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Abstract

The advent of Video Diffusion Transformers (Video DiTs) marks a milestone
in video generation. However, directly applying existing video editing methods
to Video DiTs often incurs substantial computational overhead, due to resource-
intensive attention modification or finetuning. To alleviate this problem, we present
DFVEdit, an efficient zero-shot video editing method tailored for Video DiTs.
DFVEdit eliminates the need for both attention modification and fine-tuning by
directly operating on clean latents via flow transformation. To be more specific, we
observe that editing and sampling can be unified under the continuous flow perspec-
tive. Building upon this foundation, we propose the Conditional Delta Flow Vector
(CDFV) — a theoretically unbiased estimation of DFV — and integrate Implicit Cross
Attention (ICA) guidance as well as Embedding Reinforcement (ER) to further
enhance editing quality. DFVEdit excels in practical efficiency, offering at least
20x inference speed-up and 85% memory reduction on Video DiTs compared to
attention-engineering-based editing methods. Extensive quantitative and qualitative
experiments demonstrate that DFVEdit can be seamlessly applied to popular Video
DiTs (e.g., CogVideoX and Wan2.1), attaining state-of-the-art performance on

structural fidelity, spatial-temporal consistency, and editing quality.

1 Introduction

In the wave of digitization, video creation has become
a dominant form of entertainment. In response, re-
search on controllable video generation holds consid-
erable practical importance. While Video Diffusion
Transformer (DiT) models [1-4] have revolutionized
video synthesis quality, and DiT-based image editing
methods [5H10] have achieved remarkable success,
video editing remains challenging in preserving spa-
tiotemporal fidelity. Critically, existing video editing
methods do not fully exploit the capabilities of Video
DiTs, limiting the potential for high-quality control-
lable video generation.

Existing video editing techniques mainly follow two
paradigms: training-based methods [11-14]] and zero-
shot methods [15H20]]. Given that the former requires
resource-intensive finetuning, our work focuses on
training-free video editing. For training-free video
editing, a high-quality pre-trained base model is cru-
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Figure 1: Key insight and motivation.

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

52
53
54
55
56
57

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

73

74
75
76
77
78
79
80

81
82
83
84
85
86
87
88
89
90

cial. Early video editing methods primarily utilized image diffusion models [21} 22], which suffered
from temporal inconsistencies due to the lack of capable video diffusion models. These early meth-
ods [23| [15 17} 124] not only had to ensure structural integrity and editing accuracy but also required
significant effort to enhance temporal coherence. In contrast, methods [16l 25] based on video
diffusion models naturally excel in temporal consistency, leading us to leverage the latest Video
DiTs [4. 1 2] for video editing. Regardless of the type of base models, achieving high fidelity and
temporal consistency hinges on attention engineering in most existing methods, including various
attention caching and modification techniques. The key to effective attention engineering is that
attentions (including keys, queries, and values) contain the spatial-temporal information of the source
video, allowing for smooth editing of target regions while preserving the original content’s integrity.
However, attention mechanisms now consume hundreds of gigabytes of memory (Fig. a)) in Video
DiTs [} 4, 2], a significant increase from previous usage in Unet-based diffusion models [26} 211 [22]
and image DiT models [27} 28] at the gigabyte scale. This suggests that traditional attention engineer-
ing techniques are incompatible with Video DiTs, creating an urgent need for methods that preserve
editing quality while improving computational efficiency.

Motivated by this inefficiency, we shift the focus from attention to input latents and introduce a
continuous flow transformation framework for direct video latent refinement. We observe that the
standard sampling process in video diffusion models—whether based on Score Matching [29] or
Flow Matching [30]—can be unified under a continuous flow perspective. Based on this insight, we
demonstrate that editing from the source to the target video naturally forms a time-dependent flow
vector field (Fig.[Ifc)), which we term the Delta Flow Vector (DFV).

