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Abstract

Language models (LMs) are statistical mod-001
els trained to assign probability to human-002
generated text. As such, it is reasonable to003
question whether they approximate linguistic004
variability exhibited by humans well. This form005
of statistical assessment is difficult to perform006
at the passage level, for it requires acceptability007
judgments (i.e., human evaluation) or a robust008
automated proxy (which is non-trivial). At the009
word level, however, given some context, sam-010
ples from an LM can be assessed via exact011
matching against a prerecorded dataset of alter-012
native single-word continuations of the avail-013
able context. We exploit this fact and evaluate014
the LM’s ability to reproduce variability that015
humans (in particular, a population of English016
speakers) exhibit in the ‘next word prediction’017
task. This can be seen as assessing a form of018
calibration, which, in the context of text classifi-019
cation, Baan et al. (2022) termed calibration to020
human uncertainty. We assess GPT2, BLOOM021
and ChatGPT and find that they exhibit fairly022
low calibration to human uncertainty. We also023
verify the failure of expected calibration error024
(ECE) to reflect this, and as such, advise the025
community against relying on it in this setting.026

1 Introduction027

Language models (LMs) are trained to assign prob-028

ability to human-generated text. The typical LM029

treats a piece of text as a sequence of tokens whose030

joint probability it factorises autoregressively, with031

conditional token probabilities predicted from the032

available context by a neural network (Mikolov033

et al., 2010; Radford et al., 2019; Scao et al.,034

2022). An LM can be viewed as a representation035

of uncertainty about human linguistic production036

(Serrano et al., 2009; Takahashi and Tanaka-Ishii,037

2019; Meister and Cotterell, 2021; Giulianelli et al.,038

2023), specifically, one that reflects the production039

variability exhibited by the population(s) who gen-040

erated the training data. Despite how plausible this041
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Figure 1: Estimated human and model distributions for
contexts (15 most probable words of each distribution).

variability is, LMs are not consistently exposed to 042

it at the level of individual contexts (i.e., due to 043

data sparsity, most contexts are unique) leading us 044

to investigate their ability to predict it well. 045

One way to appreciate plausible variability is to 046

ask humans to perform next word prediction: show 047

multiple participants the same prefix of a passage 048

and ask each of them to contribute a word that plau- 049

sibly extends it. An LM that assigns probability to 050

any next-word candidate similar to the proportion 051

of the human population contributing it as the next 052

word serves as a good proxy to the production vari- 053

ability of that human population—a desideratum 054

Baan et al. (2022) termed calibration to human 055

uncertainty.1 Studying different notions of cal- 056

1Such calibration might be assessed against any population
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ibration of text classifiers, Baan et al. (2022) show057

