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ABSTRACT

Long chain-of-thought (CoT) is an essential ingredient in effective usage of modern
large language models, but our understanding of the reasoning strategies underly-
ing these capabilities remains limited. While some prior works have attempted to
categorize CoTs using predefined strategy types, such approaches are constrained
by human intuition and fail to capture the full diversity of model behaviors. In
this work, we introduce the COT ENCYCLOPEDIA, a bottom-up framework for
analyzing and steering model reasoning. Our method automatically extracts diverse
reasoning criteria from model-generated CoTs, embeds them into a semantic space,
clusters them into representative categories, and derives contrastive rubrics to inter-
pret reasoning behavior. Human evaluations show that this framework produces
more interpretable and comprehensive analyses than existing methods. Moreover,
we show that this understanding translates into measurable improvements on both
problem-solving and safety benchmarks. We can predict which strategy a model
is likely to use and guide it toward more effective alternatives. Finally, we show
that training data format (e.g., free-form vs. multiple-choice) impacts reasoning
far more than data domain, highlighting the importance of format-aware model
design. In short, the COT ENCYCLOPEDIA turns reasoning from a black box into a
controllable asset, enabling LLMs that think more clearly, perform more reliably,
and act more safely.

1 INTRODUCTION

Chain-of-thought (CoT) prompting (Wei et al., 2022) is an effective inference-time method for elicit-
ing reasoning in large language models (LLMs) by generating intermediate reasoning steps before
producing a final answer. While CoT reasoning has led to impressive performance gains—especially
when extended to long chains involving multiple reasoning strategies (Guo et al., 2025; Jaech et al.,
2024; Muennighoff et al., 2025; Yeo et al., 2025)—our understanding of the specific strategies that
models tend to employ remains limited. Key questions remain underexplored: What varieties of
reasoning strategies do models use? How do these strategies differ across models and tasks? Can
they be systematically controlled to improve performance? Recent work on CoT monitoring (Korbak
et al., 2025) underscores the importance of addressing these questions, showing that the transparency
of intermediate reasoning steps is not only valuable for performance analysis but also a critical
opportunity for ensuring safety.

Prior efforts to analyze long CoT reasoning have primarily followed a top-down approach (Wen
et al., 2025; Gandhi et al., 2025; Guo et al., 2025), where researchers define a fixed set of strategy
types—such as backtracking or subgoal setting—and use language models to detect their presence
in generated outputs. While interpretable, such approaches constrain analysis to known categories.
Recent clustering-based methods (An et al., 2023; Xu et al., 2024; Fang et al., 2025) focus mainly on
short/medium CoTs, leaving longer multi-strategy traces underexplored. For a direct comparison
between our bottom-up clustering framework and existing top-down approaches, see Figure 1.

In this paper, we introduce the COT ENCYCLOPEDIA, a framework to systematically analyze and
control long CoTs that involve multiple, intertwined reasoning strategies. We do so through a
bottom-up, clustering-based framework designed to capture, interpret, and steer diverse reasoning
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Figure 1: Comparison between conventional reasoning analysis and the CoT Encyclopedia.
Traditional methods use fixed criteria to identify strategies but offer limited guidance for improving
reasoning. The COT ENCYCLOPEDIA takes a bottom-up approach, uncovering diverse, task-specific
strategies and enabling flexible analysis and actionable insights to enhance model performance.

strategies at scale. Rather than relying on predefined categories, our approach begins by prompting a
LMs to produce free-form explanations of the reasoning strategies used in its own responses. These
explanations are embedded and clustered to identify semantically similar reasoning patterns. For
each resulting cluster, we generate contrastive rubrics (e.g., Inductive vs. Deductive, Directive vs.
Non-Directive) through a second round of prompting, enabling precise characterization of reasoning
dimensions. Finally, we classify new CoT responses by identifying which strategy from each rubric
best aligns with the response. Human evaluation confirms the quality of our pipeline: annotators give
high Likert ratings (4.2–4.4) across criteria, and in pairwise comparisons the COT ENCYCLOPEDIA
is preferred over the predefined analyzer with a 86% win+tie rate.

Beyond interpretability, the COT ENCYCLOPEDIA offers three practical benefits. First, it can improve
a reasoning model’s performance by guiding it to adopt more effective strategies. We predict likely
reasoning strategies using COT ENCYCLOPEDIA, estimates their effectiveness, and guides the model
to follow the most promising one. Across five benchmarks, we observe performance improvements of
12.2–16.1% in diverse reasoning models. Second, we demonstrate how the COT ENCYCLOPEDIA can
reveal novel insights about model reasoning abilities, specifically performing controlled experiments
on how training data format fundamentally shapes reasoning strategies, and enables behavior control
through model merging. Our analysis shows that the domain of the training data (e.g., math vs.
commonsense) has little effect on reasoning patterns. In contrast, the format—multiple-choice
(MC) versus free-form (FF)—has a much larger effect. For instance, MC-trained models tend to
produce structured, concise responses that resemble breadth-first reasoning, while FF-trained models
favor longer, sequential chains with frequent verification, akin to depth-first reasoning. Finally, by
linearly interpolating weights between MC- and FF-trained models, we generate models that smoothly
transition in strategy, demonstrating controllability without fine-tuning. These findings highlight the
COT ENCYCLOPEDIA not only as a diagnostic tool, but also as a practical foundation for shaping
reasoning behaviors to suit task-specific needs.

2 RELATED WORK: ANALYZING REASONING STRATEGIES OF MODELS

Recent work has made significant progress in understanding LLM reasoning. Think patterns (Wen
et al., 2025) reveal recurring structures linked to accurate outcomes, while cognitive behavior
analysis (Gandhi et al., 2025) draws connections to human psychology. Guo et al. (2025) examine
"aha moments" of sudden insight during multi-step reasoning, and Marjanović et al. (2025) introduce
a structured <think> mechanism to enhance reasoning. Strategic example selection improves
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Figure 2: Overview of the COT ENCYCLOPEDIA. The framework builds a reasoning taxonomy
in five stages: (1) identifying criteria from CoTs, (2) embedding them, (3) clustering semantically
similar ones, (4) generating contrastive rubrics, and (5) classifying responses to produce interpretable
reports.

in-context learning (Didolkar et al., 2024), and targeted data generation addresses specific reasoning
failures (Zeng et al., 2025). Chen et al. (2024) propose a reasoning boundary framework to quantify
and optimize the capacity of CoT reasoning in LLMs, focusing on systematic analysis and broad
improvements. Complementary to this, our work emphasizes fine-grained, data-driven decomposition
that enables the identification and control of diverse, interpretable thinking patterns. In parallel, Zhou
et al. (2025) introduce a visualization tool for inspecting reasoning paths and diagnosing failures,
providing valuable qualitative insights without direct mechanisms for behavioral control. Korbak
et al. (2025) analyze the necessity and fragility of CoT monitoring, highlighting its potential as a
safety mechanism but also its vulnerability to training choices and architectural shifts. Our work
differs by moving from the question of whether CoTs can be monitored to providing methods for
decomposing and controlling reasoning patterns.

3 THE COT ENCYCLOPEDIA

3.1 A FRAMEWORK FOR TAXONOMIZING REASONING STRATEGIES

LMs utilizing LongCoT enable test-time scaling, effectively addressing complex reasoning problems
across diverse domains. Nevertheless, our understanding remains limited regarding the variety of
reasoning strategies these models employ, how these patterns vary across tasks and models, and
how such differences impact downstream performance. Prior work (Gandhi et al., 2025) offered
valuable insights by defining four reasoning behaviors—verification, backtracking, subgoal setting,
and backward chaining—but such predefined categories struggle to capture the full diversity of
emerging or model-specific strategies. To address this gap, we introduce COT ENCYCLOPEDIA, a
five-stage framework for identifying, organizing, and analyzing diverse reasoning strategies in CoT
outputs. Unlike prior top-down approaches, COT ENCYCLOPEDIA derives reasoning dimensions in a
bottom-up, data-driven manner using large language models. As shown in Figure 2, the framework
systematically extracts classification criteria, compresses them via semantic clustering, and generates
human-interpretable reports on model reasoning behaviors.

Step 1: Classification Criteria Identification. Given a dataset of CoT outputs D = {(xi, yi)}ni=1,
where xi is the natural-language problem prompt and yi is its LLM-generated chain of thought, we
extract a set of classification criteria C = {c1, . . . , cN} via LLM-assisted brainstorming. Unlike
Gandhi et al. (2025), which predefines only four cognitive behaviors and thus may miss emerging
reasoning patterns, our method discovers flexible, data-driven criteria that align closely with the full
diversity of model outputs. Each criterion cj is defined with a pair of contrastive reasoning strategies
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(sAj , s
B
j ), expressed as natural language sentences. For example:

cj = Reasoning Strategy Type ⇒
{
sAj = “Inductive Reasoning”
sBj = “Deductive Reasoning”

Step 2: Classification Criteria Embedding. Each triplet (cj , sAj , s
B
j ) is converted to a single input

string by concatenation and embedded using embedding model:

ej = E(concat(cj , s
A
j , s

B
j )) ∈ Rd.

This results in a matrix E ∈ RN×d.

Step 3: Criteria Compression via Clustering. To reduce redundancy, we apply hierarchical
agglomerative clustering (Müllner, 2011) to E using cosine distance. We obtain k clusters (k ≪ N ):

G = {G1, . . . , Gk}, Gℓ ⊆ C.

Each cluster Gℓ is represented by its medoid criterion c∗ℓ (not the centroid, to preserve interpretability),
yielding the compressed set C∗ = {c∗1, . . . , c∗k}. This set is used in all subsequent analysis steps.

Step 4: Rubric Generation. For each criterion c∗ℓ , we use LLM to generate a rubric Rℓ = (sAℓ , s
B
ℓ ),

with detailed descriptions of both strategies and guidance for binary classification. For example:

Rℓ = (“Clearly bottom-up approach ...”, “Clearly top-down approach ...”)

Step 5: Pattern Analysis Report Generation. Each response yi is classified under each rubric via
prompting LLM with a yes/no question:

zi,ℓ =

{
1 if LLM predicts alignment with sAℓ ,

0 if LLM predicts alignment with sBℓ .

This produces a binary matrix Z ∈ {0, 1}n×k, where each row summarizes the reasoning pattern of a
CoT response. We then synthesize a natural language report using LLM, which selects and composes
rubric-specific templates to describe the reasoning pattern of each response. For example:

“The response shows a bottom-up reasoning style, combining data-driven verification ...”

In summary, COT ENCYCLOPEDIA supports interpretable and reproducible reasoning analysis by
mapping raw CoT outputs to structured strategy profiles. To support the validity of each component
of our framework, we also conduct ablation studies for every step in Appendix B.5.

3.2 COT ENCYCLOPEDIA ENABLES SHARPER REASONING STRATEGY CLASSIFICATION

To evaluate the effectiveness of the COT ENCYCLOPEDIA’s classification criteria, we analyze re-
sponses from DeepSeek-R1-Distill-Qwen-32B(Guo et al., 2025), s1.1-32B(Muennighoff et al., 2025),
and QwQ-32B(Team, 2025) on GPQA-Diamond(Rein et al., 2024), MMLU-Redux(Gema et al.,
2024), and MATH-500(Lightman et al., 2023). Using COT ENCYCLOPEDIA, we extract 4,057
contrasting reasoning criteria, each representing a pair of opposing strategies. We embed these using
an embedding model and apply hierarchical clustering to group semantically similar criteria. The
resulting taxonomy defines six major dimensions—Analytical Perspective, Scope of Approach, Rea-
soning Type, Idea Development, Verification Focus, and Clarification Approach—whose definitions
are summarized in Table 5. Each model response is labeled as Pattern A or B under each criterion,
and we compute the proportion of Pattern B as Pattern B

Pattern A+Pattern B to compare trends across models.
As a baseline, we also assess the presence of four predefined cognitive behaviors—verification,
backtracking, subgoal setting, and backward chaining—within the same responses (Gandhi et al.,
2025). For both sets, we apply chi-squared tests for statistical significance and compute Cohen’s d
for effect sizes.
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Figure 3: Human Evaluation Results for CoT
Encyclopedia. Annotators judge the outputs of the
CoT Encyclopedia as appropriate and show a clear
preference for them over the predefined analyzer
baseline.

As shown in Table 8, distributions of cogni-
tive behaviors differ minimally across models
(p > 0.05, |d| ≈ 0.1), suggesting limited sen-
sitivity. In contrast, the COT ENCYCLOPEDIA
criteria reveal more substantial differences (Ta-
ble 14), with many significant p-values and ef-
fect sizes reaching up to 0.4. This indicates our
bottom-up method better captures fine-grained
reasoning differences and generalizes across
tasks and models. We conduct a human evalua-
tion to validate alignment with human judgment.
From model outputs, we sample 250 responses
and distribute them evenly across 10 annotators.
For each response, annotators provide 1–5 Lik-
ert ratings on four dimensions: (1) plausibility of
fine-grained criteria, (2) coherence of high-level
grouping, (3) quality of pre-defined analyzer
generated report, and (4) quality of COT ENCY-
CLOPEDIA generated analysis report. As shown
in Figure 3, annotators find the fine-grained cri-
teria extracted in Step 1 to be highly plausible
and the grouped criteria from Steps 2 and 3 to be
coherent. The final analysis reports generated
by our framework also receive higher appropriateness ratings than those from the predefined analyzer
baseline. In both the Likert-scale and preference evaluations, annotators are blinded to system
identity, ensuring unbiased judgments. The preference results, reported as win–tie–lose rates, show
a clear favorability toward the COT ENCYCLOPEDIA. Overall, our method yields plausible and
well-structured reasoning criteria and analysis reports that align more closely with human expecta-
tions. Implementation details are provided in Appendix A, and qualitative analyses are presented in
Appendix H.1.

3.3 COT ENCYCLOPEDIA ENABLES ADAPTIVE ANALYSIS ACROSS DIVERSE TASKS

In addition to the three benchmarks evaluating model helpfulness introduced in Subsection 3.2, we
analyze reasoning strategies in model responses for XSTest (Röttger et al., 2023) and WildGuard (Han
et al., 2024) that assess harmlessness and Arena-Hard (Li et al., 2024) that measures instruction
following capability using COT ENCYCLOPEDIA. As shown in Figure 14, different classification
criteria emerge across benchmarks. Notably, instruction following benchmarks introduce a new ‘User
Understanding’ criterion due to the need to accurately interpret user intent. Safety benchmarks feature
ethical elements absent in problem-solving benchmarks, such as ‘Safety Precedence (preventive vs.
risk-engaging)’, and ‘Content Handling (censorship vs. open discussion)’. COT ENCYCLOPEDIA’s
ability to dynamically generate the most appropriate classification criteria across different benchmarks
and models further demonstrates its utility.

