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Abstract

Human Mesh Recovery (HMR) is the task of estimating a parameterized 3D human
mesh from an image. There is a kind of methods first training a regression model
for this problem, then further optimizing the pretrained regression model for any
specific sample individually at test time. However, the pretrained model may
not provide an ideal optimization starting point for the test-time optimization.
Inspired by meta-learning, we incorporate the test-time optimization into training,
performing a step of test-time optimization for each sample in the training batch
before really conducting the training optimization over all the training samples.
In this way, we obtain a meta-model, the meta-parameter of which is friendly to
the test-time optimization. At test time, after several test-time optimization steps
starting from the meta-parameter, we obtain much higher HMR accuracy than
the test-time optimization starting from the simply pretrained regression model.
Furthermore, we find test-time HMR objectives are different from training-time
objectives, which reduces the effectiveness of the learning of the meta-model.
To solve this problem, we propose a dual-network architecture that unifies the
training-time and test-time objectives. Our method, armed with meta-learning and
the dual networks, outperforms state-of-the-art regression-based and optimization-
based HMR approaches, as validated by the extensive experiments. The codes are
available at https://github.com/fmx789/Meta-HMR.

1 Introduction

Human mesh recovery (HMR) from a single image is of great importance to human-related applica-
tions, such as action capture without MoCap device, action transfer with vision-based system, and
VR/AR entertainments, etc. This topic has received extensive research during past years, for which
most of previous approaches represent a 3D human mesh by the parametric human model SMPL [39]
with parameters Θ = (θ, β), where θ encodes the pose of the mesh and β describes the body shape.
The aim is thus to estimate Θ of a human in a given image.

Originally, the problem is solved by optimizing a standard human mesh so that its 2D projection
matches the 2D joints of the target human (e.g., SMPLify [5]). Later, works of [23, 33, 58, 37, 8,
67, 73, 66] propose end-to-end networks trained on large datasets to directly output a 3D SMPL
mesh given an input image. In SPIN [28], the regression-based approach [23] and optimization-based
approach SMPLify [5] are combined together by interleaved training, where the regression method
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provides an initial solution for optimization and then the optimization method provides supervision
for regression. Different from SMPLify [5] that directly optimizes a 3D mesh, works of EFT [22]
and BOA [17] finetune a pretrained regression model on each test sample, which indirectly optimize
the target human mesh (i.e., the the outcome of the regression models) .

In this paper, we are particularly interested in the test-time optimization-based approaches of EFT
[22] and BOA [17]. Since BOA is developed for video leveraging consistency properties between
frames, we mainly discuss and compare with EFT that performs HMR for images, like ours. Our
observation is that the test-time optimization is analogous to one-shot learning. That is, it finetunes
a pretrained model on a specific sample before really applying the model to solve the human mesh
recovery task for that sample. However, the pretrained model, which is not specially tailored for the
one-shot learning problem, may not be so effective for the test-time adaptation as desired.

Based on the above analysis and inspired by Kim et al. [24], we incorporate the test-time optimization
into the training process, re-formulating the test-time optimization from the perspective of learning
to learn, i.e., meta learning [14]. Specifically, given a batch of training samples (or saying a set of
tasks), our method first performs test-time optimization on each sample to update the regression
network parameters temporally for that sample. Then, based on all pieces of regression parameters
after test-time optimizations, we further optimize the training-time objectives over the whole batch of
training samples. By performing training-time optimization after test-time optimization, we imagine
that the training optimization works as a faithful supervision to correct the wrong optimization
directions of the test-time optimizations. After the training, the obtained parameters of the regression
network can be viewed as meta-parameters which will be instantiated to parameters actually used for
human mesh recovery through several test-time optimization steps.

We find that the test-time objectives for the human mesh recovery task are different from training-time
objectives, because we sometimes have ground-truth human meshes at training time but forever
not at test time. This may produce an obstacle in the meta-learning process, since the optimization
directions of the test-time and training optimizations are not identical. To alleviate this problem, we
design a dual-network structure to implement our method, which owns a main regression network
and an auxiliary network. The auxiliary network provides the main network with pseudo ground-truth
SMPL meshes, by which we unify the training and test-time objectives elegantly.

We demonstrate through extensive experiments that our method equipped with meta-learning and the
dual networks greatly outperforms state-of-the art approaches. To summarize, our main contributions
are three-fold: (1) We propose a novel dual-network HMR framework with test-time optimization
involved into the training procedure, which improves the effectiveness of the test-time optimizations.
(2) We ensure the test-time objectives identical to the training objectives, further facilitating the
joint-training of the test-time and training-time optimizations. (3) Extensive experiments validate that
our results outperform those of previous approaches both quantitatively and qualitatively.

2 Related Work

Regression-based HMR methods typically employ neural networks to regress the human body mesh
representation from images. Methods of [26, 48, 45, 72, 23, 42, 63, 68, 56, 71, 13, 36, 65, 35, 34]
choose to regress parametric human body model, i.e., SMPL [39]. HMR [23] was the first employing
CNN [19] to extract features and MLP layers to output 3D mesh parameters. Later, sophisticated
networks were proposed for improving the reasoning accuracy. For example, PyMAF [72, 71]
extracted features in a pyramid structure and iteratively aligned 3D vertices with human body in
the image. Xue et al. [66] used a learnable mask to automatically identify the most discriminative
features related to 3D mesh recovery. Works of [27, 33, 58, 44] observed that prior works overlooked
the importance of camera parameters. Among them, CLIFF [33] innovatively considered using the
cropping bounding boxes as input to reduce the ambiguity of reprojection loss. Zolly [58] considered
the camera distortion produced by perspective projection. Recently, Nie et al. [44] proposed a
RoI-aware feature extraction and fusion network, guided by camera consistency and contrastive loss
functions tailored to the multi-RoI setting.

There are also non-parameterized methods directly regressing mesh vertices. For example, METRO
[37] utilized Transformer to model the global relationship between human keypoints and mesh
vertices. FastMETRO [8] separated backbone features from the features corresponding to keypoints
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and vertices. Recently, [67] combined pyramid structure in PyMAF [72, 71] with the Transformer-
based HMR regression method, further improving the regression accuracy.

