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Abstract

The advent of Video Diffusion Transformers (Video DiTs) marks a milestone1

in video generation. However, directly applying existing video editing methods2

to Video DiTs often incurs substantial computational overhead, due to resource-3

intensive attention modification or finetuning. To alleviate this problem, we present4

DFVEdit, an efficient zero-shot video editing method tailored for Video DiTs.5

DFVEdit eliminates the need for both attention modification and fine-tuning by6

directly operating on clean latents via flow transformation. To be more specific, we7

observe that editing and sampling can be unified under the continuous flow perspec-8

tive. Building upon this foundation, we propose the Conditional Delta Flow Vector9

(CDFV) – a theoretically unbiased estimation of DFV – and integrate Implicit Cross10

Attention (ICA) guidance as well as Embedding Reinforcement (ER) to further11

enhance editing quality. DFVEdit excels in practical efficiency, offering at least12

20x inference speed-up and 85% memory reduction on Video DiTs compared to13

attention-engineering-based editing methods. Extensive quantitative and qualitative14

experiments demonstrate that DFVEdit can be seamlessly applied to popular Video15

DiTs (e.g., CogVideoX and Wan2.1), attaining state-of-the-art performance on16

structural fidelity, spatial-temporal consistency, and editing quality.17

1 Introduction18
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(c) DFV Visualization. Normalized DFV shows coarse-to-fine 
refinement, which aligns with the sampling process.
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Figure 1: Key insight and motivation.

In the wave of digitization, video creation has become19

a dominant form of entertainment. In response, re-20

search on controllable video generation holds consid-21

erable practical importance. While Video Diffusion22

Transformer (DiT) models [1–4] have revolutionized23

video synthesis quality, and DiT-based image editing24

methods [5–10] have achieved remarkable success,25

video editing remains challenging in preserving spa-26

tiotemporal fidelity. Critically, existing video editing27

methods do not fully exploit the capabilities of Video28

DiTs, limiting the potential for high-quality control-29

lable video generation.30

Existing video editing techniques mainly follow two31

paradigms: training-based methods [11–14] and zero-32

shot methods [15–20]. Given that the former requires33

resource-intensive finetuning, our work focuses on34

training-free video editing. For training-free video35

editing, a high-quality pre-trained base model is cru-36
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cial. Early video editing methods primarily utilized image diffusion models [21, 22], which suffered37

from temporal inconsistencies due to the lack of capable video diffusion models. These early meth-38

ods [23, 15, 17, 24] not only had to ensure structural integrity and editing accuracy but also required39

significant effort to enhance temporal coherence. In contrast, methods [16, 25] based on video40

diffusion models naturally excel in temporal consistency, leading us to leverage the latest Video41

DiTs [4, 1, 2] for video editing. Regardless of the type of base models, achieving high fidelity and42

temporal consistency hinges on attention engineering in most existing methods, including various43

attention caching and modification techniques. The key to effective attention engineering is that44

attentions (including keys, queries, and values) contain the spatial-temporal information of the source45

video, allowing for smooth editing of target regions while preserving the original content’s integrity.46

However, attention mechanisms now consume hundreds of gigabytes of memory (Fig. 1(a)) in Video47

DiTs [1, 4, 2], a significant increase from previous usage in Unet-based diffusion models [26, 21, 22]48

and image DiT models [27, 28] at the gigabyte scale. This suggests that traditional attention engineer-49

ing techniques are incompatible with Video DiTs, creating an urgent need for methods that preserve50

editing quality while improving computational efficiency.51

Motivated by this inefficiency, we shift the focus from attention to input latents and introduce a52

continuous flow transformation framework for direct video latent refinement. We observe that the53

standard sampling process in video diffusion models—whether based on Score Matching [29] or54

Flow Matching [30]—can be unified under a continuous flow perspective. Based on this insight, we55

demonstrate that editing from the source to the target video naturally forms a time-dependent flow56

vector field (Fig. 1(c)), which we term the Delta Flow Vector (DFV).57

Building upon this foundation, we introduce the Conditional Delta Flow Vector (CDFV) to esti-58

mate the flow from source to target latent, incorporating Implicit Cross Attention Guidance (ICA)59

and Embedding Reinforcement (ER) to further improve editing accuracy. The CDFV in Video60

DiTs inherently enforces spatial-temporal dependencies while its divergence directly determines61

update weights. This physically grounded formulation provides two fundamental advantages over62

approximation-based latent-refinement approaches like DDS [31] and SDS [32]: (1) theoretical63

unification by modeling both sampling and editing from the continuous flow perspective and (2)64

computational efficiency through divergence-determined and hyperparameter-free weights that elimi-65

nate heuristic scheduling and overcome low convergence issues inherent to shallow approximations.66

Moreover, for the seamless application to video editing, we enhanced spatiotemporal coherence67

by intrinsically avoiding randomness bias while incorporating ICA guidance and ER mechanisms68

(Fig. 5). Experiments show DFVEdit achieves at least 20× speed-up and 85% memory reduction over69

attention-engineering-based methods on Video DiTs (e.g., CogVideoX, Wan2.1), while maintaining70