4 ENHANCING MODEL HELPFULNESS AND SAFETY VIA OPTIMAL REASONING
CONTROL

Building on the findings of the previous section, an important question arises: Can we identify
optimal reasoning strategies that positively impact both model helpfulness and harmlessness?
If so, can we effectively steer models toward these patterns to enhance their overall performance
across different types of benchmarks?

4.1 EXPLORING OPTIMAL REASONING STRATEGIES FOR HELPFULNESS AND HARMLESSNESS

To analyze how reasoning strategies affect model helpfulness and harmlessness, we evaluate model
responses on GPQA-Diamond, MMLU-Redux, and MATH-500 for helpfulness, and on XSTest and
WildGuard for harmlessness. We compute P(Correct | Pattern) and P(Safe | Pattern) for contrasting
reasoning patterns across six helpfulness and seven harmlessness criteria. These values are averaged
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Figure 4: Impact of Pattern-Based Instructions on Model Performance. Results show that optimal
patterns improve performance across all benchmarks, especially for GPQA-Diamond and safety tests.
Question-specific patterns consistently outperform the single best dataset-wide pattern.

over three models to identify patterns associated with higher accuracy and safety. Importantly,
instead of relying on ground-truth answers, we adopt an LLM-as-a-judge setting to assess correctness
and safety, thereby preventing data leakage. As shown in Figures 9 and 10, certain reasoning
strategies consistently lead to better performance. This enables a clear distinction between optimal
and suboptimal reasoning patterns. Using this insight, we assess how performance changes when
models are explicitly instructed to follow desired strategies. To isolate the effect of strategy control,
we focus on responses that were initially incorrect or unsafe. We compare four settings: (1) no
instruction, (2) instruction with unoptimal patterns, (3) instruction with randomly selected patterns,
and (4) instruction with optimal patterns (optimal-dataset).

Figure 4 shows that guiding models with optimal strategies improves both accuracy and safety across
all benchmarks. For example, GPQA-Diamond accuracy increases from 61.5% to 70.1%, while
XSTest and WildGuard safety scores improve from 82.3% to 94.0% and from 79.1% to 89.9%,
respectively. For analysis focused solely on newly corrected responses, see Figure 11. Overall, these
findings confirm that optimal reasoning strategies exist and can be leveraged to enhance downstream
performance. Further breakdowns on safety benchmarks (Figure 12) reveal that patterns encouraging
‘malicious’ intent or prioritizing ‘technical’ over ‘moral’ reasoning sharply reduce safety, indicating
jailbreaking behavior. This underscores the need for more nuanced safety evaluations. While current
approaches often rely on binary labels (safe vs. unsafe), our results highlight the value of fine-grained
analyses, such as those enabled by the COT ENCYCLOPEDIA, for improving content moderation and
response quality.

4.2 SIMILAR INPUTS, SIMILAR THOUGHTS: HOW MODELS APPROACH RELATED PROBLEMS

We have shown that each dataset typically has a generally optimal reasoning strategy, indicating
opportunities to enhance model performance. However, even within a single dataset, different
questions may require distinct optimal reasoning strategies. A natural question arises: can we
predict the optimal reasoning strategy for each individual question? To explore this, we analyze
the relationship between questions and their optimal reasoning strategies. Specifically, we perform
regression analysis using similarities measured in the embedding space between questions and
between their corresponding optimal reasoning strategies. Our analysis utilizes correct responses
generated by three models across five benchmarks, previously discussed in Section 4.1. Figure 5
illustrates that higher similarity between questions corresponds to greater similarity between their
reasoning strategies, suggesting that models adopt similar strategies for similar problems. Conversely,
lower question similarity is associated with higher variance in reasoning strategies, indicating that
models employ diverse strategies for dissimilar problems. These findings suggest the potential to
predict effective reasoning strategies for unseen questions based on the strategies used in similar,
previously encountered questions.

4.3 PREDICTING QUESTION-SPECIFIC OPTIMAL REASONING STRATEGIES

Building on prior insights, we explore whether optimal reasoning strategies can be predicted and
used to guide models toward more helpful and harmless behavior. We train binary classifiers for
each criterion using three problem-solving benchmarks and two safety benchmarks. For training,
we use questions initially answered correctly to derive optimal strategies, while questions initially
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Figure 5: Analysis of relationships between question similarity and reasoning strategy similarity
across multiple benchmarks. Relationship between question similarity and reasoning strategy
similarity. (a) Scatter plot showing positive correlation between question similarity and pattern
similarity. (b) Variance analysis showing that pattern similarity becomes more consistent as question
similarity increases.

answered incorrectly are used for testing. We consider two settings: in-domain (trained and tested
on the same benchmark) and cross-domain (trained on two benchmarks and tested on a third). Each
classifier predicts optimal strategies for the incorrect samples, which are then used to prompt the
model, as described in Section 4.1. As shown in Figure 4, this controlled prompting substantially
improves performance—achieving accuracy gains of 72.0%, 81.3%, and 87.7% on problem-solving
tasks, and safety gains of 95.5% and 92.4% on safety tasks. These results show that models can
be effectively guided toward optimal strategies, even on unseen questions. Unlike conventional
approaches that generate long reasoning traces without direction, our method identifies and corrects
reasoning weaknesses through targeted control, offering a key advantage of the COT ENCYCLOPEDIA.
For additional extended analyses and experiments, please refer to Appendix B.

5 ANALYZING PATHWAYS TO REASONING STRATEGIES: DATA SELECTION
AND INTERPOLATION

We have primarily analyzed reasoning strategies based on responses from trained models. This raises
an important question: why do models produce specific types of reasoning strategies after training is
completed? In this section, we investigate this question by directly RL training reasoning models on
datasets with different formats and domains, then analyzing the emerging reasoning strategies.

5.1 FORMAT MATTERS MORE THAN DOMAIN IN SHAPING REASONING STRATEGIES

To examine how training data characteristics influence reasoning strategies, we compare the effects of
data format and domain using Reinforcement Learning with Verifiable Rewards (RLVR). For format
analysis, we compare (1) multiple-choice inputs, where questions are paired with predefined options,
and (2) free-form inputs, where models generate answers without guidance. Using the NuminaMath
dataset (LI et al., 2024), originally in free-form, we synthetically generate multiple-choice versions to
control for content while isolating presentation format. For domain analysis, we contrast math-domain
datasets (e.g., NuminaMath) with knowledge-domain datasets such as OpenBookQA, QASC, SciQ,
CommonsenseQA, and ARC-Challenge (Mihaylov et al., 2018; Khot et al., 2020; Welbl et al., 2017;
Talmor et al., 2019; Clark et al., 2018). To ensure fair comparison, we control for format by using
consistent structures across domains. We train 7B Deepseek-R1-Distill models. This setup allows
us to isolate the individual effects of format and domain while holding other variables constant. To
quantify their relative influence, we apply the statistical tests from Section 3, computing Cohen’s d
values between reasoning strategy distributions. As shown in Figure 6, format variation consistently
leads to larger shifts in reasoning strategies than domain differences, indicating that format has a
greater impact than domain on shaping model reasoning.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 6: Comparison of effect sizes showing how question format and domain influence
reasoning strategies across three benchmarks. Format differences (purple bars) consistently
demonstrate substantially larger effects on reasoning strategies than domain differences (green bars)
across all six reasoning criteria.
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Figure 7: Qualitative and quantitative comparison between models trained on Multiple-choice
(MC) and Free-form (FF) data formats. MC-trained models generate more structured and concise
responses, while FF-trained models are more verbose and repetitive.

5.2 IMPACT OF TRAINING DATA FORMAT ON MODEL REASONING BEHAVIOR

We analyze model responses trained on Multiple-choice (MC) and Free-form (FF) data using the
Arena-Hard benchmark. As shown in Figure 7, the two models display distinct reasoning styles:
MC-trained models produce concise, structured answers, while FF-trained models are more verbose
and often repeat filler words like ‘wait.’ Table H.2 further reveals that MC-trained models explore
multiple solution paths early on—similar to breadth-first search—whereas FF-trained models follow
a single path with iterative verification, resembling depth-first search. These differences arise from
the presence or absence of answer cues during training: MC data encourages evaluating options
before responding, while FF data requires open-ended exploration, often with greater uncertainty
and verification. Quantitatively, FF-trained models generate more verbose responses and over 4.6
times as many ‘wait’ tokens per answer (8.76 vs. 1.89). Rather than favoring one format, our findings
underscore that training format significantly shapes reasoning behavior, and should be selected based
on task-specific needs.
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Figure 8: Interpolation of reasoning strategies through model merging. Reasoning strategy
dynamics as models are merged from Multiple-Choice (MC) to Free-Form (FF) training formats
across three benchmarks.

5.3 INTERPOLATING DESIRED REASONING STRATEGIES THROUGH MODEL MERGING

Given that models trained on different formats exhibit distinct reasoning strategies, we test whether
intermediate patterns emerge via linear interpolation between multiple-choice and free-form models.
As shown in Figure 8, reasoning strategies shift smoothly with the merging ratio, though the dynamics
vary by benchmark: GPQA-Diamond changes moderately, MMLU-Redux shows crossover points
around 50%, and MATH-500 displays the sharpest transitions (e.g., the Bottom-Up perspective drops
from 85% to 15%). These variations highlight that some reasoning criteria are more sensitive to
format changes than others, reflecting benchmark-specific demands. Overall, weight interpolation
enables controlled blending of reasoning strategies without extra training, offering a simple yet
effective way to tailor models for task-specific needs.

6 EXTENDED ANALYSES AND ABLATIONS IN APPENDIX

Due to space constraints, we present additional experiments, analyses, and ablation studies in the
Appendix and provide explicit references for the reader’s convenience. Criteria are shaped more by
tasks than models, producing benchmark-specific dimensions (B.1), and remain stable under different
embedding choices (B.2). Models from the same family show consistent strategies across sizes (B.3),
and the framework generalizes to other models (B.4). Ablations validate the contribution of each step
in the COT ENCYCLOPEDIA, with additional analyses showing robustness to embedding models and
human evaluation confirming rubric and report quality (B.5). Further tests show robustness across
random seeds (B.6), across diverse model families and scales (B.7), and demonstrate applications for
curating improved reasoning datasets (B.8). Finally, while direct prompting is less effective for small
models, combining it with dataset curation yields clear gains (B.9).

7 CONCLUSION

We introduced the COT ENCYCLOPEDIA, a flexible, automated framework for analyzing reasoning
strategies in LongCoT language models. Unlike rigid, predefined taxonomies, our bottom-up cluster-
ing approach identifies reasoning strategies directly from model outputs, creating a comprehensive
taxonomy validated through human evaluation. Our empirical results revealed four key insights:
(1) optimal reasoning strategies significantly enhance task performance on both helpfulness and
safety benchmarks; (2) these patterns can be predicted from input questions alone, enabling real-time
adaptive reasoning control; (3) training data format influences reasoning strategies more substantially
than domain; and (4) desired reasoning behaviors can be interpolated through model weight merging
without additional training. The COT ENCYCLOPEDIA advances our understanding of reasoning
models and provides practical tools for steering them toward safer, more effective strategies. By
identifying which reasoning strategies yield optimal performance for specific problems and what
training data cultivates these patterns, this work supports responsible deployment of language models
in applications where performance, safety, and predictability are paramount.
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A IMPLEMENTATION DETAILS

A.1 COT ENCYCLOPEDIA DETAILS

We use the OpenAI GPT-4o1 to conduct reasoning strategy Identification. And we also use OpenAI
text-embedding-3-large2 to embed the criteria. In this study, we create reasoning strategies
using the test sets from GPQA-Diamond, MMLU-Redux, and MATH-500 datasets. However, the
COT ENCYCLOPEDIA is not limited to specific data and can be applied to any dataset. The reasoning
strategy Identification process yields 4,057 fine-grained analysis criteria. To automatically select the
essential criteria from these redundant ones, we employ agglomerative hierarchical clustering. In this
process, we do not specify a distance threshold for cluster merging but instead form an appropriate
number of k clusters based on silhouette scores. In our study, six clusters emerge. We establish the
criteria corresponding to the embedding at the medoid of these clusters as the key high-level criteria.
Next, to evaluate responses using these criteria, we develop rubrics to determine which responses
belong to contrasting patterns A and B, using the OpenAI GPT-4o API. Finally, we conclude by
creating a CoT pattern report that evaluates the CoT patterns present in the responses based on the
generated rubrics.

A.2 STATISTICAL TEST DETAILS

We conduct statistical tests to measure the similarity between two reasoning strategy distributions.
We perform Chi-squared tests, where the null hypothesis (H0) states that there is no difference
between the two distributions, and we set the p-value at the conventional threshold of 0.05. This
means that if the p-value is lower than 0.05, we reject H0 and accept the alternative hypothesis
(Ha), concluding that there is a statistically significant difference between the two distributions.
Conversely, if the p-value is greater than 0.05, we fail to reject H0, indicating that there is no
statistical difference between the two distributions. We employ Chi-squared tests rather than other
statistical tests because the pattern classification is categorical. Additionally, to measure the similarity
between the two distributions more quantitatively, we calculate Cohen’s d value, where an absolute
value of approximately 0.2 is generally considered a small effect size, approximately 0.5 a medium
effect size, and 0.8 or greater a large effect size.

A.3 HUMAN EVALUATION DETAILS

To verify whether the COT ENCYCLOPEDIA framework is perceived as reasonable by people, we
conduct a human evaluation. This evaluation is particularly necessary because COT ENCYCLOPEDIA
utilizes synthetic outputs generated by an LLM at each step, requiring validation of their reliability.
We select four evaluators, and each assessment consists of four binary questions: (1) Are the
automatically generated, detailed criteria plausible? (2) Do the resulting high-level criteria sensibly
summarize the fine-grained set? (3) Is the response analysis, when expressed in the criteria, relevant
and reasonable? (same question for both pre-defined analyzer and CoT Encyclopedia) We use Argilla3

as our human evaluation platform. For the human evaluation, we collect 250 model responses and
distribute them evenly among 10 annotators. Each annotator evaluates their assigned responses
independently. Instead of binary yes/no judgments, annotators now provide 1–5 Likert-scale ratings.

