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Abstract

The success of deep learning has set new benchmarks for many medical image tasks. How-
ever, deep models often fail to generalize in the presence of distribution shifts between
training (source) data and test (target) data. One method commonly employed to counter
distribution shifts is domain adaptation: using samples from the target domain to learn
to account for shifted distributions. In this work we propose an unsupervised domain
adaptation approach that uses graph neural networks to learn semantic and structural fea-
tures that are invariant across domains allowing for better performance across distribution
shifts. We test the proposed method for classification on two challenging medical image
datsets with distribution shifts - multi center chest xray images and histopathology images.
Experiments show our method achieves state-of-the-art results on those data sets.

Keywords: unsupervised domain adaptation, Graph convolution networks, Camelyon17,
CheXpert, NIH Xray.

1. Introduction

With the success of convolutional neural networks (CNNs) new benchmarks have been set
for many medical image classification tasks such as diabetic retinopathy grading(Gulshan
et al., 2016), digital pathology image classification (Liu et al., 2017) and chest X-ray images
(Irvin et al., 2017; Wang et al., 2017), as well as segmentation tasks such as (Li et al.,
2021; Painchaud et al., 2020). However, adopting such algorithms in clinical practice poses
challenges due to the domain shift problem where the target dataset has different charac-
teristics than the source dataset on which the model has been trained. These differences
are most commonly seen in the numerous image capturing protocols, parameters, scanner
manufacturers, and many other factors. This problem is particularly acute when the dataset
has images from multiple facilities where these factors are not controlled. Since annotating
samples from hospitals and domains is challenging due to scarcity of experts, it is essential
to design models that perform consistently on images acquired from multiple sources.
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Semi-supervised and Unsupervised Domain Adaptation (UDA) methods have been pro-
posed to address the domain shift problem. Semi-supervised approaches assume the avail-
ability of few labeled instances from the target domain for training the model along with
the source data (Puybareau et al., 2019). On the other hand, UDA techniques (Chen et al.,
2020; Ouyang et al., 2019) do not rely on the availability of labels from the target domain.
Generally, the goal of UDA methods is to learn a domain-invariant representation by enforc-
ing some constraint (e.g. Maximum Mean Discrepancy (Kumagai and Iwata, 2019)) that
brings the latent space, z, of the two domains closer and thus more alike in distribution
allowing for more comparable performance in classification/segmentation.

While state-of-the-art (SOTA) UDA methods have been able to use convolutional neural
network (CNN) based architectures to obtain impressive results; these methods often only
enforce alignment of global domain statistics (Xie et al., 2018) which leads to the loss of
important semantic class label information. Semantic transfer methods (Luo et al., 2017;
Motiian et al., 2017) address this by propagating the class label information into deep ad-
versarial adaptation networks. Unfortunately, it is difficult to model and integrate semantic
label transfer into existing deep networks. To deal with the above limitations (Ma et al.,
2019) propose an end-to-end Graph Convolutional Adversarial Network (GCAN) for unsu-
pervised domain adaptation. Graph based methods have another advantage over normal
CNNs as they better exploit the global relationship between different nodes (or samples),
and can effectively learn both global as well as local information. In this work we combine
feature disentanglement with graph convolutional networks (GCN) for unsupervised domain
adaptation and apply it to two different standard medical imaging datasets for classification
and compare it to the current SOTA methods.

Related Work: Prior works on UDA focused on medical image classification (Bermúdez-
Chacón et al., 2016; Ahn et al., 2020), object localisation and lesion segmentation (Heimann
et al., 2013; Kamnitsas et al., 2017), and histopathology stain normalization (Chang et al.,
2021).Graph networks for UDA (Ma et al., 2019; Wu et al., 2020) have found applications
for medical imaging (Ahmedt-Aristizabal et al., 2021) such as brain surface segmentation
(Gopinath et al., 2020) and brain image classification (Hong et al., 2019a,b).

