Influence Guided Context Selection for Effective
Retrieval-Augmented Generation

Jiale Deng, Yanyan Shen*, Ziyuan Pei, Youmin Chen, Linpeng Huang
Shanghai Jiao Tong University
{jialedeng, shenyy, pzy_live, chenyoumin, lphuang}@sjtu.edu.cn

Abstract

Retrieval-Augmented Generation (RAG) addresses large language model (LLM)
hallucinations by grounding responses in external knowledge, but its effectiveness
is compromised by poor-quality retrieved contexts containing irrelevant or noisy
information. While existing approaches attempt to improve performance through
context selection based on predefined context quality assessment metrics, they
show limited gains over standard RAG. We attribute this limitation to their failure
in holistically utilizing available information (query, context list, and generator)
for comprehensive quality assessment. Inspired by recent advances in data se-
lection, we reconceptualize context quality assessment as an inference-time data
valuation problem and introduce the Contextual Influence Value (CI value). This
novel metric quantifies context quality by measuring the performance degradation
when removing each context from the list, effectively integrating query-aware rele-
vance, list-aware uniqueness, and generator-aware alignment. Moreover, CI value
eliminates complex selection hyperparameter tuning by simply retaining contexts
with positive CI values. To address practical challenges of label dependency and
computational overhead, we develop a parameterized surrogate model for CI value
prediction during inference. The model employs a hierarchical architecture that
captures both local query-context relevance and global inter-context interactions,
trained through oracle CI value supervision and end-to-end generator feedback.
Extensive experiments across 8 NLP tasks and multiple LLMs demonstrate that
our context selection method significantly outperforms state-of-the-art baselines,
effectively filtering poor-quality contexts while preserving critical information.
Code is available at https://github.com/SJTU-DMTai/RAG-CSM.

1 Introduction

Retrieval-Augmented Generation (RAG) has emerged as a powerful approach for mitigating hal-
lucinations in large language models (LLMs) by grounding their responses in external knowledge
sources [4,119,124]. A typical RAG pipeline consists of two core components: a retriever that searches
for query-relevant contexts from external knowledge sources, and an LLM generator that produces
responses using the retrieved contexts. Despite its advantages, RAG faces important challenges in
practical applications. That is, external knowledge sources may contain substantial noisy data, and
retrievers based on similarity metrics are inherently imperfect [54]. As a result, retrieved contexts
often include irrelevant and noisy information [[12,154}157]]. This issue is particularly problematic as
LLM generators tend to rely heavily on the provided contexts [12} 131} 38]], potentially producing
incorrect responses when provided with poor-quality contexts.

Recent work [8, 20, 47, 157, 58] proposed context selection to shield generators from poor-quality
contexts. This strategy depends on context quality assessment, which assigns a quality score to
each context to guide the selection process. Without loss of generality, the contexts are evaluated
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“Who is the vice
president during
Donald Trump’s
second term of
US president? ”

C1: “Michael Richard Pence is the 48th
vice president of the United States
under President Donald Trump. ”

C3: “In 2024, Trump defeated vice
president Kamala Harris in the election
and was elected 47th President of the US.”

C2: “Donald Trump inaugurated as the 47th
President of the US on January 20, 2025. He
was the 45th president from 2017 to 2021. ”

C4: “Vance was elected in November 2024 and
was sworn in as the first millennial Vice President
of the United States on January 20, 2025. ”
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Figure 1: An example demonstrating different context quality metrics in practice. co and c4 are golden
contexts containing crucial information about Trump’s second presidency and his vice president Vance.
Query-aware metrics favor ¢; and cs due to their mentions of “Trump” and “vice president”. List-
aware metrics score co and ¢4 higher by considering context relationships, but still favor ¢;.Generator-
aware metrics assign low scores to c; as it’s redundant with LLM knowledge. CI value, by integrating
all three dimensions, correctly identifies ¢, and c,4 as the most informative contexts.

across three complementary dimensions: (1) query-aware metric that measures the semantic
relevance between context and query, implemented through point-wise rerankers [8, 20, 37, 41]];
(2) list-aware metric that considers relationships among multiple contexts, optimized through
pair-wise and list-wise rerankers [29} 130, |34} 136} |53]] to prompt diversity and complementarity in
the selected contexts; and (3) generator-aware metric that evaluates how contexts align with the
generator’s existing knowledge, using metrics such as log likelihood [51] or mutual information
with generated responses [47,57]. However, our empirical studies in Section [6.1|demonstrate that
these metrics achieve limited effectiveness in context selection, sometimes even reducing RAG
performance [19]. As illustrated in Figure [T} query-aware and list-aware metrics lack generator
feedback, potentially selecting contexts that duplicate or contradict generator’s knowledge [[12, 154].
Meanwhile, generator-aware metrics ignore inter-context relationships, risking the omission of critical
information. Moreover, selection parameters such as top-k (number of contexts to keep) must be
specified in advance [[18|35]], with optimal configurations varying significantly across different tasks,
making it challenging to achieve ideal selection performance in practice.

Recent progress in training data valuation has shown promising results for selecting high-quality
training samples and enhancing ML model performance [17,!44]]. One key data valuation metric is data
influence [22}56], which quantifies a sample’s importance by measuring the validation performance
decrease when removed from the training set. Inspired by this, we reconceptualize context quality
assessment as an inference-time data valuation problem and introduce the Contextual Influence
value (CI value) for RAG context selection. Given a query g, context ¢; € C, and generator f, CI
value is defined as ¢;(v) = v(f(¢ @ C)) — v(f(g ® {C\ci})), where @ represents concatenation
and v(f(+)) is a utility function that measures generator output quality (e.g., EM or F1 scores).
CI value naturally satisfies four key desiderata: (1) query-awareness: query-irrelevant contexts
leads to ¢;(v) = 0, indicating that CI value implicitly captures query-context relevance; (2) list-
awareness: by measuring list-wise marginal contribution, CI value rewards unique and essential
information while penalizing redundant content; (3) generator-awareness: with generator feedback,
CI value effectively distinguishes between contexts that enhance generator performance and those
that diminish it; (4) ease-of-configuration: instead of requiring task-specific top-k tuning, CI value
enables a straightforward selection strategy by keeping contexts with ¢;(v) > 0, i.e., those whose
removal degrades performance.