that the very popular expected calibration error058

(ECE; Guo et al., 2017) is flawed in the presence059

of data uncertainty (e.g., due to the task’s inherent060

ambiguity (Plank, 2022)). As data uncertainty is061

hardly avoidable in language modelling, we must062

entertain the possibility that ECE is not a reliable063

tool to assess the predictive distributions of an LM,064

despite its widespread use (Kumar and Sarawagi,065

2019; Wang et al., 2020; Tian et al., 2023).066

To assess calibration to human uncertainty, we067

compare the uncertainty exhibited by LMs to the068

uncertainty exhibited by humans in the next word069

prediction task—for which we use Provo Corpus070

(Luke and Christianson, 2018), a dataset (in En-071

glish) with multiple human responses per avail-072

able context. We analyse three pretrained LMs of073

different sizes and training objectives (i.e., GPT2074

(Radford et al., 2019), BLOOM (Scao et al., 2022)075

and ChatGPT (OpenAI, 2022)) and find that they076

exhibit low calibration to human uncertainty. We077

verify ECE’s unreliability in this setting and advise078

the community against relying on it as a meaning-079

ful notion of calibration of generative models.080

2 Background081

Given context, an autoregressive LM predicts a082

conditional probability distribution (cpd) over the083

model’s vocabulary of known tokens (i.e., subword084

units). Hence, at this level, an LM can be regarded085

as a probabilistic multi-class classifier. This mo-086

tivates research (Müller et al., 2019; Kumar and087

Sarawagi, 2019; Wang et al., 2020) assessing the088

extent to which probabilities predicted by LMs are089

interpretable as ‘rate of correctness’, a property re-090

ferred to as calibration (Niculescu-Mizil and Caru-091

ana, 2005; Naeini et al., 2015; Guo et al., 2017).092

A multi-class classifier is said to be confidence-093

calibrated if its probabilities predict the classifier’s094

accuracy, specifically, if (100× q)% of its predic-095

tions made with probability (close to) q are judged096

to be correct. The ECE estimator (Guo et al., 2017)097

is the average absolute difference between average098

confidence and frequency of correctness across con-099

fidence bins.2 Baan et al. (2022) uncovered a logi-100

cal flaw in measuring ECE under data uncertainty—101

of interest, e.g. a specific target audience in a human-machine
interaction setting (e.g. Williams and Reiter (2008)).

2Correctness is determined by comparing the mode of
the predicted cpd to the target label (as pre-recorded in a
dataset); the mode’s probability is regarded as the classifier’s
confidence; closeness to q is determined via a binning scheme.

settings in which human disagreement is a plausible 102

property of the task and hence not to be dismissed 103

as error (Aroyo et al., 2019; Plank, 2022).3 They 104

show this in theory and empirically, and propose 105

to assess predicted probabilities against estimates 106

of target probabilities. The idea is to exploit mul- 107

tiple judgments per input to obtain the maximum 108

likelihood estimate (MLE) of the target cpd and 109

compare that to the model cpd at the instance level. 110

3 Methodology 111

We compare the uncertainty that LMs and humans 112

exhibit in next word prediction. For that, we must 113

represent their uncertainty over a shared space. 114

Human distributions. Given some context c, we 115

assume that human uncertainty is captured by a 116

single underlying cpd and, hence, regard human 117

responses to the next word prediction task as i.i.d. 118

draws from it. Then, given multiple responses, 119

the MLE for this cpd assigns probability p(w|c) to 120

word w given c equal to the relative frequency with 121

which humans predict w to follow c. 122

Model distributions. LMs decompose sentences 123

as sequences of subword units, rather than words. 124

However, humans predict complete words, hence, 125

we establish a process for re-expressing the model 126

cpds over the space of complete words.4 For a 127

given context c, we sample complete words from 128

the model and use an empirical estimate of their 129

probabilities; a word w drawn given c is assigned 130

probability q(w|c) equal to its relative frequency 131

in the sample. To generate complete words, we (i) 132

generate a token sequence generally long enough 133

to include a word boundary; (ii) merge subword 134

units and slice the first complete word from each 135

generation (using a basic tokeniser); and, finally, 136

(iii) reject samples that failed to generate a full 137

word. This procedure samples potentially different 138

segmentations of the same word(s) approximately 139

marginalising out tokenisation ambiguity—which 140

Cao and Rimell (2021) show to be an important 141

and unduly neglected aspect of LM evaluation. 142

3There are many variants of ECE in the literature (Kumar
et al., 2018; Widmann et al., 2019; Gupta et al., 2021; Si et al.,
2022; Dawkins and Nejadgholi, 2022). Some variants, in
particular, evaluate all probabilities of a cpd (not only the mode
probability; e.g., class-wise (Vaicenavicius et al., 2019; Kull
et al., 2019), static and adaptive (Nixon et al., 2019)), these still
assume no aleatoric uncertainty in the data generating process
and, hence, remain inadequate tools for our setting. Besides,
they are not common in language generation literature.