1.1. Our Contributions:

Although previous works used feature disentanglement and graph based domain adaptation
separately, they did not combine them for medical image classification. In this work: 1) we
propose an end-end Graph Convolutional Adversarial Network (GCAN) for unsupervised
domain adaptation in medical images. We seek to align features for domain and structure
alignment. 2) We perform feature disentanglement using swapped autoencoders to obtain
texture and structural features, which are used for graph construction and defining generator
losses; 3) We demonstrate our method’s effectiveness on multiple medical image datasets.

2. Method

Given a source data set, DS = {(xiS , yiS)}
ns
i=1, consisting of ns labeled samples, and a target

data set, DT = {(xiT )}
nt
i=1 consisting of nt unlabeled target samples, unsupervised domain

adaptation aims to learn a classifier that can reliably classify unseen target samples. Here,
xiS ∼ pS is a source data point sampled from source distribution pS , yiS ∈ YS is the label,
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(a) (b)

Figure 1: (a) Workflow of our proposed method. Given images from source and target
domain we disentangle features into texture and structure features, and generate
similarity scores to construct an adjacency matrix. Generated features by the
GCN are domain invariant and along with the latent features are used to train
a domain classifier. (b) Architecture of feature disentanglement network with
swapped structure features

and xiT ∼ pT is a target data point sampled from target distribution pT . As per the covariate
shift assumption, we assume that pS(y|x) = pT (y|x) ∀x. Thus the only thing that changes
between source and target is the distribution of the input samples, x.

2.1. Graph Convolutional Adversarial Network

The core component of our method is a an adversarial generator based on graphs that
generates features which are domain invariant. Our proposed approach consists of a feature
disentanglement module which separates semantic (textural) and structural features (often
called style and content respectively). The output of the feature disentanglement module
is constructed into a graph and then fed into a graph neural network which will learn
more global relationships between samples, which in turn leads to more discriminative and
domain invariant feature learning. The divergence of domain statistics measured by the
adversarial loss and other loss terms guides the feature extractor to learn domain-invariant
representations. The architecture of our proposed approach is shown in Figure 1. Our
network is trained by minimizing the following objective function:

L(XS ,YS ,XT ) = LC(XS ,YS) + λ1LAdv(XS ,XT ) + λ2LStr(XS ,XT ) (1)

Classification loss LC is a cross entropy loss LC(XS ,YS) = −
∑ns

c=1 yc log(pc), yc is the
indicator variable and pc is the class probability. The other loss terms are described below.

2.1.1. Adversarial Loss

We use an adversarial loss function defined in Eq. 2. A domain classifierD identifies whether
features from feature generator G are from the source or target domain. Conversely, the
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generator G is being trained to produce samples that can fool D. This two-player minimax
game will reach an equilibrium state when features from G are domain-invariant.

LAdv(XS ,XT ) = Ex∈DS
[log(1−D(G(x)))] + Ex∈DT

[log(D(G(x)))] (2)

2.1.2. Structure Feature Alignment

While the adversarial loss enforces alignment of global domain statistics we also want that
the structural information of samples be preserved. Structural information is the local
information that describes an image’s underlying structure and visible organs or parts,
and is expected to be invariant across similar images from different domains. We propose
a feature disentanglement network that generates texture and structure features and we
enforce that the structure feature representations be similar across different domains.