The final Likert scores reported in the main text are calculated by averaging the ratings across
annotators and items for each dimension. To facilitate interpretation, we also report the mean values
alongside standard deviations. In addition, we run a pairwise preference study to compare analysis
reports generated by the CoT Encyclopedia versus a predefined analyzer. For each item, annotators
are asked to select the analysis they find more informative and appropriate, or to mark a tie if both
are equally convincing. We summarize these results using a win–tie–lose rate, which reflects the
proportion of items in which the CoT Encyclopedia is preferred, tied, or loses to the baseline. All
annotation guidelines, examples, and quality-control instructions were shared with annotators prior
to the study to ensure consistency.

1https://platform.openai.com/docs/models/gpt-4o
2https://platform.openai.com/docs/models/text-embedding-3-large
3https://argilla.io/
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A.4 BENCHMARK EVALUATION DETAILS

We conduct evaluations using the MMLU-Redux knowledge benchmark, the GPQA-Diamond
reasoning benchmark, and the MATH-500 mathematics benchmark. We employ the vllm library4

with hyperparameters following established research practices: temperature of 0.6, top p of 0.95,
and max tokens of 32768. All evaluations are performed on the test sets of each dataset. MMLU-
Redux and GPQA-Diamond are multiple-choice question answering datasets, while MATH-500
is an open-ended generation dataset. However, since our evaluation targets reasoning models that
generate LongCoT, we implement generation-based evaluation rather than logit-based evaluation
even for the multiple-choice datasets. To determine whether the model’s predictions match the actual
answers, we parse the predicted values from the generated LongCoT and use the Math-Verify library5

to verify their correctness. Ultimately, we measure accuracy between the correct answers and the
predicted values. To measure safety, we utilize the LLaMA-Guard-3 8B model for our evaluation.
When provided with a question and model response, this model outputs either ‘safe’ or ‘unsafe’ as its
assessment. We then calculate the proportion of responses classified as ‘safe’ and use this ratio as our
metric.

A.5 TRAINING DETAILS

We utilize the GRPO algorithm (Guo et al., 2025) during the training process with Reinforcement
Learning with Verifiable Reward (RLVR). The objective function of GRPO is defined as follows:

JGRPO(θ) = Eq∼P (Q),{oi}Gi=1∼πθold
(O|q)

{
1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

min

[
πθ(oi,t | q, oi,<t)

πθold(oi,t | q, oi,<t)
Âi,t,

clip
(

πθ(oi,t | q, oi,<t)

πθold(oi,t | q, oi,<t)
, 1− ε, 1 + ε

)
Âi,t

]
− βDKL [πθ∥πref ]

} (1)

where ε and β are hyperparameters, Âi,t is the advantage calculated based on relative rewards within
each sampled group, and DKL[πθ||πref ] is the KL divergence used as a regularization term to
stabilize the training process. GRPO optimizes the policy model by comparing multiple outputs
generated for the same input, avoiding the need for a separate value function approximation and
thereby reducing computational overhead. To estimate the KL divergence between the current policy
πθ and a reference policy πref , we use the following unbiased estimator (Schulman, 2020).

This form ensures positivity and avoids numerical instability. Unlike traditional KL penalties, this
estimator is well-suited for token-level comparisons in sequence modeling:

DKL [πθ∥πref ] =
πref (oi,t | q, oi,<t)

πθ(oi,t | q, oi,<t)
− log

πref (oi,t | q, oi,<t)

πθ(oi,t | q, oi,<t)
− 1, (2)

We use diverse datasets for training: NuminaMath, a free-form math dataset, which we also convert
into a 5-choice question answering format by synthetically generating four options using GPT-4o API;
and multiple-choice knowledge and common sense datasets including SciQ, QASC, OpenbookQA,
CommonsenseQA, ARC-Challenge, and MCQA 68k dataset6. To control for format variables,
we train on NuminaMath in both free-form and multiple-choice formats within the same math
domain. Conversely, to examine domain differences, we maintain a consistent multiple-choice
format while varying between mathematical content (NuminaMath converted to 5-choice format) and
knowledge/common sense datasets. All training datasets contain 100k examples.

We standardize on multiple-choice format when studying domain differences because our RL approach
uses verifiable rewards. Unlike math or coding domains where predictions can be directly compared
to gold answers, knowledge and common sense domains often allow for varied but equally correct
responses that don’t exactly match the gold standard. Inspired by previous research, we adopt
multiple-choice format as it ensures verifiability across all domains—any response matching the

4https://github.com/vllm-project/vllm
5https://github.com/huggingface/Math-Verify
6https://huggingface.co/datasets/berquetR/mcqa_dataset
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correct option can be definitively scored as correct. This approach enables us to apply verifiable
rewards even to domains that are traditionally difficult to evaluate deterministically.

When training the 7B model with the GRPO algorithm, we utilize the Open-R1 library7. For the
reward function, we exclusively implement an accuracy reward function that assigns a reward of 1
when the model’s prediction matches the gold answer and 0 otherwise. We decide not to use the
format reward function employed in training Deepseek-R1 because it can lead to a form of reward
hacking—where the model receives rewards for following the correct format even when producing
incorrect answers, resulting in maintained formatting without improved accuracy. To prioritize
correctness, we therefore rely solely on the accuracy reward function. For hyperparameters, we set
max completion length at 2048, number of generations at 3, batch size at 72, torch dtype at bfloat16,
and attention implementation at flash attention 2. We use a learning rate of 2.0e05, number of train
epochs of 1, and warmup ratio of 0.1.

A.6 COMPUTING RESOURCES

For RLVR training of our 7B model, we use eight NVIDIA H100 80GB GPUs, requiring 576 GPU
hours to train on 100,000 data samples. For inference, we employ sixteen NVIDIA A100 40GB
GPUs, consuming 384 GPU hours to process 3,698 data samples. Additionally, we use an AMD
EPYC 7763 64-Core Processor for the CPU, which features 64 cores, a CPU speed of 1497.674 MHz,
and a cache size of 512KB.

B FURTHER ANALYSES AND ABLATIONS

B.1 FINE-GRAINED BENCHMARK-SPECIFIC CRITERIA ANALYSIS

To conduct a more detailed analysis, we performed hierarchical clustering on the complete responses
from GPQA-Diamond, MMLU-Redux, and MATH-500 benchmarks to establish six criteria. For a
more fine-grained examination, we conducted hierarchical clustering separately for responses from
each benchmark, using the default setting of selecting each cluster’s medoid as the representative
embedding. In addition to the three original benchmarks, we analyzed responses from the Arena-Hard
Benchmark, which focuses on instruction following. As illustrated in Figure 14, we observed that
while the criteria derived from the original three benchmarks were relatively similar to each other,
the Arena-Hard benchmark yielded notably different criteria. This finding confirms that different
benchmarks employ varied standards for pattern analysis. Particularly noteworthy is the ‘User
understanding’ criterion. While the original benchmarks primarily focus on solving specific problems
correctly, instruction following benchmarks emphasize accurately interpreting user intent. This
emphasis is reflected in the classification criteria, highlighting the different evaluation priorities
across benchmark types.

B.2 ABLATION STUDY ON REPRESENTATIVE EMBEDDING SELECTION

When extracting representative embeddings for each cluster formed through hierarchical clustering,
we primarily use medoid embeddings as representative embeddings. We explore how results differ
when using alternative selection criteria. Beyond the default medoid setting, we test embeddings
from patterns with the highest frequency, patterns from areas with the highest density, and patterns
from areas with the highest silhouette scores. As shown in Figure 15, most selection criteria do
not demonstrate significant differences compared to selecting the default medoid setting. In the
default setting’s ‘clarification approach,’ the only differences appear between the silhouette-based and
density-based approaches, which use ‘computation style’ and ‘clarity on steps’ respectively, while all
other aspects remain identical.

B.3 CONSISTENCY OF REASONING STRATEGIES ACROSS MODEL SIZES WITHIN THE SAME
FAMILY

Do models from the same family exhibit similar reasoning strategies despite having different sizes?
To investigate this question, we compare the reasoning strategies of three models from the same

7https://github.com/huggingface/open-r1

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

family but with different sizes: Distill-R1 1.5B, 7B, and 32B. We classify the responses generated by
each model on the GPQA-Diamond, MMLU-Redux, and MATH-500 benchmarks according to six
criteria. As shown in Figure 16, the three models demonstrate remarkably similar distributions of
reasoning strategies despite their different sizes. Additionally, as illustrated in Figure 17, the pairwise
Cohen’s d measurements between the three models reveal that most absolute values are below 0.1,
indicating very minor distributional differences. These findings confirm that models from the same
family maintain largely consistent reasoning strategies regardless of their size.

Figure 9: Conditional Probabilities Analysis on problem-solving Benchmarks. The bars represent
different reasoning strategies categorized by Analytical Perspective (blue), Scope of Approach
(yellow), Reasoning Type (green), Idea Development (orange), Verification Focus (purple), and
Clarification Approach (red). Patterns such as ‘broad’, ‘top_down’, and ‘immediate’ consistently
show higher probabilities of correct responses across benchmarks.

Figure 10: Conditional Probabilities Analysis on Safety Benchmarks. The bars represent different
reasoning strategies categorized by Guidance Strategy (blue), Ethical Consideration (yellow), Safety
Precedence (green), Idea Development (orange), Content Handling (purple), Risk Assessment (red),
and Content Intent (gray). Patterns such as ‘Moral Evaluation’, ‘Benevolent’, ‘Preventive’, and
’‘on-Directive’ consistently show higher probabilities of safe responses across both benchmarks.

B.4 EXTENDING REASONING STRATEGY ANALYSIS TO NON-REASONING MODELS

In this study, we extend our reasoning strategy analysis using the COT ENCYCLOPEDIA beyond
the primary reasoning models discussed in the main text (S1.1-32B, QwQ-32B, Distill-R1-32B) to
include non-reasoning models such as Qwen-2.5-Instruct-32B and Qwen-2.5-Math-Instruct-32B.
We conduct this analysis across five benchmarks: GPQA-Diamond, MMLU-Redux, MATH-500,
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Figure 11: Impact of pattern-based instructions on model performance across five benchmarks.
For all benchmarks, instructing models to follow question-specific optimal reasoning strategies yields
the highest performance (17.5-68.5%), followed by dataset-wide optimal patterns (14.3-64.2%),
random patterns (12.5-46.8%), while unoptimal patterns (11.5-37.8%) sometimes perform worse
than not providing instructions at all (10.1-46.7%). The impact is particularly pronounced for safety
benchmarks (XSTest and Wild guard), where optimal instructions more than double the safe response
ratio compared to unoptimal instructions. These results demonstrate that tailoring reasoning strategies
to individual questions outperforms even the best dataset-wide pattern, significantly improving both
accuracy and safety outcomes.

Figure 12: Fine-grained safety response ratio analysis across XSTest and WildGuard bench-
marks. The bars represent the percentage of safe responses when different reasoning strategies are
employed. ‘Benevolent’ reasoning achieves the highest safety scores (84.0% in XSTest, 81.0% in
WildGuard), while ‘Malicious’ and ‘Risk engaging’ patterns show the lowest safety performance.
Patterns like ‘Preventive’, ‘Moral’, and ‘Non-directive’ also demonstrate relatively high safety re-
sponse ratios across both benchmarks.

XSTest, and WildGuard. As shown in Table 17 and 18, the criteria generated for the non-reasoning
models closely resemble those generated for the reasoning models. However, we observe clear
distinctions between the criteria for problem-solving benchmarks and safety benchmarks, reflecting
the specific characteristics of each benchmark—similar to what we observed with reasoning models.
This suggests that the criteria are more significantly influenced by the target benchmark rather than by
the model’s output. Additionally, through chi-squared tests and Cohen’s d values, we confirm that the
pattern distributions of Qwen-2.5-Instruct-32B and Qwen-2.5-Math-Instruct-32B differ significantly
from each other. These findings demonstrate the versatility of the COT ENCYCLOPEDIA as an
analytical tool that can be effectively applied to non-reasoning models as well.
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Figure 13: Performance comparison of different methods for predicting optimal reasoning
strategies across five benchmarks. Trained classifiers (both in-domain and cross-domain) signifi-
cantly outperform prompting-based methods across all benchmarks. In-domain classifiers achieve
the highest performance (70.3-84.3%), followed closely by cross-domain classifiers (66.2-80.1%),
while zero-shot and few-shot prompting perform only slightly above random chance (50%). The
performance trend is consistent for both accuracy-based benchmarks (GPQA-Diamond, MMLU-
Redux, MATH-500) and safety-focused benchmarks (XSTest, WildGuard) where safe response ratio
is measured.

B.5 ABLATION STUDIES FOR COT ENCYCLOPEDIA

To further support the effectiveness of our framework, we conducted a series of ablation studies to
examine the feasibility and necessity of each step, as well as the quality of intermediate outputs.
These analyses demonstrate that each component of the COT ENCYCLOPEDIA is critical for ensuring
robust and interpretable reasoning patterns.

Step 1: Diversity of Criteria Generation We first evaluated the diversity of classification criteria
generated in Step 1. On MMLU-Redux, after removing duplicates, 99.7% of the criteria were unique.
The average pairwise ROUGE-L score between criteria was 0.23, which aligns with or surpasses
benchmarks for dataset diversity reported in prior works. This indicates that Step 1 reliably produces
a rich and varied set of candidate criteria.

Steps 2 & 3: Necessity and Effectiveness of Clustering Although Step 1 yields diverse criteria,
qualitative analysis revealed considerable semantic overlap, with many criteria sharing similar n-grams
or meanings due to the independent generation process of LLMs. For instance, on GPQA-Diamond,
only 43% of Step 1 criteria had fully unique bigrams. Using raw criteria would inflate computational
cost and reduce interpretability by generating excessively long reports.

To test alternatives, we compared clustering-based reduction to an LLM-based reduction method.
When prompted to manually reduce criteria for GPQA-Diamond, the LLM frequently produced
redundant criteria with an average ROUGE-L overlap of 0.33–0.37 across runs, compared to 0.23 for
our clustering-based method. Moreover, the LLM-based approach was highly sensitive to prompt
design, incurred higher inference cost, and struggled with long-context inputs. These findings confirm
that clustering is necessary to reduce redundancy and improve robustness.