SOTA performance in fidelity, temporal consistency, and editing quality. Consequently, our approach71

offers an efficient and versatile solution for zero-shot video editing on Video DiTs.72

2 Related work73

Video Diffusion Transformer. Video Diffusion Transformers have evolved from early 3D-UNet-74

based designs [33, 26, 34, 35] to modern 3D-Transformer-based designs [3]. Advanced models75

such as Open-Sora [36, 37], CogVideoX [1], HunyuanVideo [2] and Wan [4] have all or part of76

the following key innovations: replacement of 3D-UNets with scalable 3D-Transformer blocks;77

integration of cross-attention and self-attention into a unified 3D-full-attention [1, 2]; and adoption78

of 3D-VAE [1] for spatiotemporal latent compression. Some Video DiTs [27, 4] are combined with79

Flow Matching [30] while others [1] adopt SDE [29] samplers like DPM-solver [38].80

Image editing on Diffusion Transformer. With the rise of Diffusion Transformer [3], DiT-based81

image editing methods [28, 27] have emerged. However, directly applying image editing methods to82

videos often fails to address temporal consistency and motion fidelity. Additionally, adapting them83

to Video DiTs introduces extra challenges. Firstly, generalization limitations occur when applying84

methods [8, 6, 9, 10, 39, 40] that rely on rectified flow [41] or distilled few-step models [42] to85

Video DiTs that are not combined with rectified flow or distillation techniques. Secondly, efficiency86

limitations are present for image editing methods [43] that require finetuning. Furthermore, even87

generalized and efficient methods like DiT4Edit [5] and KVEdit [7], which use attention or key-value88

caching and modification, still face prohibitive computational costs due to the more massive attention89

overhead in Video DiTs compared to image DiTs.90
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Figure 2: DFVEdit overview. Follow these steps for DFVEdit: (1) Encode X0 into the latent space
Z0, and initialize the target latent variable as ẐT = Z0. (2) Transform [ẐT ;Z0] via the flow map
ΦT (·). (3) Feed the result with prompt embeddings [C1, C0] into the Video Diffusion Transformer,
compute the delta difference to obtain the CDFV at timestep T , then refine it using ER and ICA. (4)
Update ẐT → ẐT−1 using the enhanced CDFV, and iterate (1)-(4) until reaching Ẑ0. (5) Decode Ẑ0

to generate the target video X1.

Video editing. Video editing via diffusion models is dominated by two paradigms: training-based and91

training-free methods. Training-based approaches [44–49, 12, 14] enhance pre-trained image diffu-92

sion models [21] with spatiotemporal modules, optimizing for complex edits but at high computational93

costs, limiting real-time applications. Conversely, training-free methods emphasize computational94

efficiency and real-time capability. Training-free video editing commonly involves two stages: latent95

space initialization and editing condition injection. Latent space initialization typically follows three96

paradigms: (1) forward diffusion with some steps for preserving low-frequency features [50, 51], (2)97

DDIM [22] inversion for enabling deterministic reconstruction [15, 17], or (3) direct source latent98

usage [31, 32]. For editing condition injection, most existing zero-shot methods heavily rely on99

attention engineering to maintain spatial-temporal fidelity. For instance, FateZero [15] enhances100

temporal consistency by caching attention maps from DDIM [22] inversion and integrating them into101

the denoising process; TokenFlow [17] improves spatiotemporal coherence by leveraging cached102

attention outputs from DDIM inversion for inter-frame correspondences and incorporating extended103

attention blocks during denoising; VideoDirector [20] achieves fine-grained editing via SAM [52]104

masks by fusing self-attention with reconstruction attention and mask guidance; and VideoGrain [19]105

realizes complex semantic structure modifications through SAM masks while operating on complex106

attention map modifications. These attention-engineered methods face scalability challenges in107

Transformer blocks [53], particularly for Video DiTs [2, 4] where attention memory demands grow108

dramatically (Fig. 1). Moreover, approaches [54–56, 24] free of attention engineering suffer from109

structural degradation: FRAG [54] mitigates blurring and flickering through frequency processing110

but compromises fidelity due to basic DDIM inversion [57] for source content retention; DMT [24]111

employs SSM [24] loss for motion transfer yet underperforms in detail preservation; and first-frame112

propagation methods (e.g., StableV2V [55], AnyV2V [56]) introduce accumulating artifacts without113

full-frame coordination. In conclusion, designing efficient and high-quality editing methods tailored114

for Video DiTs remains a critical challenge.115

3 Method116

Fig. 2 provides an overview of DFVEdit. Given a source video X0 ∈ RF×3×H×W comprising F117

RGB frames at resolution H ×W , together with source and target text prompts (P0, P1), our method118

supports both global stylization and local modifications (shape and attribute editing). The edited119
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video X1 preserves spatiotemporal integrity in unedited regions while ensuring motion fidelity and120

precise alignment with P1. Our approach leverages two key insights: manipulating latent space is121

more computationally efficient than manipulating attention (Fig. 1), and editing can be modeled as122

the continuous flow transformation between the source and target videos (Sec 3.1). We introduce the123