Feature Disentanglement: Figure 1 (b) shows the architecture of our network for
feature disentanglement. Note that the feature disentanglement network is pre-trained on
a separate set of source domain images with known label. Similar to a classic autoencoder,
the encoder E produces a latent code z ∼ Z for image x ∼ X. The G reconstructs the
original image from z using an image reconstruction loss that is defined as:

LRec(E,G) = Ex∼X [∥x−G(E(x))∥] (3)

Additionally, the generated image should be realistic as determined by the Discriminator
D and is enforced using the adversarial loss defined as:

LAdv(E,G,D) = Ex∼X [− log(D(G(E(x))))] (4)

Furthermore, as part of our objective to achieve feature disentanglement we decompose
the latent code z into two components [zstr, ztex] corresponding to the structure and texture
components. We enforce that keeping the structure component and swapping the texture
component with a similar image still produces realistic images. This is achieved by using
a modified version of the adversarial loss, which we term as the swapped GAN loss, and is
defined as :

Lswap(E,G,D) = Ex1,x2∼X,x1 ̸=x2

[
− log(D(G(z1tex, z

2
str)))

]
(5)

Here z1tex, z
2
str are the first and second components of imagesX1, X2’s latent representations,

and X1, X2 from the same dataset in a minibatch. The component zstr is a tensor with
spatial dimensions, while ztex is a vector that encode structure and texture information.
LRec and LAdv, are applied to image X1 while Lswap is applied to the latent components
from X1, X2. The final loss function for feature disentanglement is defined as

LDisent = LRec + 0.7LAdv + 0.7Lswap (6)

After training is complete the network can take an input image and output its disentan-
gled feature representations [zSstr, z

S
tex], [z

T
str, z

T
tex] for source and target domain.To preserve

similarity of structure features, we calculate the cosine similarity loss as

LStr = 1− ⟨zSstr, zTstr⟩, (7)
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where ⟨.⟩ denotes cosine similarity. Note that the texture features need not be similar since
they are domain specific features, and hence we don’t define a texture loss.

The cosine similarity scores and the latent vectors are used to construct densely-connected
instance graphs. The Graph Convolutional Network (GCN) (Kipf and Welling, 2017) is then
applied to the instance graphs to learn GCN features encoded in the latent representations.
The GCN aims to learn the layerwise propagation operations that can be applied directly
on graphs. Given an undirected graph with m nodes, the set of edges between nodes, and
an adjacency matrix A ∈ Rm×m, a linear transformation of graph convolution is defined as
the multiplication of a graph signal X ∈ Rk×m with a filter W ∈ Rk×c :

Z = D̂
− 1

2 ÂD̂
− 1

2XTW, (8)

where Â = A + I, I being the identity matrix, and D̂ii =
∑

j Âij . The output is a
c × m matrix Z. The GCN can be constructed by stacking multiple graph convolutional
layers followed by a non-linear operation (such as ReLU). Each node in the instance graph
represents the latent feature of a sample and is represented as [ztex, zstr], and the adjacency
matrix is constructed using the cosine similarity score as Â = XscX

T
sc. Note that the cosine

similarity score quantifies the semantic similarity between two samples while the cosine
similarity loss defined in Eqn 7 is to be minimized (thus maximizing the cosine similarity).
Here Xsc ∈ Rw×h is the matrix of cosine similarity scores, w is the batch size, and h = 2 is
the dimension of the similarity scores of each sample obtained from corresponding [ztex, zstr].

Training And Implementation: Given X and A the GCN features are obtained
according to Eq.8. Source and target domain graphs are individually constructed and
fed into the parameters-shared GCNs to learn representations. The dimension of ztex is
256, while zstr is 64 × 64. VAE Network: The encoder consists of 3 convolution blocks
followed by max pooling after each step. The decoder is also symmetrically designed. 3× 3
convolution filters are used and 64, 32, 32 filters are used in each conv layer. The input to
the VAE is 256 × 256. For the domain classifier we use DenseNet-121 network with pre-
trained weights from ImageNet and finetuned using self supervised learning. As a pre-text
task we use the classifier to predict the intensity values of masked regions.