4Though artificial, one could tokenise the human data and
analyse cpds over subword units, we do that in Appendix D.
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4 Experiments143

Data. Provo Corpus (Luke and Christianson,144

2018) contains 55 passages (50 words long on aver-145

age) in English from various sources e.g. news, fic-146

tion, science. Each prefix sequence of all passages147

(2686 prefixes) is given as context to 40 humans,148

on average, who predict a one-word completion.149

We use this corpus to estimate target cpds.150

Models. For each context, we estimate cpds for151

different models. First, GPT2 Small (Radford et al.,152

2019), for which we use 1000 samples per con-153

text. To investigate whether a potential mismatch154

of training and test domain has an effect on our155

analysis, we fine-tune GPT2 on a subset of the156

original passages from Provo; we call this setting157

GPT2FT (the complete experimental setup is de-158

scribed in Appendix F). To test the effect of scale159

on calibration to human uncertainty, we also anal-160

yse BLOOM 176B (Scao et al., 2022). Due to its161

high computational costs, we opt for sampling 40162

generations per context (we motivate this choice163

empirically in Appendix C). Due to limited access164

to the API, we use a random subset of 669 Provo165

contexts. We are also interested in the effect of rein-166

forcement learning from human feedback (RLHF;167

Christiano et al., 2017; Ibarz et al., 2018), hence168

we analyse ChatGPT (OpenAI, 2022). As with169

BLOOM, we draw 40 samples per context and use170

a random subset of 500 Provo contexts. In one171

setting we prompt ChatGPT 40 independent times,172

in another setting (ChatGPTD) we prompt it once173

to generate a list with 40 options (prompt and ad-174

ditional details in Appendix C).5 For each context,175

we also have a ‘control cpd’ formed by splitting the176

human annotation in two disjoint parts from which177

we estimate two cpds, one regarded as target, one178

regarded as an oracle model; this allows us to form179

an expectation about realistic levels of calibration.180

Metrics. For each context, we compare a pair of181

cpds (a model vs the target for that context) in terms182

of their total variation distance (TVD).6 To study183

a whole dataset, we plot TVD’s distribution across184

contexts; for a numerical summary, following Baan185

et al. (2022), we report expected TVD (average186

TVD for all contexts) as a measure of calibration187

to human uncertainty. Finally, we compute ECE188

by comparing the mode of each model cpd to the189

5We will share all generations with the community.
6TVDc(p, q) =

1
2

∑
w |p(w|c)− q(w|c)|, where the sum

is over the union of model- and human-generated words.

Gold Label ECE ↓
Human Oracle2 GPT2 GPT2F Bloom ChatGPT ChatGPTD

Original 0.14 0.11 0.02 0.03 0.07 0.45 0.10
Human Maj. 0.60 0.57 0.21 0.22 0.09 0.37 0.08
Oracle1 Maj. 0.30 0.32 0.19 0.19 0.07 0.37 0.08

Avg TVD ↓ - 0.42 0.64 0.66 0.61 0.76 0.82

Table 1: ECE (the row indicates the target, the column
indicates the system) and Expected TVD results. We
resample the disjoint oracles 20 times and report the
mean ECE (standard deviations < 0.1).

original corpus word and ECE variants that use as 190

targets the human or oracle majority per context. 191

5 Results 192

Table 1 presents ECE and Expected TVD results. 193

As predicted, ECE ranks most models as better 194

calibrated than human oracles, confirming that it 195

cannot be trusted in this setting. Figure 2 illustrates 196

kernel density estimate (KDE) plots of instance- 197

level TVD values between our models’ cpds and 198

the target (human) cpds, along with the KDE plot 199

of TVD values between two disjoint oracles. We 200

observe how the distributions of all models are 201

skewed towards higher TVD values, with Chat- 202

GPT performing the worst. The inability of models 203

to reproduce variability is not due to population 204

mismatches (as GPT2FT displays similar trends to 205

GPT2) and persists in larger models, while RLHF 206

worsens the issue (for both sampling strategies). 207

We measure a difference of around 0.2 TVD 208

units between GPT2’s and oracles’ means, but, 209

we lack understanding of its practical significance. 210

That is, we do not how much worse than an ora- 211

cle cpd a system that scores 0.2 TVD units more 212

really is. To gain some insight, we conduct a con- 213

trolled experiment. We artificially improve k% of 214

the model’s cpds by replacing them by an oracle 215

estimate. We then measure TVD between this arti- 216

ficial improvement and a disjoint oracle allowing 217

us to associate units of TVD with an interpretable 218

rate of improvement (i.e., percentage of plausible 219

cpds). We find that we need to replace about 60% 220

of GPT2’s cpds to achieve TVDs that distribute 221

similarly to human performance.7 222

For further insight, we analyse GPT2’s inabil- 223

ity to reliably reproduce human variability. We 224

perform Bayesian regression with automatic rel- 225

evance determination (ARD; Neal, 2012) using, 226

7In Appendix E, we verify that our findings a robust to
choices of k, random seed and sample size.
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Figure 2: KDE plot of TVD values between a model and
the estimated human target cpd, and between oracles.