However, compared to data influence metrics in training data valuation, CI value computation faces
two unique challenges. First, the utility evaluation v(-) depends on access to test labels, which
are unavailable during inference. While some approaches attempt to estimate utility using model
confidence, such heuristics often prove unreliable in practice [7]]. Second, computing exact CI values



requires n LLM forward passes for a n-length context list, substantially increasing inference latency.
To address these challenges, we propose a CI Surrogate Model (CSM) that predicts CI values during
inference. The CSM model is trained on the RAG training set and it can rapidly assign quality scores
to contexts without requiring labels or multiple LLM calls. The approximation effectiveness of CSM
depends on both its architecture and training strategy. Specifically, we employ a hierarchical structure
that captures both local query-context relevance and global inter-context dependencies. For generator
awareness, we explore two training strategies: (1) supervised learning using oracle CI values as
targets, which provides implicit generator feedback; and (2) end-to-end training with the generator in
the loop, which offers explicit signals about each context’s impact.

We validate our framework through comprehensive experiments on 8 real-world NL tasks with 2
LLM backbones. Results demonstrate that our CI value surpasses existing context quality metrics in
identifying high-quality contexts and streamlining selection configuration. Moreover, our proposed
CSM achieves 15.03% average improvement in RAG generation performance over leading baselines.

2 Related Work

Noise Robustness for RAG. RAG systems often encounter poor-quality retrieval results containing
irrelevant and noisy information [47,157]]. These poor-quality contexts not only distract LLMs [|54]]
but can also lead to incorrect responses, as LLMs tend to overly trust external information [12] and
struggle with the “lost-in-the-middle” problem [27]] when processing lengthy contexts. To address
these challenges, recent research has pursued two main approaches. The first approach enhances
model capabilities through supervised fine-tuning [[12, |47, [54] or instruction tuning [48] 53] to
improve LLM noise robustness, or implements sophisticated pipelines like self-ask mechanisms [2]
to guide LLM self-reflection. However, these solutions face practical limitations: fine-tuning LLMs
is computationally expensive, and complex pipelines increase inference latency. The second approach
employs external filters to rerank [30, 134} I50] or refine [8, 20, |47, 51 |57, I58]] retrieval results,
shielding generators from poor-quality contexts. These methods utilize LMs or LLMs as context
selection models, training them through supervised [51] or reinforcement learning [57] based on
quality metrics derived from prior knowledge, such as query relevance [8, 20} 501, log likelihood [51]],
mutual information [47,157]], and so on. However, as discussed in Sectionm these quality metrics
lacks comprehensive utilization of available information (query, context list, and generator), leading
to suboptimal selection performance.

Inference-Time Data Valuation. Data valuation metrics quantify each training example’s contribu-
tion to model performance (e.g., its effect on validation accuracy), which is proven to be effective for
data selection tasks that identify high-quality training samples to improve model performance. A
fundamental approach is Leave-One-Out (LOO), which measures the performance degradation when
removing a training sample, though it requires expensive retraining. Recent work has improved LOO
through two main strategies: (1) influence-based methods [6} 14,22, 156] that approximate LOO by us-
ing gradient and Hessian matrix without full retraining; (2) Shapley value-based methods [[13 17, 144]]
that enhance fairness by modeling complex sample interactions through cooperative game theory.
Recently, inference-time data valuation has emerged as new direction of data valuation, focusing on
assessing data quality of inference data [7]. However, one cannot directly compute the utility due
to the unknown labels during inference. While simple heuristics like model confidence are proven
to be unreliable [7]], current research trains utility prediction models (UPMs) with regression objec-
tives to estimate oracle utility. UPMs have been proven effective in data selection tasks of various
domains [7,133, 146, 156]]. However, UPMs do not directly optimize the predicted data valuation scores
against ground truth values, suffering the risk of error accumulation and inaccurate approximation.

3 Preliminaries

Setup for RAG. A typical RAG system consists of a retriever and an LLM generator f. Given a query
q, the retriever retrieves a list of query-relevant contexts C' = {cy, ..., ¢, } from an external knowledge
base. The generator then takes both the query and the retrieved contexts as input to generate an
answer ¢. Formally, this can be expressed as § = f(¢ @ C'), where @ denotes the combination of the
query and the retrieved contexts, typically implemented as a simple concatenation.



Utility Function. We quantify the effectiveness of retrieved contexts using a utility function v:
2™ — R, which maps any subset S C C' to a real-valued score reflecting its usefulness for answering
the query. For NLP tasks, the utility function is typically defined by comparing the model’s generated
output against the ground-truth answers. Concretely, we set:

Uf,q(S) = max—ﬁ(yj(q@S)), (1)
yeYy
where Y is the set of correct answers, and L is the cross entropy loss.

Definition 1 (Contextual Influence) Given query q, retrieved context list C' and utility function 1E]
the contextual influence value (CI value) for a context c; € C'is defined as:

di(v) =v(C) —v(C\¢;). )

CI value quantifies the utility change when ¢; is removed from the context list. Unlike previous
metrics, it simultaneously captures three key aspects: query-awareness (through q), list-awareness
(through interactions within '), and generator-awareness (through feedback from f). A positive CI
value (¢;(v) > 0) indicates that removing ¢; degrades utility (or increases test loss), suggesting that
c; positively contributes to generation quality, and vice versa. To ensure fair CI value, we remove
semantically duplicate contexts from C' before computing CI values.

Context Selection for RAG. It is commonly formulated as an optimization problem, whose objective
is to maximize the utility of the generator based on the choice of retrieved contexts. Specifically,
given v, the objective of context selection is to identify a subset S7; C C' that optimizes:

Sy = argmaxv(S). 3)

sccC
However, solving Equation (3)) presents significant challenges. The utility function v for the complex
LLM generator lacks a tractable closed-form expression for analytical optimization. A brute-force

approach that simply evaluates the utility of all possible subsets v(,S) would necessitate 2" LLM
generator forwards, which is computationally infeasible in practice as n grows large.

Context Selection via CI value. To avoid the computationally intensive task of enumerating all
possible subsets, we adopt a more practical approach by decomposing group influence into pointwise
influence [11}56]]. Following previous research [44, |56], we aggregate contextual influences through
summation: ¢(v)[S] = >_. g #i(v). Therefore, the context selection strategy based on CI values

aims to maximize ¢(v)[S] as a proxy for optimizing v(.S):

5’¢(v) = argmax ¢(v)[S]. 4)
SccC

Since ¢(v)[S] = 3. cs ¢i(v), S¢(U) consists of contexts with all positive CI values. That is, when
using CI value for context selection, we select all contexts with positive CI values.

