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Abstract

Auto-regressive decoding is a memory-bound001
job, meaning decoding inference performance002
is limited by the bandwidth rather than the com-003
putational capabilities of the GPU. Weight-only004
quantization is a promising method to address005
the memory-bound limitations. Previous stud-006
ies have followed one of two approaches. Some007
have exclusively studied integer quantization008
while ignoring the Gaussian distribution nature009
of LLMs’ weights. Others have proposed non-010
uniform quantization but incurred additional011
memory overhead due to lookup tables. In012
this work, we extend the float-point standard013
to the ExMy quantization schema, which al-014
locates x bit for the exponent and y bit for015
the mantissa to represent a number. In terms016
of runtime efficiency, we demonstrate that the017
conversion from ExMy to FP16 can be real-018
ized through register-level operations, which019
can get almost the same performance as INT5.020
In terms of quantization loss, we analyze that021
of different ExMy settings, where the E2M2022
schema achieves an optimal balance, offering023
the highest efficiency with lossless accuracy.024
We further propose the FPE2M2 framework025
that supports lossless weight-only quantization026
inference and validate the FPE2M2 framework027
on Qwen and LLaMA Models across various028
modalities, such as text, image, and audio tasks,029
which achieves a faster inference speed while030
maintaining nearly lossless accuracy.031

1 Introduction032

LLMs have demonstrated outstanding performance033

and potential for various tasks. However, the high034

cost of inference has limited their application in035

practical commercial scenarios. Specifically, the036

pipeline of LLM inference can be divided into two037

stages: pre-filling and decoding. Owing to the auto-038

regressive nature of LLMs, the decoding stage is039

afflicted by the I/O bottleneck, as it generates only040

one token at a time. These challenges motivate the041

research on model compression techniques aiming 042

to alleviate the bottleneck. 043

Quantization is a prevalent model compression 044

technique that represents weights with lower pre- 045

cision. When the compression ratio is high, for 046

instance, 4-bit quantization, the loss in accuracy 047

becomes non-negligible. Previous studies (Fran- 048

tar et al., 2022; Lin et al., 2023) employ calibra- 049

tion sets to adjust the weights of LLMs for re- 050

duced quantization loss. Nevertheless, the quan- 051

tized LLM may over-fit the calibration set and ex- 052

hibit poor performance on unseen data, as noted 053

by (Williams and Aletras, 2024). From another 054

perspective, those works primarily focus on integer 055

quantization, which overlooks the characteristic 056

that model weights adhere to Gaussian distribution. 057

(Dettmers et al., 2024) observes the characteristic 058

and introduces a non-uniform quantization schema 059

to decrease quantization loss further. However, the 060

conversion from non-uniform quantized values to 061

full precision values relies on lookup tables. No- 062

tably, accessing the lookup table can incur signifi- 063

cant overhead during the memory-bound decoding 064

stage. 065

This work extends the IEEE 754 floating-point 066

standard to a low-bit schema. Specifically, a float- 067

ing point with an x-bit exponent and a y-bit man- 068

tissa is denoted as ExMy. ExMy differs from the 069

previous standard by replacing Infinity and Nan 070

with regular numbers. Based on our observation, 071

the conversion between ExMy and FP16 can be 072

accomplished by register-level operations, obviat- 073

ing the need for lookup tables. Furthermore, we 074

comprehensively analyze the quantization loss for 075

various non-uniform quantization schemes, and 076

FPE2M2 can reach the sweet point of achieving 077

lossless quantization of the minimum bit width. We 078

comprehensively validate the Qwen, LLaMA, and 079

DeepSeek Distillation Models framework on text, 080

image, and audio tasks. We achieve a faster infer- 081

ence speed with negligible loss. Our contributions 082
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are as follows:083