The regression model is a key component in our method. In this paper, We test HMR [23] and CLIFF
[33] as the regression network in our method.

Optimization-based HMR methods [5, 47, 30, 16, 18, 74, 3, 22, 52] usually attempt to estimate
a 3D body mesh consistent with 2D image cues. Bogo et al. [5] proposed an approach called
SMPLify, which iteratively adjusts SMPL parameters to fit detected 2D keypoints. SPIN [28]
combined regression-based methods with SMPLify in an interleaved training strategy. CycleAdapt
[43] alternately trained a HMR network and a motion denoising network to enhance each other. Unlike
SMPLify, EFT [22] and BOA [17] fine-tuned a pretrained regression network via 2D reprojection
loss or temporal consistency loss at test phase, updating the SMPL parameters indirectly. Some
approaches proposed learning stronger 3D priors [29, 47, 12, 43] or utilizing trainable neural networks
to update parameters in lieu of gradient updates [69, 9, 53]. Inverse kinematics (IK) has also been
explored. These methods address IK problems by decomposing relative rotations [32], designing
networks that integrate forward and inverse kinematics [31], or incorporating UV position maps [51].
Different from all the above, our method integrates test-time optimization into the training process,
obtaining a meta-model and meta-parameters.

Meta Learning Our method is most related to the model-agnostic meta-learning (MAML, or more
precisely FOMAML) [14]. MAML first samples a number of tasks, then performs local optimization
on each task, and finally conducts a global optimization to update the parameters of the original
network. Similarly, our method first executes test-time optimization on each training sample and then
performs training optimization on a batch of training samples. Although our method is inspired by
MAML and its extensions [2, 49, 50], our goal is fundamentally different from theirs. The goal of
MAML is usually for few-shot learning or domain adaptation, which assumes there is ground-truth
labeled data in the target domain. In contrast, our goal is to adapt the network to a single test sample
which is free of ground-truth human mesh. We have noted MAML has been proven effective in
various domains, such as talking head generation [70], SVBRDF recovery [75, 15], image super
resolution [46], etc. As far as we know, the work of Kim et al. [24] is the first that applies meta
learning to HMR. The key difference is that that Kim et al. [24] used the 2D reprojection loss only
(please see Eq. 1 in their paper) in both inner and outer loops of meta learning, while we incorporate
the ground-truth 3D SMPLs into the outer loop of meta learning and additionally generate pseudo
SMPLs and incorporate them into the inner loop of the metal learning. The utilization of the GT and
pseudo SMPLs greatly improves the results of our method upon the method of [24].

3 Our Method

Our goal is to estimate a 3D SMPL human mesh parameterized by Θ = (θ, β) together with a camera
π from a given image I of a person, where θ ∈ R24×3 and β ∈ R10 are pose and shape parameters of
the SMPL human model [39], respectively. Let {Ii,j , Θ̂i,j , Ĵi,j}B,M

i=1,j=1 be a training dataset, where
Ii,j is a training image, Θ̂i,j is the ground-truth (GT) human mesh, Ĵi,j is the 2D GT joints (or joints
detected by such as OpenPose [7]) of the human in the input image, B is the number of batches,
and M is the batchsize. End-to-end HMR regression approaches usually train a neural network
fw : Ii,j → (Θi,j , πi,j) by minimizing the following training-time loss function Ltrain:

wpre = argmin
w

B∑
i=1

M∑
j=1

Ltrain(fw(Ii,j), Θ̂i,j , Ĵi,j), (1)

where
Ltrain(fw(Ii,j), Θ̂i,j , Ĵi,j) = L2D(fw(Ii,j), Ĵi,j) + L3D(fw(Ii,j), Θ̂i,j), (2)

with
L2D(fw(Ii,j), Ĵi,j) = ∥π(Θi,j)− Ĵi,j∥22, L3D(fw(Ii,j), Θ̂i,j) = ∥X(Θi,j)−X(Θ̂i,j)∥22. (3)

As seen, Ltrain is composed of a 2D reprojection loss L2D and a 3D loss L3D. The 2D loss first
projects mesh Θi,j to the 2D plane by the camera π and then computes difference between the
projected 2D joints and the given 2D joints Ĵi,j . The 3D loss computes difference between 3D
meshes, where X can be an identity transformation or transformations computing 3D human joints
or mesh vertices from the mesh parameters.

3



𝐈𝒊,1

Training Optimization

𝐈𝑖,2 𝐈𝑖,𝑀

,
...

,

, ... ,

...

...

...

(

O
p

ti
m

iz
er

 𝐰

O
p

ti
m

iz
er

 𝐮

)(

(

𝑓𝐮𝑓𝐰

ℒ𝑡𝑒𝑠𝑡−𝑢( )
, ,

Gradient 

Descent
𝑓𝐰𝑖,1

′𝐈𝑖,1

ℒ𝑡𝑟𝑎𝑖𝑛( )
, ,

ℒ𝑡𝑟𝑎𝑖𝑛( )
, ,

𝑓𝐮𝑓𝐰

ℒ𝑡𝑒𝑠𝑡−𝑢( )
, ,

Gradient 

Descent
𝑓𝐰𝑖,2

′𝐈𝑖,2

ℒ𝑡𝑟𝑎𝑖𝑛( )
, ,

ℒ𝑡𝑟𝑎𝑖𝑛( )
, ,

𝑓𝐮𝑓𝐰

ℒ𝑡𝑒𝑠𝑡−𝑢( )
, ,

Gradient 

Descent
𝑓𝐰𝑖,𝑀

′𝐈𝑖,𝑀

ℒ𝑡𝑟𝑎𝑖𝑛( )
, ,

ℒ𝑡𝑟𝑎𝑖𝑛( )
, ,

,

,

Towards 𝐮𝒎𝒆𝒕𝒂Towards 𝐰𝑚𝑒𝑡𝑎

The 𝒊𝒕𝒉 batch images:

GT 

SMPL

GT 2D 

Joints

Estimated 

SMPL 

Outer

GT 

SMPL

GT 2D 

Joints

Pseudo 

SMPL

Pseudo 

SMPL

GT 2D 

Joints

Estimated 

SMPL 

Inner

T
est-T

im
e O

p
tim

izatio
n

Figure 1: Overview of the dual-network meta-learning HMR method, composed of a main HMR
regression network fw and an auxiliary network fu. Both networks have the same architecture but
different parameters. Given ith batch of images, test-time optimization is first executed for each
training image Ii,j in the batch individually, updating fw to fw′

i,j
by performing a gradient descent

step w.r.t. the test-time loss function Ltest−u. Then based on {fw′
i,j
|j ∈ [1,M ]} (M is the batch

size), the training optimization is executed to update the parameters of both main and auxiliary
networks by Ltrain with different arguments respectively. wmeta and umeta are the finally generated
meta-parameters. fu generates “Pseudo SMPLs” that are used in the test-time loss to supervise the
learning of the “Estimated SMPL Inner”. GT SMPLs are used in the training loss to supervise the
learning of “Estimated SMPL Outer” and the Pseudo SMPLs.

3.1 Test-time Optimization

Exemplar-Fine-Tuning (EFT) [22] was the first work proposing test-time optimization for HMR. In
particular, the pretrained network wpre is further finetuned by performing the following test-time
optimization loss function on a specific test sample Ii,j :

w∗
i,j = argmin

wi,j

Ltest(fwi,j
(Ii,j), Ĵi,j), initially wi,j = wpre, (4)

with
Ltest(fw(Ii,j), Ĵi,j) = L2D(fw(Ii,j), Ĵi,j). (5)

The test-time optimization starts from the initial solution wpre provided by the pretrained model.
It resembles one-shot learning but actually does not, because the pretrained model is obtained
using normal supervised learning techniques while not introducing any strategy for guaranteeing
the properties of one-shot learning. The parameters of the pretrained model may be not ideal as the
starting point for the test-time optimization.

3.2 Incorporating Test-time Optimization into Training

To solve the above problem, we propose to integrate the test-time optimization into the training
procedure as shown in Figure 1, inspired by optimization-based meta-learning [14]. Specifically,
for each sample in a batch, we first perform test-time optimization on that sample to update the
parameters of the regression network temporally corresponding to the sample. After that, we perform
training optimization over all M training samples, based on the M temporally updated regression
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Algorithm 1 Meta learning of Dual networks for 3D Human Recovery

• The stage of training
Require: Training dataset {Ii,j , Θ̂i,j , Ĵi,j}B,M

i=1,j=1

Require: fw, fu: main and auxiliary networks, randomly initialized
Require: α, β: step size hyperparameters

1: while not done do
2: Sample a batch of images {Ii,j | j ∈ [1,M ]}, i ∼ U(1, B) ▷ U is uniform distribution
3: for all Ii,j do
4: Compute SMPL meshes by fw(Ii,j) and fu(Ii,j), respectively
5: Compute Ltest-u in Eq. 9, evaluate∇wLtest-u, and update w′

i,j ← w − α∇wLtest-u
6: end for
7: Compute L1

train in Eq. 8, evaluate ∇wL1
train, and update w← w − β

∑
j ∇wi,j

L1
train

▷ w′
i,j is used in L1

train
8: Compute L2

train in Eq. 8, evaluate ∇uL
2
train, and update u← u− β

∑
j ∇uL

2
train

9: end while
10: wmeta ← w, umeta ← u

• The stage of testing
Require: Input image I
Require: Main and auxiliary networks with meta parameters wmeta and umeta

1: w = wmeta
2: for i = 1 to m do ▷ Iterate test-time optimization m times
3: Pseudo GT mesh← fumeta(I) ▷ Using frozen auxiliary network
4: Compute Ltest-u using Eq. 9 ▷ Given input I, the pseudo GT mesh, and 2D joints
5: Evaluate ∇wLtest-u
6: Update w← w − α∇wLtest-u
7: end for
8: wfinal ← w
9: Compute SMPL mesh by fwfinal(I)

networks. This process is formulated as:

wmeta = argmin
w

B∑
i=1

M∑
j=1

Ltrain(fw′
ij
(Iij), Θ̂ij , Ĵij), (6)

where,
w′

ij = w − α∇wLtest(fw(Iij), Ĵij). (7)

The difference between Eq. 6 and Eq. 1 is in the parameters of f to be optimized. Instead of directly
optimizing the current parameters w of f using the training objective Ltrain, we first perform a step
of test-time optimization using Eq. 7 on each sample Iij to obtain network parameters w′

ij specific to
that sample. Then, {w′

ij |j ∈ [1,M ]} over all training samples in a batch are in turn used in Eq. 6 to
evaluate the training objective. In Eq. 7, α is the learning rate of the test-time optimization.

By performing test-time optimization before training optimization in Eq. 6 and 7, we take test-time
optimization into consideration in the training procedure. That means, the “test-time optimization” is
trained on the training dataset, thus having better generalization ability to test samples. The proposed
method resembles the optimization-based meta-learning [14] and we call the obtained parameters
wmeta meta-parameters.

3.3 Unifying Training and Test-time Optimization Objectives with Dual Networks

There are ground-truth human meshes at training time while not at test time, causing the difference
between Ltrain (see Eq. 2)) and Ltest (see Eq. 5). Since both the test-time and training optimizations
update parameters of the same network, the difference between the two optimization objectives yields
different gradient descent directions, causing potential conflicts that reduce the effectiveness of the
training (see ablation studies in Section 4.4).
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To make the test-time optimization more compatible with the training objective, we propose a method
that unifies the training and test-time optimization objectives by introducing an auxiliary regression
network fu parameterized by u which is trained together with the main network:

wmeta,umeta = argmin
w,u

B∑
i=1

M∑
j=1

(L1
train(fw′

i,j
(Ii,j), Θ̂i,j , Ĵi,j) + L2

train(fu(Ii,j), Θ̂i,j , Ĵi,j)). (8)

The above equation is a combination of Eq. 1 and Eq. 6 (superscript 1 and 2 are used to denote the
first and second term respectively), with Eq. 1 applied to the auxiliary network fu, and Eq. 6 applied
to fw. We use fu to generate a pseudo GT mesh Θ̂u

i,j for a training image Ii,j , i.e., Θ̂u
i,j = fu(Ii,j),

and use the pseudo label to supervise the gradient descent in the test-time optimization:

w′
i,j = w − α∇wLtest−u(fw(Ii,j), Θ̂

u
i,j , Ĵi,j). (9)

Please compare between Eq. 9 and Eq. 7. The difference is that there is an additional input Θ̂u
i,j to

Ltest−u in Eq. 9, and note that this new form of Ltest−u is identical to the form of Ltrain.