Steps 2 & 3: Robustness to Embedding Models We further tested whether results depend on
the choice of embedding model. In addition to OpenAI’s text-embedding-large, we experi-
mented with e5-mistral-7b-instruct and Qwen3-Embedding-8B. All models produced
highly similar sets of criteria at a high level, with differences largely limited to phrasing. For exam-
ple, e5-mistral-7b-instruct generated dimensions such as “Macro-first vs Micro-first” or
“Induction-Focused vs Deduction-Focused,” while Qwen3-Embedding-8B produced counterparts
like “Overview-Oriented vs Detail-Oriented” or “Pattern-Generalizing vs Rule-Applying.” This
suggests that our clustering method is robust to the choice of embedding model.

Steps 4 & 5: Human Evaluation of Rubric and Pattern Reports Finally, we conducted a human
evaluation with five independent graduate students unfamiliar with our work. Evaluators assessed
the usefulness of Step 4 (rubric-based evaluation) and Step 5 (pattern analysis reports) along three
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dimensions: (1) appropriateness of the rubric for evaluating model responses, (2) helpfulness of the
report for understanding reasoning patterns, and (3) usefulness of the report for improving model
responses. Ratings were given on a 1–5 scale (1 = not useful, 5 = very useful). The average scores
were: Q1: 4.3, Q2: 4.1, Q3: 4.5. These results indicate that human evaluators found both the rubric
and the pattern analysis report generated by CoT Encyclopedia to be highly useful. Additionally, for
Q2, we asked evaluators to rate a report generated without the rubric. This baseline scored 3.4/5,
confirming that the rubric-driven approach in Step 4 provides a significant benefit.

Steps 5: Multi-Evaluator System for Bias Mitigation To address potential evaluator bias inherent
in single-model evaluation, we implement a comprehensive multi-evaluator framework. We employ
four state-of-the-art LLMs as independent evaluators: GPT-4o, Claude-4-Sonnet, Gemini-2.5-Pro,
and Qwen-2.5-72B-Instruct. Each evaluator independently classifies reasoning patterns using identi-
cal rubrics, allowing us to compute inter-evaluator reliability using Krippendorff’s α. Inter-Evaluator
Agreement Results: Across 1,500 reasoning responses, we achieve α = 0.73 for pattern classification,
indicating substantial agreement beyond chance. Notably, systematic disagreements cluster around
specific pattern boundaries (e.g., "Top-down vs. Bottom-up" shows lower agreement at α = 0.68),
revealing inherent ambiguity in certain reasoning distinctions that our framework now explicitly
acknowledges. Bias Correction Mechanism: We detect systematic biases where Claude-3.5 shows
12% higher preference for "hypothesis-driven" patterns compared to other evaluators. We imple-
ment a bias correction algorithm using inverse propensity weighting to adjust for evaluator-specific
tendencies, improving overall classification accuracy by 8.3%.

Overall, these findings validate the effectiveness of all steps in delivering interpretable and actionable
insights.

B.6 ROBUSTNESS ACROSS RANDOM SEEDS

To verify that our improvements are not artifacts of random initialization, we conducted inference
runs with five different random seeds on all benchmarks. Table 1 reports the mean accuracy and
standard deviation for each strategy. Across datasets, we observe that the optimal-question strategy
consistently achieves the highest mean performance, while also maintaining stability across seeds.
Other instruction settings yield moderate gains, but often with larger variance or even performance
drops (e.g., on XSTest and WildGuard under unoptimal instructions). These results confirm that our
findings are robust with respect to random seed selection, further strengthening the validity of the
proposed framework.

B.7 ROBUSTNESS ACROSS MODELS AND SIZES

We further evaluated the effectiveness of our method across a diverse set of model families and
parameter scales, including Deepseek-R1 (671B), LLaMA-4-Maverick (400B), Gemma-3 (27B),
and KIMI-K2 Instruct (1T). As shown in Table 2, prompting with the optimal reasoning pattern
consistently improved performance over the baseline of using only the question. These gains hold
across both MATH-500 and GPQA-Diamond, ranging from modest improvements in smaller models
(e.g., +1.2 on Gemma-3 for MATH-500) to more substantial gains in larger models (e.g., +2.0 on
KIMI-K2 Instruct for MATH-500). Together, these results highlight the generality of our approach,
demonstrating that reasoning pattern control provides benefits regardless of model architecture or
scale.

B.8 APPLICATION OF THE FRAMEWORK FOR CURATING IMPROVED REASONING DATASETS

We directly addressed this point by using our framework to curate an improved reasoning dataset.
Specifically, we used our question-specific reasoning pattern classifier to prompt teacher models to
generate responses that reflect the optimal reasoning pattern for each question. We then collected
these responses to create a new dataset, CoT-Encyclopedia-10K. To fairly evaluate its effectiveness,
we compared our dataset against OpenThinkPatterns-10k, constructed following the recipe and
prompts of ThinkPatterns-21k using OpenThoughts questions, since the original ThinkPatterns-21k
dataset is not publicly available. Both datasets were used to train Distill-R1-Qwen-1.5B and evaluated
on GPQA-Diamond and MATH500. As shown in Table 3, across all benchmarks, models trained
on CoT-Encyclopedia-10K consistently outperformed baseline. We attribute this to the fact that
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Table 1: Random-seed robust performance across five benchmarks. We report mean accuracy and
standard deviation over five different random seeds. The optimal thinking pattern strategy consistently
yields the highest performance.

Strategy GPQA-Diamond MMLU-Redux MATH-500 XSTest WildGuard
Mean Std Mean Std Mean Std Mean Std Mean Std

Not instructed 72.9 1.4 90.3 1.1 78.3 1.1 91.3 1.1 89.2 1.2
Instructed (unoptimal) 75.1 0.4 89.1 0.8 78.5 1.5 87.2 1.6 86.1 1.4
Instructed (random) 77.8 0.3 90.4 1.4 79.5 0.7 91.4 1.3 90.8 0.7
Instructed (optimal-dataset) 80.6 1.3 92.8 0.9 80.6 0.5 93.8 1.4 92.9 0.7
Instructed (optimal-question) 82.4 1.2 93.7 0.7 81.5 0.5 96.2 1.2 95.7 0.8

Table 2: Performance across diverse model architectures and sizes on MATH-500 and GPQA-
Diamond. In all cases, prompting with the optimal reasoning pattern outperforms the baseline of
using only the question.

Model MATH-500 GPQA-Diamond
Only Question Optimal Pattern Only Question Optimal Pattern

Deepseek-R1 (671B) 92.3 94.1 85.0 86.9
LLaMA-4-Maverick (400B) 90.2 92.3 81.7 83.2
Gemma-3 (27B) 86.5 87.7 72.6 74.8
KIMI-K2 Instruct (1T) 95.7 97.7 87.2 88.8

ThinkPatterns-21k use a fixed set of predefined patterns for all questions, making it difficult to match
the optimal reasoning process for diverse queries. In contrast, our framework enables dynamic,
question-specific reasoning pattern selection, resulting in better adaptability and performance.

B.9 PERFORMANCE OF REASONING PATTERN PROMPTING ON SMALLER MODELS

While reasoning pattern prompting yields consistent improvements on larger, instruction-tuned
models (e.g., 32B+ LLMs, GPT-4o, Claude-Sonnet), its effect on smaller or base models is limited.
As shown in Table 4, direct prompting with reasoning patterns does not improve performance for
a distilled 1.5B model (Deepseek-R1-Distill-Qwen-1.5B), and can even slightly reduce accuracy
compared to the baseline.

To address this limitation, we adopted a data-centric approach inspired by ThinkPatterns-21k (Wen
et al., 2025), constructing a curated dataset of 10k optimal reasoning pattern responses (CoT-
Encyclopedia-10k) from OpenThought. After supervised fine-tuning (SFT) on this dataset, the
small model demonstrated substantial gains, achieving improvements of +3.8 on MATH-500 and
+5.5 on GPQA-Diamond. These results suggest that data-centric strategies are essential for enabling
smaller models to benefit from reasoning pattern control.

C BROADER IMPACT

This work has several broader implications for the development and deployment of large language
models. First, our analysis highlights the importance of reasoning controllability—the ability to
steer a model’s problem-solving strategy. This capability may play a critical role in building more
interpretable, debuggable, and safety-aligned systems, especially in high-stakes applications such
as education, healthcare, and scientific discovery. Second, our taxonomy can inform curriculum
design for training reasoning-oriented models, enabling researchers to curate data that promotes
specific cognitive patterns. Moreover, the ability to predict and guide reasoning behavior opens up
opportunities for interactive systems that provide explanations or tutoring based on user input and
model inference strategies. Finally, the emphasis on format as a driver of reasoning diversity suggests
that future benchmark and dataset development efforts should consider structural diversity—not just
domain coverage—as a factor for improving generalization and reasoning robustness.
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Table 3: Performance on MATH-500 and GPQA-Diamond with different prompting strategies. Using
structured reasoning patterns consistently improves performance compared to no prompting.

Prompting Strategy MATH-500 GPQA-Diamond
Accuracy ∆ vs. No Prompt Accuracy ∆ vs. No Prompt

No Prompt 83.9 – 33.8 –
OpenThinkPatterns 85.2 +1.3 36.7 +2.9
CoT-Encyclopedia 87.7 +3.8 39.3 +5.5

Table 4: Performance of reasoning pattern prompting and supervised fine-tuning (SFT) on a small
model (Deepseek-R1-Distill-Qwen-1.5B). Prompting alone shows little or no improvement, while
SFT on the CoT-Encyclopedia-10k dataset yields significant gains.

Strategy MATH-500 GPQA-Diamond
Score ∆ Score ∆

Only question 83.9 – 33.8 –
CoT-Encyclopedia prompting 80.2 -3.7 32.9 -0.9
CoT-Encyclopedia SFT (10k) 87.7 +3.8 39.3 +5.5

D LIMITATIONS

While our findings are promising, several limitations warrant discussion. First, our reasoning strategy
classification relies on GPT-4o outputs as an evaluator, which may reflect biases or constraints of the
model itself. Although this choice enables scalability, it may not fully represent human judgment of
reasoning quality. Second, our experimental setup is limited to three benchmarks and three model
families. While these cover diverse reasoning domains, extending our analysis to a broader range
of tasks (e.g., scientific reasoning, code generation, multi-modal tasks) and models (e.g., smaller
or multilingual LMs) is essential for confirming the generality of our conclusions. Third, while we
observe consistent performance improvements through pattern-guided prompting, such improvements
are contingent upon a model’s ability to reliably follow stylistic instructions. This requirement may
limit applicability to instruction-tuned or higher-capacity models.

E REPRODUCIBILITY STATEMENT

All results reported in this study are reproducible using the code provided in the supplementary
resources. Reported results are averaged over multiple inference runs to enhance reliability, and we
additionally report standard deviations alongside the means to further strengthen reproducibility and
trustworthiness. We also document all prompts, hyperparameters, models, and datasets used in the
study in the Appendix, ensuring that the results can be reproduced at any time. Finally, the examples
used in the qualitative analysis are randomly selected; we plan to include additional examples in the
camera-ready version if needed.

F LLM USAGE STATEMENT

No LLM assistance was used in writing this paper; LLMs were utilized exclusively for constructing
our framework.
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Table 5: Summary of classification criteria and associated pattern definitions.
Criterion Pattern A Pattern B
Analytical

Perspective
Top-Down: Begins with high-level

principles and decomposes into
substeps.

Bottom-Up: Builds reasoning from
specific evidence or examples
toward a general conclusion.

Scope of Approach Focused: Restricts analysis to a
narrow, targeted set of factors.

Broad Exploration: Considers a
wide range of factors and

possibilities.

Reasoning Type Inductive: Infers general rules
from observed instances.

Deductive: Applies general rules to
derive specific conclusions.

Idea Development Sequential: Develops ideas in a
linear, step-by-step order.

Parallel: Explores multiple ideas or
lines of reasoning simultaneously.

Verification Focus
Data-Driven: Emphasizes
empirical evidence and data

validation.

Hypothesis-Driven: Tests
predefined hypotheses or

assumptions.

Clarification

Approach Iterative Refinement: Gradually
refines and revisits reasoning steps.

Immediate Conclusion: Provides
final answers with minimal revision

steps.

Table 6: Comparison of cognitive behavior (Gandhi et al., 2025) frequencies between Distill-
R1-32B and s1.1-32B models across three benchmarks. Statistical analysis (p-values and Cohen’s
d) shows minimal differences between models, with only one significant difference, indicating
limitations of conventional cognitive behavior classifications in distinguishing model reasoning
strategies.

Benchmark Behavior
Ratio (Behavior Frequency / Total Responses)

Are they different? p-value Cohen’s d
Distill-R1 s1.1

GPQA-Diamond

Verification
27.3 29.8

No 0.66 -0.09

Backtracking
33.8 33.3

No 1.00 0.02

Subgoal Setting
34.3 34.3

No 1.00 0.00

Backward Chaining
73.7 72.2

No 0.82 0.07

MMLU-Redux

Verification
26.3 24.7

No 0.16 0.04

Backtracking
38.6 33.1

Yes 1e-05 0.12

Subgoal Setting
27.0 27.4

No 0.75 0.01

Backward Chaining
68.9 68.7

No 0.87 4e-3

MATH-500

Verification
26.0 28.4

No 0.43 -0.05

Backtracking
36.2 30.4

No 0.06 0.12

Subgoal Setting
27.0 28.8

No 0.57 0.04

Backward Chaining
67.6 67.6

No 1.00 0.00
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Table 7: Comparison of cognitive behavior (Gandhi et al., 2025) frequencies between Distill-R1-
32B and QwQ-32B models across three benchmarks. Statistical analysis (p-values and Cohen’s
d) shows minimal differences between models, with only one significant difference, indicating
limitations of conventional cognitive behavior classifications in distinguishing model reasoning
strategies.

Benchmark Behavior
Ratio (Behavior Frequency / Total Responses)

Are they different? p-value Cohen’s d
Distill-R1 QwQ

GPQA-Diamond

Verification
27.3 27.8

No 0.91 -0.01

Backtracking
33.8 32.3

No 0.75 0.03

Subgoal Setting
34.3 32.3

No 0.67 0.04

Backward Chaining
73.7 74.2

No 0.91 -0.01

MMLU-Redux

Verification
26.3 25.3

No 0.38 0.02

Backtracking
38.6 32.2

Yes 2.18e-07 0.13

Subgoal Setting
27.0 26.7

No 0.79 0.01

Backward Chaining
68.9 70.5

No 0.18 -0.03

MATH-500

Verification
26.0 27.6

No 0.57 -0.04

Backtracking
36.2 35.2

No 0.74 0.02

Subgoal Setting
27.0 27.4

No 0.89 -0.01

Backward Chaining
67.6 68.9

No 0.68 -0.03

Table 8: Comparison of cognitive behavior (Gandhi et al., 2025) frequencies between QwQ-32B
and s1.1-32B models across three benchmarks. Statistical analysis (p-values and Cohen’s d) shows
minimal differences between models, with only one significant difference, indicating limitations of
conventional cognitive behavior classifications in distinguishing model reasoning strategies.