• We review the loss of different bit width allo-084

cation schema and validate that FPE2M2 is085

the lossless quantization with minimum bit086

width.087

• We propose a novel approach for rapid conver-088

sion from FPE2M2 to FP16 with only register-089

level operations, which is highly efficient in090

the memory-bound decoding stage.091

• We further comprehensively validate the092

framework on mainstream LLMs for text, im-093

age, and audio tasks, achieving a faster infer-094

ence with negligible accuracy loss.095

2 Related Work096

2.1 LLM Quantization097

Quantization represents a practical methodology098

for reducing model size and accelerating infer-099

ence. From a serving perspective, quantization100

can be categorized into weight-only and weight-101

activation quantization. Weight-activation quan-102

tization can accelerate computation by leveraging103

low-bit GEMM kernels suitable for compute-bound104

scenarios, namely the pre-filling stage. Qserve105

(Lin et al., 2024) further implement the A8W4KV4106

and better accelerate. LLM.int8() (Dettmers et al.,107

2022) employs mixed INT8/FP16 decomposition to108

handle activation outliers. Subsequent work (Yuan109

et al., 2023) rearranges the channels to reduce the110

variance within one quantization group, further en-111

hancing accuracy. Atom (Zhao et al., 2024) inte-112

grates the reorder technique and mixed INT4/INT8113

precision to maintain accuracy and accelerate com-114

pared to the FP16 baseline. (Ashkboos et al., 2024;115

Liu et al., 2024; Yi et al., 2024) pairwise rotates the116

activation and weight to suppress outliers and main-117

tain output equalization, enabling INT4 inference118

with well-smoothed activations. It should be noted119

that the above methods only serve the compute-120

bound pre-filling stage. Weight-only quantization121

is more suitable for the I/O bound decoding stage,122

as it employs low-bit representations for weight123

matrices, thereby saving memory movement. One124

effective way to reduce quantization error is shrink-125

ing the quantization range, i.e. sub-channel quan-126

tization. In the general case, quantization is per-127

formed on the channel level, which has a much128

less impact on the accuracy than the whole weight129

matrix. Applying sub-channel quantization could130

further reduce the quantization error, but it could 131

result in a remarkable overhead. Orthogonal to 132

Sub-channel quantization, GPTQ (Frantar et al., 133

2022) used Hessian-based error compensation to 134

reduce quantization errors. AWQ (Lin et al., 2023) 135

compressing weight quantization error according to 136

the activation outliers. Those methods can achieve 137

comparable accuracy compared with sub-channel 138

quantization under the per-channel setting. How- 139

ever, they depend on the calibration dataset, which 140

leads to a potential over-fitting problem (Williams 141

and Aletras, 2024). 142

2.2 Non-uniform Quantization 143

Previous works focus on optimizing the quantiza- 144

tion error for integer quantization. However, uni- 145

form quantization naturally causes more errors due 146

to the Gaussian distribution of LLMs’ weights. NF 147

(Dettmers et al., 2024) propose a non-uniform quan- 148

tization structure that fits the Gaussian distribution 149

assumption well and achieves better accuracy than 150

Integer quantization. AFPQ (Zhang et al., 2023) ob- 151

serves LLM’s weights as asymmetric, and applying 152

asymmetric quantization further improves the ac- 153

curacy. LLM-FP4 (Liu et al., 2023) represents FP4 154

in both weight-only quantization and activation- 155

weight quantization and validates the effectivity 156

of FP4. The above methods are all based on 4- 157

bit quantization, which makes it hard to achieve 158

a negligible accuracy drop. Moreover, some of 159

those methods ignore the importance of conversion 160

speed (Liu et al., 2023) or find it hard to optimize 161

the conversion speed (Zhang et al., 2023). 162

3 Preliminaries and Motivation 163

3.1 Definition of ExMy 164

Extending the IEEE 754 standard, the ExMy is 165

represented as a sign bit, exponent bit, which can 166

be represented as: 167

Xnormal = (−1)s2e(1 + d1
21

+
d2
22

+ · · ·+ dm
2m

) 168

Xsubnormal = (−1)s(d1
20

+
d2
21

+ · · ·+ dm
2m−1

) 169

where s ∈ {0, 1} denotes the sign bit, and di ∈ 170

{0, 1} is the mantissa bits. e denotes the exponent 171

parts; the subnormal number has e = 0. To be 172

noticed that the bias of ExMy’s exponent part is 173

0, and the special values, i.e., ‘Nan’ and ‘Inf’, are 174

replaced by regular numbers. An example of E2M1 175

is shown in Figure 1. 176
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E2M1: 2^1 slots per 2^2 interval

60 1 2 3 4 8 12

Figure 1: The positive part of E2M1.
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Figure 2: Preliminary ablation study on different quan-
tization bit width. The evaluation is based on Qwen2.5-
7B with the GSM8K benchmark. ‘128g’ denotes the
Sub-Channel setting with group size 128.