4 Methodology

4.1 CI Parameterization via Surrogate Model (CSM)

As established, directly computing CI values during inference is infeasible due to label dependency
and computational cost, requiring a CI surrogate model (CSM) for approximation. Due to the
query-awareness and list-awareness of CI value, our CSM should effectively capture both local
query-context relevance and global list-level interactions. Inspired by recent advances in list-wise
neural rerankers [26] [32], we design CSM with a hierarchical structure (Figure [2)) comprising three
components: (1) a local layer based on BERT-uncased [[10] for query-context pair modeling; (2) a
global layer with self-attention; (3) an MLP-based output layer. Given ¢ and C' = {c1, ..., ¢, }, CSM
first processes each query-context pair (g, ¢;) through the local layer to generate local embeddings
L ={ly,...,1,}, capturing semantic relationships between query and each context. These embeddings
are then mean-pooled and fed into the global layer, where multi-head self-attention computes cross-
context interactions to produce global embeddings G = {g1, ..., g, }. Finally, the output layer maps
these global embeddings into relevance scores M = {my, ..., m, }.

2We omit the subscripts f and ¢ for simplicity.
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Figure 2: Overview of our proposed CSM: (a) CSM model architecture, (b) supervised training
paradigm and (c) end-to-end training paradigm.

To effectively approximate CI value using CSM, we then introduce two training paradigms to establish
generator awareness of CSM: (1) supervised training that implicitly encodes generator feedback
through oracle CI values; (2) end-to-end training that directly propagates generator gradients through
differentiable soft context selection.

4.2 Supervised Training of CSM

Supervised training establishes intrinsically generator awareness through CI value supervision. We
create a training dataset D = {dy, ..., d|p|} by collecting oracle CI values for all query-context pairs
in RAG training dataset, where each sample d; = (g¢;, Y;, C;, ®;) contains a query g;, the answer set
Y;, contexts C; = {¢;,, ..., ¢;, }, their oracle CI values ®; = {¢;, (v), ..., ¢;, (v)}. Following data
valuation research [7, 146, 156[, we frame CSM training as a supervised regression task. However, as
shown in Apendix [A] the CI value distribution is severely imbalanced, with approximately 80% of
contexts having near-zero CI values, while samples with high-CI and low-CI contexts are very rare
(16%). This significant imbalance makes CSM training particularly challenging, which we address
through both data and loss perspectives.

From the perspective of data, we employ a combination of down sampling and data interventions.
We first define the rarity rate of sample d; as r; := u(®;) + « - o(®P;), where p(-) and o(-) represent
the mean and standard deviation, respectively, and « is a balancing coefficient. Using two thresholds
01 < d2, we categorize samples into two distinct groups: (1) Trivial samples D; (r;, < d; for
dt, € Dy), which predominantly contain non-informative contexts; (2) Hard samples Dy, (rp, > d2
for dy,, € Dy,), which contain contexts with high-CI or low-CI contexts. For the majority of trivial
samples, we apply down sampling to reduce their dominance in the dataset. For hard samples, we
implement cross-instance intervention to balance the data distribution by increasing the number of
samples with both high-CI and low-CI contexts. Due to space limitations, we focus on describing
the intervention for constructing samples with high-CI contexts; the analogous process for samples
with low-CI contexts can be found in Appendix [B] The intervention process begins by collecting
hard samples with high-CI contexts, denoted as dy,, = (¢, C; = {CF,CN}, ®;), where CI' =
{ci, |#i, (v) > ~} represents high-CI contexts (y > 0) and C¥ = C;\CF. We then sample
another instance d; = (g;, C;j, ®;) whose query ¢; is semantically distinct from g;. Following the
rationale-environment recombination approach [49]], we create a new sample by:

dn, = (¢, Vi, {CF U Gy}, @), )

where C’j is sampled from C;. This intervention strategy is based on the intuition that when

informative contexts (CZ-P ) are placed in noisier environments (composed of C’j that are irrelevant
to ¢;), their marginal contribution to the context list becomes more pronounced [40], resulting in
elevated CI values for C{. Through this process, we effectively construct additional samples with
high-CI contexts, thereby enriching the training set with more informative samples.



From the perspective of training, we implement a dual-loss strategy combining reweighted re-
gression and contrastive learning. First, we mitigate majority class dominance through importance
weighting:

Linse = Eq,ep[(Si — (I)i)z/p(i)]a (6)
where p(7) represents the empirical frequency of r; in the training distribution. For hard samples, we
employ a contrastive loss term to enhance their discriminative signal:

exp(ge - g+ /T)
c—€eC- exp(ge - ge- /7) +exp(ge - get /T) |

Lets = —E(q,v,c,9)ep), Ecec |log 5 (N

where anchor c is a context from hard samples, positive context ¢ shares similar CI value with ¢
(|pe(v) — @t (v)| < €1), negative contexts C'~ have divergent CI values from ¢ (|¢.(v) — - (v)] >
€2), and 7 is a temperature hyperparameter. The final supervised training loss is the linear combination
controlled by a hyperparameter 5: L = Linse + 5Lcts-

4.3 End-to-end Training of CSM

End-to-end training explicitly injects generator awareness by directly using the generator’s output
as a signal to optimize CSM’s parameters. We denote the training set of end-to-end training by
& = {(4:,Y:,C;)}. A typical end-to-end training paradigm requires computing values for each
context, selecting contexts S = {¢;|¢;(v) > 0} based on these values, and feeding the selected
contexts to the generator for final answer generation. However, this context selection process is
discrete and non-differentiable. To address this, we treat CSM’s output M as a mask and implement
soft context selection during training by masking the generator’s input tokens with /. We employ
the Gumbel-Softmax trick [9, 28] [40] to approximate a binary mask, i.e., M = Gumbel(M). The
generator’s masked input is then reconstructed as: H = H, @ H,, where H, = fiok(q) represents the

tokenized query and H, = Mo ftok (C) denotes the masked tokenized context, with fiok(+) being
the generator f’s tokenizer. Additionally, we construct the complementary masked tokenized context

as Hy = (1 — M) ® fiox(C), which effectively removes high-value contexts before tokenization.
Then, to align mask values with CI value, we design following loss terms:

