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Abstract001

Adversarial text defense is a significant strat-002
egy to protect modern NLP models from being003
attacked. Typical text defense methods usu-004
ally enhance the model’s robustness by model005
retraining or equipping it with a data prepro-006
cessing step, aiming to eliminate the non-robust007
features and preserve the robust ones. Although008
some efforts have been made to recognize the009
robust features, e.g., by the information bot-010
tleneck (IB) technique, how to fully disentan-011
gle the robust and non-robust representation012
remains a big challenge. To alleviate this prob-013
lem, we propose a novel text defense method,014
named Disentangled Information Bottleneck015
(DisIB), with two major merits. Firstly, we016
separate the robust features and non-robust fea-017
tures with a disentangled two-line framework018
rather than the one-line compression network019
in IB. This prevents the loss of robust features020
caused by information compression and pro-021
duces complete robust features. Secondly, we022
design a discriminator network to approximate023
the minimum mutual information of the two024
lines, which sufficiently disentangles robust025
and non-robust features. To validate the effec-026
tiveness of our DisIB, we conduct a total of 96027
defense experiments on four datasets by defend-028
ing four popular attack methods. Experimental029
results elaborate that our method significantly030
outperforms six baselines, with accuracy im-031
provements ranging from 3.8% to 20.7%.032

1 Introduction033

The Transformer-based deep learning frameworks034

have achieved milestone success in the Natural Lan-035

guage Processing (NLP) community, such as BERT036

(Devlin et al., 2019), T5 (Raffel et al., 2020), and037

ChatGPT (Wu et al., 2023). However, existing038

studies have proven that these deep models are039

super vulnerable to adversarial examples, which040

are slightly modified inputs (Raman et al., 2023).041

This phenomenon brings great risk to the security042

implementation of modern NLP tasks, including043
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Figure 1: Principles of different defense methods. (a)
Adversarial training pushes the sensitive decision bound-
ary to be more tolerant. (b) IB incompletely disentangles
non-robust and robust features. (c) DisIB completely
disentangles non-robust and robust features.

text classification (Minaee et al., 2022), machine 044

translation (Popel et al., 2020), language inference 045

(Li et al., 2022), text generation (Yu et al., 2022), 046

etc. How to design adversarial defense strategies to 047

improve the robustness of deep models has become 048

a significant research topic (Li et al., 2023). 049

According to whether the defender modifies the 050

NLP model, existing text defense methods can be 051

roughly categorized into (1) passive defense, which 052

usually eliminates the adversarial perturbations 053

with a data pre-processing step but does not change 054

the victim model, and (2) active defense, which di- 055

rectly optimizes the model itself. In the first group, 056

several data pre-processing operations have been 057

proposed, such as spell-checking/correction (Li 058

et al., 2019; Hládek et al., 2020), feature density 059

detection (Yoo et al., 2022), AI-generated text de- 060

coder (Huang et al., 2024), to filter out adversarial 061
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perturbations. The defense performance of these062

