
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

PARAMETER-FREE VIDEO SEGMENTATION FOR VISION
AND LANGUAGE UNDERSTANDING

Anonymous authors
Paper under double-blind review

ABSTRACT

The proliferation of creative video content has driven demand for adapting language
models to handle video input and enable multimodal understanding. However,
end-to-end models struggle to process long videos due to their size and complexity.
An effective alternative is to divide them into smaller chunks to be processed
separately, and this motivates a method for choosing where the chunk boundaries
should be. In this paper, we propose an algorithm for segmenting videos into
contiguous chunks, based on the minimum description length principle, coupled
with a dynamic programming search. The algorithm is entirely parameter-free,
given feature vectors, not requiring a set threshold or the number or size of chunks to
be specified. We show empirically that the breakpoints it produces more accurately
approximate scene boundaries in long videos, compared with existing methods for
scene detection, even when such methods have access to the true number of scenes.
We showcase this algorithm in two tasks: long video summarisation, and retrieval-
augmented video QA. In both cases, scene breaks produced by our algorithm lead
to better performance than existing segmentation methods.

1 INTRODUCTION

With the proliferation of streaming services and digital content providers, a large number of movies
and television series are being released and made available every year. Automatic approaches to
understanding and summarising their content are paramount to enabling users to browse or skim
through them, and quickly recall key plot points, characters, and events without the need to rewatch.
Aside from practical utility, the complex narrative understanding required in long videos makes them
an ideal testbed for the capabilities of large vision language models (LVLMs).

A key step in long video understanding is being able to break the video up into smaller pieces, as
this allows LVLMs to process smaller chunks independently, and to selectively focus on the most
relevant parts. An earlier line of research Lupatini et al. (1998); Yeung and Yeo (1996); Zabih et al.
(1995); Sanchez et al. (1999) focuses on the problem of scene break detection, i.e., determining where
one scene ends and another begins in a long, narrative video, mostly by placing cuts where pixel
differences exceed some threshold. PySceneDetect1, the widely used Python library follows this
idea, converting to HSV channels Ford (1998) and then computing differences between consecutive
frames. More recent progress in scene break algorithms has been limited, with only a handful of
deep learning models trained on specific domains Liu et al. (2020); Rao et al. (2020); Mun et al.
(2022); Ye et al. (2022); Wang et al. (2024c). In this paper, we propose a new scene segmentation
algorithm, which we call MDLSeg, based on the minimum description length principle. MDLSeg
does not search for frame differences exceeding some threshold, indeed, it does not require setting
a threshold, or the number of scenes, or any parameters at all. Instead, it searches all the different
ways of grouping the feature vectors for each frame, and selects the one that can be represented with
the fewest number of bits. This encourages having every scene contain frames with feature vectors
similar to each other, but also not having too many scenes.

We further demonstrate that scene segmentation is useful for designing modular video understanding
systems, i.e., those based on a number of interacting components that separately solve different
subtasks. This design differs from recent work (e.g., Song et al. (2024)) aiming to handle longer

1https://www.scenedetect.com/

1

https://www.scenedetect.com/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

video sequences through modifications to transformer memory. Scaling such end-to-end models to
full-length movies, remains a significant challenge due to memory constraints and the complexity
of extracting useful information from large inputs.2 We explore the practical utility of MDLSeg for
two long video understanding tasks: summarisation and question answering. Summarisation has
seen significant advances thanks to large models with extended context windows and the design of
methods which rely on dividing the input into chunks Chen et al. (2023a); Pang et al. (2023); Chang
et al. (2023); Papalampidi and Lapata (2023); Mahon and Lapata (2024). We show that MDLSeg can
boost the performance of such methods. We also apply MDLSeg to long video question answering
Ataallah et al. (2024), incorporating it into a retrieval-augmented generation (RAG) QA pipeline.
Given a long video and a question about its content, we use MDLSeg to segment it into scenes and
retrieve the most relevant one based on the query; we generate a textual description of the retrieved
scene and use it to answer the question. In both cases, experimental results demonstrate that scene
breaks produced by our algorithm lead to better downstream performance than existing methods for
video segmentation. Our contributions can be summarised as follows:

• A novel scene-break detection method, which is parameter-free given the frame features.
• Empirical results showing that scene breaks from our method are more accurate than existing

methods or baselines, even when the latter have access to the true number of scenes.
• A demonstration of how our method can improve the downstream performance of modular

systems, as part of hierarchical movie summarisation and retrieval-augmented VQA.

2 RELATED WORK

Video Segmentation A simple method for scene break detection is to follow differences between
consecutive frames. The popular PySceneDetect library computes a histogram of pixel intensities
for each frame in HSV space Ford (1998), and then computes the absolute difference between the
histograms for consecutive frames, and places a scene break where this difference exceeds some user-
set threshold. Some work imposes a temporal constraint on k-means Berhe (2021) or incorporates
temporal distance information into a hierarchical clustering algorithm Yeung and Yeo (1996). Rotman
et al. (2017a) also propose a dynamic programming search for scene partitioning, but optimise a
different objective from ours that does not employ MDL. A number of deep-learning-based methods
have also been proposed. Lgss Rao et al. (2020) detects scene boundaries by modeling local-global
shot similarities using a Siamese network. SCRL Wu et al. (2022) learns scene-consistent shot
representations via self-supervised contrastive learning. HEM Cheng et al. (2024) segments long
videos into events and models them hierarchically for memory-augmented LLM-based understanding.
bassl Mun et al. (2022) introduces boundary-aware self-supervised pretext tasks to improve scene
segmentation. neighbornet Tan et al. (2024) redefines shot similarities using semantic and temporal
neighbors via graph convolution. scene-tile Wang et al. (2024c) segments videos by detecting
low-similarity valleys in adjacent frame embeddings from a ViT. MDLSeg differs from all of these in
not requiring any training and in being based on MDL.

Video Understanding The problem of generating descriptions for videos has received significant
attention in the literature. Traditional approaches often extract features from individual frames and
fuse them into a single feature vector to generate a textual description (Zhang et al., 2021; Pan et al.,
2020; Ye et al., 2022). SwinBERT (Lin et al., 2022) introduces an end-to-end video network that
samples frames densely, avoiding the need for image-based encoders. Similarly, Lei et al. (2020)
generate descriptions for short videos with a memory-augmented transformer. Some work aims to
summarise short videos, a task referred to as video captioning. Example methods include using a
two-stream CNN Sridevi and Kharde (2020), developing a bidirectional model that uses both video
and audio to produce video captions Seo et al. (2022), and proposing a single masked transformer
objective to detect and then caption all events Zhou et al. (2018b).Unsupervised pretaining has also
been explored, e.g., by Yang et al. (2023), who train a video-captioning model using transcribed
utterances as pseudo-captions. Systems based on large proprietary models have also been proposed
for longer videos Zhang et al. (2024); Lin et al. (2023) with multiple modules, including visual GPT-4
and PysceneDetect for scene breaks. Wu et al. (2024) prompt an LLM to predict scene breaks from
transcribed speech and captions, which are then used for video question-answering.

2At 1, 024 ∗ ∗2 frame size, and 10fps, a 75min movie would consume over 500GB as a 4d 32-bit float tensor.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Long-form Summarisation and QA Much of the work just described is suitable only for short
videos (Chen and Dolan, 2011; Xu et al., 2016), ranging from ∼10s in length to 5 minutes (Zhou
et al., 2018a) at the upper end. Recent work has started to leverage segmentation to address the task
of understanding much longer videos. Chen et al. (2023b) propose Movies2Scenes, a method that
uses movie metadata to learn video representations for long movies divided into scenes, though it
relies on predefined scenes based on shot transitions rather than semantically meaningful boundaries.
Papalampidi et al. (2021) summarise full-length movies by creating shorter videos containing their
most informative scenes which they assume to be ‘turning points’ (i.e., key events in a movie). Other
work produces text summaries of TV shows, by converting visual features into embeddings alongside
word embeddings from the transcript Papalampidi et al. (2021) or by converting the video to text,
and then treating it as a text-only problem Mahon and Lapata (2024). In a similar vein, long-form
question answering explores the ability of models to understand videos longer than five minutes.
Existing approaches improve model capacity to handle longer context windows through architectural
modifications Song et al. (2024) or by designing modular systems which either translate the video
into text and then extract important information from it Wu et al. (2024) or segment the input and
rely on retrieval to isolate important segments for question answering Ataallah et al. (2024).

Our scene segmentation algorithm, MDLSeg, is data- and parameter- free, given the frame-features.
It works with any type of long-form video, it does not depend on written transcripts or screenplays,
which are not always available (e.g., video providers do not have access to screenplays unless they
have produced the content themselves), and does not require setting the number of scenes.

3 MDLSEG : MINIMUM DESCRIPTION LENGTH-BASED SEGMENTATION

Scene segmentation is essentially a clustering problem with the additional constraint that each cluster
must be contiguous. Intuitively, a good cluster must fulfill two objectives: each point should be close
to its cluster centroid, and there should not be too many clusters. Normally, these two objectives are
not quantified in the same way, so it is difficult to trade off one against the other. However, MDL
allows us to quantify both in the same units–bits–so that they can be directly compared, and their sum
can be minimized. In general, this optimisation problem does not have a straightforward solution, but
part of our unique contribution is that, when coupled with the contiguity constraint, minimising the
description length in fact admits an efficient exact, or near-exact, solution.

MDLSeg computes a partition of the visual features from each keyframe, with the constraint that each
subset in the partition must be contiguous. There are two parts to the algorithm: the definition of a
cost for a particular partition into scenes, and the search for the partition that minimizes this cost. The
first part, the cost definition, is formulated using the minimum description length principle, which
claims the correct representation of the data is the one using the fewest bits Grünwald (2007). We
assume that the vectors for each scene are encoded with respect to their collective mean. That is, for
each scene in the given partition, we calculate the mean and covariance matrices of all vectors in that
scene, and hence, the probability of each vector, p(v), under the multivariate normal distribution with
these parameters. The Kraft-McMillan inequality (Kraft, 1949; McMillan, 1956) then determines
that under the optimal encoding, the number of bits needed to represent v is − log2 p(v). The sum
of this value across all N vectors v in the video, plus the number of bits to represent the means and
covariances themselves, gives the total bitcost for a given partition. Both the mean and the covariance
require dm bits (we use diagonal covariances), where d is the dimensionality, and m is the floating
point precision. We choose the precision based on the data as the smallest value that allows it to be
represented exactly. Partitions with more scenes require more bits for the mean vectors, but also have
mean vectors that better cover the keyframe features, leading to decreased − log2 p(v) on average.
This trade-off encourages a partition with neither too few nor too many scene breaks.