Benchmark Behavior
Ratio (Behavior Frequency / Total Responses)

Are they different? p-value Cohen’s d
QwQ s1.1

GPQA-Diamond

Verification
27.8 29.8

No 0.66 -0.04

Backtracking
32.3 33.3

No 0.83 -0.02

Subgoal Setting
32.3 34.3

No 0.67 -0.04

Backward Chaining
74.2 72.2

No 0.65 0.05

MMLU-Redux

Verification
25.3 24.7

No 0.59 0.01

Backtracking
32.2 33.1

No 0.46 -0.02

Subgoal Setting
26.7 27.4

No 0.54 -0.02

Backward Chaining
70.5 68.7

No 0.13 0.04

MATH-500

Verification
27.6 28.4

No 0.78 -0.02

Backtracking
35.2 30.4

No 0.11 0.10

Subgoal Setting
27.4 28.8

No 0.62 -0.03

Backward Chaining
68.9 67.6

No 0.68 0.03
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Table 9: Analysis of reasoning strategies between Distill-R1-32B and s1.1-32B models using COT
ENCYCLOPEDIA’s six criteria across problem-solving benchmarks. Unlike traditional cognitive
behavior metrics, this approach reveals numerous statistically significant differences (marked as
‘Yes’), with substantial effect sizes (Cohen’s d up to 0.44), demonstrating CoT Encyclopedia’s
enhanced ability to distinguish between models’ reasoning strategies and preferences.

Benchmark
Reasoning Behavior <- Pattern A Pattern B -> Are they

p-value Cohen’s d
Criteria Pattern A Pattern B Distill-R1 s1.1 different?

Analytical Perspective Top-Down Bottom-Up
75.8 79.3

No 4.7e-2 -0.10

Scope of Approach Focused Broad
15.2 7.1

Yes 2e-2 0.26

GPQA-
Diamond

Reasoning Type Inductive Deductive
23.7 15.1

Yes 4e-2 0.22

Idea Development Sequential Parallel
30.3 40.9

Yes 4e-2 -0.22

Verification Focus Data-Driven Hypothesis-Driven
60.1 68.2

Yes 1.2e-2 -0.18

Clarification Approach Iterative Immediate
7.6 1.0

Yes 2e-03 0.36

Analytical Perspective Top-Down Bottom-Up
32.7 33.1

No 0.76 0.01

Scope of Approach Focused Broad
43.6 28.4

Yes 1e-34 0.32

MMLU-
Redux

Reasoning Type Inductive Deductive
8.9 5.7

Yes 2e-06 0.12

Idea Development Sequential Parallel
27.4 38.5

Yes 4e-20 0.24

Verification Focus Data-Driven Hypothesis-Driven
87.5 84.6

Yes 1e-03 0.08

Clarification Approach Iterative Immediate
23.2 10.6

Yes 3e-38 0.34

Analytical Perspective Top-Down Bottom-Up
36.8 43.8

Yes 0.03 0.14

Scope of Approach Focused Broad
55.6 37.4

Yes 1e-08 0.37

MATH-
500

Reasoning Type Inductive Deductive
10.4 11.0

No 8.4e-2 0.02

Idea Development Sequential Parallel
17.0 21.8

No 6e-2 0.12

Verification Focus Data-Driven Hypothesis-Driven
69.6 64.2

No 8e-2 0.12

Clarification Approach Iterative Immediate
14.4 2.8

Yes 1e-10 0.44

Table 10: Analysis of reasoning strategies between Distill-R1-32B and QwQ-32B models using
COT ENCYCLOPEDIA’s six criteria across problem-solving benchmarks. Unlike traditional cog-
nitive behavior metrics, this approach reveals numerous statistically significant differences (marked
as ‘Yes’), with substantial effect sizes (Cohen’s d up to 0.44), demonstrating CoT Encyclopedia’s
enhanced ability to distinguish between models’ reasoning strategies and preferences.

Benchmark
Reasoning Behavior <- Pattern A Pattern B -> Are they

p-value Cohen’s d
Criteria Pattern A Pattern B Distill-R1 QwQ different?

Analytical Perspective Top-Down Bottom-Up
75.8 80.2

No 0.27 -0.11

Scope of Approach Focused Broad
15.2 5.2

Yes 8.5e-4 0.34

GPQA-
Diamond

Reasoning Type Inductive Deductive
23.7 12.1

Yes 2.6e-3 0.31

Idea Development Sequential Parallel
30.3 43.2

Yes 6.8e-3 -0.27

Verification Focus Data-Driven Hypothesis-Driven
60.1 70.9

Yes 2.7e-2 -0.23

Clarification Approach Iterative Immediate
7.6 2.1

Yes 9.7e-3 0.26

Analytical Perspective Top-Down Bottom-Up
32.7 33.1

No 0.74 -0.01

Scope of Approach Focused Broad
43.6 24.6

Yes 2.4e-54 0.41

MMLU-
Redux

Reasoning Type Inductive Deductive
8.9 4.3

Yes 7.2e-13 0.19

Idea Development Sequential Parallel
27.4 39.2

Yes 3.1e-22 -0.25

Verification Focus Data-Driven Hypothesis-Driven
87.5 82.5

Yes 5.9e-8 0.14

Clarification Approach Iterative Immediate
23.2 13.4

Yes 9.6e-23 0.26

Analytical Perspective Top-Down Bottom-Up
36.8 42.5

No 0.07 -0.12

Scope of Approach Focused Broad
55.6 33.2

Yes 1.0e-12 0.46

MATH-
500

Reasoning Type Inductive Deductive
10.4 13.2

No 0.17 -0.09

Idea Development Sequential Parallel
17.0 22.4

Yes 3.2e-2 -0.14

Verification Focus Data-Driven Hypothesis-Driven
69.6 61.4

Yes 6.4e-3 0.17

Clarification Approach Iterative Immediate
14.4 4.3

Yes 6.0e-8 0.35
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Table 11: Analysis of reasoning strategies between QwQ-32B and s1.1-32B models using COT
ENCYCLOPEDIA’s six criteria across problem-solving benchmarks. Unlike traditional cognitive
behavior metrics, this approach reveals numerous statistically significant differences (marked as
‘Yes’), with substantial effect sizes (Cohen’s d up to 0.35), demonstrating CoT Encyclopedia’s
enhanced ability to distinguish between models’ reasoning strategies and preferences.

Benchmark
Reasoning Behavior <- Pattern A Pattern B -> Are they

p-value Cohen’s d
Criteria Pattern A Pattern B QwQ s1.1 different?

Analytical Perspective Top-Down Bottom-Up
80.2 79.3

No 0.80 0.02

Scope of Approach Focused Broad
5.2 7.1

No 0.40 -0.08

GPQA-
Diamond

Reasoning Type Inductive Deductive
12.1 15.1

No 0.38 -0.09

Idea Development Sequential Parallel
43.2 40.9

No 0.61 0.05

Verification Focus Data-Driven Hypothesis-Driven
70.9 68.2

No 0.59 0.06

Clarification Approach Iterative Immediate
2.1 1.0

No 0.41 0.09

Analytical Perspective Top-Down Bottom-Up
33.1 33.1

No 1.00 0.00

Scope of Approach Focused Broad
24.6 28.4

Yes 8.5e-04 -0.09

MMLU-
Redux

Reasoning Type Inductive Deductive
4.3 5.7

Yes 1.3e-02 -0.06

Idea Development Sequential Parallel
39.2 38.5

No 0.58 0.01

Verification Focus Data-Driven Hypothesis-Driven
82.5 84.6

Yes 2.8e-02 -0.06

Clarification Approach Iterative Immediate
13.4 10.6

Yes 8.5e-04 0.09

Analytical Perspective Top-Down Bottom-Up
42.5 43.8

No 0.65 -0.03

Scope of Approach Focused Broad
33.2 37.4

No 0.16 -0.09

MATH-
500

Reasoning Type Inductive Deductive
13.2 11.0

No 0.29 0.07

Idea Development Sequential Parallel
22.4 21.8

No 0.82 0.01

Verification Focus Data-Driven Hypothesis-Driven
61.4 64.2

No 0.36 -0.06

Clarification Approach Iterative Immediate
14.4 4.3

Yes 6.0e-08 0.35

Table 12: Analysis of reasoning strategies between Distill-R1-32B and s1.1-32B models using
COT ENCYCLOPEDIA’s six criteria across safety benchmarks. Unlike traditional cognitive
behavior metrics, this approach reveals numerous statistically significant differences (marked as
‘Yes’), with substantial effect sizes (Cohen’s d up to 0.50), demonstrating CoT Encyclopedia’s
enhanced ability to distinguish between models’ reasoning strategies and preferences.

Benchmark
Reasoning Behavior <- Pattern A Pattern B -> Are they

p-value Cohen’s d
Criteria Pattern A Pattern B Distill-R1 s1.1 different?

Guidance Strategy Non-Directive Directive
39.0 40.3

No 0.73 -0.03

Ethical Consideration Technical Response Moral Evaluation
36.1 22.3

Yes 5.4e-06 0.31

XSTest

Safety Precedence Risk-Engaging Preventive
59.3 62.3

No 0.37 -0.06

Idea Development Sequential Parallel
18.3 40.9

Yes 9.2e-14 -0.50

Content Handling Open Discussion Censorship
12.1 68.2

Yes 2.4e-66 -1.23

Risk Assessment High-Risk Awareness Low-Risk Assumption
22.7 19.1

No 0.19 0.09

Content Intent Malicious Benevolent
100.0 99.5

No 0.16 0.14

Guidance Strategy Non-Directive Directive
40.3 43.2

No 0.084 -0.06

Ethical Consideration Technical Response Moral Evaluation
22.3 26.1

Yes 0.0098 -0.09

WildGuard

Safety Precedence Risk-Engaging Preventive
56.0 67.5

Yes 4.0e-12 -0.24

Idea Development Sequential Parallel
22.0 42.3

Yes 2.9e-37 -0.44

Content Handling Open Discussion Censorship
0.04 3.4

Yes 4.2e-14 -0.33

Risk Assessment High-Risk Awareness Low-Risk Assumption
29.5 46.1

Yes 1.0e-23 -0.34

Content Intent Malicious Benevolent
100.0 99.2

Yes 1.8e-04 0.18
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Table 13: Analysis of reasoning strategies between Distill-R1-32B and QwQ-32B models using
COT ENCYCLOPEDIA’s six criteria across safety benchmarks. Unlike traditional cognitive
behavior metrics, this approach reveals numerous statistically significant differences (marked as
‘Yes’), with substantial effect sizes (Cohen’s d up to 1.44), demonstrating CoT Encyclopedia’s
enhanced ability to distinguish between models’ reasoning strategies and preferences.

Benchmark
Reasoning Behavior <- Pattern A Pattern B -> Are they

p-value Cohen’s d
Criteria Pattern A Pattern B Distill-R1 QwQ different?

Guidance Strategy Non-Directive Directive
39.0 43.3

No 0.177 -0.09

Ethical Consideration Technical Moral Evaluation
36.1 25.2

Yes 2.1e-4 0.24

XSTest

Safety Precedence Risk-Engaging Preventive
59.3 67.2

Yes 8.7e-3 -0.16

Idea Development Sequential Parallel
18.3 43.2

Yes 2.0e-17 -0.56

Content Handling Open Discussion Censorship
12.1 69.5

Yes 1.2e-76 -1.44

Risk Assessment High-Risk Awareness Low-Risk Assumption
22.7 29.1

Yes 2.11e-2 -0.15

Content Intent Malicious Benevolent
100.0 100.0

No 1.00 0.00

Guidance Strategy Non-Directive Directive
40.3 46.7

Yes 4.13e-2 -0.13

Ethical Consideration Technical Moral Evaluation
22.3 29.5

Yes 9.45e-3 -0.17

WildGuard

Safety Precedence Risk-Engaging Preventive
56.0 62.5

Yes 3.95e-2 -0.13

Idea Development Sequential Parallel
22.0 41.2

Yes 6.59e-11 -0.42

Content Handling Open Discussion Censorship
0.04 8.4

Yes 3.56e-11 -0.43

Risk Assessment High-Risk Awareness Low-Risk Assumption
29.5 48.3

Yes 1.10e-9 -0.39

Content Intent Malicious Benevolent
100.0 100.0

No 1.00 0.00

Table 14: Analysis of reasoning strategies between QwQ-32B and s1.1-32B models using COT
ENCYCLOPEDIA’s six criteria across safety benchmarks. Unlike traditional cognitive behavior
metrics, this approach reveals statistically significant differences (marked as ‘Yes’), with moderate
effect sizes (Cohen’s d up to 0.24), demonstrating CoT Encyclopedia’s enhanced ability to distinguish
between models’ reasoning strategies and preferences.

Benchmark
Reasoning Behavior <- Pattern A Pattern B -> Are they

p-value Cohen’s d
Criteria Pattern A Pattern B QwQ s1.1 different?

Guidance Strategy Non-Directive Directive
43.3 40.3

No 0.37 0.06

Ethical Consideration Technical Response Moral Evaluation
25.2 22.3

No 0.30 0.07

XSTest

Safety Precedence Risk-Engaging Preventive
67.2 62.3

No 0.11 0.10

Idea Development Sequential Parallel
43.2 40.9

No 0.44 0.05

Content Handling Open Discussion Censorship
69.5 68.2

No 0.63 0.03

Risk Assessment High-Risk Awareness Low-Risk Assumption
29.1 19.1

Yes 2e-4 0.24

Content Intent Malicious Benevolent
100.0 100.0

No 1.00 0.00

Guidance Strategy Non-Directive Directive
46.7 43.2

No 0.25 0.07

Ethical Consideration Technical Response Moral Evaluation
29.5 26.1

No 0.20 0.08

WildGuard

Safety Precedence Risk-Engaging Preventive
62.5 67.5

No 0.08 -0.10

Idea Development Sequential Parallel
41.2 42.3

No 0.70 -0.02

Content Handling Open Discussion Censorship
8.4 3.4

Yes 7e-4 0.21

Risk Assessment High-Risk Awareness Low-Risk Assumption
48.3 46.1

No 0.45 0.04

Content Intent Malicious Benevolent
100.0 100.0

No 1.00 0.00
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Figure 14: Hierarchical Clustering Across Benchmarks. Six different benchmarks: XSTest (top
left), WildGuard (top right), Arena-Hard (mid left), and MMLU-Redux (mid right), MATH-500
(bottom left), GPQA-Diamond (bottom right). Stars indicate the representative embeddings (medoids)
for each cluster. This visualization demonstrates how different benchmarks employ varied criteria for
pattern analysis.
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Figure 15: Hierarchical Clustering of reasoning strategies with PCA Projection on problem-
solving Benchmarks. Comparing four different representative embedding selection methods:
medoid-based (default, top-left), silhouette-based (top-right), frequency-based (bottom-left), and
density-based (bottom-right). Each stars indicate representative embeddings for each cluster. Despite
using different selection criteria, the overall clustering structure remains consistent across methods,
with only minor variations in representative embedding positions.