Esuf = _E(q,Y,C)Gg[YT log(f(Hq @ HC)L (8)
Liec = E(q,Y,C)€£[KL(Yunif7 f(Hq @ Ht)}v 9

where KL(-) denotes the KL-Divergence and Y,i¢ represents the uniform distribution. L,s encour-
ages the generator to produce accurate responses when high-value contexts are provided, ensuring
that these selected contexts contain sufficient information for answer correctly. Meanwhile, L,¢.
penalizes the CSM if the generator still generates correct answers even after the removal of high-value
contexts, thereby discouraging false positive selections in the context selection process and ensuring
that the high-value contexts are necessary for generating correct answers. The overall end-to-end
training loss effectively approximates the CI value by combining both sufficiency and necessity
through a linear combination controlled by hyperparameter A: Leoe = Lgur + ALnec-

5 Experimental Setup

Tasks and Datasets. We consider the following knowledge-intensive NLP tasks: (1) Open-Domain
QA, including NQ [23]], TriviaQA [21]] and WebQA [3]]. (2) Multihop QA that requires multi-step
reasoning to generate answers, including HotpotQA [52] and 2WikiMultiHopQA [15]]. (3) Fact
Checking dataset FEVER [43]] that challenges the model to use complex reasoning to determine the
factual accuracy of given claims. (4) Multiple Choice dataset Truthful QA [25]]. (5) Long-Form QA
dataset ASQA [39] that generating long and abstract answers given the question. Following [19]47],
we report Exact Match (EM) for Open-Domain QA datasets, F1 for Multihop QA and Long-Form
QA datasets, and Accuracy for Fact Checking and Multiple Choice datasets.

Baselines. We consider the following baselines: (1) Vanilla LLM: LLM without retrieval aug-
mentation. (2) Standard RAG: a sequential RAG pipeline using FlashRAG [19] with retrieval
(preserving all retrieved contexts). (3) bge-reranker [50]: a context selection baseline based on
query-aware quality metrics. It leverages a cross-encoder to perform point-wise context reranking.
(4) RankGPT [41]]: a context selection baseline based on list-aware quality. It is a list-wise reranker
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Figure 3: RAG generation performance when selecting contexts using different quality metrics. (a)
Selecting high-quality contexts, where higher curve indicates better metric. (b) Selecting poor-quality
contexts, where lower curve indicates better metric. Dashed line marks the top-k cutoff where the
average CI value is zero and star marks the top-% yielding best performance. For baselines, we use
predicted scores for bge-reranker and RankGPT, and oracle log likelihood scores for RECOMP-ex.

that feeds the whole list into LLM and generates a ordered context list based on their relevance to
query. We use the generator LLM as the lit-wise reranker in our experiments. (5) RECOMP-ex [51]]:
a context selection baseline based on generator-aware quality metrics. Given query g, context ¢; and
ground truth answer y, the quality score of ¢; is log p(y|[g @ ¢;]). It employs the oracle scores train
a BERT-based context selection model with contrastive learning. (6) RECOMP-abs [51]: a context
summarization baseline by distilling a lightweight abstractive compressor from extreme-scale teacher
LLMs like GPT-3.5. (7) Ret-Robust [54]: a generator enhancing baseline by fine-tuning the LLM
via LoRA [16]] to be robust to external noise. (8) Self-RAG [2]: an agentic baseline that performs
on-demand retrieval and learns to reflect on retrieved contexts while critiquing generated answers.
(9) RQ-RAG [5]: an agentic baseline that enhances the RAG pipeline through explicit rewriting,
decomposition, and disambiguation. (10) oracle CI value: context selection based on oracle CI
value, and (11) CSM-st and CSM-e2e: the CI Surrogate Model for context selection, trained by Ly
and Lo, respectively.

Implementation Details. To demonstrate the versatility of our method, we choose two backbones
differing in architecture: Llama3-8b-intruct [1]] and Qwen2.5-7b-instruct [42]. For the retrieval corpus,
we utilize the Wikipedia dump from December 2018, and pre-process it into chunks (100 words
per chunk). We use E5-base-v2 [45]] as the dense retriever and retrieve the top 10 chunks from all
Wikipedia chunks. We follow the FlashRAG benchmark[19] for data, splits and baselines (including
Vanilla LLM, Standard RAG, bge-reranker and RECOMP). We conducted all the experiments on
a server equipped with Montage Jintide(R) C6226R CPU, 256GB Memory, and 4 Nvidia GeForce
RTX 4090 GPUs. Detailed setup of our method can be found in Appendix|[C.3]

6 Experimental Results

6.1 Effectiveness of CI value

This part of experiments aims to prove that CI value serves as an effective metric for context selection,
as it eliminates the need for complex top-k configuration and directly correlates with RAG generation



Table 1: RAG generation performance (%) on 8 downstream tasks with different baselines. The
best results are in bold and the second best are with underscore. The oracle CI values with asterisk
superscript act as a performance reference of our proposed CSM.

NQ TriviaQA WebQA HotpotQA  2Wiki FEVER Truthful QA ASQA
Task type Open-Domain QA Multihop QA Fact Check.  Multiple Choice  Long-Form QA
SKkiyp (EM) (FI) (Acc) (Acc) (FI)
Llama3-8B
VanillaLLM  20.58 52.87 16.39 24.27 23.51 71.52 30.11 31.34
Standard RAG ~ 37.01 62.36 18.21 40.95 24.38 90.76 27.05 34.70
bge-reranker  39.06 64.17 18.85 41.96 25.92 90.57 28.64 33.97
RankGPT  38.61 61.83 19.24 41.53 27.26 78.58 30.11 35.21
RECOMP-ex  29.86 60.67 18.36 39.06 24.55 - - -
RECOMP-abs  32.85 58.77 18.70 39.94 25.57 90.66 30.60 34.02
Ret-robust  41.77 65.83 19.76 45.69 2591 90.69 27.05 34.50
Self-RAG  36.23 38.26 21.83 29.98 25.43 85.77 29.75 32.56
RQ-RAG 3427 55.31 26.12 35.22 26.08 90.13 27.36 33.64
CSM-st  42.53 69.59 24.77 47.53 25.97 91.39 30.97 34.75
CSM-e2e  41.61 67.88 26.05 45.61 26.48 90.74 30.56 33.68
oracle CIval.  45.79* 71.98* 27.81* 48.28* 30.72* 94.58* 32.09* 35.70*
Qwen2.5-7B
VanillaLLM  14.88 41.75 16.54 26.48 29.44 79.61 27.01 30.21
Standard RAG ~ 38.50 63.29 21.51 44.81 33.68 91.14 23.26 33.46
bge-reranker  39.53 63.76 21.70 45.59 34.48 91.05 25.34 33.00
RankGPT  39.14 63.07 21.21 45.70 35.81 90.20 25.83 34.98
RECOMP-ex  35.76 61.08 20.28 42.04 32.47 - - -
RECOMP-abs  31.80 59.26 20.37 42.27 33.57 91.33 32.07 34.70
Ret-robust ~ 42.77 64.65 28.52 44.20 36.98 91.10 23.25 33.57
Self-RAG  44.93 63.29 28.48 45.69 43.27 90.05 27.17 33.28
RQ-RAG 4572 64.33 26.47 49.62 42.75 91.27 28.06 34.59
CSM-st  47.38 65.26 28.54 51.95 48.67 92.98 28.77 34.05
CSM-e2e  46.19 66.35 26.38 49.44 47.23 91.02 27.72 35.62
oracle CIval.  50.64* 69.19* 30.61* 53.78* 49.08* 94.63* 28.56* 36.72*