3.4 Inference with Dual Networks

Both the training and testing pseudo codes of our method are given in Algorithm 1. The training
process is fully elaborated in the above sections. Now we introduce how to perform inference at
test time. For each test sample I, at our hand are two networks fw and fu with w = wmeta and
u = umeta, respectively. We freeze the parameters of the auxiliary network, and use it to compute
the pseudo GT human mesh for the test image I. Then, under the supervision of the pseudo mesh, we
compute Ltest−u and use Eq. 9 to iteratively update the parameters w of f from wmeta to wfinal.
We run at most m = 14 iterations, and automatically stop the iteration if losses of two consecutive
iterations are close enough. We finally use fwfinal

to estimate the human mesh for image I.

3.5 Implementation Details

We implement the main network fw and auxiliary network fu with the same network architecture
but different parameters. Specifically, we use HMR [23] or CLIFF [33] as f due to their simplicity.
The two methods and many other approaches [37, 8, 66, 72, 71, 26, 67] adopt ResNet-50 [19] or
HRNet-W48 [54] to extract features from the input image, and estimate human mesh based on the
features. We provide results of both kinds of backbones.

We implement our method in PyTorch using the Adam optimizer [25] with β1 = 0.9 and β2 = 0.999.
The batchsize for ResNet backbone is 40, and for HRNet backbone is 30. The number of training
epochs for ResNet backbone is 65, and for HRNet backbone is 25. The learning rate α used in the
test-time optimization is 1e-5, and the learning rate β (see Algorithm 1) for the training optimization
is 1e-4. Our method takes about 3 days training on a single NVIDIA RTX3090 GPU.

4 Experiments

4.1 Datasets

Following previous work [33, 26, 73], we employ the following datasets in our experiments: (1)
Human3.6M [20], an indoor dataset with precise GT human mesh and 2D joints captured through
MoCap devices. (2) MPI-INF-3DHP [41], another widely used indoor dataset whose GT human
meshes are obtained through multi-view reconstruction. (3) COCO [38] and (4) MPII [1], two
in-the-wild outdoor datasets with human annotated 2D joints for which we use the pseudo GT mesh
provided by [33]. (5) 3DPW [57], a challenging in-the-wild dataset providing accurate human mesh
fitted from IMU sensor data.

4.2 Training, Testing and Metrics

Following prior arts [37, 66, 8, 4], we first train our method on a mixture of four datasets, including
Human3.6M [20], MPI-INF-3DHP [41], COCO [38], and MPII [1], and then test our method on

The authors Yongwei Nie and Mingxian Fan signed the license and produced all the experimental results in
this paper. Meta did not have access to the datasets.
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the test dataset of Human3.6M [20]. After that, we further fine-tune our model for 5 epochs by
introducing the training dataset of 3DPW [57], and then evaluate our method on the test dataset
of 3DPW [57]. We use MPJPE (Mean Per Joint Position Error), PA-MPJPE (Procrustes-aligned
MPJPE), PVE (Mean Per-vertex Error) as the metrics to evaluate our method.

Table 1: Quantitative comparison with state-of-the-art methods on 3DPW [57] and Human3.6M
[20]. “†”: using 2D joints detected by OpenPose [7], “∗”: using 2D joints detected by RSN [6].

Method Backbone
3DPW Human3.6M

MPJPE↓ PA-MPJPE↓ PVE↓ MPJPE↓ PA-MPJPE↓

R
eg

re
ss

io
n-

ba
se

d

HMR [23]’18 Res-50 130.0 81.3 - 88.0 56.8
PARE [26]’21 HR-W32 74.5 46.5 88.6 - -
ROMP [55]’21 HR-W32 76.7 47.3 93.4 - -
PyMAF [72]’21 HR-W48 74.2 45.3 87.0 54.2 37.2
METRO [37]’21 HR-W64 77.1 47.9 88.2 54.0 36.7
FastMETRO [8]’22 HR-W64 73.5 44.6 84.1 52.2 33.7
CLIFF [33]’22 HR-W48 69.0 43.0 81.2 47.1 32.7
LearnSample [66]’22 HR-W32 70.5 43.3 82.7 45.9 33.5
ProPose [13]’23 HR-W48 68.3 40.6 79.4 45.7 29.1
POTTER [73]’23 ViT 75.0 44.8 87.4 56.5 35.1
DeFormer [67]’23 HR-W48 72.9 44.3 82.6 44.8 31.6

O
pt

im
iz

at
io

n-
ba

se
d

LearnedGD [53]’20 - - 55.9 - - 56.4
HUND [69]’21 Res-50 81.4 57.5 - 69.5 52.6
SPIN [28]’21 Res-50 96.9 59.2 116.4 62.5 41.1
EFT [22]’21 Res-50 85.1 52.2 98.7 63.2 43.8
HybrIK [32]’21 Res-34 74.1 45.0 86.5 55.4 33.6
NIKI [31]’23 HR-W48 71.3 40.6 86.6 - -
ReFit [59]’23 HR-W48 65.8 41.0 - 48.4 32.2
PLIKS [51]’23 HR-W48 66.9 42.8 82.6 49.3 34.7

OursCLIFF† HR-W48 62.9 39.7 80.1 43.9 30.3
OursCLIFF∗ HR-W48 62.4 39.5 78.1 42.0 29.1

4.3 Comparison with Previous Approaches

Quantitative results. We present accuracy comparison with SOTA methods in Table 1, including
regression-based approaches [23, 26, 55, 37, 33, 13, 73, 67, 72, 8, 66] and optimization-based
approaches [28, 22, 32, 59, 31, 51, 53, 69]. For all the compared approaches, we report the best
results their papers provide. For our method, we adopt CLIFF [33] as f and HRNet-W48 as the
backbone network. Since our method needs 2D joints for test-time optimization, we report results
using joints estimated by OpenPose [7] (denoted by †) and RSN [6] (denoted by ∗).
Please compare “OursCLIFF† (HR-W48)” in Table 1 with SOTA approaches that also use HRNet-
W48 as backbone. Our method outperforms most of previous approaches. Compared with [33], we
improve it from 69.0 to 62.9 taking MPJPE of 3DPW as an example, which is a large margin. If
using RSN joints for the test-time optimization, our method can further improve the metrics.