for each context, TVD between GPT2 and the or-227

acle cpd as the regression target, and predictors228

that are indicative of how constraining a context is229

(TVD between oracles, entropy of target cpd), as230

well as context length and the entropy of the model231

cpd. The former two are high precisely for con-232

texts that admit more plausible variability. ARD233

ranked length as least important and TVD between234

oracles as most important, confirming that GPT2235

struggles precisely in those cases of higher plausi-236

ble variability (details in Appendix B). In Figure237

1, we visualise target cpds and GPT2’s (for the238

top-15 highest probability words) for two contexts;239

Appendix G lists a full passage. We choose the240

distributions of Figure 1 to demonstrate some ob-241

servations; (1) GPT2’s cpd fails to align with the242

human one, in samples where the outcome is barely243

constrained (true for the majority of the many in-244

stances we examined), and (2) when the outcome245

is fairly constrained, such as when completing a246

prepositional verb, GPT2 performs much better.247

6 Related Work248

There has been work that exploits predictive dis-249

tributions of LMs in various ways. LeBrun et al.250

(2022) analyses such distributions and finds that251

they overestimate the probability of ill-formed se-252

quences. Others investigate alternative training253

signals that minimise the distance between the data254

and model distributions (Ji et al., 2023; Labeau255

and Cohen, 2019; Zhang et al., 2023). Our work256

exploits predictive distributions as an uncertainty257

representation of human linguistic production and258

study their calibration. Several works study how259

well-calibrated LMs are and how to alleviate mis-260

calibration (He et al., 2023; Lee et al., 2022; Xiao261

et al., 2022; Ahuja et al., 2022; Chen et al., 2022;262

Kumar and Sarawagi, 2019; Li et al., 2022; Xiao 263

and Wang, 2021) — the majority using ECE to sub- 264

stantiate their findings, whose inadequacy makes 265

us believe that a new round of studies is needed to 266

assess this matter; our work being an example. 267

There is a line of work that stresses the value of 268

obtaining multiple human labels per input (Plank, 269

2022; Basile et al., 2020; Grossmann et al., 2022; 270

Prabhakaran et al., 2021), embracing data uncer- 271

tainty in classification; Baan et al. (2022) propose 272

calibration metrics that accommodate label variabil- 273

ity in natural language inference (NLI; Bowman 274

et al., 2015). In concurrent work, Lee et al. (2023) 275

measure the calibration of LM-based classifiers to 276

human uncertainty on ChaosNLI (Nie et al., 2020), 277

also using Baan et al.’s expected TVD. 278

Other work further investigates uncertainty in an 279

NLG setting. Zhou et al. (2023) and Kadavath et al. 280

(2022) prompt LMs to output uncertainty linguisti- 281

cally. Kuhn et al. (2023a) prompt LMs to ask for 282

clarifying questions when faced with ambiguous 283

inputs. Similarly, Cole et al. (2023) sample re- 284

peatedly from LMs to assess whether they are able 285

to answer ambiguous questions. Giulianelli et al. 286

(2023) analyse various NLG tasks, their variability, 287

and the ability of LMs to capture it. Additionally, 288

Kuhn et al. (2023b) introduce semantic entropy, 289

which incorporates linguistic invariances such as 290

meaning equivalence, while Santurkar et al. (2023) 291

prompt LMs to assess whether they represent the 292

political views of US Americans from different de- 293

mographics. Finally, Eisape et al. (2020) analyse 294

the miscalibration of LMs from a psycho-linguistic 295

lens, and fine-tune an LSTM model using multiple 296

labels. Our work is an addition to this line of work. 297

7 Conclusion 298

Our work joins a stream of work acknowledging 299

and better incorporating data uncertainty into evalu- 300

ation protocols (Baan et al., 2022; Giulianelli et al., 301

2023). In particular, we find empirical evidence 302

for ECE’s unreliability in this setting and advise 303

further research into calibration of LMs not to use 304

it. With a more appropriate tool, we analyse three 305