performance: selecting high-CI contexts improves the performance while low-CI contexts degrade it.
Case studies and detailed experiments on other datasets are provided in Appendix [D]and[E]

Top-% Configuration. As illustrated in Figure [3a] leveraging CI value as context selection metric
eliminates the need for top-£ tuning, as simply preserving contexts with positive CI values consistently
achieves optimal or near-optimal RAG performance. In contrast, other metrics require dataset-specific
top-k configurations, with optimal values varying significantly across datasets (e.g., bge-reranker’s
optimal top-k ranges from 1 for NQ to 10 for TriviaQA). This dataset-dependent variation makes
it challenging to determine a universal top-k value that performs well across different datasets,
highlighting the practical advantage of CI value in context selection.

Context Selection by Adding High-Quality Contexts. The high-quality selection experiment is
performed with the following steps [[17]: For each context quality metric, we preserve a candidate
context set S. S = & initially. We select contexts from the retrieved contexts in descending order
of the quality scores and add them to S. Each time the contexts are selected, we leverage current
S as the reference of generator to answer user queries, evaluate the answer quality using metrics in
Section[5]and plot the performance curve. In an ideal scenario, selecting the most helpful contexts
first should produce a sharp initial performance increase, followed by a decline as lower-quality
contexts are included in S. Figure [3a]illustrates the RAG performance curves from this experiment,
with higher curves indicating superior quality metrics. All metrics outperform the random baseline,
confirming their effectiveness in identifying high-quality contexts. CI value-based selection shows
a consistent pattern aligning with the ideal pattern across datasets, while other baselines exhibit
fluctuating performance as S grows.

Context Selection by Adding Poor-Quality Contexts. We conduct poor-quality context selection
experiments following a similar procedure to high-quality selection, but with contexts added in
ascending order of their quality scores. In contrast to high-quality selection, the ideal performance
curve should initially decline sharply as poor-quality contexts are incorporated into S, then gradually
improve as higher-quality contexts are added. Figure[3b]illustrates the RAG performance curves from
this experiment, with lower curves indicating superior quality metrics. All metrics outperform the
random baseline, confirming their effectiveness in identifying poor-quality contexts. Experimental
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Figure 4: The Spearman correlation (p) of CSM’s predictions with the oracle CI values.

results indicate that CI value’s effectiveness in identifying poor-quality contexts, since its performance
curves are consistently and significantly lower than other baselines.

6.2 Effectiveness of CI Surrogate Models

These experiments evaluate CSM’s effectiveness in improving RAG performance through context
selection, its ability to approximate oracle CI values, and the contributions of different CSM modules.

Overall Generation Performance. Table|I|presents a comprehensive comparison of RAG generation
performance across different baselines. For fair comparison between context selection methods, we
set top-k = 5. Our proposed CSM demonstrates significant improvements across nearly all tasks:
both CSM-st and CSM-e2e achieve the best or second-best results on all eight tasks. In Open-Domain
QA, CSM outperforms all baselines by 21.72% in EM, and it achieves a 19.40% F1 improvement in
Multihop QA, highlighting the crucial role of high-quality contexts in generating correct answers.
Although improvements on TruthfulQA and ASQA are more modest, CSM still ranks first or second
on these tasks. The bge-reranker performs well on simple QA but struggles in complex scenarios (e.g.,
Multihop QA and Long-Form QA), while list-wise RankGPT shows better performance than bge-
reranker in these challenging settings, emphasizing the importance of modeling context interactions.
RECOMP-ex’s performance is sometimes even inferior (e.g., 1.7% lower on ASQA), revealing the
limitations of relying solely on generator feedback for context selection. Ret-Robust emerges as a
strong baseline by enhancing generator at the cost of expensive LLM fine-tuning. It is worth noting
that CSM outperforms advanced agentic baselines (e.g., Self-RAG, RQ-RAG) on most tasks. This
demonstrates that filtering out low-quality contexts yields greater benefits compared to sophisticated
agentic approaches that rely on complex reflection and planning mechanisms.

Approximation Effectiveness. We evaluate CSM’s effectiveness in approximating oracle CI values
using Spearman rank correlation, which measures the strength of monotonic relationships through
the Pearson correlation of ranked values (ranging from -1 to 1, with 1 indicating perfect positive
correlation). As shown in Figure ] both CSM-st and CSM-e2e consistently achieve correlation
coefficients above 0.75 across all tasks for both Llama3-8B and Qwen2.5-7B models, demonstrating
strong alignment between CSM’s predictions and oracle CI values.

Ablation Studies. We conduct ablation stud-

ies on both CSM-st and CSM-e2e variants t0  Taple 2: Ablations on training strategy of CSM.
validate our training strategies, and present the

results in Table E} For CSM-st, removing NQ TriviaQA WebQA HotpotQA
data intervention causes an average performance CSM-st 42.53 69.59 24.77 47.53
drop of 11.98%],, highlighting the importance wlointerv. 37.67 6291 19.23 45.38
of cross-instance intervention in creating bal- wio Lets 4082 65.39 20.19 45.82
anced training samples. The removal of con-  CSM-e2e 4161  67.88 26.05 45.61
trastive loss leads to an average 8.04%) de- z;g 22:‘0 gggg 23232 %%;g g:g;‘

crease, demonstrating its effectiveness in en-
hancing supervision for hard samples. For CSM-
e2e, ablating either Lsuf or Lnec results in significant performance drops (10.28%. and 10.93%,
respectively), showing their complementary roles in guiding CSM to retain high-quality contexts
while filtering out poor-quality ones.