Qualitative results. We show qualitative comparison with CLIFF [33] and Refit [59] in Figure 2.
Our method estimates faithful human poses and meshes which are better than those of the compared
approaches. Comparisons with HybrIK [32], NIKI [31], ProPose [13] and EFTCLIFF can be found in
the supplementary material.

4.4 Ablation study

Influence of Regression Model. The adopted regression model f influences the effectiveness of our
method. In Table 2, we show the results of using HMR [23] or CLIFF [33] as the regression model.
Since CLIFF is a stronger baseline than HMR, our method based on CLIFF performs better than that
based on HMR.

Influence of Accuracy of 2D Joints. Since our method needs 2D joints as the supervision at test
time, it is interesting to see how the quality of the 2D joints affects the effectiveness of the method.
We have already repported results on 2D joints detected by OpenPose [7] and RSN [6]. In Table 2,
we further test GT 2D joints. As seen, our method with GT joints outperforms our method using
detected joints by OpenPose and RSN. This indicates our method will become more effective as 2D
pose detectors continue to develop.
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Input CLIFF Ours† Ours∗ Novel view Input Refit Ours† Ours∗ Novel view
Figure 2: Qualitative comparison with SOTA methods. We show results produced by CLIFF [33],
ReFit [59], and our method (†: OpenPose, ∗: RSN). All the three methods use HRNet-W48 as the
backbone. In the novel views, green represents the ground truth, orange represents CLIFF, purple
represents ReFit, pink and blue represent the two variants of our method, respectively.

Table 2: Ablation study on regression model and 2D joints on 3DPW [57] and Human3.6M [20].
“†”: using 2D joints detected by OpenPose [7], “⋄”: using GT 2D joints.

Method Backbone
3DPW Human3.6M

MPJPE↓ PA-MPJPE↓ PVE↓ MPJPE↓ PA-MPJPE↓

OursHMR† Res-50 73.3 44.3 90.3 55.8 36.4
OursHMR⋄ Res-50 68.9 39.6 85.5 53.7 33.8
OursCLIFF† HR-W48 62.9 39.7 80.1 43.9 30.3
OursCLIFF⋄ HR-W48 57.8 35.3 74.4 39.4 27.5
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Figure 3: Influence of optimization steps during inference. Our method outperforms EFT when
using the same regression model. As optimization proceeds, our results continuously become better,
while those of EFT become better at first and then become worse (see (a) and (b)). (c) shows that our
method achieves faster convergence compared to EFT.

Influence of Optimization Steps at Inference Time. At inference time, we perform at most m
test-time optimization steps. In Figure 3 (a) and (b), we show how the evaluation metrics become
as the number of optimization steps increases. As seen, our results consistently become better in
terms of both MPJPE and PA-MPJPE. We also show the results of EFTHMR and EFTCLIFF. With
the same regression model, our method is better than EFT [22]. The results of EFT become better
at the first few optimization steps, but become worse as more optimization steps execute. This is
probably because EFT is only finetuned with 2D reprojection loss and is more sensitive to the errors
in the 2D joints. At the first several optimization steps, the estimated 3D SMPL approaches the 2D
joints from a relatively distant initialization, therefore the result gets better gradually. With more
optimization steps, the SMPL may overfit the 2D joints whose annotation-errors then distort the
SMPLs, thus yielding worse evaluation metrics. In contrast, our method is guided by both 3D and 2D
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Figure 4: Stepwise visualization. From left to right, we showcase results after different steps of
test-time optimization during testing.

Table 3: Ablation study on meta-learning and auxiliary network. Models are trained on COCO
[38] and tested on 3DPW [57]. “Test. Opt.” is “test-time optimization”.

Model Integrating Test. Opt. (meta-learning) Auxiliary Net MPJPE ↓ PA-MPJPE ↓

EFTCLIFF 84.6 54.2
OursCLIFF 78.5 49.9
OursCLIFF 76.7 49.5

Table 4: Quantitative comparison with
EFTCLIFF on the LSP-Extended dataset [21].

Method 2D Loss

EFTCLIFF 8.3e-3
OursCLIFF 6.1e-3

Table 5: Quantitative comparison with
EFTCLIFF on the Human3.6M dataset [20].

Method MPJPE↓ PA-MPJPE↓

EFTCLIFF 85.5 51.0
OursCLIFF 83.8 48.6

supervisions. The 3D pseudo SMPLs plays the role of regularization that mitigates the influences of
errors in 2D joints (see more explanations in the supplemental material). In Figure 3 (c), we present
the loss curve of the test-time optimization of EFT and our method. Our method converges in about 6
steps, demonstrating a faster convergence compared with EFT.

Figure 4 shows our meshes after different optimization steps. Initially, the mesh does not fit with the
target human. After more steps, the mesh progressively deforms itself to achieve perfect fitting.

Influence of Meta-Learning and Dual Networks. We propose meta-learning to improve the perfor-
mance of test-time optimization. We also introduce an auxiliary network to unify the formulation of
test-time and training optimizations, and hope this can reduce the conflict in training and improve the
estimation accuracy. We conduct an ablation study to validate the two components as shown in Table
3. We train all the models in the ablation study on COCO [38] and test them on 3DPW [57]. The first
row in Table 3 shows results of training with no test-time (Test.) optimization (Opt.) and no auxiliary
network, i.e., CLIFF [33]. The second row shows our method without auxiliary network. The third
row shows our full method. As shown, the introduction of the meta-learning and auxiliary network
strategies both improve the evaluation results.