methods is highly dependent on the perturbation063

localization and recovery accuracy, and their de-064

fending scopes are usually limited to the defender-065

specified attackers.066

In the second group, the defender aims to im-067

prove the victim model via network parameters or068

structure optimization. Specifically, the parameter069

optimization, e.g., adversarial training (Formento070

et al., 2024) and certified robust boundary train-071

ing (Raman et al., 2023), extract robust features072

by moving the sensitive decision boundary to be073

more tolerant so that the robust feature space can074

be enlarged (see Figure 1 (a)). The model structure075

optimization targets to disentangle the robust and076

non-robust features, such as DiffusionBERT (He077

et al., 2023), multi-head confusion (MHC) (Le078

et al., 2022), and information bottleneck (IB) layer079

insertion (Zhang et al., 2022). Unlike Diffusion-080

BERT and MHC who seek robust features with081

empirical strategies, the IB defines task-relevant082

word embeddings as robust features, showing better083

theoretical explainability and practical defense per-084

formance. Particularly, the IB constructs a one-line085

network structure to extract only robust features086

with an information compression layer. However,087

information compression usually pushes the robust088

features to the non-robust side (a.k.a., information089

loss), leading to incomplete feature separation and090

limited defense performance (see Figure 1 (b)).091

In this work, we propose a novel method, i.e.,092

Disentangled Information Bottleneck (DisIB), to093

extract complete yet fully disentangled robust fea-094

tures and improve the defense accuracy. Specif-095

ically, we design the supervised disentanglement096

strategy with two major merits. Firstly, we present097

a two-line defense framework, consisting of an098

encoder-decoder-based robust feature extraction099

line and an encoder-reconstructor-based non-robust100

feature extraction line to topologically solve the101

information loss problem. Secondly, we build a102

discriminator network to estimate the joint distribu-103

tion probability of the two-line features and define104

a feature-disentangle loss function to minimize the105

mutual information between the two lines. This106

reduces the overlap between the robust features107

and non-robust features and improves the degree of108

feature disentanglement (see Figure 1 (c)). Owing109

to the relatively complete and fully disentangled110

robust features, the NLP model can make more ac-111

curate decisions even if the input text is perturbed.112

In summary, our contributions are as follows.113

• We construct a two-line adversarial text de- 114

fense framework, dubbed DisIB, to disentan- 115

gle robust and non-robust features. The two- 116

line topology structure can naturally prevent 117

information loss caused by the compression 118

operation as in IB, which ensures the extracted 119

robust feature is relatively complete. 120

• We design a discriminator to estimate the joint 121

distribution probability of the two-line fea- 122

tures and define a feature-disentangle objec- 123

tive function to minimize overlapping infor- 124

mation between them, which fully disentan- 125

gles the robust features from non-robust ones. 126

• We evaluate the effectiveness of our DisIB by 127

comparing it with six typical baselines with to- 128

tally 96 defense experiments. Qualitative and 129

quantitative experiments demonstrate the su- 130

periority of our algorithm in both feature dis- 131

entanglement and defense performance (with 132

3.8% to 20.7% accuracy improvements). 133

2 Related Works 134

This section briefly reviews the typical text defense 135

methods, including passive and activedefense. 136

Passive defense methods do not change the 137

victim model but often equip it with a data pre- 138

processing step to eliminate adversarial perturba- 139

tions. For example, (Li et al., 2019) employed 140

a context-aware spelling check service to defend 141

character-level attacks. (Yoo et al., 2022) devel- 142

oped a perturbation detection method against word- 143

level attacks based on feature density estimation. 144

To defend both character-level and word-level at- 145

tacks, (Gupta et al., 2023) trained a model capa- 146

ble of intercepting and rewriting adversarial inputs. 147

(Huang et al., 2024) proposed SCRN, which em- 148

ploys a reconstruction network to add and remove 149

noise from the text. These methods usually design 150

perturbation location strategy and recovery method 151

according to a specific attacker, so their generaliza- 152

tion ability are relatively limited for unseen attacks. 153

Active defense approaches directly optimize the 154

victim model by retraining network parameters 155

or reconstructing network structure. Typical pa- 156

rameter optimization strategies include adversarial 157

training and certified robustness. Adversarial train- 158

ing was primarily proposed in image domain by 159

(Goodfellow et al., 2015), which joins adversarial 160

examples to the training set and retrains the model. 161

Subsequently, various improved adversarial train- 162
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ing methods have been proposed and successfully163