Inference-time Latency. The efficiency of Table 3: Inference-time latency (ms) comparison be-
RAG systems primarily depends on the pa- tween CSM and baselines.
rameter size of the context selection model

when keeping the retriever and generator NQ TriviaQA HotpotQA
the same. Table [3] presents CUDA times n=10 n=50 n=10 n=50 n=10 n=50
(from context selection to generation) of ~ Standard RAG 320 811 252 810 261 814

: : : RankGPT 874 1437 779 1561 741 1640
different context selection baselines w.r.t.  peasin o D00 (S 054 a1 202 994

the number of retrieved contexts. Since  cgpm 253 481 192 402 206 423
CSM selects all positive contexts, for fair
comparison, we set the number of pre-
served contexts (i.e., top-k) for the baselines equal to the average number of contexts with positive CI
values (i.e., kpos). For n = 10, we set top-k = ko5 = 5, and for n = 50, we set top-k = kpos = 23.
Compared to baseline methods, CSM achieves significantly lower inference latency by leveraging the
lightweight model architecture detailed in Figure 2] This efficiency advantage becomes increasingly
pronounced as the number of retrieved contexts increases from n = 10 to n = 50. For example, on
the NQ dataset with n = 50, CSM reduces latency to 481 ms, far outperforming RankGPT (1437 ms)
and RECOMP-abs (662 ms) under the same condition. This result clearly demonstrates that CSM
scales more efficiently with the growth of n, maintaining low latency even when handling a larger
volume of retrieved contexts.

7 Conclusion

This paper introduces the Contextual Influence (CI) value, a novel metric for selecting high-quality
contexts that enhance RAG performance. The CI value improves upon existing metrics by simultane-
ously possessing four desirable properties, i.e., query-awareness, list-awareness, generator-awareness
and ease-of-configuration. We propose a parameterized surrogate model (CSM) to predict CI values
during inference. To ensure high prediction accuracy, CSM features a hierarchical architecture that
evaluates both query-context relevance and interactions between different contexts. We explore
two approaches to optimizing CSM, i.e., supervised learning using oracle CI values and end-to-end
training incorporating generator feedback. Empirical studies across 8 NLP tasks and 2 LL.M back-
bones demonstrate that the CI value effectively distinguishes high-quality contexts from lower-quality
ones, and our proposed CSM outperforms context selection baselines with an average RAG gener-
ation performance improvement of 15.03%. While CSM is effective and lightweight, its training
remains challenging and currently requires task-specific optimization. Future research should focus
on developing a universal context selector capable of generalizing across different tasks.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Abstract and Section[Il
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Section[/|and supplementary materials.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: the paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: in Section[5]and supplementary materials we provide full details about our
implementation and training process.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: all the models and data we use are publicly available and we carefully cite
each paper.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Section[3]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Section[6]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Section[3l
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: reviewed and confirmed.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: in Section[I]
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: all the data and model we use is publicly available.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: reviewed and confirmed.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: n/a
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: n/a
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: n/a
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: n/a
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Distribution Analysis for CI Value

We first analyze the distribution of CI values. For a given context, the larger the absolute value of its
CI value, the greater its impact on RAG performance (both positive and negative impacts). Conversely,
when the absolute value approaches zero, it indicates that the context has minimal influence on RAG
performance. Figure [3]illustrates the CI value distribution across different datasets, where the x-axis
represents the scaled CI value (we scale CI values into the range of [—1, 1] without changing their
relative ranking) and the y-axis shows the number of contexts. The CI value distribution exhibits
severe imbalance, with the majority of contexts having near-zero CI values. Taking NQ as an example,
77.94% of contexts have absolute CI values lower than 0.1, indicating that a substantial portion of
contexts contribute little to RAG generation performance. These contexts are likely query-irrelevant
or redundant with the generator’s parameter knowledge. In NQ, only 3.40% of contexts have absolute
CI values higher than 0.3, suggesting that very few contexts significantly influence RAG performance,
either positively or negatively. However, these contexts are precisely the key ones that we need to
either select or eliminate to optimize RAG performance.
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Figure 5: CI value distribution on different datasets, with Llama3-8B as generator.

We then analyze the distribution of rarity rates for supervised training samples in Figure[6] The
rarity rate of a sample d; is defined as r; := p(®;) + o - 0(®;), where p(-) and o(-) represent the
mean and standard deviation, respectively, and « is a balancing coefficient set to 10. To categorize
the training samples, we employ two thresholds §; and 02 (where §; < d2), dividing them into
two distinct sets: the trivia sample set D; and the hard sample set D;,. Specifically, any sample
di, € Dy satisfies 7, < d1, while any sample dj,, € Dj, satisfies rp, > J2. In our experiments, we
set 91 = do = 5. Hard samples are characterized by containing contexts with relatively high or low
CI values within their corresponding context lists. However, the proportion of hard samples is notably
small. Taking NQ as an example, only |Dy,|/|D| = 15.61% of the samples fall into the hard sample
category, indicating that a small fraction of samples contain contexts that are either highly beneficial
or detrimental to RAG generation performance.
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Figure 6: Rarity rate distribution on different datasets, with Llama3-8B as generator.

In summary, through our analysis of CI value distribution in real-world data, we observe that only a
small fraction of contexts exhibit either high or low CI values, and these contexts are concentrated
in a limited number of training samples. However, these underrepresented contexts are precisely
the ones whose patterns we need to learn, as they represent the contexts that significantly influence
RAG performance. The severe imbalance in the data distribution poses significant challenges for our
CSM'’s generalization capabilities within the supervised learning paradigm. To tackle this issue, we
introduce a novel solution that simultaneously addresses the imbalance problem from both data and
loss perspective.