Conditional Delta Flow Vector (CDFV) (Sec 3.2) for this transformation. To enhance video editing124

performance, we utilize Implicit Cross-Attention Guidance and Embedding Enforcement (Sec 3.3) to125

improve spatiotemporal fidelity.126

3.1 Unified continuous flow perspective on sampling and editing127

Diffusion models include inverse and forward processes. The inverse process is typically parame-128

terized as a Markov chain with learned Gaussian transitions, mapping noisy inputs to clean outputs.129

Conversely, the forward process gradually adds Gaussian noise to the clean input according to a130

variance schedule. As mentioned in [58, 59, 29], given a data input x, both inverse and forward131

processes can be regarded as overdamped Langevin Dynamics [60] (named Stochastic Differential132

Equation (SDE) in Score Matching [29]):133

dxt = f(xt, t)dt+ g(xt, t)dW (1)

where f(xt, t) is the drift coefficient corresponds to deterministic direction and g(xt, t) is the diffusion134

coefficient corresponds to disturbing intensity and dW is a Wiener process and the probability density135

P (xt, t) can be described by introducing the Fokker-Planck equation [61] combined with the Ito’s136

lemma [62] and the concept of probability flow:137

∂P (xt, t)

∂t
= −∇

[(
f(xt, t)−

g2(xt, t)

2
∇logP (xt, t)

)
P (xt, t)

]
(2)

Eq. 2 generalizes traditional sampling methods like DDPM [63] and DDIM [22]. This formulation re-138

veals that methods based on SDE [29] obey the continuity equation principle of Flow Matching [30]139

and can be unified under a continuous flow perspective. The continuous flow is characterized by140

a vector field vt(xt) = f(xt, t)− g2(xt,t)
2 ∇logP (xt, t), enabling state transitions from xt to xt+∆t141

either through flow map Φt in Eq. 3 or through its Euler discretized approximation in Eq. 4:142 
d

dt
Φt(x) = vt(Φt(x))

Φ0(x) = x
(3)

143

xt+∆t = xt +∆t ∗ vt(Φt(x)) (4)

As discussed in Section 2, zero-shot video editing includes two stages: latent space initialization and144

editing condition injection. The first stage involves a standard sampling process. In the second stage,145

we derive an isomorphism with sampling process by formulating video editing as:146

Xedit
t−1 = gθ2,t

(
Xedit

t , ϵθ1(X
edit
t , t)︸ ︷︷ ︸

Canonical Denoiser

+λC(Xedit
t , t, ∗)︸ ︷︷ ︸

Control Term

)
(5)

where {Xedit
t }Tt=0 defines the state trajectory of the edited video in the sampling process; gθ2,t is147

differentiable transition function parameterized by learnable θ2; ϵθ1 is pretrained diffusion model148

with frozen θ1; C(x, t, ∗) is the control term with intensity λ ≥ 0 and optional extra input ∗ . Under149

the Euler discretization scheme with step size ∆t → 0 and θ2 = I, the discrete process in Eq. 5150

converges to the controlled SDE:151

dXedit
t =

[
−β(t)

2
Xedit

t +
β(t)

2
∇ log pt(X

edit
t ) + λ

β(t)

2
σ(t)C(Xedit

t , t, ∗)
]

︸ ︷︷ ︸
fθ1 (X

edit
t ,t)

dt+
√

β(t)︸ ︷︷ ︸
g(t)

dW (6)

where ∇ log pt(X
edit
t ) is the score function, and σ(t) =

√
(1− α(t))/α(t) is the signal-to-noise ratio152

coefficient with α(t) = e−
∫ t
0
β(s)ds. The structural isomorphism between Eq. 6 and the stochastic153

differential equation in Eq. 1 indicates that video editing processes can be represented within a154

continuous flow sampling framework, as shown in Eq. 3 (see Appendix for more details).155
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3.2 Conditional Delta Flow Vector156

Building upon the isomorphic correspondence between editing and sampling, we introduce the157

Conditional Delta Flow Vector (CDFV) to establish a direct continuous flow bridge from the source158

video to the target video.159

Delta Flow Vector. Given the initial distribution p(ZT ) = N (ZT ; 0, I) for the reverse process and a160

clean video latent Z, Eq. 3 implies the existence of a time-dependent flow map Φ that:161

Z = ZT −
T∑

t=0

∆tvt(Φt(Z)) (7)

Assuming the source and target latents (Ẑ0, Z0) and their corresponding prompts (P1, P0) are given,162

we replace Z in Eq. 7 with Z0 and Ẑ0 respectively and define the Delta Flow Vector (DFV) as163

∆vt(Ẑ0, Z0) = vt(Φt(Ẑ0))− vt(Φt(Z0)), and the target latent Ẑ0 can be expressed in terms of the164

source latent Z0 as:165

Ẑ0 = Z0 −
T∑

t=0

∆t∆vt(Ẑ0, Z0). (8)

Eq. 8 establishes a continuous flow directly from the source latent Z0 to the target latent Ẑ0, with166

the vector field defined as vt = ∆vt(Ẑ0, Z0). While prior works [64, 65, 31] heuristically observed167

that latent differences indicate editing regions, we rigorously prove this as a special case of DFV168

when the transformation state and vector field satisfy the continuity equation (Eq. 3).169