The second part, the search for the minimizer of the above cost, can be solved exactly using dynamic
programming. Let B(i, j) be the cost of having a single scene that runs from keyframes i to j, and
let C(i, j) be the minimum cost of all keyframes from i to j, under all possible partitions. Then, we
have the following recurrence relation, which allows iteratively computing and caching C(i,N) for
i = N − 1, . . . , 0:

C(i, j) = min
i+1≤k≤j

B(i, k) + C(k, j) . (1)

The full procedure for MDLSeg is shown in Algorithm 1 and an example is depicted in Figure 1.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Algorithm 1 Video Scene Partitioning

Require: Video file
1: Extract keyframes, kf0, . . . , kfN
2: Extract visual features v0, . . . , vN from each keyframe
3: L← maximum scene length
4: B ← N ×N empty matrix ▷ B[i, j] will hold the cost of a scene from vi to vj
5: d← dimensionality of vi
6: m← floating point precision of vi
7: Cost Definition: Compute and store costs for all possible scenes
8: for i = 0 to N − L do
9: for j = i to i+ L do

10: µ← 1
j−i

∑j
k=i vk

11: Σ← empirical covariance matrix of vi, . . . , vj
12: C ← 2dm ▷ bitcost of the parameters themselves
13: for k = i to j do
14: p(vk)← 1

(2π)d/2|Σ|1/2 exp
(
− 1

2 (vk − µ)⊤Σ−1(vk − µ)
)

15: C ← C − log p(vk)

16: B[i, j]← C

17: Search: Minimize the bitcost by dynamic programming
18: C ← B ▷ will hold optimal costs
19: P ← N ×N matrix of empty sets ▷ will hold optimal partitions
20: for i = N − 1 to 0 do
21: for j = i to min(N, i+ L) do
22: if B[i, j] + C[j,N] < C[i,N] then
23: C[i,N]← B[i, j] + C[j,N]
24: P [i,N]← P [i, j] ∪ {j} ∪ P [j,N]

25: return Optimal scene partition, P [0, N]

Computational Complexity. For each i = N − 1, . . . , 0, MDLSeg computes the best point for the
first split based on previously cached costs of smaller segments. This runs in O(N2) because the
number of partition points to check equals N − i for each segment for each 1 ≤ i ≤ N . By imposing
a fixed threshold of the maximum number L of keyframes in a scene, this becomes O(N). In our
experiments, we find that setting L so that the maximum scene length is about 10 minutes does not
affect the solution. i.e., produces the same segmentation for all videos in our datasets as leaving L
unset. This maximum scene length is not a parameter of the algorithm itself, but merely one that
allows it to run more quickly if a value is known. If a user does not set this parameter, the algorithm is
still relatively fast, and, either way, almost all the runtime is for extracting the visual feature vectors.
The algorithm itself takes a couple of seconds for a full movie when L is set. Empirically, the speed
is similar to PySceneDetect when L is set (see Section 6), and up to 20% or 30s longer when not set.

4 DOWNSTREAM TASKS

To showcase the utility of MDLSeg for long video processing, we engineer two modular systems for
video summarisation and question answering which we describe below.

Long Video Summarisation We apply a speaker diarization model to obtain a transcript with
numeric speaker IDs, which we augment with video captions (Peng et al., 2023) from three evenly
spaced keyframes from that screen. By matching the utterance times with the keyframe timestamps,
we insert the MDLSeg scene breaks into the transcript. To assign character names to transcribed
dialogue, for each movie, we first create a database of actors faces and their character names (scaped
from the movie’s IMDB page). For each scene, and for each character in our name bank, we define
the cost of putting that character name in that scene as the minimum distance between an image of
that character‘s face, and a face from any keyframe from the scene (the whole process takes <1s
for a full movie). The cost of assigning a character to a speaker ID, is then the sum of such costs
across all scenes containing that speaker ID. Assigning speaker IDs to names then reduces to the

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Figure 1: The MDLSeg cost of a given partition is the sum of the bitcost for all centroids, and the
encoding cost of each frame with respect to its assigned centroid. The former gives 32d bits, under
32-bit precision, for each green ellipse, where d is the dimension of the feature space. The latter is
the squared Mahalanobis length of each arrow, i.e., between each feature vector x, and its centroid µ.
The overall partition is chosen to have neither too few scenes, which would give very long arrows, nor
too many, which would give many centroid costs. PySceneDetect and other frame-difference methods
place breaks (shown in red) where the difference between consecutive frames exceeds a threshold.
This misses global structure and places spurious breaks where shots change briefly within scenes.

linear sum assignment problem, which can be solved efficiently using the Kuhn-Munkres algorithm
(Kuhn, 1956; Munkres, 1957). We provide additional details in Appendix E.

We adopt a hierarchical summarisation approach (Pang et al., 2023; Chang et al., 2023), as it has
proven particularly effective for handling long inputs that are challenging for end-to-end systems. We
thus first summarise the transcript dialogue of each scene. We next take the resulting sequence of
scene summaries, and their corresponding visual descriptions that were added to the pseudo-transcript
by the image captioning model, and summarise them with a text-only model to produce a final
summary for the entire movie (see Appendix Figures 2a and 3 for details). The summarisation model
is implemented using a widely-used open-source LLM library (Dubey et al., 2024) with zero-shot
prompting. We believe our modular system to be novel in its own right, as it requires only video
input, figuring out by itself who is speaking and what they are doing, which is taken for granted in
previous work Papalampidi et al. (2024); Mahon and Lapata (2024) focusing on screenplays and
manual transcripts. However, it is not the focus of the present paper.

Retrieval-Augmented Video Question Answering We further apply our scene break algorithm in
the task of retrieval-augmented video question-answering. First, we segment the input video with
MDLSeg. Then, using the timestamps in the transcript, we gather the corresponding text for each
scene. Next, we use a vision-to-text model to produce textual descriptions of the video from each
scene, so that each scene then consists of a segment of the transcript and a text description of the
video. Then we compute feature vectors for each scene, which we use for retrieval. Given a question,
we retrieve the scene with the greatest cosine similarity to the question (questions and scenes are
represented in the same multimodal feature space) and present it as input to a text-only model, which
then produces an answer based on the text from the scene and the question. (A sketch of this modular
approach to TVQA RAG is illustrated in Appendix B Figure 2b.) We do not claim novelty in this
modular approach, but rather use it to assess the usefulness of the scene breaks from MDLSeg.

5 EXPERIMENTAL SETTING

Datasets For evaluating the scene accuracy directly, we use two datasets designed for this purpose,
with human annotated scene breaks: Open Video Scene Detection (OVSD) Rotman et al. (2017b),
which consists of 16 free online films of varying styles and genres, including animated, action, drama
and children’s, ranging from 10 to 90 minutes, and BBC Earth Baraldi et al. (2015), consisting of
11 50 minute episodes of the Planet Earth documentaries. The latter has five sets of annotations,
occasionally showing substantial disagreement, so for each method, we report both the mean score
compared to all annotators, and the max score, compared to the closest matching annotator.

For the summarisation task, we use the recently released MovieSum dataset (Saxena and Keller,
2024), consisting of screenplays and gold summaries. We were able to obtain corresponding videos

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

for 175/200 movies in the test set. The remaining 25, we discarded. These movies span multiple
fiction genres: drama, action, thriller, comedy, horror, etc. They have an average run time of 118min
(range 84–228), with release dates ranging from 1950 to 2023. Gold summaries average 635 words
in length. The mean number of scenes in the gold script is 151. We follow recent work Ataallah
et al. (2024) in evaluating long video understanding on the TVQA dataset Lei et al. (2018) which
consists of videos and accompanying timestamped transcripts from 924 episodes from six TV shows.
These shows span 3 genres: 1) sitcoms: The Big Bang Theory, How I Met Your Mother, Friends, 2)
medical dramas: Grey’s Anatomy, House, 3) crime drama: Castle. Further stats on the dataset are in
Appendix I. Neither task requires training inputs, because all stages of our pipeline are zero-shot.

Implementation Details Keyframes are extracted as FFMPEG I-frames. The full command is given
in Appendix F. As discussed in Section 3, we cap the number of keyframes in a scene to L = 300,
which roughly corresponds to a 10 minute maximum scene length. Visual features are extracted
using CLIP (Radford et al., 2021), specifically ‘CLIP-ViT-g-14-laion2B-s12B-b42K’ on an 8GB
Nvidia RTX 200. In Appendix A, we show results for other feature extractors, which are broadly
similar. For the downstream tasks, the speaker diarization model is WhisperX (Bain et al., 2023), an
extension of Whisper which can perform speaker diarization and accurate utterance timestamping.
The text model for both tasks is Llama 3.1 70B (Touvron et al., 2023). The vision-to-text model is
Llava-NeXT Li et al. (2024b), which fine-tunes Llava Liu et al. (2024), on interleaved image-text
data and multimodal instruction tuning. We instruct summaries to be a maximum of 635 words (the
test set mean), and truncate to 650 words. The feature vectors for VQA retrieval are from InternVideo
Wang et al. (2024b), a video foundation model trained using masked video modeling, crossmodal
contrastive learning, and next token prediction. We select the multiple-choice answer indicator with
the greatest logit value as the answer. For PySceneDetect, we use the default threshold of 27.

Evaluation Metrics To directly measure the accuracy of our scene detection method, we use
three metrics commonly used in topic segmentation: Pk Beeferman et al. (1997), WindowDiff
Pevzner and Hearst (2002), and differential edit distance (ded; Sidiropoulos et al. (2012)), as well as
standard partition quality metrics: cluster accuracy (acc), adjusted Rand index (ari), and normalized
mutual information (nmi), as defined in Mahon and Lukasiewicz (2024). For summarisation human
evaluation is extremely labor-intensive, costly, and difficult to design Krishna et al. (2023). As
there is no single agreed-upon metric, we report several complementary metrics aimed at assessing
different aspects of summary quality. Rouge (Lin, 2004) assesses informativeness against the gold
summaries (we report Rouge-2 and RougeL-Sum); PRISMA (Mahon and Lapata, 2024) measures
factual precision and recall with respect to the gold summary; we use GPT4-turbo for both fact
extraction and evaluation stages; SummaC (Laban et al., 2022) uses NLI to measure consistency
between the input document (gold screenplay) and generated summary; we use the SummaCConv
version with 50 evenly-spaced bins; AlignScore (Zha et al., 2023) scores the ‘informational alignment’
between the source (gold screenplay) and the generated summary; we use the base-model checkpoint
provided by the authors, and the recommended ‘nli’ setting with sentence chunk splitting. For the
VQA task, we simply report accuracy as the questions are all multiple choice.