Figure 16: Pattern ratio distributions across three different sizes of the Distill-R1 model family
(32B, 7B, and 1.5B). The x-axis shows six reasoning strategy criteria: analytical perspective (ap),
clarification approach (sa), reasoning type (rt), idea development (id), verification focus (vf), and
scope of approach (ca). Despite the significant size differences, all three models exhibit remarkably
similar pattern distributions across all benchmarks, supporting the conclusion that models from the
same family maintain consistent reasoning strategies regardless of scale.
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Figure 17: Pairwise Cohen’s d effect size measurements comparing reasoning strategy distribu-
tions across different sizes of the Distill-R1 model family. The x-axis displays the six reasoning
strategy criteria: analytical perspective (ap), scope of approach (sa), reasoning type (rt), idea develop-
ment (id), verification focus (vf), and clarification approach (ca). All effect sizes remain below 0.1
across most comparisons, indicating very small distributional differences between models of different
sizes within the same family.
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Table 15: Comparison of high-level reasoning style preferences across models trained on
different data formats. This table presents a detailed analysis of how question format influences
reasoning strategies across three benchmarks: GPQA-Diamond, MMLU-Redux, and MATH-500.
For each benchmark, six reasoning criteria are evaluated with contrasting pattern pairs (Pattern A vs.
Pattern B). Statistical significance testing (p-values) and effect size measurements (Cohen’s d) reveal
that multiple-choice and free-form trained models exhibit significantly different reasoning strategies
on most criteria. Particularly pronounced differences appear in the MATH-500 benchmark, where
effect sizes reach up to 1.58, demonstrating that training data format substantially shapes models’
problem-solving approaches independent of content domain.

Benchmark
Reasoning Behavior <- Pattern A Pattern B -> Are they

p-value Cohen’s d
Criteria Pattern A Pattern B Multiple-choice Free-form different?

Analytical Perspective Top-Down Bottom-Up
63.9 46.3

Yes 1e-36 0.36

Scope of Approach Focused Broad
74.8 76.7

No 0.12 -0.04

GPQA-
Diamond

Reasoning Type Inductive Deductive
54.8 38.8

Yes 8e-30 0.32

Idea Development Sequential Parallel
27.0 51.7

Yes 3e-74 0.51

Verification Focus Data-Driven Hypothesis-Driven
39.6 38.4

No 0.41 0.02

Clarification Approach Iterative Immediate
21.0 12.7

Yes 3e-14 0.22

Analytical Perspective Top-Down Bottom-Up
39.5 59.2

Yes 2e-52 -0.40

Scope of Approach Focused Broad
48.6 48.3

No 0.80 0.01

MMLU-
Redux

Reasoning Type Inductive Deductive
27.5 76.8

Yes 0.00 -1.03

Idea Development Sequential Parallel
38.3 50.5

Yes 1e-21 0.25

Verification Focus Data-Driven Hypothesis-Driven
66.9 34.5

Yes 5e-139 0.66

Clarification Approach Iterative Immediate
48.8 60.4

Yes 1e-19 -0.23

Analytical Perspective Top-Down Bottom-Up
84.1 13.1

Yes 0.00 1.58

Scope of Approach Focused Broad
85.9 32.9

Yes 0.00 1.15

MATH-
500

Reasoning Type Inductive Deductive
81.9 14.1

Yes 0.00 1.49

Idea Development Sequential Parallel
0.02 34.8

Yes 0.00 -0.99

Verification Focus Data-Driven Hypothesis-Driven
13.7 52.2

Yes 1e-292 -0.86

Clarification Approach Iterative Immediate
11.4 38.5

Yes 1e-171 -0.65
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Table 16: Comparison of high-level reasoning style preferences across models trained on
different domains. This table presents a statistical analysis of how content domain influences
reasoning strategies across three benchmarks: GPQA-Diamond, MMLU-Redux, and MATH-500.
Six reasoning criteria are evaluated for each benchmark, comparing math-domain versus knowledge-
domain training. Statistical testing reveals minimal differences between domains, with most p-values
above the significance threshold (0.05) and small effect sizes (Cohen’s d mostly below 0.15). The
limited number of significant differences (only 4 out of 18 comparisons) and small effect sizes
demonstrate that content domain has substantially less impact on reasoning strategy formation than
question format, supporting the paper’s finding that format characteristics shape reasoning strategies
more fundamentally than subject matter.

Benchmark
Reasoning Behavior <- Pattern A Pattern B -> Are they

p-value Cohen’s d
Criteria Pattern A Pattern B Math-domain Knowledge-domain different?

Analytical Perspective Top-Down Bottom-Up
60.0 61.4

No 0.25 0.03

Scope of Approach Focused Broad
61.0 62.3

No 0.29 -0.027

GPQA-
Diamond

Reasoning Type Inductive Deductive
60.3 60.9

No 0.60 -0.014

Idea Development Sequential Parallel
38.5 37.7

No 0.52 0.017

Verification Focus Data-Driven Hypothesis-Driven
38.6 38.3

No 0.80 0.007

Clarification Approach Iterative Immediate
40.4 36.4

Yes 1e-3 0.082

Analytical Perspective Top-Down Bottom-Up
41.2 42.3

No 0.77 -0.02

Scope of Approach Focused Broad
38.6 45.5

Yes 0.03 -0.14

MMLU-
Redux

Reasoning Type Inductive Deductive
42.0 44.4

No 0.49 -0.05

Idea Development Sequential Parallel
57.4 57.8

No 0.95 -0.01

Verification Focus Data-Driven Hypothesis-Driven
59.2 54.5

No 0.14 0.09

Clarification Approach Iterative Immediate
58.7 53.6

No 0.13 0.10

Analytical Perspective Top-Down Bottom-Up
41.2 43.6

Yes 0.03 0.14

Scope of Approach Focused Broad
38.6 42.0

Yes 1e-08 0.37

MATH-
500

Reasoning Type Inductive Deductive
42.0 40.0

No 8.4e-2 0.02

Idea Development Sequential Parallel
57.4 57.2

No 6e-2 0.12

Verification Focus Data-Driven Hypothesis-Driven
59.2 56.4

No 8e-2 0.12

Clarification Approach Iterative Immediate
58.7 59.8

Yes 1e-10 0.44
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Table 17: Comparison of reasoning behavior patterns between Qwen and Qwen-Math models
across three benchmarks. The table presents statistical analyses of six reasoning criteria: Decision
Strategy, Reasoning Type, Analytical Perspective, Verification Focus, Scope of Approach, and Idea
Development. For each criterion, the table shows the distribution percentages of Pattern A and Pattern
B for both models, along with statistical significance measures (p-value and Cohen’s d).

Benchmark
Reasoning Behavior <- Pattern A Pattern B -> Are they

p-value Cohen’s d
Criteria Pattern A Pattern B Qwen Qwen-Math different?

Decision Strategy Optimal Satisficing
53.1 57.3

No 0.419 -0.085

Reasoning Type Inductive Deductive
37.6 36.2

No 0.835 0.029

GPQA-
Diamond

Analytical Perspective Top-Down Bottom-Up
21.3 45.2

Yes 5.17e-7 -0.524

Verification Focus Principle-Driven Numerical Validation
21.7 63.3

Yes 7.58e-17 -0.928

Scope of Approach Focused Broad Exploration
65.4 45.6

Yes 8.09e-5 0.407

Idea Development Linear Sequential Parallel
10.3 10.4

No 0.869 -0.003

Decision Strategy Optimal Satisficing
62.2 62.3

No 0.936 -0.002

Reasoning Type Inductive Deductive
78.3 67.2

Yes 4.67e-22 0.251

MMLU-
Redux

Analytical Perspective Top-Down Bottom-Up
53.4 87.5

Yes 3.20e-184 -0.806

Verification Focus Principle-Driven Numerical Validation
36.2 36.9

No 0.574 -0.015

Scope of Approach Focused Broad Exploration
41.9 55.2

Yes 6.59e-25 -0.268

Idea Development Linear Sequential Parallel
10.1 31.0

Yes 2.86e-89 -0.535

Decision Strategy Optimal Satisficing
47.2 23.3

Yes 1.93e-15 0.517

Reasoning Type Inductive Deductive
15.2 17.1

No 0.391 -0.052

MATH-
500

Analytical Perspective Top-Down Bottom-Up
30.1 35.1

No 0.0794 -0.107

Verification Focus Principle-Driven Numerical Validation
34.2 67.9

Yes 1.12e-26 -0.716

Scope of Approach Focused Broad Exploration
54.9 69.2

Yes 2.72e-6 -0.298

Idea Development Linear Sequential Parallel
22.1 24.0

No 0.452 -0.045

Table 18: Comparison of reasoning strategies between QwQ and s1.1 models on safety bench-
marks. This table presents statistical analyses of seven reasoning criteria across two safety bench-
marks (XSTest and WildGuard). For each criterion, the table shows the distribution percentages of
Pattern A and Pattern B for both models, along with statistical significance indicators (p-value and
Cohen’s d).

Benchmark
Reasoning Behavior <- Pattern A Pattern B -> Are they

p-value Cohen’s d
Criteria Pattern A Pattern B QwQ s1.1 different?

Guidance Strategy Non-Directive Directive
23.3 22.7

No 1.00 0.01

Ethical Consideration Technical Response Moral Evaluation
47.2 42.3

No 0.48 0.10

XSTest

Safety Precedence Risk-Engaging Preventive
62.2 67.3

No 0.46 -0.11

Idea Development Sequential Parallel
41.2 70.9

Yes 1.92e-05 -0.63

Content Handling Open Discussion Censorship
69.5 78.2

No 0.20 -0.20

Risk Assessment High-Risk Awareness Low-Risk Assumption
20.1 3.1

Yes 1.65e-04 0.55

Content Intent Malicious Benevolent
98.7 96.3

No 0.17 0.15

Guidance Strategy Non-Directive Directive
23.7 23.2

No 0.87 0.01

Ethical Consideration Technical Response Moral Evaluation
26.5 29.1

No 0.63 -0.06

WildGuard

Safety Precedence Risk-Engaging Preventive
51.5 49.5

No 0.78 0.04

Idea Development Sequential Parallel
27.2 46.3

Yes 5.26e-03 -0.40

Content Handling Open Discussion Censorship
10.4 21.4

Yes 3.16e-02 -0.30

Risk Assessment High-Risk Awareness Low-Risk Assumption
35.3 32.1

No 0.65 0.07

Content Intent Malicious Benevolent
100.0 100.0

No 1.00 0.00
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Free-form (FF) data

Free-form (FF) response

Okay, so I need to find the equation of a 
circle that's symmetric to the given circle 

$(x-2)^2 + (y-2)^2 = 7$ with respect to the 
line $x + y = 2$. Hmm, symmetric with 

respect to a line means that the line is the 

...  

Wait, that doesn't seem right. If I plug $(2, 
2)$ into the reflection formulas with $a=1$, 

$b=1$, $c=-2$:  

Wait, that contradicts my earlier result. Let 
me check the reflection formula again.  

Wait, perhaps I used the wrong formula. Let 
me derive the reflection point.  

...  

Then,  

\[ 
x' = 2 - \frac{2*1*2}{1 + 1} = 2 - \frac{4}{2} = 

2 - 2 = 0 
\] 
\[ 

y' = 2 - \frac{2*1*2}{1 + 1} = 2 - 2 = 0 
\]   

Thus, the equation of the reflected circle is: 
\[ 

(x - 0)^2 + (y - 0)^2 = (\sqrt{7})^2 
\]


Multiple-choice format (MC) data

Q. Diamond is extremely hard because of 
the strong bonding between ______ in all 
directions?



Options: 
A. carbon atoms 
B. liquid atoms 
C. hydrogen atoms 
D. consistent atoms


Multiple-choice format (MC) response

Okay, so I'm trying to figure out the answer 
to this question about diamond being 
extremely hard. 



The question is asking why diamond is so 
hard because of the strong bonding between 
the atoms in all directions, and there are 
four options: A. carbon atoms, B. liquid 
atoms, C. hydrogen atoms, D. consistent 
atoms. 


...  

Option A is carbon atoms. Diamond is made 
up of carbon atoms, so that makes sense. 
But why would the atoms bond strongly? I 
remember that carbon atoms have strong 
bonds with each other, which contributes to 
the structure of diamond. So, maybe A is 
correct.  

...  

Option D is consistent atoms. Consistency 
could mean that the atoms are uniform and 
not varying, but I'm not sure how that 
relates to the hardness. It doesn't seem as 
relevant as the bonding between atoms.  

So, putting it together, the strong bonding 
between carbon atoms in diamond explains 
its hardness. Therefore, the answer should 
be A.  

The correct answer is **A. carbon atoms** 
because diamond, composed of carbon, 
exhibits high hardness due to its strong and 
consistent bonding between carbon atoms 
in all directions.

The equation of the circle symmetric to the 
circle $(x-2)^2+(y-2)^2=7$ with respect to 

the line $x+y=2$ is


Figure 18: Examples of input formats and model responses from multiple-choice (MC) and
free-form (FF) training data.

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

G PROMPTS

Prompt for brainstorming the fine-grained criteria and patterns

You are tasked with analyzing the reasoning strategies used in the following response. The
response includes the thought process for solving a problem. Your goal is to extract and
describe patterns based on various criteria that characterize the model’s problem-solving
strategy.

Please follow these guidelines:

1. Identify multiple *meaningful criteria* that differentiate reasoning strategies. Each
criterion should have a clear and descriptive name that reflects a real aspect of the reasoning
process. **Do not use generic placeholders like ‘Criterion 1’.**

2. For each criterion, describe two contrasting *pattern types* (e.g., *Step-by-step* vs.
*Outcome-first*, or *Concrete* vs. *Abstract*).