Conditional Delta Flow Vector. The direct computation of ∆vt(Ẑ0, Z0) is intractable since Ẑ0170

is the editing target. To resolve this problem, we leverage the terminal condition of diffusion171

processes to derive an unbiased estimation of DFV. From Eq. 2 we obtain vt(xt) = f(xt, t) −172

g2(xt,t)
2 ∇logP (xt, t). As t approaches T , and given that P (xt, t) is the probability density of xt, if173

we set winner process of Z0 and Ẑ0 is equal, then g(Z0, t) = g(Ẑ0, t). Consequently, as t → T , both174

P (Z0, t) and P (Ẑ0, t) follow a normal distribution N (ZT ; 0, I) with zero mean and unit variance.175

Moreover, Ẑt is equivalent to Zt as t → T , and we have:176

∆vt(Ẑ0, Z0) =
t→T

fθ1,c1(Zt, t)− fθ1,c0(Zt, t) (9)

The latent ẐT−∆t can be updated using Eq. 10, which corresponds to applying the continuous flow177

map from Ẑ0 as defined in Eq. 11:178

ẐT−∆t = ZT−∆t −∆t [fθ,c1(ZT , t)− fθ,c0(ZT , t)] , (10)
179

ẐT−∆t = ΦT−∆t(Ẑ0). (11)

We sequentially obtain all vt(Φ(Ẑ0)) and define the Conditional Delta Flow Vector (CDFV) in Eq. 12.180 {
∆vt(Z0, c0, c1) = vt,c1(Ẑt)− vt,c0(Φt(Z0))

ẐT = ΦT (Z0)
(12)

Theoretically, the CDFV provides an unbiased estimate of DFV. By using the CDFV as a control181

term, defined in Eq. 13, and integrating it into Eq. 6, we maintain a computational complexity similar182

to that of the basic sampling process. See the Appendix for more details.183

C(Ẑt, t, ∗) =
∇ logP (Ẑt, t)−∇ logP (Φt(Z0), t)

σ(t)
(13)

3.3 Spatiotemporal enhancement for CDFV184

Implicit Cross-Attention Guidance. Although CDFV extracted from Video DiTs theoretically185

captures semantic differences between P0 and P1 with temporal coherence (Sec 3.2), empirical186

studies reveal persistent background leakage (Fig. 2). We attribute this phenomenon to the score187

function ∇X log pt(X; θ), which is learned by the model and may not perfectly align with theoretical188
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expectations. This discrepancy can introduce local distributional drift in unedited regions, and such189

shifts have the potential to cause noticeable alterations in the background of edited videos (see190

Fig. 5 for examples). Segmentation masks play a crucial role in effective structure guidance, and191

cross-attention, as highlighted in [16, 15, 66], exhibit significant potential for shape editing tasks.192

This is attributed to their time-aware adaptability and target-following characteristics, which enhance193

the capability to maintain structural integrity and motion consistency over time. Although most194

recent Video DiTs have moved from discrete cross-attention to Full Attention [1] for more accurate195

spatial-temporal learning, we introduce Implicit Cross-Attention derived from Full Attention. ICA196

still retains the essence of traditional cross-attention and guides shape editing effectively. Given197

text embeddings E ∈ RN×d and latent video tokens B ∈ RM×d, Full Attention mechanism first198

concatenates them to form a larger matrix C = [E;B] ∈ R(N+M)×d, each row of C can be considered199

as both Query (Q), Key (K), and Value (V ). The full attention map is computed as follows:200

A = Softmax

(
CC⊤
√
d

)
=

[
AEE AEB

ABE ABB

]
∈ R(N+M)×(N+M) (14)

We identify that the off-diagonal block AEB or ABE inherently encodes cross-modal interactions.201

Our Implicit Cross-Attention extracts this block of different timesteps and binarizes it into Mt. We202

mask ∆vt(Z0, c0, c1) with Mt to restrain the changes in the unedited region as Eq. 15. Mt can also203

be optionally combined with the popular SAM [52] masks using Boolean operations.204

∆vt,Mt
(Z0, c0, c1) = Mt ⊙

[
vt,c1(Ẑt)− vt,c0(Φt(Z0))

]
(15)

Target Embedding Reinforcement. We observe that in 3D Full-Attention, the effect of text205

embeddings diminishes as frame length increases. This phenomenon is particularly evident in global206

editing tasks such as stylization. We attribute this issue to the competition between fixed-length text207

tokens E ∈ RN×d and an increasing number of spatiotemporal tokens Z ∈ RF×H×W×d. As the208

video duration grows, vectors associated with stylization embeddings become increasingly sparse209

across frames. This sparsity may further reduce the guidance fidelity of the text embeddings. To210

address these challenges, we propose Embedding Reinforcement (ER) for prompt alignment:211

Ẽ(k) = E+ γ(k) ⊙E (16)

where k is used to locate the target embedding for editing, and its value is amplified by γ + 1.212