6 RESULTS

Scene Detection Table 1 compares the accuracy of the partitions from MDLSeg against eight
comparison models. Uniform, divides into equal length scenes of number equal to the mean number
on each dataset. Uniform oracle divides uniformly into the true number of scenes; kmeans and
Gaussian Mixture Model (GMM) cluster the feature vectors and place a scene break between
neighbouring time points with different cluster labels.The others, psd (PySceneDetect) Yeung96
Yeung and Yeo (1996), berhe21 Berhe (2021), Lgss Rao et al. (2020), SCRL, Wu et al. (2022),
HEM Cheng et al. (2024), bassl Mun et al. (2022), neighbornet Tan et al. (2024), and scene-tile
Wang et al. (2024c) are all existing scene segmentation methods (described in Section 2)

MDLSeg produces the most accurate segmentations on all datasets and metrics, surpassing both the
other algorithm-based methods and the deep learning-based methods, even including neighbornet,
which is trained using labelled scene breaks using the same dataset. The runtime of MDLSeg is as
fast or faster than existing algorithmic methods. Among the deep learning-based methods, those that
essentially just perform a forward pass, such as SCRL and HEM, have the fastest inference time of

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Table 1: Scene break accuracy on datasets with manually annotated breaks. On the BBC dataset, we
report scores against the best matching annotator of the five annotations per episode (bbc-max), and
the mean score across all five annotators (bbc-mean). Best results are in bold.

acc ↑ nmi ↑ ari ↑ Pk↑ winddiff ↓ ded ↓ runtime training params.

unif 53.18 69.93 33.12 66.30 59.87 57.95 0.00 No k
unif-oracle 54.00 72.25 38.18 72.28 50.20 52.54 0.00 No k
kmeans 49.22 62.09 11.12 38.28 467.04 76.74 127.00 No k
GMM 49.73 62.37 12.10 39.00 455.87 76.00 127.04 No k
berhe21 58.11 71.58 30.52 65.18 80.89 56.67 127.08 No k
psd 47.35 62.37 35.42 60.56 155.77 66.28 130.31 No thresh.
yeung96 2.87 40.61 0.46 5.21 1080.11 98.53 143.87 No thresh.
scene-tile 48.30 64.65 23.48 54.31 225.03 62.51 121.34 No thresh.
lgss 52.61 36.77 12.25 79.98 57.54 63.18 4.62 Yes None
scrl 30.83 47.95 11.81 38.37 325.44 79.29 3.11 Yes None
HEM 61.20 62.72 38.41 78.14 50.49 49.44 14.21 Yes k
bassl 52.69 44.02 23.97 76.72 69.32 56.19 126.52 Yes None
neighbornet 59.40 62.73 34.92 76.25 46.90 52.01 21.02 Yes None

O
V

SD

MDLSeg 63.37 72.58 45.13 78.39 42.58 42.99 127.86 No None
unif 54.62 81.53 41.34 67.65 51.09 49.95 0.00 No k
unif-oracle 54.07 81.46 40.96 73.12 44.21 49.84 0.00 No k
kmeans 54.35 77.26 20.75 46.80 242.88 65.59 20.62 No k
GMM 62.42 83.12 43.94 66.41 54.76 45.96 20.65 No k
berhe21 53.69 76.94 20.10 46.00 245.51 66.23 20.68 No k
psd 53.23 77.93 33.97 67.75 67.53 60.66 86.45 No thresh.
yeung96 18.60 71.24 2.36 29.07 525.48 88.86 102.83 No thresh.
scene-tile 52.52 77.96 32.94 56.74 123.05 56.21 19.18 No thresh.
lgss 48.62 52.18 20.08 81.97 37.98 64.99 2.01 Yes None
scrl 60.43 82.50 44.72 58.68 85.24 46.73 1.15 Yes k
HEM 61.53 80.05 52.82 73.55 56.67 42.64 2.12 Yes k
bassl 54.49 78.29 42.02 67.89 79.56 51.09 516.46 Yes None
neighbornet 54.59 80.93 41.97 70.17 49.26 49.78 50.03 Yes None

B
B

C
-m

ax

MDLSeg 69.49 85.80 60.75 83.42 26.54 35.78 21.53 No None
unif 50.59 79.16 35.91 64.43 61.83 54.70 0.00 No k
unif-oracle 48.82 79.37 35.76 64.84 60.65 54.46 0.00 No k
kmeans 51.88 73.52 16.80 42.13 257.29 69.83 20.62 No k
GMM 58.08 80.39 37.76 64.66 60.78 51.60 20.65 No k
berhe21 51.12 73.25 16.17 41.36 260.02 70.67 20.68 No k
psd 47.01 72.67 26.69 66.07 70.43 66.96 86.45 No thresh.
yeung96 14.63 67.22 1.46 23.21 542.21 91.55 102.83 No thresh.
scene-tile 49.70 75.43 28.39 55.16 126.94 59.26 19.18 No thresh.
lgss 44.97 49.25 15.29 74.95 56.04 70.42 2.01 Yes None
scrl 56.75 80.54 40.40 58.68 91.41 50.91 1.15 Yes None
HEM 56.65 78.65 44.79 68.24 66.62 48.97 2.12 Yes k
bassl 50.17 76.72 36.38 63.98 87.35 55.25 516.46 Yes None
neighbornet 50.56 79.04 37.64 66.83 59.74 54.19 50.03 Yes None

B
B

C
-m

ea
n

MDLSeg 66.13 83.66 54.96 77.86 42.40 40.06 21.53 No None

all methods tested, however, this does not take into account the time for pretraining which very likely
outweighs any savings in inference time. Those with more complicated inference procedures, (bassl
and neighbornet), are a similar speed to MDLSeg (and also require lengthy train time).

Our summaries obtain the highest scores, across all metrics. The improvement is largest for the fact-
based metrics of PRISMA (comprised of fact-prec and fact-rec), and AlignScore. Otter and mahon24
especially struggle with such metrics. We find that Otter is mostly able to capture surface-level detail,
with descriptions such as “a woman gets out of a car and goes into a building”, but is unable to
construct a narrative such as “a woman drives to the bank to deposit the money”, so ends up capturing
very little of the plot. The low scores of ‘mahon24’, on the other hand, are largely due to the older,
smaller backbone model (BART; Lewis et al. 2020), which often becomes decoupled from the input
and produces unrelated output, highlighting the importance of incorporating current LLMs into video
summarisation models.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

acc ↑ nmi ↑ ari ↑ Pk↑ winddiff ↓ ded ↓ runtime training params.

unif 53.18 69.93 33.12 66.30 59.87 57.95 0.00 No k
unif-oracle 54.00 72.25 38.18 72.28 50.20 52.54 0.00 No k

kmeans 49.22 62.09 11.12 38.28 467.04 76.74 127.00 No k
GMM 49.73 62.37 12.10 39.00 455.87 76.00 127.04 No k
berhe21 58.11 71.58 30.52 65.18 80.89 56.67 127.08 No k
psd 47.35 62.37 35.42 60.56 155.77 66.28 130.31 No thresh.
yeung96 2.87 40.61 0.46 5.21 1080.11 98.53 143.87 No thresh.
scene-tile 48.30 64.65 23.48 54.31 225.03 62.51 121.34 No thresh.
HEM 61.20 62.72 38.41 78.14 50.49 49.44 14.21 Yes k

lgss 52.61 36.77 12.25 79.98 57.54 63.18 4.62 Yes None
scrl 30.83 47.95 11.81 38.37 325.44 79.29 3.11 Yes None
bassl 52.69 44.02 23.97 76.72 69.32 56.19 126.52 Yes None
neighbornet 59.40 62.73 34.92 76.25 46.90 52.01 21.02 Yes None

MDLSeg 63.37 72.58 45.13 78.39 42.58 42.99 127.86 No None

Table 2: Summarisation results on MovieSum. Top 3:
baselines we implement. Middle 2: existing long-form
multimodal summarisation methods. Bottom 4: ablation
studies: ‘w/o names’ does not replace speaker IDs with
character names using our assignment method; ‘w/o scene
breaks’ summarises the screenplay in one pass without
scenes breaks; ‘unif-breaks’ breaks uniformly instead of
using MDLSeg. f-prec, f-rec, and align abbreviate fact-
precision/recall and AlignScore. Best results are in bold.

r2 rl-sum f-prec f-rec PRISMA align summac

name-only 9.53 41.17 50.40 43.04 44.16 53.11 26.57
full script 9.32 39.94 48.77 52.73 49.05 68.59 25.83
whisperX 9.22 39.94 46.73 53.65 48.00 68.57 25.86

Otter 3.06 26.73 11.67 8.95 5.18 45.90 24.37
mahon24 2.79 19.97 23.16 23.19 19.28 46.32 26.97

w/o breaks 8.45 36.82 48.32 51.79 49.99 71.95 26.31
unif-breaks 8.45 36.82 46.58 50.69 48.11 57.62 25.73
psd-breaks 2.15 15.18 15.93 27.38 16.12 52.29 32.82

ours 10.32 44.50 55.24 54.77 53.57 72.76 27.24

Summarisation In Table 2, we evalu-
ate the summaries generated by a hier-
archical method using MDLSeg scene
breaks as input (see Figure 2a). We
benchmark against three baselines us-
ing Llama 3.1 70B as their backbone:
name-only uses the parametric knowl-
edge of the LLM without any content
input, e.g., the prompt is ‘Summarize
The Silence of the Lambs’;3 full script
uses the entire gold screenplay as input,
and for whisperX the input is the Whis-
perX transcript. We also compare to two
existing models: Otter(Li et al., 2023),
an end-to-end video description model
based on video-llama2; and the modu-
lar model of Mahon and Lapata (2024)
which takes videos and gold screenplays
as input. For Otter, we divide the input
video into 3min chunks, and combine the
model description of each chunk.