modern pretrained LMs and find that they are not 306

well calibrated to human uncertainty, unlike ECE 307

might suggest. We believe that this inability stems 308

from models not being consistently subjected to 309

human production variability during training, and 310

plan to investigate this further in future work. 311
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Limitations312

The assessment of calibration to human uncertainty313

we have conducted is only one aspect of a system’s314

quality and is not meant to de-emphasise the im-315

portance of any other sound form of evaluation,316

but rather to offer a complementary tool that sup-317

ports an insightful set of observations about mod-318

ern LMs. The computational costs of generating319

a large amount of continuations can be restrictive;320

as well as the cost of multiple annotations for each321

context. However, we believe that the benefits of322

obtaining such data and measuring uncertainty with323

more reliable methods, outweigh these costs. To324

foster research, we share the generations that sup-325

ported this research. The high cost of obtaining326

data with multiple references per prompt results in327

another limitation: the limited availability of such328

labelled data. The limited number of human an-329

notations per context is another limitation which330

is hard to alleviate. We considered all human an-331

notations to be draws from the same underlying332

distribution, which is an assumption we cannot ver-333

ify easily (e.g. we do not know if all participants334

had similar perspectives and backgrounds). Lastly,335

we only studied models trained for English. For336

less resourced languages, data-scarcity is expected337

to have worse effects on LMs’ calibration. Simul-338

taneously, English has a relatively fixed word order339

and simple morphology. Other languages might340

exhibit even greater variability due to their own ty-341

pological features. In turn, we might be required to342

annotate larger datasets or study the phenomenon343

at a different level of granularity.344
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Appendix 608

A Method 2 - Biased Model Estimate 609

We attempted constructing another estimator of 610

the model distribution. Unlike the MC estimator 611

in the main text, this estimator is biased due to 612

it overestimating the probability of words in the 613

distribution support and underestimating ones not 614

belonging to it. This estimator forces the model to 615

assign non-zero probabilities to humans responses; 616

in an attempt to see if the model will, in this case, 617

be able to predict human variability better. 618

We construct the support of the distribution as 619

words that are ‘likely’ under the model. These in- 620

clude words generated with unbiased and nucleus 621

sampling, the greedy word, as well as the original 622

corpus word and human-answered words. For the 623

words requiring sampling from the model, we fol- 624

low a procedure similar to the unbiased estimator 625

for ensuring sampled words are complete. 626
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Figure 3: Histogram of TVD values for (biased) model
and oracle distributions when compared to the full hu-
man distribution

The probability for each word is computed by627

renormalising the joint probabilities the model as-628

signs for the corresponding token sequences:629

log q(w|c) = log f(c, w)− log f(c)630

− logsumexpk[log f(c, k)− log f(c)] ,
(1)

631

where f(.) is the joint probability of the tokenised632

sequence, as assigned by the neural model.633

We also evaluated the model’s performance us-634

ing such distributions. We use the same 1000 un-635

biased samples as before and an additional 100636

nucleus samples for each of p ∈ 0.7, 0.8, 0.9. Re-637

sults for ECE and TVD are shown in Table 2 and638

Figure 3 respectively. We observe similar results639

with the unbiased model in terms of both ECE and640

TVD.641

Gold Label
ECE

Model Oracle 1 Oracle 2

Corpus Word 0.068 0.116 0.185
Human Majority 0.138 0.563 0.458

Table 2: ECE results for the (Biased) Model and Oracle
Distributions when considering the Gold-Label to be
the corpus word or the human majority