3. Experiments And Results

3.1. Results For CAMELYON17 Dataset

Dataset Description: We use the CAMELYON17 dataset (Bándi et al., 2019) to evaluate
the performance of the proposed method on tumor/normal classification. In this dataset,
a total of 500 H&E stained WSIs are collected from five medical centers (denoted as by
C117, C217, C317, C417, C517 respectively). 50 of these WSIs include lesion-level annota-
tions. All positive and negative WSIs are randomly split into training/validation/test sets
and provided by the organizers in a 50/30/20% split for the individual medical centers to ob-
tain the following split: C117:37/22/15, C217: 34/20/14, C317: 43/24/18, C417: 35/20/15,
C517: 36/20/15. 256 × 256 image patches are extracted from the annotated tumors for
positive patches and from tissue regions of WSIs without tumors for negative patches. We
use λ1 = 0.9 and λ2 = 1.1.

5



Mahapatra Korevaar Tennakoon

Method Center 1 Center 2 Center 3 Center 4 Center 5 Average p

No UDA 0.8068 0.7203 0.7027 0.8289 0.8203 0.7758 0.0001

MMD 0.8742 0.6926 0.8711 0.8578 0.7854 0.8162 0.0001

CycleGAN 0.9010 0.7173 0.8914 0.8811 0.8102 0.8402 0.002

(Vahadane et al., 2016) 0.9123 0.7347 0.9063 0.8949 0.8223 0.8541 0.003

(Gadermayr et al., 2018) 0.9487 0.8115 0.8727 0.9235 0.9351 0.8983 0.013

(Mahapatra et al., 2020) 0.9668 0.8537 0.9385 0.9548 0.9462 0.9320 0.024

(Chang et al., 2021) 0.979 0.948 0.946 0.965 0.942 0.956 0.017

Proposed 0.988 0.963 0.958 0.979 0.949 0.969 -

Ablation Study Results

FSL-Same Domain 0.991 0.972 0.965 0.986 0.957 0.974 0.07

w/o LStr 0.929 0.928 0.921 0.932 0.929 0.936 0.004

Table 1: Classification results in terms of AUC measures for different domain adaptation
methods on the CAMELYON17 dataset. Note: FSL − SD is a fully-supervised
model trained on target domain data.

Implementation Details Since the images have been taken from different medical cen-
ters their appearance varies despite sharing the same disease labels. This is due to slightly
different protocols of H&E staining. Stain normalization has been a widely explored topic
which aims to standardize the appearance of images across all centers, which is equivalent
to domain adaptation. Recent approaches to stain normalization/domain adaptation favour
use of GANs and other deep learning methods. We compare our approach to recent ap-
proaches and also with (Chang et al., 2021) which explicitly performs unsupervised domain
adaptation using MixUp.

Evaluation of our method’s performance consist of the following steps: 1) We use C117 as
the source dataset and train a ResNet-50 classifier (He et al., 2016) (ResNetC1). Each of the
remaining datasets from the other centers are, separately, taken as the target dataset, the
corresponding domain adapted images are generated, and classified using ResNetC1. As a
baseline we also perform the experiment without domain adaptation denoted as No−UDA
where ResNetC1 is used to classify images from other centers. We also report results for
a network trained in a fully-supervised manner on the training set from the same domain
(FSL − SameDomain) to give the strongest upper-bound expectation for a UDA model
trained on other domain’s data. , where a ResNet-50 is trained on the training images and
used to classify test images, all from the same hospital. This approach will give the best
results for a given classifier (in our case ResNet-50). All the above experiments are repeated
using each of C217, C317, C417, C517 as the source dataset. Table 1 summarizes our results.

The results in Table 1 show that UDA methods are definitely better than conventional
stain normalization approaches as evidenced by the superior performance of our proposed
method and (Chang et al., 2021). Our method performs the best amongst all the methods,
and is very close to FSL − SameDomain. This clearly shows that our proposed GCN
based approach performs better than other UDA methods. The ablation studies also show
that our proposed individual loss term LStr has a significant contribution to the overall
performance of our method and excluding it significantly degrades the performance.
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3.2. Results on Chest Xray Dataset