Specifically, we set γ = 0.2 for shape editing and γ = 5 for stylization. By reinforcing the213

embeddings, the cross-attention map is reweighted to focus on regions more relevant to the editing214

target, enhancing editing precision.215

4 Experimental results216

Experimental setup. We adopt the pretrained CovideoX-5B [1] as the base model and also extend our217

method to Wan2.1-14B [4] to demonstrate the robustness and flexibility of DEVEdit. All experiments218

are conducted on one A100-80G GPU. We evaluate our methods on public DAVIS2017 [68] videos219

and Internet open-source videos from Pexels [69]. In comparison experiments, we test 40-frame220

videos with a resolution of 512 × 512. Our focus is on training-free appearance editing, including221

local editing (shape and attribute editing), and global editing (stylization).222

Baselines. For baselines, we compare against image diffusion-based training-free editing methods,223

including FateZero [15], TokenFlow [17], VideoDirector [20], and VideoGain [19], which rely on224

attention engineering; ControlVideo [18], FLATTEN [67], and DMT [24], which are free of attention225

engineering; FreeMask [16], which is based on a U-net-based video diffusion model with attention226

engineering; and SDEdit [50] (directly applied to CogVideoX-5B [1] base model for video editing).227

4.1 Evaluation228

Qualitative evaluation. Fig. 3 provides qualitative comparison results, showcasing our method’s229

superiority in structure fidelity, motion integrity, and temporal consistency over other prominent230

baselines. For single object editing (first column), FateZero [15], TokenFlow [17], and VideoDi-231

rector [20] exhibit noticeable flickering, while ControlVideo [18], FLATTEN [67], and DMT [24]232

6
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Figure 3: Comparison. Most methods based on attention-engineering and image diffusion models
(FateZero [15], TokenFlow [17], VideoDirector [20]) suffer from flickering and fail in multi-object
editing. While VideoGrain [19] enhances multi-object editing, it is inferior in structure consistency
and motion detail fidelity (the second column). Attention-engineering-free approaches (FLAT-
TEN [67], DMT [24], ControlVideo [18]) exhibit structural infidelity. FreeMask [16] improves
temporal consistency but remains constrained by its 3D-Unet base model. Applying the image editing
method SDEdit [50] directly to VideoDiTS compromises spatial-temporal fidelity. In comparison,
our method achieves SOTA performance in fidelity, alignment, and temporal consistency. Refer to
the supplementary material for more results.
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Table 1: Quantitative evaluation and user study results.

Method Consistency Fidelity Alignment User Study Computation Efficiency
CLIP-F↑ Ewarp↓ M.PSNR↑ LPIPS↓ CLIP-T↑ Edit↑ Quality↑ Consistency↑ VRAM ↓ RAM↓ Latency↓

SDEdit [50] 0.9811 1.67 20.52 0.4090 27.46 66.57 80.45 85.66 1.01 1.13 0.87
FateZero [15] 0.9289 3.09 23.39 0.2634 26.08 58.87 50.63 56.89 2.32 21.44 3.40
FreeMask [16] 0.9699 2.00 29.92 0.2314 27.06 75.88 74.67 77.13 1.64 25.58 5.65
Tokenflow [17] 0.9583 1.48 29.97 0.2247 29.78 70.12 53.45 57.41 1.43 3.69 13.03
VideoDirector [20] 0.9555 2.44 28.97 0.3205 27.50 74.13 73.25 71.45 6.00 2.26 27.97
VideoGrain [19] 0.9695 2.68 30.70 0.2948 27.79 76.41 79.87 70.61 2.35 2.61 13.44
FLATTEN [67] 0.9510 4.89 15.91 0.3559 27.57 63.45 69.45 68.32 1.54 7.31 4.61
ControlVideo [18] 0.9533 3.10 10.08 0.4015 27.06 56.08 55.33 59.41 8.74 1.62 9.45
DMT [24] 0.9668 3.50 15.95 0.5096 25.34 62.66 68.36 69.88 5.64 3.32 24.40
DFVEdit 0.9924 1.12 31.18 0.1886 30.84 87.65 84.56 86.98 0.95 0.86 1.20
w/o ICA 0.9922 1.25 29.33 0.1920 31.02 86.45 84.33 86.56 0.94 0.78 1.19
w/o EmbedRF 0.9913 1.13 31.15 0.1889 29.25 86.04 83.15 86.13 0.95 0.85 1.20

A lion walking in the zoo.

A brown bear ->An American black bear A blue jeep driving in the countryside.A brown bear ->A wolf

Original Video Original Video

A Polar bear walking in the zoo.

Watercolor style of a jeep driving in the countryside.

A Porche car driving in the countryside.