Out-of-Domain Adaptation. Test-time optimization performs post-processing on each test image
and has the ability of adaptation to out-of-domain data. To comprehensively validate our method’s
effectiveness in out-of-distribution (OOD) scenarios, we first conduct a quantitative comparison
with EFTCLIFF on the LSP-Extended dataset, as shown in Table 4 (Training dataset: COCO, MPII,
MPI-INF-3DHP, Human3.6M, 3DPW, Backbone: HR-W48). Since LSP provides ground truth 2D
joints but not GT SMPLs, the comparison is based on 2D loss relative to the GT joints. Our method
achieves a lower 2D loss than EFTCLIFF, with results of 6.1e-3 (our) versus 8.3e-3 (EFTCLIFF),
indicating that our method is more accurate in approaching the GT joints.

To further evaluate the OOD performance, we train both our method and EFTCLIFF on the COCO
dataset (an outdoor dataset) and test them on the Human3.6M dataset (an indoor dataset). With
ground truth SMPLs available, we report results using MPJPE and PA-MPJPE metrics. As shown
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Input GT Joints EFTCLIFF Ours
Figure 5: Out-of-domain adaptation. Please see the depth order of the arms where EFTCLIFF fails
to infer. Our method correctly identify the correct configuration.

in Table 5, our method demonstrates superior performance over EFTCLIFF, further validating its
effectiveness in OOD scenarios.

Figure 5 shows two examples from the LSP-Extended dataset. The persons in the two images take
complex actions. The shadows in the images and the similar color of the black pants and shoes make
it difficult even for humans to identify the configuration of the 3D meshes. Our method successfully
estimates correct meshes, while the arms in the results of EFTCLIFF exhibit wrong depth orders.

5 Conclusion

To conclude, this paper presents a new training paradigm towards better test-time optimization
performance at test time. We mainly propose two strategies. First, we integrate the test-time
optimization into the training procedure, which performs test-time optimization before running
the typical training in each training iteration. Second, we propose a dual-network architecture to
implement the proposed novel training paradigm, aiming at unifying the space of the test-time and
training optimization problems. Experiments and comparisons prove that the proposed training
scheme improves the effectiveness of the test-time optimization during testing, demonstrating that it
successfully learns meta-parameters that benefit the test-time optimization for specific samples. Our
method can perform even better with stronger regressor baseline or better 2D joints, and can adapt to
out-of-domain challenging test cases.
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A Appendix

A.1 Inference Speed Comparison with Previous Methods

In Table 6, we provide a comparison with ReFit [59], NIKI [31], and PLIKS [51] in terms of inference
speed. Except for NIKI using ResNet-34, all others employ HRNet-W48, and all tested on a single
NVIDIA RTX3090 GPU. OursCLIFF takes 0.072s for an iteration, and about 1.1s for 14 iterations in
default. ReFit, NIKI, and PLIKS take 0.043s, 0.068s, 0.041s, respectively, which are faster. When
our method performs single-step optimization, the time required is comparable to the above three
methods. When we conduct additional iterations of optimization, our method consumes more time.
As a reward, the additional optimizations improve human mesh recovery accuracy upon regression
approaches.

Table 6: Inference speed comparison with ReFit [59], NIKI [31], PLIKS [51].
Method Inference Speed (per sample)

ReFit 0.043s
NIKI 0.068s

PLIKS 0.041s
OursCLIFF 0.072s (1 iteration)

A.2 Ablation on Learning Rate

In Table 7, we report the experimental results when using different learning rates in our method. We
adjusted the learning rates for both the test-time optimization and the ordinary training optimization.
Among the feasible learning rates, we observe that utilizing 1× 10−5 for the test-time optimization
and 1×10−4 for the training optimization is the most suitable configuration. We find that our training
process is unstable under some combinations of the two learning rates, e.g., when the two learning
rates are very different from each other (1e-6 for the test-time optimization and 1e-4 for the training
optimization), or using too large learning rates (e.g., 1e-3).

Table 7: Ablation study of different learning rate settings, with COCO [38] as the training dataset
and 3DPW [57] as the testing dataset. “-” means the training is not stable, and no result is obtained.
Gray row is the default setting.

Test-time_lr Training_lr MPJPE ↓ PA-MPJPE ↓ PVE ↓

1e-6 1e-4 - - -
1e-5 1e-4 76.8 49.5 90.1
1e-4 1e-4 77.1 49.6 89.1
1e-3 1e-4 - - -
1e-4 1e-3 - - -
1e-4 1e-5 78.8 50.8 91.0
1e-4 1e-6 121.6 74.0 134.5

A.3 Ablation on the Number of Test-time Optimization Steps at Training

In the main paper, we perform just one step of test-time optimization in each training iteration. Here,
we explore using more test-time optimization steps during training, and show its impact on the model
performance. The results are shown in Table 8. It can be observed that with the increment in the
number of steps, there is a slight improvement in model performance. However, this comes at the
cost of increased memory usage and longer training time. To save training time, we opted for a single
test-time optimization step at the training stage.

A.4 Per-Joint Error Analysis

As shown in Figure 6, we explore the performance gains of OursCLIFF over EFTCLIFF at each joint.
Specifically, we compute the per-joint error of MPJPE and PA-MPJPE, then we subtract the result of
EFTCLIFF from our result. Darker red means our method is more better. It can be observed that the
joints on feet achieve larger performance gains, primarily due to the higher motion frequency in foot
joints. This phenomenon was also observed in the study [11, 40, 10, 60, 62, 61, 64]. The advantages
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Table 8: Ablation study on using different test-time optimization (Opt.) steps at training stage,
with COCO [38] as the training dataset and 3DPW [57] as the testing dataset. Gray row is the default
setting. Bold values are the best.