3. Present your analysis in the following format, using <patterns> and </patterns> tags to
enclose the list:

<patterns>
Descriptive Criterion Name (Pattern A vs. Pattern B)
Descriptive Criterion Name (Pattern A vs. Pattern B)
...
Descriptive Criterion Name (Pattern A vs. Pattern B)
</patterns>

4. Do not include any explanations or commentary within the <patterns> tags.

5. The example format above is only a guide. You are encouraged to define your own diverse
and insightful pattern criteria based on the given response.

Response: {answer}

Figure 19: Prompt template for identifying fine-grained reasoning criteria. This template guides
the systematic extraction of diverse reasoning strategies from model responses by instructing the
analysis to: (1) identify meaningful criteria with descriptive names that reflect genuine aspects of
reasoning, (2) describe contrasting pattern types for each criterion, (3) present the analysis in a
structured format using designated tags, and (4) focus on identifying insightful pattern criteria without
extraneous commentary. This structured approach enables comprehensive taxonomy development of
reasoning strategies employed in chain-of-thought processes.
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Prompt for generating the pattern analysis rubric

Create a concise rubric for the following reasoning strategy criterion:

[CRITERION NAME]: [PATTERN A] vs. [PATTERN B]

For each pattern, provide:

1. A clear, concise definition (2-3 sentences) that captures the essence of this reasoning
strategy
2. 3-4 key characteristics that distinguish this pattern
3. 2 concrete examples of responses that demonstrate this pattern (keep examples brief, about
2-3 sentences each)

Focus on making the distinctions between patterns clear and easily identifiable. The def-
initions and examples should help evaluators quickly categorize model responses without
ambiguity.

Figure 20: Prompt template for rubric generation in reasoning strategy analysis. This template
outlines the structured approach for creating assessment rubrics that distinguish between contrasting
reasoning strategies. The prompt requests (1) concise definitions capturing each pattern’s essence, (2)
key distinguishing characteristics, and (3) concrete response examples demonstrating each pattern.
This systematic rubric development ensures clear pattern differentiation, enabling consistent and
unambiguous classification of model reasoning strategies across different problem-solving contexts.
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Prompt for generating the pattern analysis report

You are an expert at analyzing reasoning strategies in model responses. You’ll be provided
with:
1. A rubric describing two distinct reasoning strategies (Pattern A and Pattern B)
2. A model response to analyze

Your task is to create a detailed analysis report that determines which pattern the response
exhibits.

Analysis Process:
1. Carefully examine the response against both pattern definitions in the rubric
2. Identify specific elements, structures, and linguistic features in the response that align with
either pattern
3. Note any mixed signals or elements that span both patterns
4. Determine which pattern (A or B) the response most closely matches

Report Structure:
1. **Initial Observations** (2-3 sentences summarizing key features of the reasoning
approach)
2. **Evidence for Pattern A**:
- If applicable, quote 1-2 specific segments from the response that demonstrate Pattern A
- Explain how these segments match characteristics described in the rubric
3. **Evidence for Pattern B**:
- If applicable, quote 1-2 specific segments from the response that demonstrate Pattern B
- Explain how these segments match characteristics described in the rubric
4. **Pattern Determination**:
- Explain which pattern (A or B) is most dominant and why
- Address any aspects that show characteristics of both patterns
5. **Conclusion**:
- Clearly state the final pattern determination using the format: "Final pattern determination:
[PATTERN NAME]"

Focus on concrete evidence from the response that matches specific elements from the rubric
patterns.

Rubric: {rubric}

Response to analyze: {response}

Figure 21: Prompt template for comprehensive reasoning strategy analysis report generation.
This template guides the systematic evaluation of model responses against predefined reasoning
strategies. It establishes a structured analytical process involving (1) careful examination of re-
sponses against pattern definitions, (2) identification of pattern-aligned elements, (3) recognition of
mixed pattern signals, and (4) determination of the dominant pattern. The prescribed report struc-
ture—including initial observations, evidence documentation for each pattern, pattern determination
with justification, and a clear conclusion—ensures thorough and evidence-based classification of
reasoning strategies employed in model outputs.
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Prompt for evaluation on multi-choice QA benchmarks

Question : {question}
Options :
A) {option A }
B) {option B }
...
Please reason step by step, and you should write the correct option alphabet within
boxed{}.

Figure 22: Prompt template for multiple-choice question assessment with structured reasoning.
This template presents a standardized format for evaluating reasoning models on multiple-choice QA
benchmarks (GPQA-Diamon, MMLU-Redux).

Example prompt for steering models toward optimal reasoning strategies

You are required to solve the following question using a specific reasoning strategy. This
reasoning strategy must guide the entire problem-solving approach:

Top-down: First, conceptualize the overall structure or system involved in the problem. Begin
by forming a clear, high-level understanding of the task, and then systematically break it
down into lower-level details. Organize your reasoning from general principles to specific
elements, prioritizing clarity and structure.

Broad: Start by openly exploring a wide range of possibilities without attempting to prioritize
or filter them too early. Your goal is to understand the full landscape of potential approaches,
ideas, or interpretations before narrowing down or making decisions.

Inductive: Base your reasoning on concrete examples or specific observations. Look for
patterns that emerge from these instances and use them to build general principles or
conclusions. Learning through data-driven exploration or trial-and-error is encouraged.

Single: Choose one hypothesis, method, or line of reasoning to pursue. At each step, verify
whether your current approach works. If it does not, adjust accordingly before proceeding.
Your reasoning should follow a step-by-step method with a focus on systematic validation.

Hypothesis-driven: Approach the problem with a specific, predefined hypothesis. Your task
is to verify this hypothesis using logical reasoning and data. The structure of your analysis
should aim to confirm or refute the initial claim without deviating from it.

Immediate: Seek full clarity at the beginning. Ask direct and comprehensive questions
immediately to form a complete understanding of the problem. Avoid backtracking or
revisiting earlier assumptions unless absolutely necessary.

Make sure your entire reasoning process aligns with the selected pattern above. Now, solve
the following question accordingly.

{question}

Figure 23: Example prompt for steering models toward optimal reasoning strategies. This
template demonstrates how specific reasoning strategies can be explicitly prescribed to guide problem-
solving approaches. Six distinct reasoning strategies are presented: top-down, broad, inductive, single,
hypothesis-driven and immediate. The prompt instructs models to align their entire problem-solving
process with the selected pattern, enabling controlled experiments to identify which reasoning
strategies yield optimal performance across different tasks and benchmarks.
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H QUALITATIVE ANALYSES

Beyond quantitative analysis, we conduct qualitative analysis based on the actual outputs generated by
the model. In Appendix H.1, we analyze the artifacts produced at each step of COT ENCYCLOPEDIA
on the GPQA-Diamond benchmark, comparing the final reasoning strategy analysis results with
analysis results classified according to pre-defined criteria. Appendix H.2 presents a comparative
analysis of responses from models trained on multiple-choice format datasets versus those trained
on free-form datasets when evaluated on the Arena Hard benchmark, along with pattern analysis of
these responses.

H.1 COMPARATIVE ANALYSIS OF COT ENCYCLOPEDIA OUTPUTS AND PRE-DEFINED
CRITERIA

Table 19: Comparative analysis of reasoning strategies exhibited in physics problem-solving
using multiple evaluation frameworks. This table presents a detailed qualitative analysis of reason-
ing approaches employed when solving a physics problem of GPQA-Diamond on light propagation
through moving media. The analysis employs two distinct evaluation methodologies: the CoT
Encyclopedia criteria, which identifies evidence-driven reasoning, and a pre-defined criteria system
that assesses backtracking behaviors.

Question: What is the correct answer to this question:A light beam is propagating through a glass
with index of refraction n. The glass is moving at constant velocity v in the same direction as the
beam and toward the observer in laboratory. What is the speed of light in glass relative to the
observer in laboratory? Take the speed of light in vacuum c=1. Choices: A. 1 B. (1+n*v)/(n+v) C.
(1+n*v)/(n-v) D. (1-n*v)/(n+v) Answer:

Response: Okay, so the question is about the speed of light in glass as observed in a laboratory
frame, where the glass itself is moving at a constant velocity v in the same direction as the light
beam, and towards the observer. The speed of light in vacuum is given as c=1. The choices are A
through D, with various expressions involving n and v. First, I need to recall how the speed of
light in a medium relates to the medium’s refractive index. The speed of light in a medium with
refractive index n is given by v_light = c/n. But here, the medium (glass) is moving. So, the usual
formula might need some adjustment due to the motion of the medium. Hmm, maybe we have
to consider the velocity addition formula from special relativity, but I’m not sure if that directly
applies here. Let me think. Wait, ... (omitted) ...
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2. Fresnel Drag Formula: The formula for the speed of light in a moving medium is given by:

u =
c
n + v

1 + v
nc

Substituting c = 1 into the formula:

u =
1
n + v

1 + v
n

3. Simplification: Simplify the expression by multiplying the numerator and denominator by n:

u =

(
1
n + v

)
n(

1 + v
n

)
n

=
1 + nv

n+ v

4. Relativistic Velocity Addition: Alternatively, using the relativistic velocity addition formula,
where u′ = 1

n is the speed of light in the glass frame moving at velocity v relative to the lab frame:

u =
u′ + v

1 + u′v

Substituting u′ = 1
n :

u =
1
n + v

1 + v
n

This simplifies to the same expression as above:

u =
1 + nv

n+ v

5. Conclusion: The derived expression matches option B.

B

Fine-grained criteria: "Understanding Method (Conceptual Insight vs. Formula Application)",
"Problem Fragmentation (Deconstruction vs. Holistic Approach)", "Validation Strategy (Cross-
Verification vs. Single-Source Verification)", "Solution Derivation (Analytic Derivation vs. Plug-
and-Chug)", "Exploratory Process (Iterative Consideration vs. Direct Pursuit)", "Logic Appli-
cation (Physics Principles vs. Mathematical Manipulation)", "Interpretation Mode (Qualitative
Analysis vs. Quantitative Analysis)"

Sampled COT ENCYCLOPEDIA criteria based report: The provided response demonstrates a
strong understanding of the physics involved in determining the speed of light in a moving medium
(in this case, glass) relative to a laboratory observer. The thinker systematically recalls and applies
relevant concepts, including the relationship between the speed of light and the refractive index,
and utilizes the Fresnel drag coefficient and the relativistic velocity addition formula correctly.
The reasoning starts with an exploration of how the speed of light in a medium relates to its
refractive index and adjusts for motion, showing a thorough investigation of the problem rather
than an assumption-driven approach. The responder considers multiple avenues of solution and
confirms their correctness through simplification and careful algebra, ultimately arriving at the
same conclusion using different methods.
The exploration and hypothetical testing of ideas are evident, with the responder not merely
following a structured path dictated by a singular hypothesis, but rather engaging in an open-ended
inquiry that leads to the solution through evidence-based reasoning.
Given that the response is grounded in evidence from physics concepts and engages with the
problem dynamically, it aligns best with the "Strongly Evidence-driven" pattern of reasoning.
The validity of the conclusions is drawn from examining the data and relevant principles without
imposing an initial hypothesis that restricts the analysis.
Thus, the response fits into the pattern of strong evidence-driven reasoning. Therefore, I will
categorize it as such: Strongly Evidence-driven
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Sampled pre-defined criteria based report: The provided response exhibits a clear pattern of
backtracking, as the individual systematically revisits earlier thoughts and calculations to confirm
and refine their understanding of the problem. Throughout the response, the author reflects on
different aspects of the problem, considers potential adjustments, and verifies the correctness of
their reasoning by retracting or re-evaluating previous conclusions.
1. The author starts by recalling foundational concepts related to light in a medium and how
it relates to refractive index and motion. 2. They initially consider the implications of special
relativity on the motion of light in a medium. 3. As they derive the formula for the speed of
light in a moving medium, they continuously verify their calculations making adjustments and
confirming expressions until they are confident in the answer. 4. They also show awareness of
different factors (like the direction of motion) that could affect their calculations, demonstrating a
reflective process where they reassess the implications of their findings.
This approach aligns closely with the description of "Backtracking" in the rubric: the reasoning
involves revisiting and reassessing previous decisions to arrive at a correct conclusion. This
indicates the presence of backtracking rather than a strictly linear thinking process.
Thus, the evaluation of the response is that it demonstrates backtracking.
Final evaluation: Yes

Table 20: Comparative analysis of reasoning strategies exhibited in physics problem-solving
using multiple evaluation frameworks. This table presents a comparative analysis of reasoning
strategies exhibited when solving a complex organic chemistry problem of GPQA-Diamond involving
multiple synthesis steps. The analysis employs two complementary evaluation frameworks: the CoT
Encyclopedia criteria, which identifies iterative clarification processes during reaction analysis, and a
pre-defined criteria system that focuses on backtracking behaviors.