applied in text defense field. For example, (Zhu164

et al., 2020) proposed FreeLB, which minimizes165

the adversarial loss across different regions around166

input samples by adding adversarial perturbations167

to word embeddings. (Li and Qiu, 2021) employs168

a token-level accumulated perturbation vocabulary169

with a normalization sphere constraint for better170

perturbation initialization. (Formento et al., 2024)171

proposed Semantic Robust Defense (SemRoDe),172

which minimizes the distance between the base173

and adversarial domains, thereby aligning the two174

domains and producing a smooth decision bound-175

ary. In general, adversarial training also relies on176

existing attackers to generate adversarial samples,177

and as the number of adversarial samples increases,178

the model performance will be gradually reduced179

on the clean data. The certified robustness tech-180

niques provide theoretical guarantees of robustness.181

(Shi et al., 2020) derived the robustness bound-182

ary of models under Transformer architecture by183

boundary propagation techniques. (Moon et al.,184

2023) combined randomized smoothing (RS) with185

masked inference (MI) to smooth decision bound-186

ary and denoise adversarial perturbations. The187

proof process of robust boundary is constrained188

by various factors, e.g., model structure and opti-189

mization method, so their application scope is often190

limited.191

Model structure optimization methods learn ro-192

bust features by empirically or theoretically chang-193

ing certain layers of the victim model. (Le et al.,194

2022) modified and retrained the last layer with195

multi-expert heads to confuse the attackers. (He196

et al., 2023) combined the diffusion model with197

BERT to enhance the denoising ability. Based on198

information bottleneck theory (Tishby and Za-199

slavsky, 2015), (Wang et al., 2021) presented200

an Information Bottleneck regularizer and an An-201

chored Feature regularizer to extract robust features.202

(Zhang et al., 2022) inserted an Information Bottle-203

neck (IB) layer into BERT to compress non-robust204

features and capture robust features relevant to the205

task. Recently, (Zhao et al., 2024) proposed disen-206

tangled text representation learning (DTRL), which207

extracts robust features through a task classifier and208

non-robust features via an adversarial example de-209

pendent classifier. Generally, theoretical methods210

show better theoretical explainability and practical211

performance than empirical defense, but they still212

meet the information loss and incomplete feature213

disentanglement problems.214

3 Algorithm 215

In this section, we first review the most related 216

baseline IB in §3.1 and then discuss the details of 217

the proposed DisIB in §3.2. Figure 2 shows the 218

model framework of our DisIB. 219

3.1 Information Bottleneck 220

Let D = {xi, yi}Ni=1 denotes the training set, where 221

xi ∈ X represents input and yi ∈ Y represents out- 222

put. The IB method adds an additional layer to 223

the original network, aiming to compress X into a 224

robust variable R while retaining enough informa- 225

tion required to predict Y . This can be achieved by 226

minimizing the objective function below: 227

LIB = −I(Y ;R) + βI(X;R), (1) 228

where β ∈ [0, 1] balances the compression and 229

prediction, and I(A;B) denotes the mutual infor- 230

mation between variables A and B: 231

I(A;B) =
∑
a∈A

∑
b∈B

p(a, b) log

(
p(a, b)

p(a)p(b)

)
, (2) 232

The larger mutual information indicates a stronger 233

association. After optimization, the robust feature 234

R can be more relevant to task prediction Y and 235

less relevant to input X . However, related studies 236

have indicated that compression inevitably leads 237

to information loss (Pan et al., 2021), and the 238

incomplete robust feature R is hard to guarantee a 239

satisfactory defense accuracy. 240

3.2 Disentangled Information Bottleneck 241

To avoid information loss, we propose a two-line 242

framework to disentangle robust and non-robust 243

features. Specifically, we introduce an additional 244

variable N = {ni}Ni=1 as non-robust features to 245

complement robust features R = {ri}Ni=1. Then 246

we adjust the objective function LDisIB as: 247

LDisIB = −I(Y ;R)− I(X;N,Y ) + I(N ;R).
(3) 248

Similar to Eq. (1), maximizing I(Y ;R) ensures 249

that the robust feature R contains enough infor- 250

mation to predict the task-relevant output Y . Dif- 251

ferent from Eq. (1), we design two novel items 252

I(X;N,Y ) and I(N ;R), where the former recon- 253

structs X guided by (N,Y ) so that non-robust fea- 254

ture N covers the Y -irrelevant information of X , 255

and the latter minimizes the overlap between R and 256

N . This disentangled two-line structure is signifi- 257

cant in avoiding information loss, and the I(N ;R) 258
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Figure 2: The framework of the proposed DisIB. In the
training stage (a), we construct a two-line network to
separately extract the robust and non-robust features to
avoid information loss. Then the information overlap
between the two lines is reduced with a discriminator
Dis. In the inference stage (b), the optimized robust
feature is employed to make correct predictions.

helps to sufficiently separate robust and non-robust259

features. Next, we will introduce how to optimize260

the three items in Eq. (3).261

In Eq. (3), the calculation of mutual informa-262

tion is challenging due to the complexity of the263

joint and marginal distributions. Therefore, we264

derive variational approximations to I(Y ;R) and265

I(X;N,Y ) terms by applying the classical vari-266

ational Bayesian strategy (Barber and Agakov,267

2004), which allows for effective estimation of the268

variational lower bound without requiring a large269

number of samples:270

I(Y ;R) = Ep(y,r) log p(y|r)− Ep(y) log p(y)

≥ Ep(y,r) log q(y|r) +H(Y ),
(4)271272

I(X;N,Y ) = Ep(x,n,y) log p(x|n, y)
− Ep(x) log p(x)

≥ Ep(x,n,y) log q(x|n, y) +H(X),
(5)273

where q(y|r) and q(x|n, y) represent variational274

probabilistic mappings. H(Y ) and H(X) denote275

the information entropy of Y and X , respectively.276

Then, we decompose the joint distribution into277

multiple conditional probability distributions by278

Markov chain Y ↔ X ↔ R and Y ↔ X ↔ N ,279

thereby simplifying the computation process:280

p(y, r) = Eqdata(x)qdata(y|x)p(r|x), (6)281

p(x, n, y) = Eqdata(x)qdata(y|x)p(n|x), (7)282

where qdata(x) denotes the statistics probability 283

distribution of x in the training data. qdata(y|x) 284

is variational posterior mappings of y, p(r|x) and 285

p(n|x) can be viewed as robust and non-robust 286

extractors. By substituting Eq. (6) and Eq. (7) 287

into Eq. (4) and Eq. (5) and dropping constants 288

H(X) and H(Y ), we can calculate I(Y ;R) and 289

I(X;N,Y ): 290

I(Y ;R) ≥ Ep(y,r) log q(y|r)
= Eqdata(x)Eqdata(y|x)Ep(r|x) log q(y|r),

(8) 291292
I(X;N,Y ) ≥ Ep(x,n,y) log q(x|n, y)

