ2min exp(−Lti),
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where C = 1
2 max(M,Mη) exp(L(1− ti)). Here we use the bound in the proof of Proposition 3.1

and Lemma A.1. Hence,

W2(p
∗
1, p1) =

Nada∑
i=1

W2(p
ti−1

1 , pti1 )

≤
Nada∑
i=1

Cϵ2min exp(−Lti)

≤ C × Nada

Nmax
× ϵmin,

where C = exp(L)max(M,Mη).
Lemma A.1. Let ∥vt∥Lip ≤ L for t ∈ [0, 1]. Assume xt and yt solve dxt = vt(xt)dt and
dyt = vt(yt)dt starting from x0, y0, respectively. We have

∥xt − yt∥ ≤ exp(Lt) ∥x0 − y0∥ , ∀t ∈ [0, 1]. (11)

PROOF 4.
d

dt
∥xt − yt∥2 = 2(xt − yt)

⊤(vt(xt)− vt(yt))

≤ 2L ∥xt − yt∥2 ,
where we used ∥vt(xt)− vt(yt)∥ ≤ L ∥xt − yt∥. Using Gronwall’s inequality yields the result.
Lemma A.2. Under Assumption 3.4, we have

∥xt+ϵ − (xt + ϵvt(xt))∥ ≤
ϵ2M

2
,

for 0 ≤ t ≤ ϵ+ t ≤ 1.
PROOF 5. Direct application of Taylor approximation.

A.4 Visualization of Tasks

We provide a visualization of the 2D Maze Figure 7.

Demonstration (Single-task) 

Start Goal

Maze 1 Maze 2

Demonstration (Multi-task) 

Maze 3 Maze 4

Figure 7: Trajectories of 100 demonstrations for each maze.

A.5 Planner for Maze2D task

We generate the demonstration data in Maze toy using planner similar to [54]. The planner devises a
path in a maze environment by calculating waypoints between the start and target points. It begins
by transforming the given continuous-state space into a discretized grid representation. Employing
Q-learning, it evaluates the optimal actions and subsequently computes the waypoints by performing
a rollout in the grid, introducing random perturbations to the waypoints for diversity. The controller
connects these waypoints in an ordered manner to form a feasible path. In runtime, it dynamically
adjusts the control action based on the proximity to the next waypoint and switches waypoints when
close enough, ensuring the trajectory remains adaptive and efficient.
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10
Figure 8: Predicted variance by AdaFlow on the Maze task.

A.6 Comparative Analysis of Separate and Joint Training

In this section, we provide a comparison between the two training strategies employed in our proposed
solution: separate training and joint training. Our primary objective is to investigate whether there is
a substantial difference in performance and efficiency between these two training approaches.

Experiment Setup. To conduct this comparative analysis, we designed experiments using our
proposed framework with both training strategies. Specifically, we consider two approaches: separate
and joint training. In Separate Training setting, we train the variance prediction network and the
policy function separately, as described in our main paper. In Joint Training setting, we train both
the variance prediction network and the policy function simultaneously in an end-to-end manner. The
goal is to assess the impact of these training strategies on the overall performance.

Results and Discussion. As shown in Table 6, the performance were consistent between the two
training approaches, indicating the effectiveness of our two-stage framework in balancing policy
accuracy and uncertainty estimation. Separate training exhibited faster computational speed, making
it the preferred choice once the policy function was robustly trained. Joint training required more
computational resources and time.

Maze 1 Maze 2 Maze 3 Maze 4

AdaFlow (Separate) 0.98 1.00 0.96 0.86
AdaFlow (Joint) 1.00 1.00 0.96 0.88

Table 6: Performance comparison of separate training and joint training of AdaFlow in Maze tasks.

A.7 Visualization of Exact Variance.

In the main paper, we showed the variance predictions made by AdaFlow across different states
within a robot’s state space. Here, we explain how we compute the exact variance for different states,
to provide a ground truth of variance for reference. To achieve this, we first train a 1-Rectified Flow
model for the task, then we can compute the exact variance by sampling:

1

Nt

1

Nz

∑
t

∑
z0

E
[
||y − z0 − v(zt, t;x)||2

]
, where zt = ty + (1− t)z0, (x, y) ∼ p∗. (12)

For each states, we randomly sample 10 time steps (Nt = 10) and 10 noises (Nz = 10).

A.8 Visualization of Predicted Variance on Maze task.

We present the predicted variance by AdaFlow in Figure 8.

A.9 Additional Experimental Details.

Model Architectures. For the 1D toy example, we used a MLP constructed with 5 fully connected
layers and SiLU activation functions. We integrated temporal information by extending the time input
into a 100-dimensional time-encoding vector through the cosine transformation of a random vector,
cost ∗ zT , where zT is sampled from a Gaussian distribution. This time feature is then concatenated

15



with the noise and condition (x) inputs to for time-aware predictions. The network comprises 4
hidden layers, each with 100 neurons, and the output layer predict a single y value. The dataset
consists of 10000 single-dimensional samples uniformly distributed in the range [−5, 5].
For navigation and robot manipulation tasks, we adopted the model architecture from Diffusion
Policy [6]. For navigation task, we use the same architecture as used in Push-T task. In the RoboMimic
and LIBERO experiments, we used the Diffusion Policy-C architecture. To ensure a fair comparison
across different methods, we maintained a consistent architecture for all methods in our experiments,
except where specifically noted. Detailed parameters are available in Table 7.