Building upon this foundation, we introduce the Conditional Delta Flow Vector (CDFV) to esti-
mate the flow from source to target latent, incorporating Implicit Cross Attention Guidance (ICA)
and Embedding Reinforcement (ER) to further improve editing accuracy. The CDFV in Video
DiTs inherently enforces spatial-temporal dependencies while its divergence directly determines
update weights. This physically grounded formulation provides two fundamental advantages over
approximation-based latent-refinement approaches like DDS [31]] and SDS [32]]: (1) theoretical
unification by modeling both sampling and editing from the continuous flow perspective and (2)
computational efficiency through divergence-determined and hyperparameter-free weights that elimi-
nate heuristic scheduling and overcome low convergence issues inherent to shallow approximations.
Moreover, for the seamless application to video editing, we enhanced spatiotemporal coherence
by intrinsically avoiding randomness bias while incorporating ICA guidance and ER mechanisms
(Fig.[5). Experiments show DFVEdit achieves at least 20x speed-up and 85% memory reduction over
attention-engineering-based methods on Video DiTs (e.g., CogVideoX, Wan2.1), while maintaining
SOTA performance in fidelity, temporal consistency, and editing quality. Consequently, our approach
offers an efficient and versatile solution for zero-shot video editing on Video DiTs.

2 Related work

Video Diffusion Transformer. Video Diffusion Transformers have evolved from early 3D-UNet-
based designs [33} 26} 34, [35] to modern 3D-Transformer-based designs [3]. Advanced models
such as Open-Sora [36, 37], CogVideoX [1l], HunyuanVideo [2] and Wan [4] have all or part of
the following key innovations: replacement of 3D-UNets with scalable 3D-Transformer blocks;
integration of cross-attention and self-attention into a unified 3D-full-attention [[1}2]]; and adoption
of 3D-VAE [1]] for spatiotemporal latent compression. Some Video DiTs [27, 4] are combined with
Flow Matching [30] while others [1] adopt SDE [29] samplers like DPM-solver [38]].

Image editing on Diffusion Transformer. With the rise of Diffusion Transformer [3]], DiT-based
image editing methods [28} 27]] have emerged. However, directly applying image editing methods to
videos often fails to address temporal consistency and motion fidelity. Additionally, adapting them
to Video DiTs introduces extra challenges. Firstly, generalization limitations occur when applying
methods [8, 6, 9} 10} 139, 40] that rely on rectified flow [41] or distilled few-step models [42] to
Video DiTs that are not combined with rectified flow or distillation techniques. Secondly, efficiency
limitations are present for image editing methods [43] that require finetuning. Furthermore, even
generalized and efficient methods like DiT4Edit [S] and KVEdit [7]], which use attention or key-value
caching and modification, still face prohibitive computational costs due to the more massive attention
overhead in Video DiTs compared to image DiTs.
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Figure 2: DFVEdit overview. Follow these steps for DFVEdit: (1) Encode X into the latent space
Z, and initialize the target latent variable as ZT = Zg. (2) Transform [ZT; Z] via the flow map
O (+). (3) Feed the result with prompt embeddings [C7, Cy] into the Video Diffusion Transformer,
compute the delta difference to obtain the CDFV at timestep 7', then refine it using ER and ICA. (4)
Update Zr — L1 using the enhanced CDFV, and iterate (1)-(4) until reaching ZO. (5) Decode Zo
to generate the target video X .