Figure 4: Extensive qualitative results. The extensive experiments take Wan2.1-14B [4] as the base
model, demonstrating the generalization of DFVEdit for Video DiTs. See the supplementary material
for more results.

fail to preserve the details of unedited regions. For multi-object editing (second column), most233

methods struggle with editing accuracy; although VideoGrain [19] achieves success in multi-object234

editing using fine-grained SAM [52] masks, it falls short in maintaining motion detail fidelity (e.g.,235

a mismatch between the fox and dog expressions). For stylization (third column), Freemask [16],236

which is based on a UNet-based video diffusion model, performs notably well, while other methods237

still show inconsistencies in color tone and structural details (refer to the supplementary material for238

video displays). Additionally, we extended FateZero [15] and KVEdit [7] directly to Cogvideo-5B [1]239

to compare editing quality and efficiency. Due to space limitations, please refer to the appendix for240

more detailed comparison results. Fig. 4 provides the extensive experiment results on Wan2.1-14B [4],241

which also demonstrates high editing quality with respect to structure fidelity, motion integrity, and242

prompt alignment. Wan [4] is combined with Flow Matching [30], while Cogvideox [1] is based on243

Score Matching [29]. As illustrated in both Fig. 4 and Fig. 3, DFVEdit achieves consistent editing244

quality across popular Video DiTs, whether based on Score Matching [29] or Flow Matching [30].245

Quantitative evaluation. In Tab. 1, we compare with baselines using both automatic metrics and246

human evaluations, following [15, 70, 16, 17, 12]. Specifically, CLIP-F calculates inter-frame cosine247

similarity to assess structural consistency, while Ewarp measures warping error [17] to evaluate248

motion fidelity. Additionally, M.PSNR computes the Masked Peak Signal-to-Noise Ratio between249
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source and target videos to gauge the fidelity of unedited regions, and LPIPS evaluates the Learned250

Perceptual Image Patch Similarity for overall structural fidelity. Moreover, CLIP-T quantifies251

the alignment between the target prompt and video through the CLIP Score [71]. Regarding user252

studies, we focus on Target Prompt Alignment (Edit), Overall Editing Quality including fidelity of253

unedited areas, minimal filtering and blurring (Quality), and Motion and Structural Consistency254

(Consistency). The results demonstrate that DFVEdit achieves superior spatial-temporal consistency,255

fidelity, and prompt alignment compared to other methods. Furthermore, to evaluate memory and256

computational efficiency, we measure Relative GPU Memory Consumption (VRAM), defined as the257

ratio of editing consumption on GPU relative to original inference consumption; Relative Inference258

Latency (Latency), which assesses the ratio of editing latency to inference latency; and Relative CPU259

Memory Consumption (RAM), measuring the ratio of editing consumption on CPU over original260

inference consumption. These metrics highlight the practical efficiency of DFVEdit. We also extend261

FateZero [15] and KVEdit [7] to CogVideoX-5B [1] to evaluate their efficiencies. Some findings are262

illustrated in Fig. 1(b), demonstrating that these methods, originally designed for image diffusion263

with attention engineering, incur significant computational overhead when applied to Video DiTs.264

4.2 Ablation results265

We evaluate the efficacy of CDFV, ICA, and ER in our ablation study. In Fig. 5(a), we vary the266

Embedding Reinforcement factor γ from 1 to 10. Without reinforcement (γ = 1), stylization267

effects are negligible. Stylization improves as γ increases but degrades with excessively high values.268

Empirically, γ = 5 optimizes stylization without compromising structural fidelity or visual quality.269

Fig. 5(c) shows that omitting Implicit Cross-Attention Guidance leads to unintended changes in270

unedited regions. Incorporating cross-attention mechanisms significantly enhances structural fidelity271

and overall quality. In Fig. 5(b), we replace CDFV with the stochastic latent refinement vector in272

DDS [31]. In this ablation, for ’horse’ experiment, ICA and ER are kept, while for ’bear’ they273

are omitted for a fair comparison. The results highlights the effectiveness of CDFV. For additional274

qualitative and quantitative comparison and ablation results, please refer to the Appendix.275

(a) Ablation results on Embedding Reinforcement (ER)
original 𝛾=1 𝛾=5 𝛾=10

(c) Ablation results on Implicit Cross Attention (ICA) Guidance (b) Ablation results on replacing CDFV with DDS vector.

convergence problem in DDS

w/ ICArandomness bias in DDSoriginal w/o ICA

w/o ICA w/ ICAoriginal

Figure 5: Ablation. (a)(c) demonstrate the effectiveness of ER and ICA. (b) highlights limitations
of popular approximation-based latent refinement methods [31] in video editing, including: low
convergence leading to unnatural changes and unpredictable convergence times; randomness bias
resulting in unsatisfactory structural fidelity. Refer to the supplementary material for more results.

5 Conclusion276

We present DFVEdit, an efficient and effective zero-shot video editing framework tailored for Video277

Diffusion Transformers. DFVEdit realizes video editing through the direct flow transformation278

of the clean source latent. We theoretically unify editing and sampling from the continuous flow279

perspective, propose CDFV to estimate the flow vector from the source video to the target video, and280

further enhance the editing quality with ICA guidance and ER mechanism. Extensive experiments281

demonstrate the efficacy of DFVEdit on Video DiTs.282
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instructions for how to replicate the results, access to a hosted model (e.g., in the case559

of a large language model), releasing of a model checkpoint, or other means that are560

appropriate to the research performed.561

• While NeurIPS does not require releasing code, the conference does require all submis-562

sions to provide some reasonable avenue for reproducibility, which may depend on the563

nature of the contribution. For example564

(a) If the contribution is primarily a new algorithm, the paper should make it clear how565

to reproduce that algorithm.566

(b) If the contribution is primarily a new model architecture, the paper should describe567

the architecture clearly and fully.568

(c) If the contribution is a new model (e.g., a large language model), then there should569

either be a way to access this model for reproducing the results or a way to reproduce570

the model (e.g., with an open-source dataset or instructions for how to construct571

the dataset).572

(d) We recognize that reproducibility may be tricky in some cases, in which case573

authors are welcome to describe the particular way they provide for reproducibility.574