Prompting with only the movie name per-
forms reasonably well, confirming that
Llama3.1 has significant parametrically
stored information about these movies. However, these summaries are short, and when asked for a
longer summary, the model repeats the same information over and over. Surprisingly, giving the full
gold screenplay as input does not produce better summaries than our method or than some other base-
lines. This shows there is still difficulty in summarising very long text inputs. When prompted with
the name only, Llama-3.1 very likely effectively regurgitates an existing online summary. However,
when the prompt also includes the transcript or screenplay itself, Llama tries to actually summarise the
information given, during which it can make mistakes. In Appendix H we provide example summary
output for the modular method using MDLSeg and the best-performing comparison methods.

eTable 2 (third section) also shows ablations on different components (see Figure 2a). ‘w/o names’
omits replacing speaker IDs with character names. This causes summary quality to drop, showing
the usefulness of name assignment to downstream summaries. ‘w/o scene breaks’ feeds the entire
pseudo-screenplay to Llama 3.1, instead of using MDLSeg to split into scenes and summarising
hierarchically. The drop in summary performance in this setting shows the effectiveness of the

3Precise prompts are given in Appendix G.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Table 3: Accuracy on the TVQA-long dataset. Left: segmentation+retrieval methods–MDLSeg (ours),
PySceneDetect (psd), unif, GMM–plus Llama3.1-70b. Goldfish and Llama-vid are two existing long
TVQA models with their own chunking method. Splitting the scenes using MDLSeg gives higher QA
accuracy than splitting uniformly or with GMM or PSD. Right: end-to-end LVLMs. The bottom row
shows results without the video input. The high scores of the LVLMs suggest contamination.

ours psd GMM unif no-splits goldfish llama-vid qwen-vl lava-onevision pllava tarsier

w/ input 40.92 33.68 20.05 39.99 20.09 41.78 26.86 38.70 39.53 34.84 34.09
w/o input 19.51 19.51 19.51 19.51 19.51 19.51 19.51 36.85 34.99 22.19 22.47

hierarchical summarisation method enabled by the scene breaks obtained from MDLSeg. ‘unif-
breaks’ and ‘psd-breaks’ still adopt the hierarchical summarisation method, but instead of using
MDLSeg, split scenes into uniform chunks of 250 tokens (the mean from MDLSeg) or split into the
scenes from PySceneDetect. These settings also degrade summary quality, showing that the higher
accuracy from our segmentation method (Table 1), also leads to improved downstream summaries.

Retrieval-augmented Video Question Answering Table 3 shows model accuracy on the retrieval
augmented VQA task described in Section 4, using MDLSeg as well as PySceneDetect and two
high-performing baselines from Table 1: uniform and GMM. The scene breaks from MDLSeg
produce the most accurate downstream VQA. The scenes from PysceneDetect are a poor facilitator
of retrieval-based question answering in this task. They tend to be very short, sometimes only 10–15s,
and often miss the content required for answering the question. Uniformly split scenes fare better,
and are only 1 point behind the scenes from MDLSeg, however, the difference is still statistically
significant at 97% (see the calculation in Appendix D). Also, splitting into 3-minute scenes is based
on domain knowledge (sitcom episodes tend to have scenes of about that length). For a different set
of videos, such as action movies, sports games or educational videos, the correct scene size may be
quite different. MDLSeg, in contrast, makes no assumptions about the type of video, and requires no
hard-coded domain knowledge. Using the entire transcript, ‘no-splits’, performs very badly. Many of
the questions are context-specific, e.g. “what does Monica say after Ross walks in?”, when Ross may
enter multiple different rooms throughout the episode. When just presented with the entire transcript,
without singling out a more specific context, it is difficult to answer such questions properly.

Additionally, we compared to two existing approaches, Goldfish Ataallah et al. (2024) and Llama-vid
Li et al. (2024c), as reported in Ataallah et al. Ataallah et al. (2024). The simple retrieval-based
pipeline using MDLSeg significantly outperforms Llama-vid and is very close to Goldfish, despite
Goldfish using a base model specifically optimised for VQA, fine-tuned on a custom dataset curated
for this purpose. Finally, we compared to four large end-to-end LVLMs: llava-onevision Li et al.
(2024a), pllava Xu et al. (2024), tarsier Wang et al. (2024a) and qwen-vl. In order to test for
contamination with the TVQA-long dataset, we also score all models with the video input removed.
In this setting, the model only sees a multiple choice question, without any corresponding context
from which it can be answered. All models should score near chance of 20% in this setting. However,
qwen-vl and llava-onevision score 36.46%, 36.85% and 34.99%, respectively, with the video input
removed, suggesting the possibilty of contamination, highlighting the difficulty of fair testing LVLMs
on this task. In ‘w/o input’, our system scores at chance level, suggesting no contamination.

7 CONCLUSION

In this paper, we proposed a novel algorithm for detecting scene breaks in video using the minimum
description length principle, which is parameter-free given feature vectors. It produces a single
optimisation problem for the number of scenes and the positions of the scene breaks. We devise
a dynamic programming search method, to efficiently compute the exact global optimum, or a
close approximation to it. Our approach eliminates the need for predefined thresholds or fixed
numbers of chunks. Empirical evaluations demonstrate that MDLSeg produces breakpoints that
more accurately approximate scene boundaries compared to existing scene detection techniques.
Furthermore, we show that incorporating our algorithm into tasks like long video summarization
and retrieval-augmented video question answering results in improved downstream performance,
highlighting its effectiveness and potential for advancing multimodal understanding of video content.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

REFERENCES

Kirolos Ataallah, Xiaoqian Shen, Eslam Abdelrahman, Essam Sleiman, Mingchen Zhuge, Jian
Ding, Deyao Zhu, Jürgen Schmidhuber, and Mohamed Elhoseiny. Goldfish: Vision-language
understanding of arbitrarily long videos. arXiv preprint arXiv:2407.12679, 2024.

Max Bain, Jaesung Huh, Tengda Han, and Andrew Zisserman. Whisperx: Time-accurate speech
transcription of long-form audio. In INTERSPEECH 2023, pages 4489–4493, 2023. doi: 10.
21437/Interspeech.2023-78.

Lorenzo Baraldi, Costantino Grana, and Rita Cucchiara. A deep siamese network for scene detection
in broadcast videos. In Proceedings of the 23rd ACM international conference on Multimedia,
pages 1199–1202, 2015.

Doug Beeferman, Adam Berger, and John Lafferty. Text segmentation using exponential models.
In Second Conference on Empirical Methods in Natural Language Processing, 1997. URL
https://aclanthology.org/W97-0304/.

Aman Berhe. Extraction of Narrative Structure from TV Series. PhD thesis, Université Paris-Saclay,
2021.

Yapei Chang, Kyle Lo, Tanya Goyal, and Mohit Iyyer. Booookscore: A systematic exploration of
book-length summarization in the era of llms. arXiv preprint arXiv:2310.00785, 2023.

David Chen and William B Dolan. Collecting highly parallel data for paraphrase evaluation. In
Proceedings of the 49th annual meeting of the association for computational linguistics: human
language technologies, pages 190–200, 2011.

Howard Chen, Ramakanth Pasunuru, Jason Weston, and Asli Celikyilmaz. Walking down the memory
maze: Beyond context limit through interactive reading. arXiv preprint arXiv:2310.05029, 2023a.

Shixing Chen, Chun-Hao Liu, Xiang Hao, Xiaohan Nie, Maxim Arap, and Raffay Hamid.
Movies2scenes: Using movie metadata to learn scene representation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 6535–6544, 2023b.

Dingxin Cheng, Mingda Li, Jingyu Liu, Yongxin Guo, Bin Jiang, Qingbin Liu, Xi Chen, and
Bo Zhao. Enhancing long video understanding via hierarchical event-based memory. arXiv
preprint arXiv:2409.06299, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, et al. The Llama 3 herd of models, 2024. URL
https://arxiv.org/abs/2407.21783.

Adrian Ford. Colour space conversions. Westminster University, 1998.

Peter D Grünwald. The minimum description length principle. MIT press, 2007.

Leon Gordon Kraft. A device for quantizing, grouping, and coding amplitude-modulated pulses. PhD
thesis, Massachusetts Institute of Technology, 1949.

Kalpesh Krishna, Erin Bransom, Bailey Kuehl, Mohit Iyyer, Pradeep Dasigi, Arman Cohan, and
Kyle Lo. LongEval: Guidelines for human evaluation of faithfulness in long-form summarization.
In Andreas Vlachos and Isabelle Augenstein, editors, Proceedings of the 17th Conference of the
European Chapter of the Association for Computational Linguistics, pages 1650–1669, Dubrovnik,
Croatia, May 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.eacl-main.
121. URL https://aclanthology.org/2023.eacl-main.121.

Harold W Kuhn. Variants of the hungarian method for assignment problems. Naval Research
Logistics Quarterly, 3(4):253–258, 1956.

Philippe Laban, Tobias Schnabel, Paul N. Bennett, and Marti A. Hearst. Summac: Re-visiting
nli-based models for inconsistency detection in summarization. Transactions of the Association
for Computational Linguistics, 10:163–177, 2022.

10

https://aclanthology.org/W97-0304/
https://arxiv.org/abs/2407.21783
https://aclanthology.org/2023.eacl-main.121

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Jie Lei, Licheng Yu, Mohit Bansal, and Tamara Berg. TVQA: Localized, compositional video
question answering. In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii, editors,
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing,
pages 1369–1379, Brussels, Belgium, October-November 2018. Association for Computational
Linguistics. doi: 10.18653/v1/D18-1167. URL https://aclanthology.org/D18-1167.

Jie Lei, Liwei Wang, Yelong Shen, Dong Yu, Tamara Berg, and Mohit Bansal. MART: Memory-
augmented recurrent transformer for coherent video paragraph captioning. In Dan Jurafsky,
Joyce Chai, Natalie Schluter, and Joel Tetreault, editors, Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, pages 2603–2614, Online, July
2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.233. URL
https://aclanthology.org/2020.acl-main.233.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and comprehension. In Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics, pages 7871–7880, Online, July
2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.703. URL
https://aclanthology.org/2020.acl-main.703.