Video editing. Video editing via diffusion models is dominated by two paradigms: training-based and
training-free methods. Training-based approaches enhance pre-trained image diffu-
sion models [21]] with spatiotemporal modules, optimizing for complex edits but at high computational
costs, limiting real-time applications. Conversely, training-free methods emphasize computational
efficiency and real-time capability. Training-free video editing commonly involves two stages: latent
space initialization and editing condition injection. Latent space initialization typically follows three
paradigms: (1) forward diffusion with some steps for preserving low-frequency features [50} 51]], (2)
DDIM [22] inversion for enabling deterministic reconstruction [15}[17], or (3) direct source latent
usage [31} [32]. For editing condition injection, most existing zero-shot methods heavily rely on
attention engineering to maintain spatial-temporal fidelity. For instance, FateZero [15] enhances
temporal consistency by caching attention maps from DDIM inversion and integrating them into
the denoising process; TokenFlow improves spatiotemporal coherence by leveraging cached
attention outputs from DDIM inversion for inter-frame correspondences and incorporating extended
attention blocks during denoising; VideoDirector [20] achieves fine-grained editing via SAM [52]]
masks by fusing self-attention with reconstruction attention and mask guidance; and VideoGrain [19]
realizes complex semantic structure modifications through SAM masks while operating on complex
attention map modifications. These attention-engineered methods face scalability challenges in
Transformer blocks [33]], particularly for Video DiTs [2}, 4] where attention memory demands grow
dramatically (Fig.[T). Moreover, approaches [54H56| 24]] free of attention engineering suffer from
structural degradation: FRAG [54]] mitigates blurring and flickering through frequency processing
but compromises fidelity due to basic DDIM inversion [57]] for source content retention; DMT [24]]
employs SSM loss for motion transfer yet underperforms in detail preservation; and first-frame
propagation methods (e.g., StableV2V [53], AnyV2V [56]) introduce accumulating artifacts without
full-frame coordination. In conclusion, designing efficient and high-quality editing methods tailored
for Video DiTs remains a critical challenge.

3 Method

Fig.[2] provides an overview of DFVEit. Given a source video Xo € RF*3*H>W comprising F¥
RGB frames at resolution H x W, together with source and target text prompts (P, P; ), our method
supports both global stylization and local modifications (shape and attribute editing). The edited
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video X; preserves spatiotemporal integrity in unedited regions while ensuring motion fidelity and
precise alignment with P;. Our approach leverages two key insights: manipulating latent space is
more computationally efficient than manipulating attention (Fig. [I), and editing can be modeled as
the continuous flow transformation between the source and target videos (Sec[3.1)). We introduce the
Conditional Delta Flow Vector (CDFV) (Sec@ for this transformation. To enhance video editing
performance, we utilize Implicit Cross-Attention Guidance and Embedding Enforcement (Sec[3.3) to
improve spatiotemporal fidelity.

3.1 Unified continuous flow perspective on sampling and editing

Diffusion models include inverse and forward processes. The inverse process is typically parame-
terized as a Markov chain with learned Gaussian transitions, mapping noisy inputs to clean outputs.
Conversely, the forward process gradually adds Gaussian noise to the clean input according to a
variance schedule. As mentioned in [58 159, 29]], given a data input x, both inverse and forward
processes can be regarded as overdamped Langevin Dynamics [60] (named Stochastic Differential
Equation (SDE) in Score Matching [29]):

da, = (s t)dt + glay, H)dW (1)

where f(x¢,t) is the drift coefficient corresponds to deterministic direction and g(x¢, t) is the diffusion
coefficient corresponds to disturbing intensity and dW is a Wiener process and the probability density
P(x4,t) can be described by introducing the Fokker-Planck equation [61]] combined with the Ito’s
lemma [62] and the concept of probability flow:

OP(z4,t 2(xy,t
% - v Kf(xt,t) - g(m;)VlogP(xt,t)> P(xt,t)} )
Eq.[2]generalizes traditional sampling methods like DDPM [63] and DDIM [22]. This formulation re-
veals that methods based on SDE [29] obey the continuity equation principle of Flow Matching [30]
and can be unified under a continuous flow perspective. The continuous flow is characterized by
2

a vector field v (zy) = f(x4,t) — wVZOQP(xt, t), enabling state transitions from z; to Zs At
either through flow map &, in Eq. [3|or through its Euler discretized approximation in Eq.

d
@q)t(x) = vt(@t(x)) (3)
Dp(z) =x

Tepar = T + At % 0 (Dy(z)) 4

As discussed in Section [2] zero-shot video editing includes two stages: latent space initialization and
editing condition injection. The first stage involves a standard sampling process. In the second stage,
we derive an isomorphism with sampling process by formulating video editing as:

Xteiltl = 90>, (ngi[? €0, (Xteditv t) +A C(Xteditv t, *) ) 5)