3.2 Rethinking the Sweet Point of177

Quantization178

Based on the binary system, representation with179

2n bits is more conducive for hardware implemen-180

tation, e.g. 2-bit, 4-bit, 8-bit, 16-bit. FP16/BF16181

is widely used for training and inference without182

accuracy loss. Recent works (Dettmers et al., 2022;183

Xiao et al., 2023) show that INT8/FP8 could also184

achieve lossless inference with higher efficiency185

than FP16/BF16. To further improve the efficiency,186

some works quantize the weights into 4-bit or 2-bit.187

The latter option suffers from severe accuracy loss,188

while the former balances efficiency and accuracy.189

As a result, previous works (Frantar et al., 2022;190

Lin et al., 2023) consider 4-bit as a sweet point and191

attempt to restore the accuracy loss based on the192

4-bit quantization.193

As mentioned in Section 2.1, Sub-Channel Quan-194

tization and GPTQ are two popular methods for195

restoring the accuracy loss of INT4 quantization.196

Besides that, we also involve FP4 quantization,197

which adheres to the Gaussian distribution of198

LLMs’ weight and brings less accuracy. However,199

as depicted in Figure2, quantization utilizing the200

aforementioned methods still exhibits a significant201

accuracy loss (10%) compared to FP16. The accu-202

racy loss becomes negligible when the bit width 203

exceeds 5. In terms of providing negligible quanti- 204

zation error and attaining higher inference speed, 205

5-bit quantization represents the optimal choice 206

and deserves more attention. 207

3.3 E2Mx Consistently Dominates under 208

Different Bit Width 209

The issue regarding allocating the bits for the ex- 210

ponent and mantissa portions for optimal perfor- 211

mance. Under the assumption that the weight of 212

LLMs obeys Gaussian distribution, we examine the 213

relationship between quantization error and Sigma 214

of distribution for different ExMy as shown in Fig- 215

ure 3. The result reflects two important observa- 216

tions: 217

• E2Mx consistently dominates other ExMy un- 218

der the Sigma of LLMs’ weight distribution. 219

• The trend of quantization error remains con- 220

sistent across different bit widths. 221

To simplify the analysis among different quantiza- 222

tion schema, we scale both the quantization grids 223

and weights to the range of [-1,1]. The sigma is 224

collected on the scaled weights. 225

For the first observation, we provide a statisti- 226

cal analysis of Sigma of different LLMs’ weight 227

distribution C, which is in accordance with the 228

sweet point of E2Mx. For the second observation, 229

we provide a simple proof in Appendix B that the 230

quantization error of ExMy is four times that of 231

ExM(y+1), approximating a linear relationship. 232

Based on the above analysis, the significance 233

of E2M2 is highlighted, thereby motivating us to 234

devise an efficient implementation of E2M2 quan- 235

tization in the next section. 236

4 Method 237

4.1 Preliminaries 238

Floating Point Quantization For integer quan- 239

tization, the high-precision floating point number 240

is quantized through scaling and rounding, which 241

can be formulated as: 242

s =
max(|X|)
Qmax

,Q = ⌊X
s
⌉, (1) 243

where Qmax represents the maximum value of 244

the quantized number. However, the rounding oper- 245

ation could not be strictly applied to floating point 246

quantization since the quantization slot is not uni- 247

form, as illustrated in Figure 1. 248
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Figure 3: Preliminary analysis on the impact of different bit width allocation schemes. The quantization error is
metricized by the L2 distance between the original and quantized weights. Quantization schemes with the same bit
width are compared within the same figure range of Sigma of weight results from mainstream LLMs.