Bo Li, Yuanhan Zhang, Liangyu Chen, Jinghao Wang, Jingkang Yang, and Ziwei Liu. Otter: A
multi-modal model with in-context instruction tuning. arXiv preprint arXiv:2305.03726, 2023.

Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan
Zhang, Yanwei Li, Ziwei Liu, et al. Llava-onevision: Easy visual task transfer. arXiv preprint
arXiv:2408.03326, 2024a.

Feng Li, Renrui Zhang, Hao Zhang, Yuanhan Zhang, Bo Li, Wei Li, Zejun Ma, and Chunyuan Li.
Llava-next-interleave: Tackling multi-image, video, and 3d in large multimodal models. arXiv
preprint arXiv:2407.07895, 2024b.

Yanwei Li, Chengyao Wang, and Jiaya Jia. Llama-vid: An image is worth 2 tokens in large language
models. 2024c.

Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain, July 2004. Association for Computational
Linguistics. URL https://aclanthology.org/W04-1013.

Kevin Lin, Linjie Li, Chung-Ching Lin, Faisal Ahmed, Zhe Gan, Zicheng Liu, Yumao Lu, and
Lijuan Wang. Swinbert: End-to-end transformers with sparse attention for video captioning. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
17949–17958, 2022.

Kevin Lin, Faisal Ahmed, Linjie Li, Chung-Ching Lin, Ehsan Azarnasab, Zhengyuan Yang, Jianfeng
Wang, Lin Liang, Zicheng Liu, Yumao Lu, et al. Mm-vid: Advancing video understanding with
gpt-4v (ision). arXiv preprint arXiv:2310.19773, 2023.

Dong Liu, Nagendra Kamath, Subhabrata Bhattacharya, and Rohit Puri. Adaptive context reading net-
work for movie scene detection. IEEE Transactions on Circuits and Systems for Video Technology,
31(9):3559–3574, 2020.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances in
neural information processing systems, 36, 2024.

G Lupatini, Caterina Saraceno, and Riccardo Leonardi. Scene break detection: a comparison. In
Proceedings Eighth International Workshop on Research Issues in Data Engineering. Continuous-
Media Databases and Applications, pages 34–41. IEEE, 1998.

Louis Mahon and Mirella Lapata. A modular approach for multimodal summarization of TV shows.
In Lun-Wei Ku, Andre Martins, and Vivek Srikumar, editors, Proceedings of the 62nd Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 8272–
8291, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/
v1/2024.acl-long.450. URL https://aclanthology.org/2024.acl-long.450.

11

https://aclanthology.org/D18-1167
https://aclanthology.org/2020.acl-main.233
https://aclanthology.org/2020.acl-main.703
https://aclanthology.org/W04-1013
https://aclanthology.org/2024.acl-long.450

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Louis Mahon and Thomas Lukasiewicz. Hard regularization to prevent deep online clustering collapse
without data augmentation. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pages 14281–14288, 2024.

Brockway McMillan. Two inequalities implied by unique decipherability. IRE Transactions on
Information Theory, 2(4):115–116, 1956.

Jonghwan Mun, Minchul Shin, Gunsoo Han, Sangho Lee, Seongsu Ha, Joonseok Lee, and Eun-Sol
Kim. Boundary-aware self-supervised learning for video scene segmentation. arXiv preprint
arXiv:2201.05277, 2022.

James Munkres. Algorithms for the assignment and transportation problems. Journal of the Society
for Industrial and Applied Mathematics, 5(1):32–38, 1957.

Boxiao Pan, Haoye Cai, De-An Huang, Kuan-Hui Lee, Adrien Gaidon, Ehsan Adeli, and Juan Carlos
Niebles. Spatio-temporal graph for video captioning with knowledge distillation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 10870–10879,
2020.

Bo Pang, Erik Nijkamp, Wojciech Kryscinski, Silvio Savarese, Yingbo Zhou, and Caiming Xiong.
Long document summarization with top-down and bottom-up inference. In Andreas Vlachos
and Isabelle Augenstein, editors, Findings of the Association for Computational Linguistics:
EACL 2023, pages 1267–1284, Dubrovnik, Croatia, May 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.findings-eacl.94. URL https://aclanthology.org/
2023.findings-eacl.94.

P. Papalampidi, F. Keller, and M. Lapata. Finding the right moment: Human-assisted trailer creation
via task composition. IEEE Transactions on Pattern Analysis & Machine Intelligence, 46(01):
292–304, jan 2024. ISSN 1939-3539. doi: 10.1109/TPAMI.2023.3323030.

Pinelopi Papalampidi and Mirella Lapata. Hierarchical3d adapters for long video-to-text summariza-
tion. In Findings of the Association for Computational Linguistics: EACL 2023, pages 1267–1290,
2023.

Pinelopi Papalampidi, Frank Keller, and Mirella Lapata. Movie summarization via sparse graph
construction. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages
13631–13639, 2021.

Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shaohan Huang, Shuming Ma, and Furu
Wei. Kosmos-2: Grounding multimodal large language models to the world. arXiv preprint
arXiv:2306.14824, 2023.

Lev Pevzner and Marti A. Hearst. A critique and improvement of an evaluation metric for text
segmentation. Computational Linguistics, 28(1):19–36, 2002. doi: 10.1162/089120102317341756.
URL https://aclanthology.org/J02-1002/.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
Learning transferable visual models from natural language supervision. In Marina Meila and Tong
Zhang, editors, Proceedings of the 38th International Conference on Machine Learning, volume
139 of Proceedings of Machine Learning Research, pages 8748–8763. PMLR, 18–24 Jul 2021.
URL https://proceedings.mlr.press/v139/radford21a.html.

Anyi Rao, Linning Xu, Yu Xiong, Guodong Xu, Qingqiu Huang, Bolei Zhou, and Dahua Lin. A local-
to-global approach to multi-modal movie scene segmentation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 10146–10155, 2020.

Daniel Rotman, Dror Porat, and Gal Ashour. Optimal sequential grouping for robust video scene
detection using multiple modalities. International Journal of Semantic Computing, 11(02):193–208,
2017a.

Daniel Rotman, Dror Porat, and Gal Ashour. Robust video scene detection using multimodal fusion
of optimally grouped features. In 2017 IEEE 19th international workshop on multimedia signal
processing (MMSP), pages 1–6. IEEE, 2017b.

12

https://aclanthology.org/2023.findings-eacl.94
https://aclanthology.org/2023.findings-eacl.94
https://aclanthology.org/J02-1002/
https://proceedings.mlr.press/v139/radford21a.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Juan Maria Sanchez, Xavier Binefa, Jordi Vitrià, and Petia Radeva. Local color analysis for scene
break detection applied to tv commercials recognition. In International Conference on Advances
in Visual Information Systems, pages 237–244. Springer, 1999.

Rohit Saxena and Frank Keller. Moviesum: An abstractive summarization dataset for movie screen-
plays. arXiv preprint arXiv:2408.06281, 2024.

Paul Hongsuck Seo, Arsha Nagrani, Anurag Arnab, and Cordelia Schmid. End-to-end generative
pretraining for multimodal video captioning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 17959–17968, June 2022.

Panagiotis Sidiropoulos, Vasileios Mezaris, Ioannis Kompatsiaris, and Josef Kittler. Differential edit
distance: A metric for scene segmentation evaluation. IEEE Transactions on Circuits and Systems
for Video Technology, 22(6):904–914, 2012. doi: 10.1109/TCSVT.2011.2181231.

Enxin Song, Wenhao Chai, Guanhong Wang, Yucheng Zhang, Haoyang Zhou, Feiyang Wu, Haozhe
Chi, Xun Guo, Tian Ye, Yanting Zhang, et al. Moviechat: From dense token to sparse memory for
long video understanding. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 18221–18232, 2024.

M. Sridevi and Mayuri Kharde. Video summarization using highlight detection and pairwise deep
ranking model. Procedia Computer Science, 167:1839–1848, 2020. ISSN 1877-0509. doi:
https://doi.org/10.1016/j.procs.2020.03.203. URL https://www.sciencedirect.com/
science/article/pii/S1877050920306682. International Conference on Computa-
tional Intelligence and Data Science.

Jiawei Tan, Hongxing Wang, Jiaxin Li, Zhilong Ou, and Zhangbin Qian. Neighbor relations matter
in video scene detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 18473–18482, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
models, 2023.

Jiawei Wang, Liping Yuan, Yuchen Zhang, and Haomiao Sun. Tarsier: Recipes for training and
evaluating large video description models. arXiv preprint arXiv:2407.00634, 2024a.

Yi Wang, Kunchang Li, Xinhao Li, Jiashuo Yu, Yinan He, Chenting Wang, Guo Chen, Baoqi Pei,
Rongkun Zheng, Jilan Xu, Zun Wang, et al. Internvideo2: Scaling video foundation models for
multimodal video understanding. arXiv preprint arXiv:2403.15377, 2024b.

Yuxuan Wang, Cihang Xie, Yang Liu, and Zilong Zheng. Videollamb: Long-context video under-
standing with recurrent memory bridges. arXiv preprint arXiv:2409.01071, 2024c.

Haoqian Wu, Keyu Chen, Yanan Luo, Ruizhi Qiao, Bo Ren, Haozhe Liu, Weicheng Xie, and Linlin
Shen. Scene consistency representation learning for video scene segmentation. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pages 14021–14030, 2022.

Yongliang Wu, Bozheng Li, Jiawang Cao, Wenbo Zhu, Yi Lu, Weiheng Chi, Chuyun Xie, Haolin
Zheng, Ziyue Su, Jay Wu, et al. Zero-shot long-form video understanding through screenplay.
arXiv preprint arXiv:2406.17309, 2024.

Jun Xu, Tao Mei, Ting Yao, and Yong Rui. Msr-vtt: A large video description dataset for bridging
video and language. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 5288–5296, 2016.

Lin Xu, Yilin Zhao, Daquan Zhou, Zhijie Lin, See Kiong Ng, and Jiashi Feng. Pllava: Parameter-free
llava extension from images to videos for video dense captioning. arXiv preprint arXiv:2404.16994,
2024.

13

https://www.sciencedirect.com/science/article/pii/S1877050920306682
https://www.sciencedirect.com/science/article/pii/S1877050920306682

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Antoine Yang, Arsha Nagrani, Paul Hongsuck Seo, Antoine Miech, Jordi Pont-Tuset, Ivan Laptev,
Josef Sivic, and Cordelia Schmid. Vid2seq: Large-scale pretraining of a visual language model for
dense video captioning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 10714–10726, June 2023.