In the case of closed-source models, it may be that access to the model is limited in575

some way (e.g., to registered users), but it should be possible for other researchers576

to have some path to reproducing or verifying the results.577

5. Open access to data and code578

Question: Does the paper provide open access to the data and code, with sufficient instruc-579

tions to faithfully reproduce the main experimental results, as described in supplemental580

material?581
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Answer: [NA]582

Justification: We have the public project webside, and the code will be released later.583

Guidelines:584

• The answer NA means that paper does not include experiments requiring code.585

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/586

public/guides/CodeSubmissionPolicy) for more details.587

• While we encourage the release of code and data, we understand that this might not be588

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not589

including code, unless this is central to the contribution (e.g., for a new open-source590

benchmark).591

• The instructions should contain the exact command and environment needed to run to592

reproduce the results. See the NeurIPS code and data submission guidelines (https:593

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.594

• The authors should provide instructions on data access and preparation, including how595

to access the raw data, preprocessed data, intermediate data, and generated data, etc.596

• The authors should provide scripts to reproduce all experimental results for the new597

proposed method and baselines. If only a subset of experiments are reproducible, they598

should state which ones are omitted from the script and why.599

• At submission time, to preserve anonymity, the authors should release anonymized600

versions (if applicable).601

• Providing as much information as possible in supplemental material (appended to the602

paper) is recommended, but including URLs to data and code is permitted.603

6. Experimental setting/details604

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-605

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the606

results?607

Answer: [Yes]608

Justification: See Section 4 and the Appendix.609

Guidelines:610

• The answer NA means that the paper does not include experiments.611

• The experimental setting should be presented in the core of the paper to a level of detail612

that is necessary to appreciate the results and make sense of them.613

• The full details can be provided either with the code, in appendix, or as supplemental614

material.615

7. Experiment statistical significance616

Question: Does the paper report error bars suitably and correctly defined or other appropriate617

information about the statistical significance of the experiments?618

Answer: [NA] .619

Justification: Not related to our work.620

Guidelines:621

• The answer NA means that the paper does not include experiments.622

• The authors should answer "Yes" if the results are accompanied by error bars, confi-623

dence intervals, or statistical significance tests, at least for the experiments that support624

the main claims of the paper.625

• The factors of variability that the error bars are capturing should be clearly stated (for626

example, train/test split, initialization, random drawing of some parameter, or overall627

run with given experimental conditions).628

• The method for calculating the error bars should be explained (closed form formula,629

call to a library function, bootstrap, etc.)630

• The assumptions made should be given (e.g., Normally distributed errors).631

• It should be clear whether the error bar is the standard deviation or the standard error632

of the mean.633
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• It is OK to report 1-sigma error bars, but one should state it. The authors should634

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis635

of Normality of errors is not verified.636

• For asymmetric distributions, the authors should be careful not to show in tables or637

figures symmetric error bars that would yield results that are out of range (e.g. negative638

error rates).639

• If error bars are reported in tables or plots, The authors should explain in the text how640

they were calculated and reference the corresponding figures or tables in the text.641

8. Experiments compute resources642

Question: For each experiment, does the paper provide sufficient information on the com-643

puter resources (type of compute workers, memory, time of execution) needed to reproduce644

the experiments?645

Answer: [Yes]646

Justification: See Section 4 and the Appendix.647

Guidelines:648

• The answer NA means that the paper does not include experiments.649

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,650

or cloud provider, including relevant memory and storage.651

• The paper should provide the amount of compute required for each of the individual652

experimental runs as well as estimate the total compute.653

• The paper should disclose whether the full research project required more compute654

than the experiments reported in the paper (e.g., preliminary or failed experiments that655

didn’t make it into the paper).656

9. Code of ethics657

Question: Does the research conducted in the paper conform, in every respect, with the658

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?659

Answer: [Yes] .660

Justification: have reviewed.661

Guidelines:662

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.663

• If the authors answer No, they should explain the special circumstances that require a664

deviation from the Code of Ethics.665

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-666

eration due to laws or regulations in their jurisdiction).667

10. Broader impacts668

Question: Does the paper discuss both potential positive societal impacts and negative669

societal impacts of the work performed?670

Answer: [NA]671

Justification: there is no societal impact of the work performed.672

Guidelines:673

• The answer NA means that there is no societal impact of the work performed.674

• If the authors answer NA or No, they should explain why their work has no societal675

impact or why the paper does not address societal impact.676

• Examples of negative societal impacts include potential malicious or unintended uses677