B Data Intervention

In this section, we present our approach for performing data intervention to increase the number
of hard samples containing low-CI contexts. We begin by collecting hard samples with high-CI
contexts, denoted as d, = (¢;, C; = {CF,CN}Y, ®;), where CF = {c;, |#i, (v) > 7} represents
the set of high-CI contexts (y > 0) and C¥ = C;\C? represents the remaining contexts. Next, we
sample another instance d; = (¢;, C;, ®;) whose query ¢; is semantically distinct from ¢;. We then
construct a new sample through the following intervention:

dn, = (q;,Y5,{CF U C;},9)), (10)

where C; is a subset sampled from C;. Since contexts in Ci¥ are considered positively relevant
to query ¢;, and given that g; is semantically distinct from g;, these contexts should be considered
irrelevant for g; and their corresponding CI values should be low. This intervention process effectively
generates additional samples containing low-CI contexts, thereby enriching our training set with more
informative samples that better represent the challenging cases encountered in real-world scenarios.
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Table 4: Detailed data statistics for CSM training.

Task Dataset Name #train #Dev #Test

NQ 79,168 8,757 3,610

Open-Domain QA TriviaQA 78,785 8,837 11,313

WebQA 3,022 756 2,032

. HotpotQA 72,357 18,090 7,405

Multihop QA 2Wiki 12,000 3,000 12,576

Fact Checking FEVER 83,972 20,994 10,444
Multiple Choice Truthful QA 327 82 408
Long-Form QA ASQA 3,482 871 948

Table 5: Comparison between different RAG context selection methods from their design principles.

Method Query-awareness List-awareness  Generator-awareness  Ese-of-configuration
bge-reranker v X X X
RankGPT v v X X
RECOMP-ex v X v X
RECOMP-abs v v X X
CSM v v v v

C Detailed Experimental Setup

C.1 Dataset Details

Table [ presents the dataset statistics, which are publicly available from [19]]. For datasets without a
provided test set, we utilize the development set as the test set and perform a split on the training
set, allocating 80% as training set and 20% as dev set. Note that for experiments in Section 6.1 and
Appendix [D] we evaluate the context selection experiments (adding high/poor-quality contexts) on
the first 1000 test samples. As demonstrated in [[19], the baseline performance on this subset closely
mirrors the performance on the complete test set.

C.2 Baseline Setup

In Table[5] we present a detailed comparison of various context selection methods, emphasizing their
real-world applicability. This comparison focuses on four key aspects: (1) Query-awareness: whether
the method incorporates query-context relevance in measuring context quality. (2) List-awareness:
whether the method considers the context list information in measuring context quality. (3) Generator-
awareness: whether the method takes into account generator feedback in measuring context quality.
(4) Ease-of-configuration: whether the method eliminates the need for tuning the hyperparameter
top-k across different tasks. These aspects collectively ensure the practical usability of the methods
in real-world scenarios. We follow [[19] for setting up baselines, whose details can be found in the
official websitel|

C.3 Implementation Details of CSM

CSM Model Architecture. Our model architecture consists of three main components: (1) a pre-
trained BERT-uncased [[10] model serving as the local layer, (2) a global layer comprising 3 layers of
8-head self-attention layers, and (3) a 2-layer MLP functioning as the output layer.

RAG Pipeline. We implement a sequential RAG pipeline following FlashRAG [19]. The retrieval
source is the Wikipedia dump from December 2018, which we preprocess into chunks of 100 words
each. For each query, we retrieve 10 chunks using a dense retriever based on the E5-base-v2 [45]

*https://github.com/RUC-NLPIR/FlashRAG/blob/main/docs/original_docs/baseline_
details.md
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Figure 7: RAG generation performance when selecting high-quality contexts using different quality
metrics, where higher curve indicates better metric. Dashed line marks the top-k cutoff where the
average CI value is zero and star marks the top-k yielding best performance. For baselines, we use
predicted scores for bge-reranker and RankGPT, and oracle log likelihood scores for RECOMP-ex.

model. We use Llama3-8b-intruct [1]] and Qwen2.5-7b-instruct [42] as the LLM generators. All
experiments are conducted with a fixed random seed of 2024 for reproducibility.

Hyperparameter setting. In our experiments, we employ the following hyperparameters: for
supervised training, we set 7 = 1 and 5 = 0.1 and train CSM for 10 epochs with a batch size of 16;
for end-to-end training, we set A = 1 and train CSM for 10 epochs with a batch size of 4.

D Additional Experiments on Effectiveness of CI Value

In Figure [7)and Figure[8] we present additional experiments focusing on context selection by adding
high-quality contexts and poor-quality contexts, respectively. Our comprehensive experiments across
diverse datasets consistently show that employing CI value as a quality metric for context selection
proves to be an effective strategy, successfully identifying crucial contexts while simultaneously
eliminating detrimental ones.

E Case Studies

To illustrate the efficacy of the CI value metric for context selection in a RAG system, we present
specific case studies in this section.

E.1 Case Study 1

As illustrated in Figure[J] this case encompasses retrieved contexts for a query from NQ dataset and
the corresponding predicted answers under different conditions. In this case, the CI value can identify
valid information, enabling the generator to produce the correct answer. Our key observations are
as follows: When all retrieved contexts (c1, c2, c3, and c4) are supplied to the LLM, contexts with
negative CI values significantly distort the generated response. Specifically, c;, characterized by a CI

value of ¢ (v) = —0.19, incorrectly conflates Toyota’s arrival in El Salvador in 1953 with its entry
into the United States market, that leads to incorrect prediction "May 1953". Similarly, ¢, with a CI
value of ¢o(v) = —0.14, misrepresents Toyota’s initial entry into the U.S. market as an export event
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Figure 8: RAG generation performance when selecting poor-quality contexts using different quality
metrics, where higher curve indicates better metric. Dashed line marks the top-k cutoff where the
average CI value is zero and star marks the top-k yielding best performance. For baselines, we use
predicted scores for bge-reranker and RankGPT, and oracle log likelihood scores for RECOMP-ex.

in June 1958. Meanwhile, ¢4, with ¢4(v) = 0, focuses on Toyota’s early corporate history, which
is tangential to the query regarding its U.S. market entry, thus rendering it contextually irrelevant.
These query-irrelevant contexts occupy the context window of LLM and increase the inference time
without improving its performance. In contrast, when only the context with a positive CI value, c3
(¢3(v) = 1.01), which correctly states that Toyota entered the American market in 1957, is included
in the input, the LLM produces the accurate answer. This case study underscores the critical role of
CI values in filtering out deleterious and extraneous information, thereby enabling more accurate and
reliable predictions in RAG frameworks.