Hanhua Ye, Guorong Li, Yuankai Qi, Shuhui Wang, Qingming Huang, and Ming-Hsuan Yang.
Hierarchical modular network for video captioning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 17939–17948, 2022.

Minerva M Yeung and Boon-Lock Yeo. Time-constrained clustering for segmentation of video into
story units. In Proceedings of 13th International Conference on Pattern Recognition, volume 3,
pages 375–380. IEEE, 1996.

Ramin Zabih, Justin Miller, and Kevin Mai. A feature-based algorithm for detecting and classifying
scene breaks. In Proceedings of the third ACM international conference on Multimedia, pages
189–200, 1995.

Yuheng Zha, Yichi Yang, Ruichen Li, and Zhiting Hu. AlignScore: Evaluating factual consis-
tency with a unified alignment function. In Anna Rogers, Jordan Boyd-Graber, and Naoaki
Okazaki, editors, Proceedings of the 61st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages 11328–11348, Toronto, Canada, July
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.634. URL
https://aclanthology.org/2023.acl-long.634.

Chaoyi Zhang, Kevin Lin, Zhengyuan Yang, Jianfeng Wang, Linjie Li, Chung-Ching Lin, Zicheng
Liu, and Lijuan Wang. Mm-narrator: Narrating long-form videos with multimodal in-context
learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 13647–13657, 2024.

Ziqi Zhang, Zhongang Qi, Chunfeng Yuan, Ying Shan, Bing Li, Ying Deng, and Weiming Hu. Open-
book video captioning with retrieve-copy-generate network. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 9837–9846, 2021.

Luowei Zhou, Chenliang Xu, and Jason J Corso. Towards automatic learning of procedures from
web instructional videos. In AAAI Conference on Artificial Intelligence, 2018a. URL https:
//www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17344.

Luowei Zhou, Yingbo Zhou, Jason J. Corso, Richard Socher, and Caiming Xiong. End-to-end dense
video captioning with masked transformer. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2018b.

14

https://aclanthology.org/2023.acl-long.634
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17344
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17344

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

A EXTENDED RESULTS

The main experiments in Table 1 use the visual features only. Here, in Table 4, we present results for
MDLSeg for some simple methods for including audio features: taking the mean of the audio and
vision features, and taking the concatenation.

Method Acc NMI ARI PK WindDiff DED

BBC-max
vision only 63.37 72.58 45.13 78.39 42.58 42.99
vision+audio (mean) 65.53 71.73 48.45 76.22 42.04 42.24
vision+audio (concat) 38.54 25.45 4.37 77.76 44.55 73.79
audio only 38.11 25.29 4.33 77.37 44.98 74.17

BBC-mean
vision only 69.49 85.80 60.75 83.42 26.54 35.78
vision+audio (mean) 69.49 82.35 59.25 83.74 25.95 36.41
vision+audio (concat) 65.23 75.15 50.33 83.29 28.47 45.15
audio only 59.58 71.73 43.76 80.74 33.32 51.12

BBC-median
vision only 66.13 83.66 54.96 77.86 42.40 40.06
vision+audio (mean) 65.50 80.01 52.49 76.97 44.11 42.56
vision+audio (concat) 60.11 72.15 43.36 75.90 47.94 52.28
audio only 55.53 69.67 37.99 73.62 52.10 56.39

Table 4: Main experiments with the addition of audio.

To test the sensitivity to CLIP features, which were used for the the experiments in the main paper,
here, in Table GT we repeat the segmentation results for MDLSeg with different feature extractors.

Model Acc NMI ARI PK WindDiff DED

BBC-max
BLIP 64.89 71.85 47.78 80.31 40.01 40.38
ViT 64.41 71.55 44.96 78.18 45.87 41.35
Dinov2 61.47 72.27 42.33 76.59 50.78 44.57
CLIP 63.37 72.58 45.13 78.39 42.58 42.99

BBC-mean
BLIP 67.48 82.01 56.60 81.96 28.99 37.97
ViT 64.88 82.18 53.94 78.37 34.61 39.67
Dinov2 64.92 83.95 54.38 75.14 39.82 39.61
CLIP 69.49 85.80 60.75 83.42 26.54 35.78

BBC-median
BLIP 63.16 79.47 50.07 75.47 46.70 44.26
ViT 60.81 80.36 48.65 73.14 49.66 44.58
Dinov2 61.74 81.88 48.52 72.54 48.45 43.14
CLIP 60.81 80.36 48.65 73.14 49.66 44.58

Table 5: Segmentation results for MDLSeg with different feature extractors.

B PIPELINE DIAGRAMS FOR DOWNSTREAM TASKS

Figures 2a and 2b show, respectively, the usage of MDLSeg in the two dowstream tasks of movie
summarisation and long video question answering.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

(a) Movie summarization: scene breaks from
MDLSeg enable the production of a pseudo-
screenplay (centre) from the input video/audio (top
left), by first extracting the raw transcript, then us-
ing MDLSeg to segment the video into scenes, and
generating visual descriptions from each scene (top
right). Then from these outputs, and inserted names
using the character bank (bottom left), we can sum-
marise hierarchically (centre right, bottom right).

(b) Video question answering: The input (high-
lighted in pink in the top left), consists of the full
video, its transcript, and a multiple choice question
(MCQ). The video is segmented with MDLSeg, fea-
ture vectors are computed for each scene and the
one with the highest dot product with the MCQ
is retrieved. A video model produces a visual de-
scription for the retrieved scene which along with
the scene transcript and the question are input to a
language-only model to produce an answer.

Figure 2: Breakdown of system components for long video summarisation and question answering.

Dr. Hannibal Lecter: Billy is not a real transsexual. But he thinks he is. He tries to be. He’s
tried to be a lot of things, I expect.
Clarice Starling: You said that I was very close to the way we would catch him. What did
you mean, Doctor?
Dr. Hannibal Lecter: There are three major centers for transsexual surgery. Johns Hopkins,
University of Minnesota and Columbus Medical Center. I wouldn’t be surprised if Billy had
applied for sex reassignment at one or all of them and been rejected.
Clarice Starling: On what basis would they reject him?
Dr. Hannibal Lecter: Look for severe childhood disturbances associated with violence. Our
Billy wasn’t born a criminal, Clarice. He was made one through years of systematic abuse.
Billy hates his own identity, you see. But his pathology is a thousand times more savage and
more terrifying.

Jame Gumb: It rubs the lotion on its skin. It does this whenever it’s told.
Catherine Martin: Mr, my family will pay cash. Whatever ransom you’re asking for, they’ll
pay it.
Jame Gumb: It rubs the lotion on its skin or else it gets the hose again. Yes, you will,
precious. You will get the hose.
Jame Gumb: Okay. Okay. Okay. Okay. Okay.
Catherine Martin: Mr, if you let me go, I won’t. I won’t press charges. I promise. See, my
mom is a real important woman. I guess you already know that.
Jame Gumb: Now it places the lotion in the basket.

Dr. Hannibal Lecter sits in a chair, and Clarice

Starling stands next to him holding a book.

Catherine Martin is trapped in a hole.

Figure 3: Example of a scene break (horizontal line) detected by MDLSeg as it appears in the pseudo-
transcript for the movie The Silence of the Lambs (1991). The text shows the transcribed dialogue,
with names inferred by our method. The images display visual captions along with keyframes from
which they were derived.

C EXAMPLE SCENE BREAK FOR SUMMARISATION

Figure 3 shows an example scene break in the context of the input to the summarisation model, which
compiles the text, speaker names and visual information to feed to the LLM to generate an output
summary.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Figure 4: Computing the cost of assigning the character Clarice Starling (Jodie Foster) to three
different scenes of The Silence of the Lambs (1991). After computing the cost of assigning a character
to a each scene, we then compute the cost of assigning a character to a speaker ID as the mean of the
cost of assigning them to all scenes that speaker ID appears in.

D TVQA SIGNIFICANCE CALCUATION

The pairwise difference in the number of correct answers between ours and the answers from uniform
splits, is 0.17. The standard deviation is 2.26. As this is across 653 examples, the estimated population
std. dev. is 0.0885. Thus, the z-score is 0.17

0.0885 ≈ 1.92, which gives a p-value of 0.0274.

E NAME ASSIGNMENT ALGORITHM

Here we describe in full the algorithm for replacing speaker IDs with character names. First, we
create a database of images of actors’ faces paired with the name of the character they played from
the IMDB movie page. As some of these images may contain multiple faces, or no faces, or even an
entirely different character, we filter them to ensure a higher proportion contain only the face of the
correct character, keeping only images with exactly one detected face, and for which the detected
gender matches the name gender. (The sets of male, female and neutral names are taken from NLTK
corpora. For neutral names, we skip this step.) Finally, we verify the faces in all pairs of remaining
images against each other, using the DeepFace4 library, to create a graph where images are connected
if and only if they are verified as being the same person, and then exclude all images that are not part
of the largest clique. In total, we filter out about 40% of images on average. This produces a name
bank of character names paired with a set of images of the face of that character.

For each scene, and for each character in our name bank, we define the cost of putting that character
name in that scene as the minimum distance between an image of that character‘s face, and a face
detected in any keyframe from the scene. The distance is the Euclidean distance of the DeepFace
feature vectors. This avoids the incorrect assumption that the character speaking must be in shot,
and instead makes the much weaker assumption that a character speaking must appear directly at
some point in the scene, not necessarily exactly when they are speaking. Thus, if we are considering
assigning the character Clarice Starling to scene 3, then we compute the distance between the face
feature vectors for all scraped images of the actor Jodie Foster in that role, and the face feature
vectors of all faces detected in any keyframe in scene 3; the smallest distance is the cost of assigning
Clarice Starling to scene 3. Computing the distance between vectors is extremely fast, taking <1s for
all considered assignments on the entire movie, and the feature vectors can be cached after being
extracted once. An example of this cost computation is shown in Figure 4. Using this cost, we define
the cost of assigning each character to each speaker ID, as the sum of assigning that character to
all scenes that that speaker ID appears in For example, if Speaker18 appears in scenes 1 and 3 but
not 2, then the cost of assigning Clarice Starling to Speaker18 is the mean of the cost of assigning
Clarice Starling to scenes 1 and 3. This allows us to treat the name-speaker ID assignment problem
as an instance of the linear sum assignment problem, which can be solved efficiently using the
Kuhn-Munkres algorithm (Kuhn, 1956; Munkres, 1957).