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations678

(e.g., deployment of technologies that could make decisions that unfairly impact specific679

groups), privacy considerations, and security considerations.680

• The conference expects that many papers will be foundational research and not tied681

to particular applications, let alone deployments. However, if there is a direct path to682

any negative applications, the authors should point it out. For example, it is legitimate683

to point out that an improvement in the quality of generative models could be used to684
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generate deepfakes for disinformation. On the other hand, it is not needed to point out685

that a generic algorithm for optimizing neural networks could enable people to train686

models that generate Deepfakes faster.687

• The authors should consider possible harms that could arise when the technology is688

being used as intended and functioning correctly, harms that could arise when the689

technology is being used as intended but gives incorrect results, and harms following690

from (intentional or unintentional) misuse of the technology.691

• If there are negative societal impacts, the authors could also discuss possible mitigation692

strategies (e.g., gated release of models, providing defenses in addition to attacks,693

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from694

feedback over time, improving the efficiency and accessibility of ML).695

11. Safeguards696

Question: Does the paper describe safeguards that have been put in place for responsible697

release of data or models that have a high risk for misuse (e.g., pretrained language models,698

image generators, or scraped datasets)?699

Answer: [NA]700

Justification: the paper poses no such risks.701

Guidelines:702

• The answer NA means that the paper poses no such risks.703

• Released models that have a high risk for misuse or dual-use should be released with704

necessary safeguards to allow for controlled use of the model, for example by requiring705

that users adhere to usage guidelines or restrictions to access the model or implementing706

safety filters.707

• Datasets that have been scraped from the Internet could pose safety risks. The authors708

should describe how they avoided releasing unsafe images.709

• We recognize that providing effective safeguards is challenging, and many papers do710

not require this, but we encourage authors to take this into account and make a best711

faith effort.712

12. Licenses for existing assets713

Question: Are the creators or original owners of assets (e.g., code, data, models), used in714

the paper, properly credited and are the license and terms of use explicitly mentioned and715

properly respected?716

Answer: [NA]717

Justification: the paper does not use existing assets.718

Guidelines:719

• The answer NA means that the paper does not use existing assets.720

• The authors should cite the original paper that produced the code package or dataset.721

• The authors should state which version of the asset is used and, if possible, include a722

URL.723

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.724

• For scraped data from a particular source (e.g., website), the copyright and terms of725

service of that source should be provided.726

• If assets are released, the license, copyright information, and terms of use in the727

package should be provided. For popular datasets, paperswithcode.com/datasets728

has curated licenses for some datasets. Their licensing guide can help determine the729

license of a dataset.730

• For existing datasets that are re-packaged, both the original license and the license of731

the derived asset (if it has changed) should be provided.732

• If this information is not available online, the authors are encouraged to reach out to733

the asset’s creators.734

13. New assets735

Question: Are new assets introduced in the paper well documented and is the documentation736

provided alongside the assets?737
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Answer: [NA]738

Justification: the paper does not release new assets.739

Guidelines:740

• The answer NA means that the paper does not release new assets.741

• Researchers should communicate the details of the dataset/code/model as part of their742

submissions via structured templates. This includes details about training, license,743

limitations, etc.744

• The paper should discuss whether and how consent was obtained from people whose745

asset is used.746

• At submission time, remember to anonymize your assets (if applicable). You can either747

create an anonymized URL or include an anonymized zip file.748

14. Crowdsourcing and research with human subjects749

Question: For crowdsourcing experiments and research with human subjects, does the paper750

include the full text of instructions given to participants and screenshots, if applicable, as751

well as details about compensation (if any)?752

Answer: [NA]753

Justification: the paper does not involve crowdsourcing nor research with human subjects.754

Guidelines:755

• The answer NA means that the paper does not involve crowdsourcing nor research with756

human subjects.757

• Including this information in the supplemental material is fine, but if the main contribu-758

tion of the paper involves human subjects, then as much detail as possible should be759

included in the main paper.760

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,761

or other labor should be paid at least the minimum wage in the country of the data762

collector.763

15. Institutional review board (IRB) approvals or equivalent for research with human764

subjects765

Question: Does the paper describe potential risks incurred by study participants, whether766

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)767

approvals (or an equivalent approval/review based on the requirements of your country or768

institution) were obtained?769

Answer: [NA]770

Justification: the paper does not involve crowdsourcing nor research with human subjects.771

Guidelines:772

• The answer NA means that the paper does not involve crowdsourcing nor research with773

human subjects.774

• Depending on the country in which research is conducted, IRB approval (or equivalent)775

may be required for any human subjects research. If you obtained IRB approval, you776

should clearly state this in the paper.777

• We recognize that the procedures for this may vary significantly between institutions778

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the779

guidelines for their institution.780

• For initial submissions, do not include any information that would break anonymity (if781

applicable), such as the institution conducting the review.782

16. Declaration of LLM usage783

Question: Does the paper describe the usage of LLMs if it is an important, original, or784

non-standard component of the core methods in this research? Note that if the LLM is used785

only for writing, editing, or formatting purposes and does not impact the core methodology,786

scientific rigorousness, or originality of the research, declaration is not required.787

Answer: [NA]788
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Justification: the core method development in this research does not involve LLMs as any789

important, original, or non-standard components.790

Guidelines:791

• The answer NA means that the core method development in this research does not792

involve LLMs as any important, original, or non-standard components.793

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)794

for what should or should not be described.795
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