Test-time Opt. Steps at Training MPJPE ↓ PA-MPJPE ↓ PVE ↓ Training Time (mins/epoch)

1 76.6 49.5 90.1 5.8mins
2 76.7 49.0 90.0 6.8mins
3 76.3 48.5 89.5 7.4mins

-12.0

-9.0

-6.0

-3.0

0.0

3.0

-0.99-0.74

-3.49 -6.37

-10.87 -14.69

-0.22 2.76
0.53

1.12-2.6
-2.54-1.77

2.74

-6.5-4.45

-1.13 -0.85

-9.14 -10.77

-1.16 -0.79
-0.92

-1.39-1.69
-3.37-2.3

-3.36
-12.0

-9.0

-6.0

-3.0

0.0

3.0

MPJPE PA-MPJPE

Figure 6: Per-joint error analysis between OurCLIFF and EFTCLIFF. The testing dataset is 3DPW
[57].

Table 9: Ablation study on 3D Pseudo SMPLs. Models are trained on full training datasets and
tested on 3DPW [57].

Method MPJPE↓ PA-MPJPE↓ PVE↓

Ours CLIFF† (Res-50) w/o pseudo 68.7 44.7 85.9
OursCLIFF† (Res-50) w/ pseudo 66.0 42.1 83.6

of our method are more obvious on PA-MPJPE, i.e., our method outperforms EFTCLIFF in terms of
PA-MPJPE for all joints, demonstrating that our method can better capture the pose and shape of the
2D human than EFTCLIFF.

A.5 More Explanations about Unifying the Training and Testing Objectives with Dual
Networks

There is a concern that even with the introduction of the auxiliary network, we still can not fully
achieve the goal of matching training and testing objectives, i.e., there still remains a discrepancy
between the training loss (using ground truth labels) and the testing-time loss (using pseudo labels).
We argue that, since the auxiliary network is trained simultaneously with the main network, the
auxiliary network learns the pseudo 3D meshes that are most suitable for optimizing the network
during test-time optimization. In other words, we use the pseudo 3D labels generated by the auxiliary
network to help mitigate the gap between training and testing losses, compared with using the 2D
joints only as supervision at the test stage.

To verify the impact of 3D pseudo SMPLs, we have already conducted an ablation study, as shown in
Rows 2 and 3 of Table 3. In Row 2, we discard the auxiliary network, meaning the pseudo SMPLs
generated by the auxiliary network are not used in the test-time optimization function. The comparison
reveals that the inclusion of pseudo SMPLs improves the model’s performance, demonstrating their
contribution to the optimization process.

Since the above ablation was conducted using a smaller dataset (COCO), we further validate the
results by repeating the experiment on the full training datasets. As shown in Table 9, these additional
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Table 10: Ablation Study about Ensembling Effects. Models are trained on COCO [38] and tested
on 3DPW [57].

Method MPJPE↓ PA-MPJPE↓

EFTCLIFF 84.6 54.2
EFT2CLIFFs 82.7 53.6
OursCLIFF 76.7 49.5

Table 11: Quantitative Comparison with Kim et al. [24].
Method Backbone Training Dataset Testing Dataset PA-MPJPE↓

Kim et al. [24] SPIN [28] COCO, MPII, Human3.6M, MPI-INF-3DHP, 3DPW, LSP 3DPW 57.88
Ours HMR [23] COCO, MPII, Human3.6M, MPI-INF-3DHP, 3DPW 3DPW 44.3

findings reinforce the effectiveness of the generated pseudo 3D SMPLs, confirming their positive
influence on model performance.

One may concern that using dual networks introduces an ensembling effect, with the second term of
Eq. 9 serving as an adjustment towards an intermediate estimation between the two networks.

To evaluate the ensembling effect introduced by our dual-network setup, we conducted an experiment
using two CLIFF models to generate SMPLs and computed their average SMPL, on which EFT
optimization was performed. The final results, including the averaged output, are shown in the
Table 10 as EFT2CLIFFs, demonstrating the impact of using two CLIFFs within EFT.

The results indicate that incorporating two CLIFFs does indeed improve EFT performance, high-
lighting an ensembling effect. However, even with these improvements, EFT2CLIFFs underperforms
compared to our method. This suggests that the ensembling effect achieved through meta-learning in
our approach is more effective than simply using two CLIFF networks.

A.6 Comparison with Kim et al. [24] and Analysis

To provide a quantitative comparison, we collect results from Kim et al. [24]. Kim et al. [24] use the
SPIN backbone—a stronger model than our HMR backbone, and include the LSP dataset in their
training data (which we exclude). Our method achieves a better PA-MPJPE score (44.3 vs. 57.88), as
shown in Table 11. This result indicates that our approach surpasses Kim et al.’s performance despite
using a relatively simpler backbone and fewer training resources.

We elaborate the key difference between Kim et al. [24] and our method in detail.

The key difference is that that Kim et al. [24] use the 2D reprojection loss only (please see Eq. 1 in
their paper) in both inner and outer loops of meta learning, while our method uses 2D and 3D losses.
This is a small difference in formulation, but a large difference in contextualization.

EFT [22] is performed under the guidance of 2D reprojection loss. Kim et al. [24] extended EFT
[22] to both the inner and outer loops of meta learning. In this sense, the method of Kim et al. [24] is
a direct extension of EFT [22] to meta learning.

In contrast, our method considers meta learning from the perspective of the complete HMR model
trained with 2D and 3D losses. In other words, we use the complete HMR model in both inner and
outer loops of meta learning. This is more reasonable, as our aim is to personalize the HMR model
on each test sample, rather than a model trained with only 2D reprojection loss.

The above differences enable us to design a dual-network architecture that is very different from the
network used in Kim et al. [24]. Overall, we find that incorporating 3D SMPLs into the meta learning
is very helpful. It is the utilization of the GT SMPLs that greatly improves the results of our method.
Besides utilizing GT 3D SMPLs in the outer loop of meta learning, we additionally generate pseudo
SMPLs and incorporate them into the inner loop of the metal learning.
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A.7 More Intermediate Results

In Figure 7, we show more stepwise optimization results during testing. It can be seen from these
examples that the mesh deviates more or less from the target human after step 0, and the deviation is
progressively repaired after several optimization steps. For example, please check the results in row
1. The left arm does not match with the evidence in the image at the very beginning, and this error is
corrected after about 4 optimization steps. We show more examples from row 2 to 5 where the arms
are wrong at first and corrected afterwards. In row 6 and 7, please pay attention to the legs. In the last
three rows, please pay attention to the whole bodies.