1D Toy Maze RoboMimic & LIBERO

Hyperparameter RF & AdaFlow BC Diffusion Policy RF & AdaFlow BC Diffusion Policy RF & AdaFlow BC Diffusion Policy

Learning rate 1e-2 1e-2 1e-2 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4
Optimizer Adam Adam Adam AdamW AdamW AdamW AdamW AdamW AdamW
β1 0.9 0.9 0.9 0.9 0.9 0.9 0.95 0.95 0.95
β2 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999
Weight decay 0 0 0 1e-6 1e-6 1e-6 1e-6 1e-6 1e-6
Batch size 1000 1000 1000 256 256 256 64 64 64
Epochs 200 200 400 200 200 200 500(L) / 3000(RM) 500(L) / 3000(RM) 500(L) / 3000(RM)
Learning rate scheduler cosine cosine cosine cosine cosine cosine cosine cosine cosine
EMA decay rate - - - 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999

Number of training time steps - - 100 - - 20 - - 100
Number of Inference time steps 100 (RF) - 100(DDPM) - - 20(DDPM) - - 100(DDPM)
η 0.1 - - 1.5 - - 1.0 - -
ϵmin 5 - - 5 - - 10 - -

Action prediction horizon - - - 16 16 16 16 16 16
Number of observation input - - - 2 2 2 2 2 2
Action execution horizon - - - 8 8 8 8 8 8
Observation input size 1 1 1 4 (Single-task) / 6(Multi-task) 76× 76 76× 76 76× 76

Table 7: Hyperparameters used for training AdaFlow and baseline models.

Implementation of Baselines. In our studies, BC was implemented as a baseline, applying behavior
cloning in its most straightforward form and using a Mean Squared Error loss function between the
predicted and ground truth actions. The implementations for DDPM and DDIM remained consistent
with those outlined in [6]. Across all experiments, consistency was maintained regarding architecture,
input, and output, with all methods adhering to a similar experimental pipeline. We just use a 4 layer
MLP with SiLU activation for the variance prediction, with hidden dimension of 512, which is a very
small network whose computational overhead can be neglected compared to the full model.

Implementation of Vairance Prediction Network. In the 1D toy experiment, we designed the
variance prediction network as a 4-layer MLP, mirroring the main model’s architecture for simplicity.
In theory, the variance estimation network takes the same input as rectified flow model, so its input
can be just the intermediate features extracted by the main model. Hence in the navigation and
manipulation experiments, the inputs of variance prediction networks are the bottle-neck features
extracted by the U-Net model.

Training on RoboMimic. Training Diffusion Models on RoboMimic is very resource-intensive.
Training and evaluating a Transport task requires over a month of GPU hours. More complex tasks,
such as ToolHang, can demand up to three times longer 1Given the challenges in replicating the
results from [6], we opted to start with their open-sourced pretrained model. We then fine-tuned the
baselines and our method for 500 epochs and subsequently compared the performance of different
models.

A.10 Comparison with standard Rectified Flow.

For the purpose of policy learning, we can consider standard Rectified Flow as a subset of our
method, which can be recovered with specific choices of η and ϵmin. In this section, we compare our
approach with the standard Rectified Flow, particularly focusing on the generation within a single
step. Standard Rectified Flow requires a reflow or distillation stage to straighten the ODE process.
During this reflow stage, the model simulates data using the initial 1-Rectified Flow. These data
are then used in distillation training, resulting in what is termed a 2-Rectified Flow. Theoretically,
a 2-Rectified Flow is capable of producing a straight generation trajectory, which enables one-step
generation. In contrast, the 1-Rectified Flow tends to be less straight, necessitating multiple steps for
sample generation.

In Table 8, we compare the performance of 1-Rectified Flow, 2-Rectified Flow, and our method in the
maze task. Furthermore, Figure 9 illustrates the trajectories produced by both standard Rectified Flow

1See this link
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1-Rectified Flow (NFE=1)

2-Rectified Flow (NFE=1)

1-Rectified Flow (NFE=5)

AdaFlow (NFE=1.12)

Figure 9: Generated trajectories. We visualize the trajectories generated by standard Rectified Flow and
AdaFlow, with the agent’s starting point remaining fixed. 0

and our method. It’s evident that the standard 1-Rectified Flow struggles to generate a diverse range
of actions in a single step. In contrast, our method is able to produce diverse behaviors in nearly one
step. This efficiency is attributed to our method’s ability to estimate the variance across different
states, identifying those that require multi-step generation.

NFE↓ Maze 1 Maze 2 Maze 3 Maze 4

1-RF 1 1.00 1.00 0.98 0.80
1-RF 5 0.82 1.00 0.94 0.80
2-RF (reflow) 1 0.82 1.00 1.00 0.80

AdaFlow (η = 1.5) 1.56 0.98 1.00 0.96 0.86
AdaFlow (η = 2.5) 1.12 1.00 1.00 0.94 0.78

Table 8: Performance on maze navigation tasks. The table showcases the success rate (SR) for each model
across different maze complexities. The highest success rate for each task are highlighted in bold. Note that
2-RF needs an expensive distillation training stage.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification:
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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