= Eqdata(x) Eqdata(y|x) Ep(n|x) log q(x|n, y).
(9) 293

Since H(N) and H(R) depend on the unfixed 294

probabilistic distributions of N and R, they are 295

no longer constants. Therefore, the above method 296

cannot compute the I(N ;R) term. To address 297

this problem, we derive I(N ;R) by the Kullback- 298

Leibler distance between joint distribution p(n, r) 299

and the product of marginal distribution p(n)p(r): 300

I(N ;R) = DKL[p(n, r) ∥ (p(n)p(r)]

= Ep(n,r) log

[
p(n, r)

p(n)p(r)

]
.

(10) 301

However, p(n, r) and p(n)p(r) are hard to es- 302

timate due to the dependence between n and r. 303

Therefore, we utilize density-ratio-trick (Nguyen 304

et al., 2007; Sugiyama et al., 2012; Kim and Mnih, 305

2018) to directly calculate the ratio S(n, r) = 306
p(n,r)

p(n)p(r) with three steps. Firstly, we sample x 307

from dataset and sample p(n, r) from p(n, r|x) = 308

p(n|x)p(r|x) by Markov chain N ↔ X ↔ R. 309

Secondly, we shuffle the sample of p(n, r) along 310

the batch axis to reduce the correlation between n 311

and r to sample p(n)p(r) (Belghazi et al., 2018). 312

Finally, we utilize a discriminator to estimate the 313

probability, i.e., Dis(n, r). So 1 − Dis(n, r) ap- 314

proximate the probability of input from p(n)p(r), 315

the ratio can be calculated: 316

S(n, r) =
Dis(n, r)

1−Dis(n, r)
(11) 317

3.2.1 Training stage 318

In the training phase, we train the two-line DisIB 319

framework as shown in Figure 2 (a), including a 320

robust feature learning line and a non-robust feature 321

extraction line. 322

Robust Feature Extraction (Line 1) is im- 323

plemented through a Transformer-based encoder- 324

decoder network, as this structure is well-fit the 325
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mainstream NLP models. Specifically, given the326

input xi, the output of encoder Er, i.e., Er(xi),327

is first processed with a normal sampling step N .328

This step can be considered as a simply optimized329

variational approximation of robust features space330

to learn the robust bottleneck representation ri:331

ri = N (Er(xi), σ
2
r ) (12)332

where µr = Er(xi) and σr are the mean and stan-333

dard variance of sampling, respectively.334

Subsequently, the variable ri is fed into a de-335

coder Dec, which produces probabilities over possi-336

ble outcomes yi. This parameterizes the variational337

probabilistic mapping q(yi|ri), so maximizing Eq.338

(8) is equivalent to minimizing the cross-entropy339

loss of the decoder LDec :340

LDec(Dec(ri), yi) = − logDec(ri)yi . (13)341

After training the encoder-decoder network branch,342

the feature ri contains a high amount of informa-343

tion relevant to the task prediction yi.344

Non-robust Feature learning (Line 2) is de-345

signed as an encoder-reconstructor network, where346

the encoder En and the normal sampling N (with347

standard variance σn) generate a bottleneck non-348

robust representation ni:349

ni = N (En(xi), σ
2
n). (14)350

Different from Line 1, we designed a reconstruc-351

tor Rec in Line 2, which takes the concatenated352

(ni, yi) as input and generates corresponding re-353

construction x
′
i to parameterize variational proba-354

bilistic mappings q(x|n, y). So the reconstruction355

loss can be utilized to implement Eq. (9):356

LRec(Rec(ni, yi), xi) = ||Rec(ni, yi)− xi||22.
(15)357

Maximizing the mutual information between xi358

and x
′
i, the feature ni at least covers all task pre-359

diction irrelevant information from xi, which is the360

non-robust feature.361

Disentangle the two lines. We involve a discrim-362

inator Dis to eliminate overlapping information be-363

tween ni and ri, which takes the concatenated input364

(ni, ri) and outputs the probability that the input365

originates from joint distribution p(n, r) rather than366

the product of marginal distribution p(n)p(r). We367

train the discriminator with the feature-disentangle368

loss LDis :369

LDis(ni,ri) = min
p

max
Dis

[Ep(n)p(r) logDis(ni, ri)