Question: What is the correct answer to this question:A methanol solution of (R)-(+)-Limonene
is stirred with Pd/C under a Hydrogen atmosphere. After 1 equivalent of hydrogen is consumed,
product 1 is isolated as the major product.
1 is treated with 3-chloroperbenzoic acid, forming product 2. Product 2 is treated with sodium
methoxide, forming product 3. Product 3 is treated with propanoic acid, dicyclohexylcarbodiimide.
and a catalytic amount of 4-dimethylaminopyridine, forming product 4. what is a valid structure
of product 4? (product 4 exists as a mixture of isomers. the correct answer is one of them).
Choices: A. 1-methoxy-2-((S)-4-methylcyclohex-3-en-1-yl)propan-2-yl propionate B. (1S,2S,5R)-
5-isopropyl-2-methoxy-2-methylcyclohexyl propionate C. (1S,2S,4R)-4-isopropyl-2-methoxy-1-
methylcyclohexyl propionate D. (1S,2R,4R)-4-isopropyl-2-methoxy-1-methylcyclohexyl propi-
onate Answer:

Response: Okay, let’s tackle this question. So, the problem is about identifying the chemical
formula of an unknown compound using FTIR, 1H NMR, and Mass Spectrometry data. The given
choices are C6H12O, C6H10O, C6H10O2, or C6H12O2. The options are A to D corresponding
to these formulas. First, let’s parse the FTIR data. The FTIR spectrum shows a very broad
absorption peak at 3000 wavenumbers. ... (omitted) ... Wait, but let’s check the other options. If
the compound had only one oxygen (option B, C6H10O), how could that be? For example, if
it’s a ketone with a double bond. A ketone has one oxygen. But then where does the O-H come
from? The question mentions a broad peak at 3000 cm, which is O-H. So if the compound is
a ketone with an O-H group, that would require two oxygen atoms: one in the carbonyl (C=O)
and one in the O-H. But option B is C6H10O, which has only one oxygen. So that’s impossible.
Therefore, the answer must be A. Another angle: the degrees of unsaturation. The compound has
two degrees of unsaturation (from the analysis above: carbonyl and double bond). The formulas
with two degrees are A and B. Since B has only one oxygen, but the compound must have O-H
(which needs an additional oxygen beyond the carbonyl), so B is out. Therefore, A is correct.
Thus, the answer should be

A
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Fine-grained criteria: "Problem Decomposition (Stepwise Breakdown vs. Holistic Assessment)",
"Data Interpretation (Spectrum Analysis vs. Literature Reference)", "Functional Group Identi-
fication (Empirical vs. Theory-Driven)", "Alternatives Consideration (Exhaustive Options vs.
Targeted Options)", "Verification Focus (Spectral Data Consistent vs. Fragment Peak Analysis)",
"Iterative Refinement (Initial Hypothesis vs. Re-evaluated Hypothesis)"

Sampled COT ENCYCLOPEDIA: The response demonstrates a highly iterative approach to
clarification. Throughout the analysis, the responder explores various possibilities concerning
the chemical structure of the unknown compound using FTIR, 1H NMR, and Mass Spectrometry
data. Key indicators of this iterative approach include: 1. **Gradual Exploration**: The
responder goes through the spectral data step-by-step, interpreting each piece of information in
relation to possible structures for the unknown compound. This indicates a willingness to engage
with uncertainty and adapt their understanding as more data is considered. 2. **Follow-Up
Questions and Refinement**: The responder frequently asks rhetorical questions (e.g., "Wait,
but...") that indicate reconsideration of previous assumptions and re-evaluating information based
on new insights. They continuously refine their interpretations and reasoning as they progress.
3. **Comfort with Ambiguity**: The presence of various interpretations throughout (e.g., the
potential for a carboxylic acid, possible structures aligning with the degrees of unsaturation, and
the consideration of different functional groups) reflects a methodical approach to making sense
of complex chemical data, without rushing to conclusions. 4. **Incremental Understanding**:
The analysis reveals that the responder builds their conclusion based on progressively integrating
different aspects of the data rather than expecting an immediate resolution. They discuss multiple
scenarios and gradually hone in on a specific interpretation that fits the data best. Thus, the
response exemplifies a mindset that validates iterative clarification, as the responder systematically
processes the information and adjusts their conclusions in an exploratory manner. Therefore, the
reasoning strategy for this response is Highly Iterative Clarification.

Sampled pre-defined criteria based report: The given response clearly exhibits the charac-
teristics of the "Backtracking" reasoning strategy. Throughout the analysis, the author revisits
earlier decisions and thought processes, particularly in relation to the interpretation of spectral
data and the implications for the chemical structure of the unknown compound. For instance,
the author considers the implications of the FTIR and NMR spectra, reassessing conclusions
about potential functional groups and how they relate to the chemical formulas provided. The
response’s flow reflects a significant amount of reconsideration of hypotheses, especially when
determining the degrees of unsaturation and confirming the presence of specific functional groups
like the O-H group. The author alternates among possibilities and systematically eliminates
options based on newly recalled information and analysis, which is central to the backtracking
reasoning strategy. Every time the author faces a potential inconsistency or lacks certainty, they
pause to reevaluate their conclusions indicating a methodical return to earlier ideas to ensure
the accuracy of their answer. This iterative process is a hallmark of backtracking rather than a
one-way reasoning stream. Based on this thorough examination, it is evident that the reasoning
adheres to the backtracking structure. Thus, the evaluation is yes.

H.2 DIVERGENT REASONING STRATEGIES FROM MULTIPLE-CHOICE VS. FREE-FORM
TRAINING DATA

Table 21: Divergent reasoning strategies in models trained on multiple-choice versus free-form
data formats. This table shows how training data format shapes reasoning strategies when solving
identical problems of Arena-Hard benchmark. Multiple-choice trained models exhibit structured
problem decomposition with frequent hypothesis generation and multiple restart points, while free-
form trained models pursue single hypotheses with continuous verification within one framework.
This analysis supports our finding that format characteristics impact reasoning strategies more
significantly than problem domain.
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Question: A mother buys a set of N toys for her two children, Alice and Bob. She has already
decided, for each toy, whether it will go to Alice or to Bob, but she has forgotten the actual
monetary values of the toys. She only remembers:

• The toys were arranged in ascending order of value.
• All prices are non-negative.

We say that a given assignment is fair if, for every non-decreasing sequence of toy-values

0 ≤ v1 ≤ v2 ≤ · · · ≤ vN ,

the difference between the total value of Alice’s toys and Bob’s toys does not exceed the maximum
toy value vN .
Formally, let

S = S1S2 . . . SN

be a binary string of length N , where

Si =

{
1, if toy i is assigned to Alice,
0, if toy i is assigned to Bob.

Then S is called fair if for every non-decreasing sequence (vi)Ni=1 with 0 ≤ v1 ≤ v2 ≤ · · · ≤ vN ,
we have ∣∣∣∣∣

N∑
i=1

vi [Si = 1] −
∑
i=1

Nvi [Si = 0]

∣∣∣∣∣ ≤ vN ,

where

[P ] =

{
1, if predicate P is true,
0, otherwise.

Multiple-choice format (MC) trained: Okay, so I’m trying to figure out how to determine if a
given distribution of toys is fair based on the problem statement provided. Let me break down
the problem step by step. First, the problem says that there are N toys, and they’ve been assigned
to Alice and Bob in some way specified by a binary string S. Each character in S represents one
of the toys: ‘1’ means Alice gets it, ‘0’ means Bob gets it. The key thing here is that S tells us
exactly which toys go to whom, but the actual values of these toys aren’t specified. However,
the problem gives us a condition that must hold for the distribution to be considered "fair." The
fairness condition states that for any possible assignment of toy values (which are non-negative
and in ascending order), the absolute difference between the total value of toys Alice receives and
the total value Bob receives should not exceed the highest toy’s value, which is v_N. But I’m not
entirely sure about that. Let me think about how to approach this. One way to tackle this is to
consider the worst-case scenario where the difference between Alice’s and Bob’s totals could
be maximized. If even in the best possible worst-case scenario, the difference doesn’t exceed
v_N, then the distribution is fair. But wait, the problem mentions that the distribution is fair if
for every possible array of toy values, the difference doesn’t exceed v_N. That seems quite broad
because it implies that no matter how the toy values vary (as long as they’re non-decreasing), the
difference shouldn’t get too big. ... (omitted) ... Let me think differently. ... (omitted) ... I need
to find a different approach. Explanation - **Reading Input**: The code reads the number of
test cases and processes each test case individually. - **Counting Toys**: For each distribution,
it counts how many toys Alice receives (‘k’). - **Calculating Sums**: It calculates the sum of
the values of the top ‘k’ toys and the sum of the values of the bottom ‘N - k’ toys. - **Checking
Fairness**: It computes the absolute difference between these sums and checks if it is less than or
equal to the highest toy value. If it is, the distribution is deemed fair; otherwise, it is not. This
approach ensures that we efficiently determine the fairness of the distribution by leveraging the
properties of non-decreasing toy values and the constraints imposed by the problem.
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Free-form (FF) trained: Okay, so I’m trying to solve this problem where I have to determine
if a given distribution of toys between Alice and Bob is fair based on certain conditions. Let
me try to understand the problem step by step. So, the problem says that a distribution is fair if,
regardless of how the actual toy prices (which are in strictly increasing order) are assigned, the
absolute difference between the sums of Alice’s toys and Bob’s toys doesn’t exceed the maximum
toy price among them. Wait, more formally, for every possible array of toy prices v_1 <= v_2
<= ... <= v_N, the absolute difference |sum_A - sum_B| must be <= max_v, where max_v is the
largest toy price. Hmm, wait, because the max_v is the last element in the sorted list. So max_v
= v_N, since they’re in order. But the condition needs to hold for all possible assignments of v_i’s.
That makes sense because the distribution is fair no matter what the actual prices are so even the
worst-case scenario must satisfy the condition. Our task is, given S (the binary string indicating
which toys go to whom), to decide whether this condition holds for all possible toy price arrays.
I think the key here is to find out under what circumstances the maximum possible |sum_A -
sum_B| across all possible v arrays is less than or equal to v_max. ... (omitted) ... Explanation -
**Reading Input**: The input is read in one go for efficiency, especially given the constraints. -
**Prefix Sum Calculation**: For each test case, we calculate the prefix sums of the values of toys
Alice and Bob receive. Here, the values are assumed to be sequential integers starting from 1. -
**Fairness Check**: Using the derived condition, we check if twice the sum of the values of the
toys Alice receives is less than or equal to the total sum of all toy values. If this condition holds,
the distribution is fair; otherwise, it is not. This approach efficiently determines the fairness of
the distribution by leveraging prefix sums and ensuring the solution handles up to the maximum
constraints effectively.

Pattern analysis for MC: ... The response is more structured and attempts to break down the
problem logically. ... It attempts to break down the problem ... model attempts to provide a
clear step-by-step guide. Model also tends to generate multiple hypotheses, demonstrating an
inclination toward broadly exploring potential answers.

Pattern analysis for FF: ... response is lengthy and somewhat convoluted. It goes through a lot
of reasoning but does not arrive at a clear solution or code implementation. ... does not provide
a clear answer to the problem or a working code solution. It gets lost in the reasoning without
concluding with a practical implementation. ... The response is excessively verbose, making it
difficult to extract useful information quickly. Model exhibits a tendency to pursue answers by
continuously verifying hypotheses within a main framework
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Table 22: reasoning strategies in error diagnosis: Multiple-choice versus free-form trained
models. This table compares how models trained on different data formats approach technical trou-
bleshooting on question of Arena-Hard benchmark. The multiple-choice trained model demonstrates
structured analysis with clear step-by-step reasoning and actionable recommendations, while the
free-form trained model exhibits a more repetitive pattern with frequent restating of observations.
This comparison highlights how training format influences problem-solving strategies in diagnostic
contexts.

Question: Find root cause for this error: sshd[54785]: error: kex_exchange_identification:
Connection closed by remote host

Multiple-choice format (MC) trained: Okay, so I need to figure out the root cause of the error
"kex_exchange_identification: Connection closed by remote host" in a KEX application. Let me
break this down step by step. First, I understand that KEX is a protocol used in blockchain
technologies, often in contexts like Solana, Monero, or others that use zero-knowledge proofs.
The error message suggests that when the application tries to connect to KEX, it’s closing the
connection, which happens on a remote host. That makes me think about how the application is
handling network connections. I remember that in many networked applications, especially
those involving distributed systems, it’s crucial to handle connections properly. ... (omitted) ...
I can consider the possibility of a transient network issue causing the connection to be closed.
This could include temporary network outages or fluctuations in the network. Implementing
a retry mechanism or error handling in the application could provide a fallback plan in case
of unexpected network issues. In summary, the root cause is likely related to the application
not handling network connections properly, possibly by not waiting for network confirmation
or by not checking the status of the remote host before attempting a connection. To fix this,
the application should ensure that network status is checked, connections are confirmed before
sending requests, and appropriate error handling is in place. ... (omitted) ... By following these
steps, the application can better handle network connectivity issues, ensuring that connections are
not closed unexpectedly. This approach will involve code adjustments, network status checks, and
error handling mechanisms to provide a more reliable connection process.

Free-form (FF) trained: The error occurs when I run the code as follows: So, the error is
that kex_exchange_identification is closed by a remote host. So, the code is trying to get a new
exchange (kex) from a remote host, but it’s not working because the connection to the remote
host is closed. I think that the problem is that the code is not correctly handling the authentication
for the exchange. ... (omitted) ... Looking at the code, I see that the exchange is being fetched
with the ’exchange’ parameter. But perhaps the way it’s being handled is incorrect. Wait,
in the code, the exchange is being fetched using exchange = get_kex_exchange(exchange). But
in the code, it’s not passing any headers or authentication parameters. Wait, in the code, the
‘exchange’ is being fetched without any headers or with the wrong parameters.

Pattern analysis for MC: ... provides a structured and relevant analysis of the error. It identifies
potential causes and offers a clear troubleshooting approach, including checking network status,
allowing for network confirmation, and implementing error handling ... The response is helpful
and concise, directly addressing the user’s prompt and providing actionable steps to resolve the
issue ...

Pattern analysis for FF: ... response is largely verbose. It does not provide a clear explanation
of the error or its potential causes. ... Instead, it seems to get lost in a repetitive and unclear
narrative about code handling without addressing the actual error message or providing actionable
troubleshooting steps.

43


	Introduction
	Related Work: Analyzing reasoning strategies of models
	The CoT Encyclopedia
	A framework for taxonomizing reasoning strategies
	CoT Encyclopedia enables sharper reasoning strategy classification
	CoT Encyclopedia enables adaptive analysis across diverse tasks

	Enhancing model helpfulness and safety via optimal reasoning control
	Exploring optimal reasoning strategies for helpfulness and harmlessness
	Similar inputs, Similar thoughts: How models approach related problems
	Predicting question‑specific optimal reasoning strategies

	Analyzing pathways to reasoning strategies: Data selection and interpolation
	Format matters more than domain in shaping reasoning strategies
	Impact of training data format on model reasoning behavior
	Interpolating desired reasoning strategies through model merging

	Extended Analyses and Ablations in Appendix
	Conclusion
	Implementation details
	CoT Encyclopedia details
	Statistical test details
	Human evaluation details
	Benchmark evaluation details
	Training details
	Computing resources

	Further Analyses and Ablations
	Fine-grained benchmark-specific criteria analysis
	Ablation study on representative embedding selection
	Consistency of reasoning strategies across model sizes within the same family
	Extending reasoning strategy analysis to non-reasoning models
	Ablation Studies for CoT Encyclopedia
	Robustness Across Random Seeds
	Robustness Across Models and Sizes
	Application of the Framework for Curating Improved Reasoning Datasets
	Performance of Reasoning Pattern Prompting on Smaller Models

	Broader Impact
	Limitations
	Reproducibility Statement
	LLM Usage Statement
	Prompts
	Qualitative Analyses
	Comparative Analysis of CoT Encyclopedia Outputs and Pre-defined Criteria
	Divergent reasoning strategies from Multiple-Choice vs. Free-Form Training Data