In order to efficiently determine the nearest quan-249

tized number for X: Firstly, obtain the length of250

the interval L = log2(max(X, 2)). Secondly, ob-251

tain the length of slot v = L/2M . Thirdly, rescale252

the interval and X to ensure that the slot v = 1253

and X′ = X/v. Fourthly, now the slot is uniform,254

round X′ to the nearest integer and then scale back255

to the original scale. The above rounding process256

could be formulated as follows:257

v = log2(max(X, 2))/2M258

X′ = X/v,Q′ = ⌊X′⌉,Q = Q′ ∗ v259

where M is the number of bits of the exponent part.260

Dequantization Unlike the quantization process,261

the conversion from quantized ExMy to FP16 is262

performed in real-time, necessitating low time com-263

plexity. In integer dequantization, prior works264

have employed register-level operations to replace265

the low-throughput built-in conversion function, as266

shown in Figure 4 (a). This conversion depends267

on the following insight: For any unsigned inte-268

ger x less than 8 bits, the bitwise OR operation269

0x6400|x yields a result that is numerically equiv-270

alent to x+ 1024.271

Extending to the signed integer, Qmax is first272

added to the signed integers immediately after273

quantization to convert them into unsigned inte-274

gers. Subsequently, the operation of subtracting275

Qmax is integrated into the final step, as depicted276

in Figure 4 (a). 277

For non-uniform quantization, the method above 278

is not applicable. Previous research (Dettmers et al., 279

2024) has employed a lookup table for conversion, 280

as shown in Figure 4 (b). However, accessing the 281

lookup table is I/O intensive and inefficient for the 282

memory-bound decoding stage. 283

4.2 Fast Conversion from ExMy to FP16 284

With the constraint of equation 3.1, we propose a 285

fast conversion method from ExMy to FP16 based 286

on numerical operations, as shown in Figure 4 (c). 287

The conversion depends on the key insight: 288

X = (Q << 8) ∗ 215 289

where X denotes the FP16 value before quantiza- 290

tion, and Q denotes the quantized E2M2. The bias 291

of the exponent part of FP16 is 15, whereas the bias 292

of E2M2 is 0. Hence, we scale the shifted Q with 293

215 in the equation above. It is worth noting that 294

1) The above conversion supports both normal and 295

subnormal numbers; 2) The conversion assumes 296

that X is positive. 3) The shifted Q is approxi- 297

mately 2−15. Directly calculating on that without 298

scaling can easily result in underflow; 4) It is not 299

equivalent to directly setting some exponent bits 300

to 1 to avoid underflow since it would violate the 301

definition of a subnormal number. 302

To efficiently handle both underflow and nega- 303

tive numbers, the sign bit is fused into a multiplica- 304
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(c) Ours: Fast Conversion from FPE2M2 to FP16

Figure 4: Illustration of the conversion from quantized
value back to FP16 value. (a) A fast conversion from
INT5 to FP16 involves register-level operations, such as
ADD and OR operations. (b) A naive conversion from
non-uniform quantized value to FP16, including access-
ing the lookup table, which is I/O intensive. (c) The
proposed conversion from E2M2 to FP16. Given that its
definition is extended from the IEEE 754 standard, the
conversion can be implemented by only register-level
operations.

tion operation, as demonstrated in the final step of305

Figure 4 (c).306

S = (−1)s215307

X = ((Q << 8)|(0x0f00)) ∗ S308

where s is the sign bit.309

4.3 System Level Optimization310

The above description is based on single-element311

conversion. For real-time inference, it is necessary312

to optimize the bandwidth utilization by integrating313

multiple elements into INT32 and processing them314

in parallel in real time. To achieve storage of 5-315

bit E2M2 in INT32 without any blank space, 32316

instances of 5-bit E2M2 are compressed into 5317

INT32. Subsequently, the method of reconstructing318

FP16 from E2M2 will be demonstrated through319

careful design.320

Algorithm 1: Dequantization from E2M2
to FP16
Input :Quantized tensor Q[5]
Output :Dequantized tensor DQ[16]

1 Initialize array e2m2[16];
2 for i← 0 to 3 do
3 e2m2[i · 4]←

(Q[i] << 8)&0x0f000f00;
4 e2m2[i · 4 + 1]←

(Q[i] << 4)&0x0f000f00;
5 e2m2[i · 4 + 2]←

(Q[i])&0x0f000f00;
6 e2m2[i · 4 + 3]←

(Q[i] >> 4)&0x0f000f00;
7 end

8 for i← 0 to 15 do
9 s← Q[4]&0xf800f800;

10 s← s&0xf3c003c00;
11 DQ[i]← hmul2(s, e2m2[i]);
12 Q[4]← Q[4] >> 1;
13 end

Sign Splitting To simplify the index calculations, 321

the 5-bit E2M2 is divided into a 4+1 scheme; in 322

this scheme, the first 4 bits are exponent bits and 323

mantissa bits, i.e. E2M2, and the last bit is the sign 324

bit. The 4-bit portion of E2M2 is stored in four 325

INT32 continuously, and the remaining sign bits 326

are stored in a single INT32. 327

Layout Organization In the mainstream system, 328

FP16 (Half) is stored within INT32 as a pair, as 329

shown in Figure 6 (a). This design results in effi- 330

cient memory access and high memory bandwidth 331

utilization. Under this design, it is essential to orga- 332

nize the data layout as shown in Figure 6 (b), which 333

enables the parallel extraction of the pair weights. 334

Through the masking (AND) operation, we could 335

extract the E2M2 from compressed INT32. Simi- 336

larly, the masking operation is applied for the sign 337

parts, and certain bits are set to 1 for the latter mul- 338

tiplication operation. The extracted E2M2 and sign 339

are multiplied to obtain the final dequantized FP16. 340

The entire layout is illustrated in Figure 6, and the 341

pseudo-code is shown in Algorithm 1. 342

5 Experiments 343

5.1 Models and Datasets 344

We conduct experiments on mainstream LLMs, 345

including LLaMA families (Touvron et al., 346
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Figure 5: Illustration of the low-level implementation. (a) The basic structure to store FP16/half value in the
low-level computation. (b) To extract two quantized FPE2M2 values in parallel, we first split the sign part and
E2M2 part and store them in separate INT32. For the pair of FP16 values in one INT32, their quantized E2M2/sign
part should possess a gap of 16 bits.
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Figure 6: The overview of 32 quantized FPE2M2 value
stored in five INT32.