+ Ep(n,r) log(1−Dis(ni, ri))],
(16)370

Algorithm 1 Disentangled Information Bottleneck

Input : Training set D = {xi, yi}Ni=1;
Output : Encoders Er, En, Decoder Dec, Recon-
structor Rec and Discriminator Dis;

1: while not converge do
2: Select batch {xi, yi} randomly
3: Extract ri and ni by Eq. (12) and Eq. (14)
4: Calculate discriminator train loss LDis(ni,ri)

by Eq. (16)
5: Update discriminator Dis

6: Calculate total loss LDisIB by Eq. (17)
7: Update Er, En, Dec and Rec

8: end while
9: return Er, En, Dec, Rec, and Dis.

which maximizes the output Dis(ni, ri) and mini- 371

mizes the corresponding probability distribution to 372

train the discriminator Dis. Ultimately, the overall 373

loss function is: 374

LDisIB = LDec + LRec − LDis(ni,ri), (17) 375

We train the two-line framework by minimizing the 376

total loss Eq. (17) and train the discriminator by 377

minimizing Eq. (16) to disentangle robust and non- 378

robust features. The complete training procedure 379

is given in Algorithm 1. 380

3.2.2 Inference stage 381

As a defender, the inference stage only needs the 382

complete and sufficiently disentangled robust fea- 383

ture to make correct decisions. Therefore, only 384

encoder Er and decoder Dec remain active during 385

inference as shown in Figure 2 (b). 386

4 Experiments 387

We provide the SOURCE CODE and experiment 388

settings in the supplementary materials to ensure 389

all the results in this section are reproducible. 390

4.1 Datasets 391

We conduct our experiments on four public datasets. 392

AG’s News Corpus (AG News) (Zhang et al., 393

2015) is a four-class news genre classification task. 394

The Stanford Sentiment Treebank (SST-2) (Socher 395

et al., 2013), Movie Reviews (MR) (Pang and Lee, 396

2005), and Internet Movie Database (IMDB) (Maas 397

et al., 2011) are sentiment analysis tasks with bi- 398

nary classification. The average sentence lengths 399

are 39, 17, 19, and 238 words, respectively. 400
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Methods Acc%↑ TextFooler TextBugger Deepwordbug PWWS
AUA%↑ ASR% Query↑ AUA%↑ ASR%↓ Query↑ AUA%↑ ASR%↓ Query↑ AUA%↑ ASR%↓ Query↑

A
G

N
ew

s

BERT 94.8 18.0 81.0 335.9 43.1 54.5 182.3 34.6 63.5 110.0 38.9 58.9 358.2
TAVAT 95.3 44.2 53.6 443.5 52.7 44.7 235.2 51.1 46.4 117.1 53.3 44.1 374.3

InfoBERT 94.6 28.2 70.2 348.7 41.4 56.2 166.0 36.9 61.0 95.3 38.1 59.7 353.4
DTRL 94.6 69.5 26.3 511.8 64.1 32.1 269.2 64.4 31.9 124.3 77.0 19.0 396.0
RSMI 94.3 61.7 34.6 498.9 64.3 31.8 275.9 61.8 34.7 126.8 78.4 16.9 397.4

IB 95.1 70.8 25.7 515.3 62.7 33.6 293.7 59.4 37.6 117.9 73.5 23.0 389.3
IB+FreeLB 95.0 76.0 19.9 540.3 71.6 24.7 312.2 64.0 32.7 122.9 81.6 14.0 402.3

Ours 94.5 78.0 17.5 543.6 76.2 19.4 330.9 69.3 26.7 127.3 80.6 14.9 399.4
Ours+FreeLB 95.5 87.7 8.1 582.3 85.5 10.5 352.1 77.5 18.9 132.5 88.4 7.4 408.5

SS
T-

2

BERT 91.6 5.6 93.9 93.2 27.5 70.0 47.7 17.1 81.3 33.5 12.9 85.9 135.4
TAVAT 90.9 14.4 84.2 113.3 37.5 58.8 61.7 27.8 69.4 37.1 20.1 77.9 138.1

InfoBERT 92.1 15.0 83.7 94.4 37.3 59.5 44.2 27.0 70.7 29.7 21.0 77.2 131.6
DTRL 88.7 17.7 80.1 120.6 34.0 61.2 66.0 26.5 70.0 37.7 26.8 69.1 139.7
RSMI 86.1 14.4 82.8 123.3 31.5 63.7 57.9 25.9 70.2 38.3 24.2 71.9 145.5

IB 91.5 24.2 73.6 131.5 40.0 56.3 68.0 31.0 66.1 39.3 32.4 64.5 145.9
IB+FreeLB 92.3 23.9 74.3 132.7 40.1 56.9 65.6 33.0 64.5 39.5 31.7 65.8 144.8