Specifically, we define a matrix S whose i, jth entry is the cost of assigning speaker j to name i. Let
m, n, and k be the numbers of character names in the database, scenes in the movie, and unique
speaker IDs in the transcript. Using matrix notation, we can then write S = AB, where A is the

4https://github.com/serengil/deepface

17

https://github.com/serengil/deepface

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Algorithm 2 Character Name Assignment to Speaker IDs
Require: Transcript with speaker IDs, keyframes split into n scenes, IMDB
1: Obtain actor face images:
2: A ← empty list
3: for each actor/character A appearing on the IMDB page for the movie do
4: scrape the set Af of all available images of A
5: remove from Af , all images without exactly one detected face, or with face-name gender mismatch
6: form graph G = (Af , E), where E = {(a1, a2) ∈ Af ×Af |isVerified(a1, a2)}
7: Af ← largest clique in G
8: append Af to A
9: for each scene j = 1, . . . , n do

10: Form Dj , the set of all faces across all keyframes of the scene
11: Assign character names to scenes:
12: C1 ← n×m empty matrix, where m is the length of A
13: for i = 1, . . . ,m do
14: Af ← A[i]
15: for each scene j = 1, . . . , n do
16: C1[i, j]← mina∈Af ,b∈Dj d(a, b) ▷ d(·) from Deepface vectors
17: Assign character names to speaker IDs:
18: C2 ← k ×m empty matrix, where k is the number of unique speaker IDs
19: for i = 1, . . . ,m do
20: for each speaker ID l = 1, . . . k do
21: C2[i, k]← 1

n

∑n
w=1 C1[i, w]

22: B ← 1
mk

∑m
i=1

∑k
i=1 C2[i, j]

23: C2 ← C2 ⊕ C2 ⊕ C2 ▷ Concatenate three copies along first dimension
24: LSAP ← Kuhn-Munkres(C2) ▷ Linear Sum Assignment Problem: k-dim vector assigning cols to rows
25: for i = 0, . . . 3k do
26: i′ ← i mod k
27: j′ ← LSAP [i]
28: if C2[i

′, j′] < B then
29: assign speaker ID i mod k to name LSAP [i]

Ensure: Assignment of character names to speaker IDs

m× n speaker ID-scene cost matrix, whose i, jth entry is the cost of assigning speaker j to scene i,
and B is a n× k matrix whose i, jth entry is 1/a if speaker ID j appears in scene i, where a is the
number of scenes speaker j appears in, and 0 otherwise. Because speaker diarization is imperfect and
often mistakenly splits the same character into multiple IDs, we duplicate each matrix column three
times, which allows up the three different speaker IDS assigned to the same character name. We
also define a cost of leaving a SpeakerID unassigned as the expected value of the cost of assigning a
random speaker ID to a random character, which means that an ID remains unassigned if it is no closer
to any character than a random speaker ID and character are to each other. The full name-assignment
method is shown in Algorithm 2 in Appendix E.

Here we show a pseudo-code description of the algorithm discussed in Section 4 for assigning
character names to speaker IDs.

E.1 NAME ASSIGNMENT ACCURACY

Table 6 presents evaluation of our name assignment algorithm against two baselines which assign
names randomly and assign all IDs the most common name, i.e., the main character. As can be seen,
though there is room for improvement, our approach is more accurate by a wide margin. Multiple
factors contribute to the errors in name assignment: some incorrect faces being retrieved from the
database (though this is low due to our clique-based filtering procedure), inaccuracies in the face
feature vectors, such that the same person can sometimes receive dissimilar vectors in different
contexts while different people can receive sometimes similar vectors, and the speaker diarization
performed by WhisperX, which sometimes gives the same character a different speaker ID, or gives
the same speaker ID to two different characters. This last error is especially problematic because it
makes it impossible for the assignment algorithm to find a solution with zero mistakes. We expect
that future improvements in speaker diarization and face verification will reduce the prevalence of

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

t

Table 6: Accuracy of our assigned character names assigned compared to assigning names randomly
(‘random’) and assigning the most common name, i.e., the main character, to all lines. Scores are
averaged both across all movies (‘acc movie-wise’) and across all script lines in all movies (‘acc
line-wise’).

ours most common random

acc movie-wise 61.12 19.35 2.97
acc line-wise 65.72 19.62 2.61

these errors. Indeed, this is one of the advantages of a modular framework: improvements in specific
areas can be incorporated into the framework without needing to change the other modules.

F FFMPEG COMMANDS

To select keyframes, we use

\usr\bin\ffmpeg -i {path-to-video} -vf "select=’eq(pict_type,I)’,showinfo" -vsync vfr outdir/%05d.jpg

This extracts all keyframes into files 0001.jpg, 0002.jpg, etc, in the current working directory.

G PROMPTS

G.1 SCREENWRITER PROMPTS

Below we present the various prompts we employ for obtaining scene descriptions, and performing
hierarchical summarisation. Note that Kosmos is a text completion model, so this prompt just serves
as the first part of the sentence, which we then remove afterwards.

Llava-NeXT video to text model

what are the specific plot points in this scene of the TV show { show_name }?

Llama 3.1 70B: Dialogue summarisation

Here is the dialogue from scene <scene-number> of the movie <movie-title>: <scene-
dialogue-with-names>. Please describe its main events in bullet points. Don’t include
information from outside this scene. Do not answer in progressive aspect, i.e., don’t use -ing
verbs or "is being".

In this scene, here are a few main events:

Llama 3.1 70B: Final summarisation

Here is a sequence of summaries of each scene of a movie.
<concatenated-dialogue-summaries>

Combine them into a plot synopsis of no more than 635 words. Be sure to include information
from all scenes, especially those at the end, don’t focus too much on early scenes. Discuss only
plot events, no analysis or discussion of themes and characters.

Based on the information provided, here is a plot synopsis of the move <movie-title>:

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

G.2 SUMMARY PROMPTS FOR COMPARISON SYSTEMS

Below we show the prompts used to obtain movie summaries for the various baselines and comparison
systems discussed in Section 6. The ‘name-only prompt’ uses the parametric knowledge of the LLM
without any specific, content input. The ‘full script’ prompt uses the entire gold screenplay as input,
and ‘WhisperX’ just the audio transcript without name assignment or scene breaks.

Llama 3.1 70B: Name-Only

Summarize the plot of the movie <movie-title> in about 650 words. Do not write the summary
in progressive aspect, i.e., don’t use -ing verbs or "is being". Focus only on the plot events, no
analysis or discussion of themes and characters.

Llama 3.1 70B: Full Script

Based on the following script: <gold-screenplay> summarize the movie <movie-title>. Do
not write the summary in progressive aspect, i.e., don’t use -ing verbs or "is being". Focus only
on the plot events, no analysis or discussion of themes and characters.

Llama 3.1 70B: WhisperX Transcript

Based on the following transcript: <whisper-transcript> summarize the movie <movie-title>.
Do not write the summary in progressive aspect, i.e., don’t use -ing verbs or "is bei ng". Focus
only on the plot events, no analysis or discussion of themes and characters.

H EXAMPLE SUMMARIES

In the following, we show example summaries generated by our model and comparison systems
for the movie Oppenheimer (2023). Incorrect or undesirable text is shown in red and repeated
information is highlighted in gray. For comparison, we also include the gold summary from the
MovieSum test set.

Modular Summary Output with MDLSeg

The movie Oppenheimer begins with J. Robert Oppenheimer testifying before the Security Board,
explaining that the derogatory information against him must be understood in the context of his life and
work. Lewis Strauss and Gordon Gray discuss Strauss’s upcoming Senate confirmation hearing for a
cabinet position, and Gray advises Strauss to answer honestly about his past conflicts with Oppenheimer.
The story then flashes back to Oppenheimer’s early life, where he meets Niels Bohr and is introduced to
the world of physics.

Oppenheimer becomes involved with left-wing groups and is questioned about his communist associations.
He meets with Lewis Strauss, who is trying to recruit him to run the Institute for Advanced Study at
Princeton. As the story progresses, Oppenheimer becomes involved in the development of the atomic
bomb and is appointed as the director of the Manhattan Engineer District. He meets with Colonel Groves
and Lieutenant Colonel Nichols, who express concerns about his suitability for the job due to his suspected
communist sympathies and unstable personality. Despite these concerns, Oppenheimer convinces the
team to work on the project, and they begin to develop the atomic bomb.

The team faces numerous challenges, including the need for vast resources and the risk of inefficiency
and poor security. Oppenheimer mentions that the Germans, led by Werner Heisenberg, have a 12- to
18-month head start on developing an atomic bomb. As the project progresses, Oppenheimer becomes
increasingly concerned about the implications of the atomic bomb and the potential for an arms race with
the Soviets. He expresses his concerns to Lewis Strauss, who is skeptical of Oppenheimer’s views. The
team eventually succeeds in developing the atomic bomb, and it is dropped on Hiroshima. The bomb’s
power is described as equivalent to 20,000 tons of DNC, and General Groves is congratulated on the
success of the mission.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

However, Oppenheimer’s involvement in the project and his left-wing past eventually catch up with
him. Lewis Strauss, who has a history of conflict with scientists, particularly Oppenheimer, begins to
systematically destroy Oppenheimer’s credibility by denying him his Q clearance through a bureaucratic
procedure. Oppenheimer is given the chance to appeal, and a board is appointed to hear the case, with
Roger Robb as the prosecutor. The hearing becomes a trial, with numerous witnesses testifying against
Oppenheimer. Lewis Strauss questions Oppenheimer about his involvement in the development of the
hydrogen bomb and his moral qualms about it. The Gray Board eventually announces its decision to deny
J. Robert Oppenheimer’s security clearance renewal. Lewis Strauss is informed that the decision was not
unanimous and that there were unexpected holdouts, including Senator John F. Kennedy. Strauss reacts
angrily to the news, feeling that Oppenheimer has turned the scientists against him and that he is being
unfairly targeted.