Canonical Denoiser Control Term

where { X7 | defines the state trajectory of the edited video in the sampling process; 99, 18
differentiable transition function parameterized by learnable 6s; €y, is pretrained diffusion model
with frozen 0;; C(z, t, %) is the control term with intensity A > 0 and optional extra input * . Under
the Euler discretization scheme with step size At — 0 and 6, = Z, the discrete process in Eq. E]
converges to the controlled SDE:

axgin = |28 s B0 Gy, (xsiy ¢ 2P0 o yoxe *)] dt + \/B(t) AW (6)
2 2 2 N

. g9(t)
Joy (X74,8)
where V log p; (X £91) is the score function, and o'(t) = /(1 — a(t))/a(t) is the signal-to-noise ratio

coefficient with a(t) = e~ Jo B)ds  The structural isomorphism between Eq. E]and the stochastic
differential equation in Eq. [l|indicates that video editing processes can be represented within a
continuous flow sampling framework, as shown in Eq. 3| (see Appendix for more details).
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3.2 Conditional Delta Flow Vector

Building upon the isomorphic correspondence between editing and sampling, we introduce the
Conditional Delta Flow Vector (CDFV) to establish a direct continuous flow bridge from the source
video to the target video.

Delta Flow Vector. Given the initial distribution p(Zr) = N (Zr; 0, I) for the reverse process and a
clean video latent Z, Eq. [3]implies the existence of a time-dependent flow map @ that:

T
Z=Zr - Atv(®(2)) (7)

t=0

Assuming the source and target latents (Zo, Zo) and their corresponding prompts (P, Py) are given,
we replace Z in Eq. [7| with Zy and Z; respectively and define the Delta Flow Vector (DFV) as

Avy(Zy, Zo) = ve(D4(Z0)) — v:(P4(Zp)), and the target latent Z, can be expressed in terms of the

source latent Z as:
T

Zo=Zy— Z At Avy(Zo, Zo). @
t=0
Eq. @establishes a continuous flow directly from the source latent Z to the target latent Zo, with

the vector field defined as v; = Ay (Zo, Zy). While prior works [64} 165], 31]] heuristically observed
that latent differences indicate editing regions, we rigorously prove this as a special case of DFV
when the transformation state and vector field satisfy the continuity equation (Eq. [3).

Conditional Delta Flow Vector. The direct computation of Avt(Zo, Zy) is intractable since Zo
is the editing target. To resolve this problem, we leverage the terminal condition of diffusion
processes to derive an unbiased estimation of DFV. From Eq. 2| we obtain v, (z;) = f(x,t) —

WVlogP(xt, t). Ast apprOflches T, and given that P(x, IE) is the probability density of z;, if
we set winner process of Zy and 7 is equal, then g(Zy, t) = g(Zy,t). Consequently, as ¢ — T, both
P(Zy,t) and P(Zy,t) follow a normal distribution \'(Z7;0, I) with zero mean and unit variance.
Moreover, Zt is equivalent to Z; as t — T, and we have:

A'Ut(ZAOa ZO) th f01,c1 (Zt7 t) - f01,co (Zta t) )

The latent Z7_ o, can be updated using Eq. which corresponds to applying the continuous flow
map from Zj as defined in Eq.

Zr-at = Zr—at — At [fo.e,(Zr,t) — foeo(Z1,1)] (10

Zr-ae = Pr-ni(Zo). (1
We sequentially obtain all v,(®(Zy)) and define the Conditional Delta Flow Vector (CDFV) in Eq.

{Avt(Zo, co, 1) = Vt,e (Z4) = V.00 (24(Z0)) (12)
Zp = ®r(Zo)

Theoretically, the CDFV provides an unbiased estimate of DFV. By using the CDFV as a control
term, defined in Eq.[T3] and integrating it into Eq.[6] we maintain a computational complexity similar
to that of the basic sampling process. See the Appendix for more details.