E.2 Case Study 2

Figure [T0] presents another illustrative example from the NQ dataset. When all retrieved contexts are
provided to the LLM, contexts with negative CI values significantly distort the generated response,
leading to the incorrect answer "Cars". Our analysis reveals that context cs is the primary cause of the
incorrect generation, as it contains mentions of "Cars" with the Oscar reward, resulting in a negative
CI value of ¢2(v) = —0.14. In contrast, context ¢1, which contains the correct answer "Ratatouille",
receives a relatively high CI value of ¢;(v) = 0.57. Meanwhile, context ¢, which discusses the
movie "WALL-E" and its pity for not winning the Oscar, and context ¢4, which covers the history of
Pixar studio, both receive CI values close to zero, indicating that their presence does not contribute to
answering the question correctly.

E.3 Case Study 3

Figure [TT] presents another illustrative example from the HotpotQA dataset. To answer the question
"Which was fought earlier in US’s history, the Seven Days Battles or the Battle of Manila?", one
must provide accurate information about both historical events. However, the "Battle of Manila"
presents an inherent ambiguity due to multiple battles bearing this name throughout history. The
question’s specification of "in US history" helps narrow the scope, indicating that we should only
consider the Battle of Manila that occurred after the United States’ establishment. Our analysis
reveals that contexts c3 and cy4, which discuss the Battle of Manila in Philippine history prior to
the US’s founding, are potentially misleading and receive negative CI values (¢3(v) = —0.32 and
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Query: When did Toyota first come to the United States?
Golden Answer: 1957

Retrieved Contexts

C
“... By the end of the decade, Toyota had established a worldwide presence, as the company had exported
its one-millionth unit. The first Japanese vehicles to arrive in North America were five Land Cruisers in El

Salvador in May 1953.” ¢$,(v) =-0.19

@

“...Toyota's first export to the United States began with 30 Crown Deluxe's in June 1958 after establishing
Toyota Motor Sales USA the previous October, the first directly managed retail dealer (Hollywood Toyota)
the previous February, U.S. wholesale and import companies.” ¢,(v) = —0.14

C

“...However, when Toyota eventually entered the American market in 1957 with the Crown, the name was
not well received due to connotations of toys and pets. The name was soon dropped for the American
market, but continued in other markets until the mid-1960s...” ¢3(v) = 1.01

“The history of Toyota started in 1933 with the company being a division of Toyoda Automatic Loom Works
devoted to the production of cars under the direction of the founder's son, Kiichiro Toyoda. Kiichiro Toyoda
had traveled to Europe and the United States in 1929 to investigate automobile production and had begun
researching gasoline-powered engines in 1930. Toyoda Automatic Loom Works was encouraged to develop
automobile production by the Japanese government, which needed domestic vehicle production, due to

the war with China.” ¢,(v) = 0.00

Prediction w/ full contexts: May 1953 X
Prediction w/ contexts of positive Cl values: 1957 J

Figure 9: Case study (test case #138 in NQ dataset) with Llama3-8B as LLM generator.

Query: Which film won the Oscar for best animated feature in 2007?
Golden Answer: Ratatouille

Retrieved Contexts

(o

“... Ratatouille won the Best Animated Feature award at the 2008 Golden Globes; it was also nominated for
5 Academy Awards, including Best Animated Feature and Best Original Screenplay. On February 24, 2008,
Ratatouille won Bird his second Academy Award for Best Animated Feature Film.. ” ¢1(v) =0.57

“Golden Globe Award for Best Animated Feature Film The Golden Globe Award for Best Animated Feature
Film was awarded for the first time at the 64th Golden Globe Awards in 2007. It was the first time that the
Golden Globe Awards had created a separate category for animated films since its establishment. The
nominations are announced in January and an awards ceremony is held later in the month. Initially, only
three films are nominated for best animated film, in contrast to five nominations for the majority of other
awards. The Pixar film Cars was the first recipient of the award” ¢,(v) = —0.14

C

“At the 81st Academy Awards, in which WALL-E won the award but was not nominated for Best Picture,
despite receiving widespread acclaim from critics and audiences and being generally considered one of the
best films of 2008...” $3(v) = —0.02

Cy
. “...In 2007, Pixar released Meet the Robinsons, which experienced a poor response at the box office despite
the lukewarm critical and audience reception. The following film, 2008's Bolt had the best critical reception
of any Disney animated feature since Lilo & Stitch, and became a moderate success.” $.(v) = 0.03

Prediction w/ full contexts: Cars Y
Prediction w/ contexts of positive Cl values: Ratatouille J

Figure 10: Case study (test case #143 in NQ dataset) with Llama3-8B as LLM generator.
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Query: Which was fought earlier in US history, the Seven Days Battles or the Battle of Manila?
Golden Answer: The Seven Days Battles

Retrieved Contexts

C
“The Seven Days Battles were a series of seven battles over seven days from June 25 to July 1, 1862, near
Richmond, Virginia, during the American Civil War. Confederate General Robert E... ” $1(v) = 0.21
1 o .

C
“The Battle of Manila (Filipino: Labanan sa Maynila; ), the first and largest battle of the Philippine—American
War, was fought on February 4-5, 1899, between 19,000 American soldiers and 15,000 Filipino armed

militiamen...” ¢,(v) =0.23

C
“The Battle of Manila (Filipino: Labanan sa Maynila) (1365) is an unspecified and disputed battle occurring
somewhere in the vicinity of Manila between the forces of the kingdoms in Luzon and the Empire of

Majapahit...” ¢3(v) =—-0.32

“...Websites Battles of La Naval de Manila The Battles of La Naval de Manila () were a series of five naval
battles fought in the waters of the Philippines in the year 1646, in which the forces of Spain repelled various
attempts by forces of the Dutch Republic to invade Manila, during the Eighty Years' War. The Spanish forces,
which included many native Kapampangan volunteers, consisted of two, and later, three Manila galleons, a
galley and four brigantines...” ¢s(v) = —0.14

Prediction w/ full contexts: The Battle of Manila (1365) X
Prediction w/ contexts of positive Cl values: The Seven Days Battles J

Figure 11: Case study (test case #157 in HotpotQA dataset) with Llama3-8B as LLM generator.

¢4(v) = —0.14). These contexts could lead the generator to produce incorrect answers. In contrast,
contexts c; and cz, which contain the correct temporal information about both the Seven Days Battles
and the relevant Battle of Manila, are assigned positive CI values (¢1(v) = 0.21 and ¢»(v) = 0.23).
The retention of these contexts enables the generator to produce the correct answer.
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