B Predictors of TVD between model and642

oracle643

We plot the target variable, TVD between the hu-644

man and the model cpds against different predictors645

of interest (Figure 4 - 7). One particular predictor,646

the TVD between Oracles (Figure 4) is of inter-647

est, since it provides support for the claim made648

in Section 5; regarding GPT2’s ability to predict649

variability well when the next word prediction task650

is less constrained. The results seem to support 651

this theory - in the very low disagreement range 652

between humans (TVD < 0.15), the model seems 653

to predict variability well - or better, the lack of it. 654

We also investigate context length as a predictor 655

of the model’s ability to predict human variability 656

(Figure 5) - but surprisingly, we observe how the 657

two seem to not be correlated. The plot with the 658

human entropy and model entropy as the predictors, 659

show a positive correlation (Figure 6 and 7 respec- 660

tively). The results from the Bayesian regression 661

with automatic feature determination are in Table 3, 662

where each predictor and its coefficient are shown. 663

Predictor Coefficient

Human Entropy 0.053
Model Entropy 0.095
TVD between Oracles 0.117
Context Length 0

Table 3: Bayesian Regression Predictors and Coeffi-
cients

C Larger Models 664

Due to the high computational inference costs of 665

such large models, sampling 1000 ancestral gen- 666

erations for each context is infeasible. Hence, we 667

opt for a lower number of samples - chosen on the 668

basis of a subsampling experiment based on GPT- 669

2. From the 1000 ancestral samples, we randomly 670

selected subsamples of varying sizes (size = 10, 20, 671

40 and 100). For each of these, we re-computed the 672

model distribution and computed the TVD values 673

with an oracle. The Mean Squared Error between 674

the TVD values of the subsampled distributions 675

and the full-sampled distributions were computed 676

and visualised through a histogram, as seen in Fig- 677

ure 8. We opted for a sample size of 40, since 678

we considered it to be a good trade-off between 679

computational costs and error. 680

C.1 ChatGPT prompting 681

Since ChatGPT is a conversational model - we 682

prompt it to provide us with possible continuations 683

to given contexts. We prompt it in two ways: 684

1. You are ChatGPT, a large language 685
model trained by OpenAI. I want 686
you to answer which word is a 687
plausible continuation to the 688
context <CONTEXT>. I have no 689
specific intent, I just want your 690

8
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guess. Return only the word and 691
nothing else. 692

2. You are ChatGPT, a large language 693
model trained by OpenAI. I want 694
you to answer which 40 words are 695
plausible continuations to the 696
context <CONTEXT>. I have no 697
specific intent, I just want your 698
guess. Return only the words and 699
nothing else. 700

For the former, we request 40 generations and for 701

the latter only one (for both, temp = 1); both ways 702

returning eventually of 40 continuations - which 703

are ensured to be whole words. The first procedure 704

imitates unbiased sampling more closely than the 705

second - but due to the fact that minimal variability 706

was observed, we implemented both methods. 707

For both BLOOM and ChatGPT generations 708

we used the Hugging Face and OpenAI API sub- 709

scriptions respectively, for two months. Regarding 710

GPT2, we run generations using 1 NVIDIA A100 711

GPU, each passage needing approximately 2 hours 712

to compute 1000 generations for all contexts in the 713

passage. 714

C.2 TVD Differences 715

We additionally visualise the histograms of the dif- 716

ference in TVD values between the model and the 717

human distribution minus the oracle and human 718

distributions (Figure 9). 719

D Token-Level Experiment 720

One could claim that by estimating next-word dis- 721

tributions instead of next-token ones, we introduce 722

some level of bias towards the model - since they 723

are trained on BPE tokens rather than words. De- 724

spite finding this artificial, we repeat a subset of 725

the experiments on a token level: instead of find- 726

ing a method to sample sequences of tokens that 727

form complete words from the model, we tokenize 728
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human answers and create the target distribution 729