2023) (LLaMA3-8B), Qwen families (Yang347

et al., 2024) (Qwen2.5-3B, Qwen2.5-7B,348

Qwen2.5-14B, Qwen2.5-72B) and Model distilled349

by DeepSeek-R1 (DeepSeek-R1-Qwen-14B,350

DeepSeek-R1-LLaMA3-8B). Quantization em-351

ploys a per-channel symmetric scheme with a352

round-to-nearest (RTN) strategy. We evaluate353

the performance of the models on zero-shot354

Common Sense QA benchmarks(ARC-e, ARC-c355

(Clark et al., 2018), BoolQ (Clark et al., 2019),356

and OBQA (Mihaylov et al., 2018)), MMLU357

(Hendrycks et al., 2021), GSM8K (Cobbe et al.,358

2021), Chinese benchmarks (Ceval(Huang et al.,359

2023)), Visual benchmarks (MME (Fu et al., 2023),360

POPE (Li et al., 2023), ChartQA (Masry et al.,361

2022), AI2D (Kembhavi et al., 2016)) and Audio362

benchmarks (MELD (Poria et al., 2019)).363

5.2 On Text tasks364

We conduct experiments on text tasks, including365

ArcEasy, ArcChallenge, BoolQ, OBQA, MMLU,366

GSM8K-Flex, GSM8K-Strict, and Ceval. We com-367

pare the performance of the models on text tasks368

with different quantization schemes. The results369

are shown in Table 1. Non-uniform quantization370

(NF5 and FPE2M2) consistently outperforms inte-371

ger quantization (INT4, INT5) across all models372

and benchmarks. Notably, non-uniform quantiza-373

tion with 5-bit has achieved nearly lossless perfor-374

mance, which fluctuates around 0.3% compared375

with complete precision. It is worth noting that the376

conversion from NF5 to FP16 relies on the lookup377

table, which causes remarkable overhead, as shown378

in Section 5.5.379

5.3 On Multi-modal tasks 380

We also compare the proposed approaches and 381

the state-of-the-art methods on the multi-modal 382

tasks, as presented in Table 2. We evaluate Visual 383

tasks with Qwen2-VL-7B and audio functions with 384

Qwen2-Audio-7B. FPE2M2 quantization consis- 385

tently surpasses other integer quantization schemes 386

and performs fluctuation around baseline perfor- 387

mance. While INT4 have a 6% accuracy drop and 388

INT5 have a 0.6% accuracy drop compared with 389

complete precision. In some instances, e.g. Au- 390

dio Taks, FPE2M2 even surpasses full precision 391

performance by 2%. 392

5.4 Ablation Studies 393

Different Allocation for Exponent and Mantissa 394

We conduct an ablation study on the allocation of 395

exponent and mantissa for FPE2M2, as presented 396

in 3. The results are consistent with the observation 397

in 3.3, where the E2M2 achieves the best perfor- 398

mance, and E4M0 has the worst. 399

Orthogonal Approach for Quantization Loss 400

Optimization We conduct an ablation study that 401

employs an orthogonal approach to alleviate the 402

accuracy drop of quantization, as presented in 4. 403

Sub-channel settings have a consistent performance 404

gain on integer quantization, e.g. INT4 and INT5, 405

while the gain is unsure for non-uniform quantiza- 406

tion, e.g. FPE2M1 and FPE2M2. The reason is 407

that the Sub-channel settings have fewer elements 408

within a quantization group, i.e. 128, violating 409

the assumption that the quantization group obeys 410

Gaussian distribution. For GPTQ settings, we per- 411

form the algorithm with MMLU as a calibration 412

set. It performs well in cases with large accuracy 413

drops, i.e., INT4. However, the phenomenon of 414

over-fitting to the calibration set, is served in cases 415

that have a small accuracy drop, leading to an over- 416

all performance drop. 417
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Table 1: Downstream accuracy (%) on text tasks including ArcEasy, ArcChallenge, BoolQ, OBQA, MMLU,
GSM8K-Flex, GSM8K-Strict, Ceval. Each block is based on the same foundation model specified in the first row.
The best accuracy is highlighted in red, and the second best is highlighted in blue.