There are two publicly available chest Xray datasets - the NIH Xray (Wang et al., 2017)
and the CheXpert (Irvin et al., 2017) - which have a large image collection and, most
importantly, have the same set of disease labels. A brief description is given as: NIH
Chest Xray Dataset: For lung disease classification we adopted the NIH ChestXray14
dataset (Wang et al., 2017) having 112, 120 expert-annotated frontal-view X-rays from
30, 805 unique patients and has 14 disease labels. Original images were resized to 256×256,
and λ1 = 0.9, λ2 = 1.2. CheXpert Dataset: We used the CheXpert dataset (Irvin et al.,
2017) consisting of 224, 316 chest radiographs of 65, 240 patients labeled for the presence
of 14 common chest conditions. The validation ground-truth is obtained using majority
voting from annotations of 3 board-certified radiologists. Original images were resized to
256× 256, and λ1 = 0.95, λ2 = 1.1.

We first divide both datasets into train/validation/test splits on the patient level at
70/10/20 ratio, such that images from one patient are in only one of the splits. Then we
train a DenseNet-121 (Rajpurkar et al., 2017) classifier on one of the datasets (say NIH’s
train split). Here the NIH dataset serves as the source data and CheXpert is the target
dataset. We then apply the trained model on the test split of the NIH dataset and the
results are denoted as FSL−SameDomain. When we apply this model to the test split of
the CheXpert data without domain adaptation the results are reported under No− UDA.

Classification results for different domain adaptation techniques are reported in Table 2
where the NIH dataset was the source domain and the performance metrics are for the
CheXpert dataset’s test split. Table 3 summarizes the performance using the CheXpert
dataset as the source dataset, and applied to the NIH Xray dataset’s test split. We observe
that UDA methods perform worse than FSL− SameDomain. This is expected since it is
very challenging to perfectly account for domain shift. However all UDA methods perform
much better than fully supervised methods trained on one domain and applied on another
domain without domain adaptation.

Amongst the different UDA methods we find our method performs the best, including
outperforming convectional approaches such as those based on Maximum Mean Discrep-
ancy (MMD) and cycleGANs. The DANN architecture (Ganin et al., 2016) outperforms
MMD and cycleGANs, and is on par with graph convolutional methods GCAN (Ma et al.,
2019) and GCN2 (Hong et al., 2019b). However our method outperforms all compared
methods which can be attributed to the combination of GCNs, which learn more useful
global relationships between different samples, and feature disentanglement which in turn
leads to more discriminative feature learning.

4. Conclusion

Our graph convolutional network based unsupervised domain adaptation method outper-
forms conventional CNN methods as graphs better learn the interaction between samples
by focusing on more global interactions while CNNs focus on the local neighborhood. This
enables GCN to perform better UDA as demonstrated by results on multiple datasets.
While feature disentanglement also contributes to improved performance, there is scope for
improvement. In future work we wish to explore better disentanglement techniques starting
with improving our current approach, and aim to extend this approach for segmentation.
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No UDA MMD CycleGANs DANN FSL− SD Proposed w/o LStr GCAN GCN2