Ours 91.2 29.1 67.2 150.1 43.9 50.6 79.6 40.4 54.5 45.9 36.0 59.5 148.1
Ours+FreeLB 92.5 45.7 50.6 166.0 51.9 43.9 105.6 57.7 37.6 45.6 51.3 44.4 152.8

M
R

BERT 83.9 8.7 89.6 116.9 31.3 62.7 55.7 18.8 77.6 40.5 16.0 80.9 149.6
TAVAT 85.7 12.7 85.2 116.7 30.8 64.1 56.0 23.4 72.7 39.3 19.2 77.6 149.4

InfoBERT 68.4 5.5 92.0 108.5 26.6 61.1 47.1 7.4 89.2 37.6 13.4 80.4 150.6
DTRL 82.7 13.1 84.2 118.8 25.4 68.9 69.3 20.4 75.4 40.5 21.5 73.9 152.3
RSMI 82.3 14.4 82.5 135.1 32.3 60.9 62.7 21.9 73.3 42.2 26.9 67.3 162.1

IB 84.2 20.6 75.6 137.5 34.2 59.1 76.1 28.9 65.6 43.1 25.2 70.1 155.9
IB+FreeLB 85.2 30.4 64.4 160.5 43.0 49.5 87.9 41.3 51.5 47.3 37.9 55.6 163.4

Ours 84.2 31.4 62.8 168.7 40.7 51.6 110.2 49.6 41.0 48.8 43.0 48.9 163.6
Ours+FreeLB 85.6 42.4 50.5 190.9 47.0 45.1 122.1 55.4 35.3 52.2 51.6 39.7 172.5

IM
D

B

BERT 92.2 1.2 98.7 730.7 9.0 90.2 592.8 32.8 64.4 340.3 1.8 98.1 1671.6
TAVAT 94.8 55.6 41.4 2302.7 51.8 45.4 1388.6 61.8 34.8 640.0 30.6 67.7 1995.6

InfoBERT 78.6 23.0 70.7 1749.5 5.0 93.6 687.5 35.4 55.0 506.4 16.0 79.6 2077.4
DTRL 91.1 42.7 53.0 1824.4 39.2 56.7 1128.7 48.6 46.7 549.3 42.8 53.3 2123.9
RSMI 91.6 48.1 47.7 1580.8 47.6 47.9 973.5 57.8 36.9 448.3 54.6 40.2 1738.8

IB 93.8 57.4 38.4 2339.2 56.4 40.1 1431.9 65.2 30.6 635.3 53.2 43.3 2283.5
IB+FreeLB 94.5 54.5 42.2 2248.7 47.6 49.8 1304.9 59.8 36.9 624.8 50.0 46.9 2248.5

Ours 93.5 71.6 23.3 2644.0 70.2 25.0 1628.4 73.0 21.8 676.4 46.8 50.0 2116.8
Ours+FreeLB 95.0 84.6 11.0 2868.0 83.4 12.2 1786.7 84.6 11.1 716.8 62.6 34.1 2295.4

Table 1: The Acc, AUA, ASR, and Query of several defense methods on four datasets under four attacks by
protecting the BERT model. The best results are highlighted in bolded, and the second best results are denoted in
underlined. The ↑ (↓) means higher (lower) is better.

4.2 Attack Methods401

We assess the defense capability by defending four402

popular text attack methods, including word-level403

attacks TextFooler (Jin et al., 2020), PWWS (Ren404

et al., 2019), character-level attack Deepwordbug405

(Gao et al., 2018), and multi-level attack TextBug-406

ger (Li et al., 2019). All the attack experiments are407

conducted on the TextAttack (Morris et al., 2020).408

4.3 Baselines and Victim Models409

We evaluate the effectiveness of our DisIB by com-410

paring it with six baselines, such as Vanilla BERT411

(Devlin et al., 2019), TAVAT (Li and Qiu, 2021),412

InfoBERT (Wang et al., 2021), DTRL (Zhao et al.,413

2024), RSMI (Moon et al., 2023), and IB (Zhang414

et al., 2022). Vanilla BERT denotes there is no415

defense, which is utilized as the baseline for all416

other defense methods. We employ these defense417

methods to protect three victim models, i.e., the418

fine-tuned BERT, RoBERTa (Liu et al., 2019) and419

DistilBERT (Sanh et al., 2019), which are publicly 420

available from Huggingface1. 421

4.4 Evaluation Metrics 422

The performance of defense algorithms is evalu- 423

ated based on four metrics. (i) Acc% is the accu- 424

racy of clean samples. Effective defense methods 425

should maintain the original accuracy. (ii) AUA% 426

denotes the accuracy under attack. A robust model 427

exhibiting a higher AUA%. (iii) ASR% indicates 428

the attack success rate - robust defense methods 429

will show a low ASR%. (iv) Query is the average 430

number of attempts by an attacker to query the tar- 431

get model. Higher Query value indicates that the 432

model is harder to attack. 433

4.5 Quantitative Results and Analysis 434

Table 1 lists the performance of our method and the 435

baselines by protecting the BERT model. Overall, 436

1https://github.com/huggingface/transformers
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Methods Acc%↑
TextFooler Deepwordbug