3.3 Spatiotemporal enhancement for CDFV

Implicit Cross-Attention Guidance. Although CDFV extracted from Video DiTs theoretically
captures semantic differences between Py and P; with temporal coherence (Sec [3.2)), empirical
studies reveal persistent background leakage (Fig.[2). We attribute this phenomenon to the score
function V x log p; (X ; 8), which is learned by the model and may not perfectly align with theoretical
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expectations. This discrepancy can introduce local distributional drift in unedited regions, and such
shifts have the potential to cause noticeable alterations in the background of edited videos (see
Fig. 5| for examples). Segmentation masks play a crucial role in effective structure guidance, and
cross-attention, as highlighted in [[16} [15} [66], exhibit significant potential for shape editing tasks.
This is attributed to their time-aware adaptability and target-following characteristics, which enhance
the capability to maintain structural integrity and motion consistency over time. Although most
recent Video DiTs have moved from discrete cross-attention to Full Attention [1]] for more accurate
spatial-temporal learning, we introduce Implicit Cross-Attention derived from Full Attention. ICA
still retains the essence of traditional cross-attention and guides shape editing effectively. Given
text embeddings E € RV *? and latent video tokens B € R >4 Full Attention mechanism first
concatenates them to form a larger matrix C = [E; B] € R(N+M)*d each row of C can be considered
as both Query (@), Key (K), and Value (V). The full attention map is computed as follows:

.
A = Softmax <C\%> — [jgg ﬁgi] c RIN+M)X(N+M) (14)

We identify that the off-diagonal block Agp or Apg inherently encodes cross-modal interactions.
Our Implicit Cross-Attention extracts this block of different timesteps and binarizes it into M;. We
mask Avg(Zy, co, ¢1) with My to restrain the changes in the unedited region as Eq. M can also
be optionally combined with the popular SAM [52] masks using Boolean operations.

AUt,Mt(Zoa Co, Cl) =M;©® [Ut,cl(Zt) — VUt ((I)t(ZO)):| (15)

Target Embedding Reinforcement. We observe that in 3D Full-Attention, the effect of text
embeddings diminishes as frame length increases. This phenomenon is particularly evident in global
editing tasks such as stylization. We attribute this issue to the competition between fixed-length text
tokens E € RY*? and an increasing number of spatiotemporal tokens Z € R *H>xWxd ~Ag the
video duration grows, vectors associated with stylization embeddings become increasingly sparse
across frames. This sparsity may further reduce the guidance fidelity of the text embeddings. To
address these challenges, we propose Embedding Reinforcement (ER) for prompt alignment:

EMN =E+~+PoE (16)

where k is used to locate the target embedding for editing, and its value is amplified by v + 1.
Specifically, we set v = 0.2 for shape editing and v = 5 for stylization. By reinforcing the
embeddings, the cross-attention map is reweighted to focus on regions more relevant to the editing
target, enhancing editing precision.

4 Experimental results

Experimental setup. We adopt the pretrained CovideoX-5B [1]] as the base model and also extend our
method to Wan2.1-14B [4]] to demonstrate the robustness and flexibility of DEVEdit. All experiments
are conducted on one A100-80G GPU. We evaluate our methods on public DAVIS2017 [68] videos
and Internet open-source videos from Pexels [69]. In comparison experiments, we test 40-frame
videos with a resolution of 512 x 512. Our focus is on training-free appearance editing, including
local editing (shape and attribute editing), and global editing (stylization).

Baselines. For baselines, we compare against image diffusion-based training-free editing methods,
including FateZero [15], TokenFlow [17], VideoDirector [20], and VideoGain [19], which rely on
attention engineering; ControlVideo [[18], FLATTEN [67]], and DMT [24]], which are free of attention
engineering; FreeMask [16]], which is based on a U-net-based video diffusion model with attention
engineering; and SDEdit [50]] (directly applied to CogVideoX-5B [1]] base model for video editing).