Input Step 0 Step 1 Step 2 Step 3 Step 4 Step 5 Final

Figure 7: Stepwise visualization. From left to right, we showcase results after different steps of
test-time optimization during testing.
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A.8 More Qualitative Results

In Figure 8 and Figure 9, we show more qualitative comparisons with the latest approaches on
test/validation datasets of COCO [38], 3DPW [57] and Human3.6M [20]. Besides CLIFF [33] and
ReFit [59] that have been compared with in the main paper, we additionally bring HybrIK [32], NIKI
[31], ProPose [13] and EFTCLIFF into the comparison. In the shown examples, HybrIK produces
misaligned right arm in Figure 8 column 2. NIKI produces wrong head orientations (Figure 8 column
2 and column 4). For ProPose, ReFit and CLIFF, please pay attention to the feet in Figure 8 column
2. EFTCLIFF produces misaligned feet in Figure 8 column 4 and Figure 9 column 3. Besides, CLIFF
produces wrong left leg for the example in Figure 8 column 1. For these examples, our method
produces visually better results.

A.9 Failure Cases

One kind of failure cases of our method are shown in Figure 8 and Figure 9, where there is still
slight misalignment between projected mesh and the target 2D evidence, though the misalignment is
smaller than that of previous approaches. For example in column 1 of Figure 8, the feet of Our† and
Our∗ do not exactly match with the target 2D feet in the image. We observe that the ground-truth
meshes in training datasets after projection also show such artifacts. To tackle this problem, one may
need to provide more accurate human annotations.

Figure 10 shows another kind of failure cases. In the example of row 1, our reconstructed mesh and
the target 2D person are well-aligned. However, from a novel perspective, there is a misalignment
between our 3D mesh and the ground truth. This discrepancy arises from the inherent ill-posedness
of inferring a 3D mesh from 2D information in a monocular image. In the second row of Figure 10,
we showcase a person with partial occlusion. Please notice the left foot of the person, where the
person exhibits self-occlusion. In such a scenario, the accuracy of the corresponding 2D joints is not
high, posing a challenge to our method.

Figure 11 shows that the 3D mesh projected onto the 2D image performs poorly in the foot region,
probably because the SMPL model itself is not flexible enough to capture the large distortion of the
two legs.

Due to the severe occlusion or since the distance from the person to the camera is too far in Figure 12,
the quality of the estimated human mesh is poor, not well fitted with the target person.
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Figure 8: More qualitative comparisons with SOTA methods. We show results produced by
HybrIK [32], NIKI [31], ProPose [13], ReFit [59], CLIFF [33], EFTCLIFF, and our method (†:
OpenPose, ∗: RSN ).
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Figure 9: More qualitative comparisons with SOTA methods. We show results produced by
HybrIK [32], NIKI [31], ProPose [13], ReFit [59], CLIFF [33], EFTCLIFF, and our method (†:
OpenPose, ∗: RSN ).
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Figure 10: Failure cases. The projected mesh matches with the target 2D human body exactly, but
there is misalignment in the 3D space. Green meshes represent ground-truth.

Figure 11: Failure case. The SMPL model’s
limited flexibility likely causes poor 3D mesh
projection in the foot region.

Figure 12: Failure case. Severe occlusion or
far camera distance results in a low-quality
human mesh estimation.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract presents the main idea, highlighting its innovative aspects that
distinguish it from other works. The introduction clearly states the main contributions, which
are supported by both theoretical analyses (Section 3) and experimental results (Section 4).
The claims align with the results presented in the paper, and the scope is well-defined.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: While the main body of the paper does not include a dedicated section on
limitations, we have discussed several failure cases(A.9) and potential limitations in the
appendix. These cases highlight scenarios where there is still slight misalignment between
projected mesh and the target 2D evidence. We chose to include these discussions in the
appendix due to space constraints in the main text, prioritizing detailed descriptions of our
methodology and results.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The theory of this paper, which includes test-time optimization, incorporation
of testing-time into training, unifying training and test-time optimizations, and inference
with dual networks, is discussed in Section (3). This section introduces the loss function,
the architecture of the network, and the algorithm for updating gradients according to
meta-learning.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides detailed descriptions of the experimental setup, including
dataset descriptions that were used, hyperparameters, and evaluation metrics. All nec-
essary steps to reproduce the experiments are included either in the main text or in the
supplementary material. Additionally, it offers both qualitative and quantitative results for
comparison.

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
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(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper has released the code and provided the download path for the data.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper relies on public datasets which have provided the information of
the data splits along with the datasets. The paper provides detailed descriptions of the
training and test experiments, including datasets, chosen hyperparameters, the architecture
of network, and the criteria for their selection. These details are included in the section(3)
and Experiments(4) in main text.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
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7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: The paper does not include error bars, confidence intervals, or statistical
significance tests.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper specifies the types of compute resources used, including GPU models
and memory specifications. This information is detailed in the section Experiments(4).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We ensured that all data and code used was obtained and processed ethically.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: Human pose estimation has several broader impacts. Positively, it enhances
healthcare, optimizes athlete performance, improves human-computer interactions, and
reduces workplace accidents. Negatively, it raises privacy concerns, risks misuse, and may
lead to unfair outcomes if training data lacks diversity. Due to space limitations, this paper
does not discuss these societal impacts in detail.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.
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12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All external assets used in the paper are properly credited. The licenses
and terms of use for these assets are explicitly mentioned in the references section and
supplementary materials. Human3.6M: CC BY-NC-ND 4.0; MPI-INF-3DHP: CC BY-NC
4.0; 3DPW: CC BY-NC-ND 4.0; COCO: CC BY 4.0; MPII: CC BY 4.0; LSP-Extended:
CC BY-NC 4.0.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve research with human subjects requiring IRB
Approvals.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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