Atel. 0.697 0.741 0.765 0.792 0.849 0.825 0.782 0.798 0.809

Card. 0.814 0.851 0.874 0.902 0.954 0.931 0.897 0.908 0.919

Eff. 0.761 0.801 0.824 0.851 0.903 0.884 0.859 0.862 0.870

Infil. 0.652 0.699 0.736 0.761 0.814 0.788 0.764 0.757 0.765

Mass 0.739 0.785 0.817 0.849 0.907 0.890 0.852 0.858 0.871

Nodule 0.694 0.738 0.758 0.791 0.825 0.818 0.795 0.803 0.807

Pneu. 0.703 0.748 0.769 0.802 0.844 0.828 0.798 0.800 0.810

Pneumot. 0.781 0.807 0.832 0.869 0.928 0.903 0.873 0.867 0.882

Consol. 0.704 0.724 0.742 0.783 0.835 0.818 0.789 0.776 0.792

Edema 0.792 0.816 0.838 0.862 0.928 0.910 0.865 0.865 0.883

Emphy. 0.815 0.831 0.865 0.894 0.951 0.934 0.901 0.908 0.921

Fibr. 0.719 0.745 0.762 0.797 0.847 0.828 0.799 0.811 0.817

PT 0.728 0.754 0.773 0.804 0.842 0.830 0.798 0.799 0.812

Hernia 0.811 0.846 0.864 0.892 0.941 0.923 0.898 0.904 0.914

Table 2: Classification results on the CheXpert dataset’s test split using NIH data as the
source domain. Note: FSL − SD is a fully-supervised model trained on target
domain data.

No UDA MMD CycleGANs DANN FSL− SD Proposed w/o LStr GCAN GCN2

Atel. 0.718 0.734 0.751 0.773 0.814 0.798 0.771 0.78 0.786

Card. 0.823 0.846 0.861 0.882 0.929 0.931 0.897 0.895 0.906

Eff. 0.744 0.762 0.785 0.819 0.863 0.884 0.859 0.811 0.833

Infil. 0.730 0.741 0.761 0.785 0.821 0.799 0.764 0.777 0.789

Mass 0.739 0.785 0.817 0.837 0.869 0.843 0.832 0.828 0.831

Nodule 0.694 0.738 0.758 0.791 0.825 0.818 0.795 0.782 0.802

Pneu. 0.683 0.709 0.726 0.759 0.798 0.773 0.762 0.751 0.763

Pneumot. 0.771 0.793 0.814 0.838 0.863 0.847 0.822 0.832 0.835

Consol. 0.712 0.731 0.746 0.770 0.805 0.784 0.761 0.765 0.774

Edema 0.783 0.801 0.818 0.836 0.872 0.849 0.835 0.828 0.837

Emphy. 0.803 0.821 0.837 0.863 0.904 0.879 0.863 0.857 0.868

Fibr. 0.711 0.726 0.741 0.766 0.802 0.779 0.762 0.761 0.768

PT 0.710 0.721 0.737 0.762 0.798 0.774 0.761 0.756 0.763

Hernia 0.785 0.816 0.836 0.861 0.892 0.868 0.853 0.851 0.860

Table 3: Classification results on the NIH Xray dataset’s test split using CheXpert data as
the source domain. Note: FSL−SD is a fully-supervised model trained on target
domain data.
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Appendix A. T-SNE Visualizations

In Figure 2 we show the T-sne plots for our Proposed method, for GCN2 (Hong et al., 2019b),
DANN (Ganin et al., 2016) and our method without LStr. The features are obtained from
the final layer, and for all methods the output feature vector is 512 dimensional, and the
corresponding parameter values are λ1 = 0.95, λ2 = 1.1. The plots show visualizations for
5 disease labels for the CheXpert dataset. We show data from the source (marked with
dots) and target domain (marked with ’+’) for these labels. For our proposed method
(Figure 2 (a)), the source and target domain data of the same label map to nearby areas,
which indicates that the domain adaptation step successfully generates domain invariant
features. Additionally, the clusters for different labels is fairly well separated. These two
characteristics are not observed for the other methods. GCN2 has some level of separability
but there is undesirable overlap across different different classes. The overlap across classes
is even worse when we exclude the feature disentanglement components.

The t-sne visualizations clearly indicates that our proposed approach using feature dis-
entanglement is highly effective in learning domain invariant representations for different
disease labels. It also highlights the importance of feature disentanglement step. By sepa-
rating the images into structure and texture features we are able to learn representations
that have better discriminative power.
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(a) (b)

(c) (d)

Figure 2: Visualization of tsne plots for different methods using 5 disease labelsfrom the
CheXpert Dataset: (a) Our proposed method; (b) Our method without using
structure loss; (c) using DANN; (d) the GCN2 method of (Hong et al., 2019b).
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