Quant Method ArcEasy ArcChallenge BoolQ OBQA MMLU GSM8K-Flex GSM8K-Strict Ceval Avg.

Qwen2.5-3B-Instruct 48.1 72.9 80.1 42 65.2 63.4 10.7 74.2 57.1
INT4 26.7 24.4 37.8 31.8 25.5 0 0 25.5 21.4
INT5 49.3 71.1 79.4 41 61.7 63.0 11.9 69.6 55.9
NF5 47.4 71.3 80.2 41.8 64.9 60.7 19.8 71.7 57.2
FPE2M2 47.1 69.7 78.2 41.6 64.9 64.8 19.1 74.1 57.4

Qwen2.5-7B-Instruct 55.0 81.3 86.3 48.8 72.2 82.9 76.3 79.6 72.7
INT4 47.7 66.5 80.4 43.2 64.7 11.3 6.9 67.4 48.5
INT5 54.7 79.0 85.5 47.6 71.3 75.9 68.9 78.3 70.1
NF5 55.1 80.2 86.1 47.8 71.7 82.4 77.6 78.9 72.5
FPE2M2 55.2 80.3 86.4 48.2 71.6 83.2 80.1 78.1 72.9

Qwen2.5-14B-Instruct 62.4 81.5 89.6 47.4 78.8 50.9 79.1 83.8 71.6
INT4 54.3 76.0 84.8 44.8 74.4 44.5 65.9 77.5 65.3
INT5 59.7 79.5 87.9 46.0 78.2 39.7 77.4 82.7 68.9
NF5 60.9 80.2 87.8 46.4 78.6 50.5 81.5 82.8 71.1
FPE2M2 62.5 82.9 87.9 47.6 78.4 58 76.8 83.2 72.2

Qwen2.5-72B-Instruct 63.4 83.2 90.4 48.8 83.7 89.4 90.7 89.3 79.9
INT4 57.5 77.6 88.2 45.2 80.86 55.42 63.68 84.55 69.1
INT5 63.4 82.8 90.6 47.8 83.0 84.6 90.6 88.4 78.9
NF5 63.8 82.7 90.5 50.6 83.6 88.4 90.9 88.9 79.9
FPE2M2 64.5 83.2 90.8 49.4 83.4 87.7 90.3 89.6 79.8

LLaMA3-8B 53.24 77.74 80.98 44.8 62.05 50.8 50.57 47.47 58.4
INT4 42.2 67.4 75.1 40.8 47.1 8.8 5.1 33.1 39.9
INT5 50.2 78.5 81.4 46.0 59.6 39.6 39.3 43.8 54.8
NF5 53.0 78.5 81.5 45.2 61.4 46.4 45.8 45.5 57.2
FPE2M2 53.2 78.4 80.2 45.4 61.2 46.9 46.0 45.8 57.2

DPSK-DS-Qwen-14B 53.5 74.9 87.7 43.4 73.2 87.1 86.8 76.4 72.9
INT4 47.7 70.4 85.0 40.2 68.5 69.7 75.8 69.1 65.8
INT5 53.6 73.7 87.3 43.4 71.8 66.4 86.5 73.6 69.5
NF5 53.9 75.5 87.5 42.8 72.1 87.1 87.4 75.7 72.7
FPE2M2 54.3 75.3 87.6 43.6 72.8 86.5 85.8 76.1 72.7

DPSK-DS-Llama-8B 42.4 66.1 83.0 41.6 54.1 63.9 62.1 44.2 57.2
INT4 40.6 59.2 77.4 35 43.7 53.4 48.5 34.3 49.0
INT5 42.2 64.6 82.3 41.2 52.6 63.7 60.9 41.0 56.0
NF5 42.6 64.4 83.3 40.6 53.7 64.8 62.4 43.6 56.9
FPE2M2 42.7 64.7 83.4 42.8 53.3 64.9 62.0 42.7 57.1

Table 2: Downstream accuracy (%) on multi-modal tasks including POPE, MMMU, ChartQA, RealWorldQA,
MME, AI2D, OCRBench, Meld_dev, Meld_test. We evaluate visual tasks with Qwen2-VL-7B, and audio tasks
with Qwen2-Audio-7B.