4.1 Evaluation

Qualitative evaluation. Fig.[3| provides qualitative comparison results, showcasing our method’s
superiority in structure fidelity, motion integrity, and temporal consistency over other prominent
baselines. For single object editing (first column), FateZero [15]], TokenFlow [[17], and VideoDi-
rector [20] exhibit noticeable flickering, while ControlVideo [18]], FLATTEN [67], and DMT [24]
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Figure 3: Comparison. Most methods based on attention-engineering and image diffusion models
(FateZero [13]], TokenFlow [17]], VideoDirector [20])) suffer from flickering and fail in multi-object
editing. While VideoGrain [19] enhances multi-object editing, it is inferior in structure consistency
and motion detail fidelity (the second column). Attention-engineering-free approaches (FLAT-
TEN [67]], DMT [24], ControlVideo [18]]) exhibit structural infidelity. FreeMask [16] improves
temporal consistency but remains constrained by its 3D-Unet base model. Applying the image editing
method SDEdit [50] directly to VideoDiTS compromises spatial-temporal fidelity. In comparison,
our method achieves SOTA performance in fidelity, alignment, and temporal consistency. Refer to
the supplementary material for more results.



233
234
235
236
237

239
240
241
242
243
244
245

246
247
248
249

Table 1: Quantitative evaluation and user study results.

Method Consistency Fidelity Alignment User Study Computation Efficiency
CLIP-Ft Eyqpl MPSNRT LPIPS| CLIP-Tt Editf Quality? Consistencyt VRAM | RAM| Latency|

0.9811  1.67 20.52 0.4090 2746 6657 80.45 85.66 1.01 1.13 0.87

0.9289  3.09 23.39 0.2634 26.08  58.87 50.63 56.89 2.32 21.44 3.40

0.9699  2.00 29.92 0.2314 27.06 7588  74.67 77.13 1.64 25.58 5.65
[ 0.9583  1.48 29.97 0.2247 29.78  70.12  53.45 57.41 1.43 3.69 13.03
VideoDirector 0.9555  2.44 28.97 0.3205 2750 7413 73.25 71.45 6.00 2.26 27.97
VideoGrain 0.9695  2.68 30.70 0.2948 2779 7641  79.87 70.61 2.35 2.61 13.44
FLATTEN 09510 4.89 1591 0.3559 2757 6345 6945 68.32 1.54 731 4.61
ControlVideo 0.9533  3.10 10.08 0.4015 27.06  56.08 5533 59.41 8.74 1.62 9.45
DMT 0.9668  3.50 15.95 0.5096 2534  62.66 68.36 69.88 5.64 3.32 24.40
DFVEdit 0.9924 1.12 31.18 0.1886 30.84 87.65 84.56 86.98 0.95 0.86 1.20
w/o ICA 0.9922  1.25 29.33 0.1920 31.02 8645 84.33 86.56 0.94 0.78 1.19
w/o EmbedRF 09913  1.13 31.15 0.1889 2925  86.04 83.15 86.13 0.95 0.85 1.20

" A lion wa ing in the 200. ) B Watercolor style of a jeep driving in the countryside.

Figure 4: Extensive qualitative results. The extensive experiments take Wan2.1-14B [4] as the base
model, demonstrating the generalization of DFVEdit for Video DiTs. See the supplementary material
for more results.

fail to preserve the details of unedited regions. For multi-object editing (second column), most
methods struggle with editing accuracy; although VideoGrain [19] achieves success in multi-object
editing using fine-grained SAM [52]] masks, it falls short in maintaining motion detail fidelity (e.g.,
a mismatch between the fox and dog expressions). For stylization (third column), Freemask [16]],
which is based on a UNet-based video diffusion model, performs notably well, while other methods
still show inconsistencies in color tone and structural details (refer to the supplementary material for
video displays). Additionally, we extended FateZero [15] and KVEdit [[7] directly to Cogvideo-5B [1]]
to compare editing quality and efficiency. Due to space limitations, please refer to the appendix for
more detailed comparison results. Fig.[]provides the extensive experiment results on Wan2.1-14B [4]],
which also demonstrates high editing quality with respect to structure fidelity, motion integrity, and
prompt alignment. Wan [4] is combined with Flow Matching [30], while Cogvideox [1] is based on
Score Matching [29]. As illustrated in both Fig. d]and Fig.[3] DFVEdit achieves consistent editing
quality across popular Video DiTs, whether based on Score Matching [29] or Flow Matching [30].