AUA%↑ ASR%↓ Query↑ AUA%↑ ASR%↓ Query↑

R
oB

E
R

Ta

InfoBERT 95.1 34.0 64.3 401.7 43.0 54.8 109.6
DTRL 82.5 61.9 33.2 486.5 52.1 43.6 109.4

IB 95.4 75.5 21.0 532.6 59.6 37.3 120.0
Ours 94.6 75.9 19.8 535.2 67.3 28.8 126.2

D
is

til
B

E
R

T InfoBERT 95.4 21.2 77.8 346.6 27.7 71.0 101.6
DTRL 93.9 59.5 36.4 462.2 57.6 38.9 117.0

IB 43.5 3.8 91.3 174.4 6.8 84.2 73.2
Ours 95.4 78.2 18.0 538.9 71.1 24.8 128.2

Table 2: Defense performance comparison on different
pre-trained models using AG News dataset.

Methods PAIR GCG TriviaQA
ASR%↓ ASR%↓ BAR%↑

Vicuna
(7b-V1.5)

None 88 100 98
IB 84 74 94

Ours 78 72 98

LLaMA-2
(7b-chat-hf)

None 18 32 96
IB 18 28 97

Ours 14 24 97

Table 3: Defense results on AdvBench.

our DisIB outperforms the baselines on most of the437

96 defense experiments, with accuracy improve-438

ments ranging from 3.8% to 20.7%. Particularly,439

compared to the best baseline, our DisIB achieves440

an average of improvements on three robustness441

metrics, i.e., AUA (7.9%), ASR (7.8%), and Query442

(35.2). This indicates that our DisIB properly sepa-443

rates and eliminates the non-robust features added444

by both word-level and character-level attackers.445

Besides, the clean accuracy of our model on the446

AG News and SST-2 datasets is nearly equivalent447

to BERT, while on the MR and IMDB datasets,448

our model demonstrates superior accuracy. This449

means our method retains sufficient robust infor-450

mation for the model to make accurate predictions.451

Another good property is that our DisIB is compat-452

ible with traditional adversarial training methods,453

e.g., FreeLB (Zhu et al., 2020). As shown in Table454

1, the Ours+FreeLB approach consistently outper-455

forms all baselines in terms of robustness. We hope456

this result could shine new light on the direction of457

combined text defense.458

Table 2 shows the defense results on RoBERTa459

and DistilBERT models. Our DisIB also attains the460

top-1 performance in most cases, which illustrates461

the good defense capability of our method across462

various classification models.463

Defending LLM. This part evaluates the ef-464

fectiveness of our DisIB in defending Large Lan-465

(a) IB (b) DisIB

Figure 3: t-SNE visualization of robust features learned
via (a) IB and (b) DisIB. Clearly, our DisIB can better
separate the two labels.