Method POPE MMMU ChartQA AI2D OCRBench Avg. MME Meld_dev Meld_test

FP16 88.4 50.8 81.7 80.3 80.9 76.4 2325.3 54.5 54.7
INT4 86.9 45.3 77.2 77.7 69.9 71.4 2248.5 47.8 50
INT5 88.4 49.8 80.8 79.8 80.7 75.9 2283.6 54.3 54.3
NF5 88.4 50.4 81.6 79.7 81 76.2 2313.9 54.4 54.3
FPE2M2 88.9 50.6 81.8 80.3 81.1 76.5 2321 55.6 55.9

5.5 Efficiency Analysis418

We evaluate the GEMM kernel with low-bit quan-419

tization on RTX 4070 Ti and H100, as shown in420

Figure 7. We implement INT4, INT5, and NF5 as421

baselines and take speedup compared with FP16 as422

the metric. Compared with INT5, FPE2M2 brings 423

limited overhead, including a few more register- 424

level multiplications and masking operations. NF5 425

brings noticeable overhead, including access to a 426

lookup table, which is inefficient under memory- 427
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Table 3: Ablation study on the different ExMy quantization schemes with five bits.

Quant Method ArcEasy ArcChallenge BoolQ OBQA MMLU GSM8K-Flex GSM8K-Strict Ceval Avg.

Qwen2.5-7B-Instruct 54.95 81.27 86.33 48.8 72.18 82.87 76.27 79.64 72.7
FPE1M3 54.7 79.0 85.5 47.6 71.3 75.9 68.9 78.3 70.1
FPE2M2 55.2 80.3 86.4 48.2 71.6 83.2 80.1 78.1 72.9
FPE3M1 53.3 79.3 84.6 47 70.9 79.8 69.8 77.8 70.3
FPE4M0 48.5 70.9 77.6 43.4 59.8 56.4 56.0 60.9 59.2

Table 4: Downstream accuracy (%) on text tasks including ArcEasy, ArcChallenge, BoolQ, OBQA, MMLU,
GSM8K-Flex, GSM8K-Strict, Ceval. Each block is based on the same quantization schema specified in the first row.

Quant Method ArcEasy ArcChallenge BoolQ OBQA MMLU GSM8K-Flex GSM8K-Strict Ceval Avg.

INT4 47.7 ↑ 66.5 ↑ 80.4 ↑ 43.2 ↑ 64.7 ↑ 11.3 ↑ 6.9 ↑ 67.4 ↑ 48.5
+Sub-Channel 53.1 ↑ 77.7 ↑ 84.6 ↑ 47.8 ↑ 70.0 ↑ 76.8 ↑ 69.1 ↑ 75.9 ↑ 69.4
+GPTQ 51.7 ↑ 74.9 ↑ 83.6 ↑ 43.3 ↑ 70.0 ↑ 73.1 ↑ 67.8 ↑ 73.3 ↑ 67.2
FPE2M1 55.7 ↑ 80.5 ↑ 84.7 ↑ 47.0 ↑ 69.6 ↑ 74.2 ↑ 68.9 ↑ 75.4 ↑ 69.5
+Sub-Channel 53.2 ↓ 79.3 ↓ 86.2 ↓ 47.8 ↑ 71.1 ↑ 79.8 ↓ 73.2 ↑ 78.8 ↑ 71.2
+GPTQ 52.7 ↓ 78.8 ↓ 86.1 ↓ 46.0 ↓ 70.0 ↑ 79.1 ↓ 75.6 ↑ 76.3 ↑ 70.6

INT5 54.7 ↑ 79.0 ↑ 85.5 ↑ 47.6 ↑ 71.3 ↑ 75.9 ↑ 68.9 ↑ 78.3 ↑ 70.1
+Sub-Channel 55.0 ↑ 80.5 ↑ 86.2 ↑ 48.2 ↑ 71.6 ↑ 79.2 ↑ 71.6 ↑ 79.4 ↑ 71.4
+GPTQ 54.0 ↓ 80.4 ↑ 85.4 ↓ 47.5↓ 71.6 ↑ 82.1 ↑ 72.7 ↑ 78.1↓ 71.5
FPE2M2 55.2 ↑ 80.3 ↑ 86.4 ↑ 48.2 ↑ 71.6 ↑ 83.2 ↑ 80.1 ↑ 78.1 ↑ 72.9
+Sub-Channel 55.0 ↓ 80.0 ↓ 86.5 ↑ 48.0 ↓ 71.9 ↑ 81.6 ↓ 79.0 ↓ 79.6 ↓ 72.7
+GPTQ 54.4 ↓ 81.4 ↑ 86.2 ↓ 49.2 ↑ 71.8 ↑ 81.5 ↓ 74.4 ↓ 78.5 ↓ 72.2
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Figure 7: Same-batch throughput comparison between quantized inference and full precision inference on RTX-
4070ti and H100.