Quantitative evaluation. In Tab. |1} we compare with baselines using both automatic metrics and
human evaluations, following [13}[70] [12]). Specifically, CLIP-F calculates inter-frame cosine
similarity to assess structural consistency, while Eya,p measures warping error to evaluate
motion fidelity. Additionally, M.PSNR computes the Masked Peak Signal-to-Noise Ratio between
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source and target videos to gauge the fidelity of unedited regions, and LPIPS evaluates the Learned
Perceptual Image Patch Similarity for overall structural fidelity. Moreover, CLIP-T quantifies
the alignment between the target prompt and video through the CLIP Score [71]. Regarding user
studies, we focus on Target Prompt Alignment (Edit), Overall Editing Quality including fidelity of
unedited areas, minimal filtering and blurring (Quality), and Motion and Structural Consistency
(Consistency). The results demonstrate that DFVEdit achieves superior spatial-temporal consistency,
fidelity, and prompt alignment compared to other methods. Furthermore, to evaluate memory and
computational efficiency, we measure Relative GPU Memory Consumption (VRAM), defined as the
ratio of editing consumption on GPU relative to original inference consumption; Relative Inference
Latency (Latency), which assesses the ratio of editing latency to inference latency; and Relative CPU
Memory Consumption (RAM), measuring the ratio of editing consumption on CPU over original
inference consumption. These metrics highlight the practical efficiency of DFVEdit. We also extend
FateZero [15] and KVEdit [7] to CogVideoX-5B to evaluate their efficiencies. Some findings are
illustrated in Fig. [T(b), demonstrating that these methods, originally designed for image diffusion
with attention engineering, incur significant computational overhead when applied to Video DiTs.

4.2 Ablation results

We evaluate the efficacy of CDFV, ICA, and ER in our ablation study. In Fig.[5[a), we vary the
Embedding Reinforcement factor v from 1 to 10. Without reinforcement (y = 1), stylization
effects are negligible. Stylization improves as vy increases but degrades with excessively high values.
Empirically, v = 5 optimizes stylization without compromising structural fidelity or visual quality.
Fig. B[c) shows that omitting Implicit Cross-Attention Guidance leads to unintended changes in
unedited regions. Incorporating cross-attention mechanisms significantly enhances structural fidelity
and overall quality. In Fig.[5[b), we replace CDFV with the stochastic latent refinement vector in
DDS [31]. In this ablation, for "horse’ experiment, ICA and ER are kept, while for *bear’ they
are omitted for a fair comparison. The results highlights the effectiveness of CDFV. For additional
qualitative and quantitative comparison and ablation results, please refer to the Appendix.
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(a) Ablation results on Embedding Reinforcement (ER)
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(b) Ablation results on replacing CDFV with DDS vector. (c) Ablation results on Implicit Cross Attention (ICA) Guidance

Figure 5: Ablation. (a)(c) demonstrate the effectiveness of ER and ICA. (b) highlights limitations
of popular approximation-based latent refinement methods in video editing, including: low
convergence leading to unnatural changes and unpredictable convergence times; randomness bias
resulting in unsatisfactory structural fidelity. Refer to the supplementary material for more results.

5 Conclusion

We present DFVE(it, an efficient and effective zero-shot video editing framework tailored for Video
Diffusion Transformers. DFVEdit realizes video editing through the direct flow transformation
of the clean source latent. We theoretically unify editing and sampling from the continuous flow
perspective, propose CDFV to estimate the flow vector from the source video to the target video, and
further enhance the editing quality with ICA guidance and ER mechanism. Extensive experiments
demonstrate the efficacy of DFVEdit on Video DiTs.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: See Section/[I]
Guidelines:
* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: see the Appendix.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: See Section[3.2} Section[3.T]and the Appendix.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: See Section[4]and the Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Justification: We have the public project webside, and the code will be released later.
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* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they

should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: See Section[d]and the Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA] .
Justification: Not related to our work.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: See Section[4]and the Appendix.
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes] .
Justification: have reviewed.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: there is no societal impact of the work performed.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: the paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: the paper does not use existing assets.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification: the paper does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Justification: the core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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