guage Model (LLM). Particularly, we replace the 466

encoder in the robust feature extraction line with 467

a LLM and utilize the LLM head as the decoder. 468

We test our method on LLaMA-2 (Touvron et al., 469

2023) and Vicuna (Jain et al., 2023) against com- 470

mon jailbreak attacks, including GCG (Zou et al., 471

2023) and PAIR (Chao et al., 2023). We adopt Ad- 472

vBench (Zou et al., 2023) as a harmful benchmark 473

and generate 100 adversarial prompts with each 474

attack method for training. To examine whether the 475

defense methods refuse to answer benign prompts, 476

we employ Benign Answering Rate (BAR) in the 477

normal TriviaQA (Joshi et al., 2017) tasks. For 478

evaluation, we employ the test set of SafeDecod- 479

ing (Xu et al., 2024). As shown in Table 3, our 480

method outperforms the baseline IB on both ASR 481

and BAR. This indicates that our method can also 482

defend against jailbreak attacks on LLM. 483

In addition, the efficiency analysis experiments, 484

i.e., the inference runtime comparison, are listed in 485

the supplementary materials Part B. The parame- 486

ter optimization experiments are provided in sup- 487

plementary material Part C, regarding the sampling 488

standard deviation parameters, i.e., σr and σn. 489

4.6 Qualitative Results and Analysis 490

Feature Visualization. To validate the feature dis- 491

entanglement capability of our DisIB, we randomly 492

select 520 samples from the MR dataset and extract 493

their robust features with both IB and DisIB. Figure 494

3 visualizes the labels of these robust features via 495

t-SNE (Van der Maaten and Hinton, 2008). The 496

results show that the robust features captured by 497

our method completely separate the positive and 498

negative labels by a large margin, while the IB can- 499

not fully distinguish them. This indicates that our 500

method is superior to the IB in disentangling the 501

robust and non-robust features. 502

Sample Visualization. Except for the feature- 503
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Methods TextFooler TextBugger Deepwordbug PWWS
Rec Dis En AUA%↑ ASR%↓ Query↑ AUA%↑ ASR%↓ Query↑ AUA%↑ ASR%↓ Query↑ AUA%↑ ASR%↓ Query↑

✓ ✓ ✓ 29.3 67.0 144.9 43.8 50.7 78.1 40.0 15.9 41.8 36.4 58.9 145.9
- ✓ ✓ 23.5 73.7 127.0 37.9 57.6 91.9 38.2 57.2 39.4 29.9 66.5 139.7
✓ - ✓ 24.7 72.6 132.5 40.0 55.6 72.5 35.4 60.6 40.2 31.4 65.2 142.4
- - - 27.4 70.0 135.3 41.9 54.1 75.4 36.9 59.6 40.6 33.2 63.7 142.2

Table 4: Ablation studies. ✓ and - denotes with and without the corresponding module, respectively.

Figure 4: Visualisation of word significance. A higher
value suggests that the word is more important in mak-
ing predictions (robust features), whereas a smaller
value indicates the word is less significant for models
(non-robust features).

level visualization, we also make a more intuitive504

sample-level visualization to show the effective-505

ness of our DisIB in capturing task-relevant robust506

features. Specifically, we calculate the importance507

scores of individual words in the input sentence508

(Zhang et al., 2022). We conduct a series of nor-509

malized importance score calculations on the SST-2510

dataset, and two examples are illustrated in Figure511

4 (more examples can be found in the supplemen-512

tary materials). In the first example, our DisIB513

extracts the important words, e.g., ‘perfect’, ‘film’,514

etc, while the IB only focuses on the word ‘film’515

but ignores ‘perfect’, which carries a distinctly pos-516

itive sentiment. In the second sentence, our method517

directly captures the word ‘failed’, which strongly518

indicates negative emotion. In contrast, the IB519

fails to identify this word and does not extract any520

useful information. The results demonstrate that521

our method can more effectively identify impor-522

tant words than IB. From these intuitive examples,523

we confirm that our proposed DisIB is less likely524

to lose important information and extracts more525

complete robust features than IB.526

4.7 Ablation Study527

We perform ablation studies to examine the effects528

of key components of our DisIB, including recon-529

structor (Rec), discriminator (Dis), and the entire530

non-robust feature extraction line (Rec+Dis+En). 531

Table 4 reports the ablation study results. From Ta- 532

ble 4 we know that the removal of the reconstructor 533

resulted in an average decrease of AUA by 5.0%, 534

which illustrates the necessity of the I(X;N,Y ) 535

term. Besides, the removal of the discriminator 536

caused an average of 3.6% AUA reduction, indi- 537

cating the significance of the feature disentangle- 538

ment step. The elimination of the entire non-robust 539

feature extraction line resulted in a 2.0% AUA de- 540

crease, demonstrating the necessity and superiority 541

of the two-line defense framework. 542

5 Conclusion 543

In this work, we proposed a novel text defense 544

method, i.e., Disentangled Information Bottleneck 545

(DisIB), which improves the adversarial robust- 546

ness of modern NLP models by disentangling ro- 547

bust and non-robust features. Specifically, the 548

DisIB is a two-line framework, which contains an 549

encoder-decoder robust feature extraction line and 550

an encoder-reconstructor non-robust feature extrac- 551

tion line. A novel objective function has been de- 552

vised with a discriminator network to minimize the 553

mutual information of the two lines. Experimental 554

results elaborate the superiorities of our method in 555

defending against both classification models and 556

Large Language Models (LLMs). 557

6 Limitation 558

We summarize the limitations of this work from 559

two aspects. Firstly, the two-line framework results 560

in high computational cost and memory cost espe- 561

cially for the LLM training stage. Therefore, how 562

to improve the training efficiency, e.g., optimizing 563

only the information bottleneck architecture and 564

distinguishing safety layers to avoid unnecessary 565

training, should be a potential research direction. 566

Secondly, multilingual defense scenario, e.g., Chi- 567

nese text defense, is not sufficiently explored. Fu- 568

ture work could also focus on investigating the gen- 569

eralizability of the text adversarial defense across 570

different languages. 571
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