of tokens. More specifically, we obtain from the 730

model the distribution of next-tokens given a con- 731

text. For the human distribution, we tokenize all 732

human responses and take the first token of each 733

one. We obtain the MLE of the human next-token 734

distribution (and oracles) in a similar fashion to 735

Section 3. Then, we perform a similar analysis for 736

ECE and TVD values. Results are similar to the 737

word-level analysis (Table 4 and Figure 10). We re- 738

frain from using token level analysis for calibration 739

because it’s not clear how to compare LMs with 740

different tokenizers, whose vocabulary sizes differ. 741

Gold Label
ECE

Model Oracle 1 Oracle 2

Human Majority 0.141 0.500 0.396

Table 4: ECE results for the Biased Model and Oracle
Distributions

E Improving Model Experiments 742

We repeat the experiment where we artificially im- 743

prove GPT2’s performance (Section 5). This time, 744

we create two types of disjoint oracles (by sam- 745

pling from the human cpd without replacement) 746

varying in size - a pair of size 20 and a pair of size 747

10. For each size, we sample 10 different pairs (us- 748

ing different seeds). For each pair, we compute the 749

TVD value between them and the TVD value be- 750

tween an oracle and the model. As before, we ran- 751

domly choose k% of model-oracle TVD instances 752

to be replaced by the respective oracle-oracle in- 753

stances. The aggregated results for the 10 seeds 754

can be found in Figures 12 and 13 for the oracles 755

of size 10 and 20 respectively. Results are very 756

similar as before, showing that results are robust to 757
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Figure 11: We artificially improve the Model-Oracle
TVD histogram, by randomly replacing k% of the TVD
values with the respective TVD values between oracles.

the oracle size and the sampled split itself.758

F Out-Of-Distribution Effect Experiment759

One could claim that we evaluate on a dataset,760

Provo Corpus, that does not necessarily originate761

from the distribution of the training dataset. To762

reinforce the validity of our results and establish763

that they are not just stemming from a domain mis-764

match of training and evaluation data, we complete765

experiments by fine-tuning on a subset of Provo766

Corpus. This way we, at least partly, remove the po-767

tential out-of-distribution effect - and re-evaluating768

calibration. Due to the Provo Corpus’ limited size,769

the fine-tuning procedure has the following two770

aspects:771

(1) A k-fold cross validation split (k=4), using772

the first 40 passages (Paragraphs 1-40) of Provo773

Corpus to create the 4 equal splits - each 10 pas-774

sages long. We iteratively train on 3 of the splits775

and evaluate on the last 15 passages of Provo Cor-776

pus (Paragraphs 41-55). The paragraphs from the777

unused split are used for the evaluation of uncer-778

tainty. Overall, we end up with 4 different models,779

each used to create model distributions for 10 para-780

graphs - which, in turn, are used to measure TVD781

values for all their contexts.782

(2) We do not fine-tune on the whole model - we783

freeze all parameters except those of the last two784

layers of GPT2-Small, since our training dataset785

is very small. We train using the cross-entropy786

loss, the AdamW optimizer (epsilon = 1e-8), for787

10 epochs, with a 5e-4 learning rate, a batch size of788

5, using 0 as the seed value.789

The TVD results for the fine-tuned models’,790

along with the respective perplexity curves during791

fine-tuning are in Figure 14 and 15 respectively.792
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Figure 12: Improving the Model-Oracle TVD his-
togram, by randomly replacing k% of the TVD values
with the respective TVD values between oracles, with
an oracle size of 10, repeated on 10 seeds. k=0 corre-
sponds to model performance and k = 100 to human
performance.
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Figure 13: Improving the Model-Oracle TVD his-
togram, by randomly replacing k% of the TVD values
with the respective TVD values between oracles, with
an oracle size of 20, repeated on 10 seeds. k=0 corre-
sponds to model performance and k = 100 to human
performance.
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G Visual Analysis of Distributions793

We randomly choose one full passage (Paragraph794

8) to illustrate further our conclusions. For all con-795

texts, we provide the human and GPT2 distribu-796

tions for the 15 most probable words of each cpd.797
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Figure 14: TVD histograms for all contexts between
models (original and fine-tuned) and humans
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Context: The human body can tolerate only a small 
range of temperature, especially when the person

 is engaged in vigorous activity. Heat reactions
 usually occur when large amounts of water and/or 
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Context: The human body can tolerate only a small 
range of temperature, especially when the person

 is engaged in vigorous activity. Heat reactions
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