bound scenarios.428

6 Conclusion429

This work presents FPE2M2, extending the IEEE430

754 floating-point standard to low-bit quantiza-431

tion and achieving lossless quantization with 5-432

bit FPE2M2. FPE2M2 is built on the assumption433

that weights of LLMs obey Gaussian Distribution,434

which brings less quantization error compared with435

Integer quantization. Compared with other non-436

uniform quantizations, e.g. NF5, FPE2M2 can be437

easily implemented with negligible overhead and438

is generalized across various large language mod-439

els (LLMs). Through a comprehensive analysis of440

different quantization schemes, we take 5-bit as a441

sweet point for LLM quantization, where FPE2M2442

can achieve near-lossless performance with negli-443

gible overhead. 444
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A Limitations592

Non-uniform quantization depends on the assump-593

tion that the weights of LLMs obey Gaussian Distri-594

bution, which is not always the case. For example,595

the weights of LLaMA3-70B have remarkable out-596

liers, leading to a server accuracy drop for integer597

and non-uniform quantization based on per-channel598

settings. While GPTQ and Sub-Channel can ad-599

dress this issue, they still suffer from overfitting or600

inefficiency. As a result, the sweet point of quanti-601

zation is still open to explore for the models with602

remarkable outliers.603

B A simple proof of linear relationship604

between quantization error of ExMy605

and ExM(y+1)606

First, recall that in ExMy representationwith ex-607

ponent bits x and mantissa bits y. We proceed as608

follows::609

Xnormal = (−1)s2e(1 + d1
21

+
d2
22

+ · · ·+ dm
2m

)610

Xsubnormal = (−1)s(d1
20

+
d2
21

+ · · ·+ dm
2m−1

)611

where s ∈ {0, 1} is the sign bit, and di ∈ {0, 1} is612

the mantissa bits. e denotes the exponent parts; the613

subnormal number has e = 0. Here we define the614

interval Li, i ∈ [2, 2x], which starts from 2i−1 and615

ends at 2i. L1 is the first interval, starting from 0616

and ending at 2. To be noticed that, the number of617

x defines the number of intervals, and the number618

of y defines the number of slots in each interval.619

Hence, compared with ExMy, ExM(y+1) just have620

two times more slots in each interval, and the length621

of each slot is 1/2 times smaller, as shown in 8. The622

quantization error can be calculated by:623

E[Q] =

∫ +∞

−∞
p(x) ∗ e(x)dx (2)624

where Q is the quantization error, p(x) is the prob-625

ability density function of the weight, and e(x) is626

the L2 error.627

Here we briefly approximate the p to be constant628

function p(x) = 1. For the first interval of E2M1,629

the quantization error is: 630

E[Q] =

∫ 2

0
p(x) ∗ e(x)dx 631

=

∫ 2

0
1 ∗ e(x)dx 632

= 2 ∗
∫ 1

0
x(1− x)dx 633

=
1

3
634

For the first interval of E2M2, the quantization 635

error is: 636

E[Q] =

∫ 2

0
p(x) ∗ e(x)dx 637

=

∫ 2

0
1 ∗ e(x)dx 638

= 4 ∗
∫ 1/2

0
x(1/2− x)dx 639

=
1

12
640

The real quantization error with p(x) being the 641

normal distrition has been shown in the main text 642

3. 643

C Statistical analysis of Sigma of different 644

LLMs’ weight distribution 645

The quantization process entails two steps: Firstly, 646

scale the weight to the maximum value of the quan- 647

tization range. Secondly, round the weight to the 648

nearest integer. To simply the analysis among dif- 649

ferent quantization schema, we scale the quanti- 650

zation grids to the range of [−1, 1] and scale the 651

weight to the range of [−1, 1]. Subsequently we 652

collect the sigma of different LLMs’ weight dis- 653

tribution after scaling, and show the results in 9. 654

For cases where the model has a size larger than 655

14B, the sigma is relatively small in the very early 656

layer. Apart from that, the sigma is typically in 657

the range of 0.12 to 0.28, which accounts for 97% 658

of the weight distribution. Moreover, 0.25 is the 659

prevalent value for the sigma in most layers, which 660

is the optimal point of E2Mx. 661
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Figure 8: E2M1 and E2M2
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Figure 9: Sigma of different LLMs’ weight distribution
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