The movie ends with Oppenheimer calm and collected in the face of the board’s decision, while Strauss is
still fuming and Gordon Gray tries to reason with him. The final scenes show Oppenheimer addressing
a group of people, and a truck driving through a desert town, symbolizing Oppenheimer’s continued
involvement in the world of physics despite the challenges he faced. Overall, the movie Oppenheimer is a
story about the development of the atomic bomb and the challenges faced by J. Robert Oppenheimer, a
brilliant physicist who was involved in the project. The movie explores the implications of the atomic bomb
and the potential for an arms race with the Soviets, as well as the personal costs faced by Oppenheimer
due to his left-wing past and his involvement in the project. The movie ends with Oppenheimer calm
and collected, despite the challenges he faced, and symbolizes his continued involvement in the world of
physics.

Name-only Prompt Summary Output

The movie Oppenheimer (2023) tells the story of J. Robert Oppenheimer, the director of the Manhattan
Project, which developed the atomic bomb during World War II. The film begins with Oppenheimer’s
appointment as the director of the project in 1942. He assembles a team of scientists, including Enrico
Fermi, Ernest Lawrence, and Richard Feynman, to work on the top-secret project at Los Alamos, New
Mexico.

Oppenheimer’s team faces numerous challenges, including the difficulty of creating a nuclear reaction
and the need to develop a delivery system for the bomb. The team works tirelessly to overcome these
obstacles, and they eventually succeed in creating a functional atomic bomb.

As the project nears completion, Oppenheimer and his team are faced with the moral implications of their
creation. They are aware that the bomb will cause widespread destruction and loss of life, and some team
members express reservations about its use.

The film depicts the first nuclear test, codenamed "Trinity," which takes place on July 16, 1945, in the
New Mexico desert. The test is a success, and the team is ecstatic. However, Oppenheimer is visibly
shaken by the experience, quoting the Bhagavad Gita, "I am become Death, destroyer of worlds."

The film then jumps forward in time to 1954, when Oppenheimer is called to testify before the Atomic
Energy Commission. He is questioned about his loyalty to the United States and his associations with
communist sympathizers. Oppenheimer’s past comes back to haunt him, and he is eventually stripped of
his security clearance.

The film ends with Oppenheimer’s reflection on the devastating consequences of the atomic bomb and
his role in its creation. He is shown to be a complex and troubled individual, grappling with the moral
implications of his work.

Note: The above text is a summary of the movie Oppenheimer (2023) and not the actual movie script.
Here is a rewritten version of the summary in the past tense:

The movie Oppenheimer (2023) tells the story of J. Robert Oppenheimer, the director of the Manhattan
Project, which developed the atomic bomb during World War II. The film begins with Oppenheimer’s
appointment as the director of the project in 1942. He assembled a team of scientists, including Enrico
Fermi, Ernest Lawrence, and Richard Feynman, to work on the top-secret project at Los Alamos, New
Mexico.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Oppenheimer’s team faced numerous challenges, including the difficulty of creating a nuclear reaction
and the need to develop a delivery system for the bomb. The team worked tirelessly to overcome these
obstacles, and they eventually succeeded in creating a functional atomic bomb.

As the project neared completion, Oppenheimer and his team were faced with the moral implications of
their creation. They were aware that the bomb would cause widespread destruction and loss of life, and
some team members expressed reservations about its use.

The film depicted the first nuclear test, codenamed "Trinity," which took place on July 16, 1945, in the
New Mexico desert.

WhisperX + Llama3.1 Summary Output

The movie Oppenheimer (2023) tells the story of J. Robert Oppenheimer, a brilliant physicist who
played a crucial role in the development of the atomic bomb during World War II. The film begins
with Oppenheimer’s security clearance hearing, where he is questioned about his past associations with
communists and his opposition to the development of the hydrogen bomb.

The story then flashes back to Oppenheimer’s early days as a professor at the University of California,
Berkeley, where he meets his future wife, Kitty, and becomes friends with other prominent physicists,
including Enrico Fermi and Ernest Lawrence.

As World War II breaks out, Oppenheimer is recruited to lead the Manhattan Project, a secret research and
development project that produces the atomic bomb. He works closely with other scientists, including
Edward Teller and Leslie Groves, to develop the bomb, which is eventually dropped on Hiroshima and
Nagasaki, killing hundreds of thousands of people.

After the war, Oppenheimer becomes a vocal critic of the development of the hydrogen bomb, which he
believes will lead to a nuclear arms race and increase the risk of nuclear war. This puts him at odds with
Teller and other scientists who support the development of the hydrogen bomb.

The film then cuts back to the security clearance hearing, where Oppenheimer is questioned about his past
associations and his opposition to the hydrogen bomb. He is ultimately denied his security clearance,
which effectively ends his career as a government advisor.

The film ends with Oppenheimer attending a ceremony at the White House, where he is awarded a medal
for his contributions to science. However, the ceremony is bittersweet, as Oppenheimer is aware that his
work on the atomic bomb has had devastating consequences, and that he has been punished for speaking
out against the development of the hydrogen bomb. The film ends with a sense of irony and tragedy,
as Oppenheimer is honored for his contributions to science, while also being aware of the devastating
consequences of his work. The final shot is of Oppenheimer visualizing the expanding nuclear arsenals of
the world, with the sound of feet stamping in the background, symbolizing the impending doom of the
world due to nuclear war. The credits roll as the sound of the feet stamping continues to build up, leaving
the audience with a haunting sense of the devastating consequences of Oppenheimer’s work. The final
shot is of Oppenheimer visualizing the expanding nuclear arsenals of the world, with the sound of feet
stamping in the background, symbolizing the impending doom of the world due to nuclear war. The credits
roll as the sound of the feet stamping continues to build up, leaving the audience with a haunting sense of
the devastating consequences of Oppenheimer’s work. The final shot is of Oppenheimer visualizing the
expanding nuclear arsenals of the world, with the sound of feet stamping in the background, symbolizing
the impending doom of the world due to nuclear war. The credits roll as the sound of the feet stamping
continues to build up, leaving the audience with a haunting sense of the devastating consequences of
Oppenheimer’s work. The final shot is of Oppenheimer visualizing the expanding nuclear of the world.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Gold Summary from the MovieSum Test Set

In 1926, 22-year-old doctoral student J. Robert Oppenheimer grapples with anxiety and homesickness
while studying under experimental physicist Patrick Blackett at the Cavendish Laboratory in the University
of Cambridge. Upset with Blackett’s attitude, Oppenheimer leaves him a poisoned apple but later retrieves
it. Visiting scientist Niels Bohr advises Oppenheimer to study theoretical physics at the University of
Göttingen instead. Oppenheimer completes his PhD there and meets fellow scientist Isidor Isaac Rabi.
They later meet theoretical physicist Werner Heisenberg in Switzerland.

Wanting to expand quantum physics research in the United States, Oppenheimer begins teaching at the
University of California, Berkeley and the California Institute of Technology. He marries Katherine
"Kitty" Puening, a biologist and ex-communist, and has an intermittent affair with Jean Tatlock, a troubled
communist who later commits suicide.

In December 1938, nuclear fission is discovered, which Oppenheimer realizes could be weaponized.
In 1942, during World War II, U.S. Army Colonel Leslie Groves recruits Oppenheimer as director
of the Manhattan Project to develop an atomic bomb. Oppenheimer, who is Jewish, is mainly
concerned that the German nuclear research program, led by Heisenberg, might yield a fission
bomb for the Nazis. He assembles a team consisting of Rabi, Hans Bethe and Edward Teller
at the Los Alamos Laboratory, and also collaborating with scientists Enrico Fermi, Leo Szilard
and David L. Hill at the University of Chicago. Teller’s calculations reveal an atomic detonation
could trigger a catastrophic chain reaction that ignites the atmosphere. After consulting with
Albert Einstein, Oppenheimer concludes the chances are acceptably low. Teller attempts to leave the
project after his proposal to construct a hydrogen bomb is rejected, but Oppenheimer convinces him to stay.

After Germany’s surrender in 1945, some Project scientists question the bomb’s relevance; Oppenheimer
believes it would end the ongoing Pacific War and save Allied lives. The Trinity test is successful, and
President Harry S. Truman orders the atomic bombings of Hiroshima and Nagasaki, resulting in Japan’s
surrender. Though publicly praised, Oppenheimer is haunted by the mass destruction and fatalities. After
expressing his personal guilt to Truman, the president berates Oppenheimer and dismisses his urging to
cease further atomic development.

As an advisor to the United States Atomic Energy Commission (AEC), Oppenheimer’s stance generates
controversy, while Teller’s hydrogen bomb receives renewed interest amidst the burgeoning Cold
War. AEC Chairman Lewis Strauss resents Oppenheimer for publicly dismissing his concerns about
exporting radioisotopes and for recommending negotiations with the Soviet Union after they successfully
detonated their own bomb. He also believes that Oppenheimer denigrated him during a conversation
Oppenheimer had with Einstein in 1947. In 1954, wanting to eliminate Oppenheimer’s political influence,
Strauss secretly orchestrates a private security hearing before a Personnel Security Board concerning
Oppenheimer’s Q clearance.

However, it becomes clear that the hearing has a predetermined outcome. Oppenheimer’s past communist
ties are exploited, and Groves’ and other associates’ testimony is twisted against him. Teller testifies that
he lacks confidence in Oppenheimer and recommends revocation. The board revokes Oppenheimer’s
clearance, damaging his public image and limiting his influence on nuclear policy. In 1959, during Strauss’
Senate confirmation hearing for Secretary of Commerce, Hill testifies about Strauss’ personal motives in
engineering Oppenheimer’s downfall, resulting his nomination being voted down.

In 1963, President Lyndon B. Johnson presents Oppenheimer with the Enrico Fermi Award as a gesture
of political rehabilitation. A flashback reveals Oppenheimer and Einstein’s 1947 conversation never
mentioned Strauss. Oppenheimer instead expressed his belief that they had indeed started a chain
reaction—a nuclear arms race—that would one day destroy the world.

I STATISTICS ON PREDICTED SCENES

Table 7 shows the mean values across each dataset for the predicted number of scenes per movie,
their mean length, the number of keyframes (which are FFMPEG I-frames), and their frequency.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Table 7: Mean values across each dataset for the predicted number of scenes per movie, their mean
length, the number of keyframes (which are FFMPEG I-frames), and their frequency.

osvd bbc tvqa moviesumm

num scenes 25.77 30.27 10.71 53.12
scene length 123.86 106.61 188.31 138.43
num keyframes 728.15 878.91 976.96 3096.71
keyframe freq. 0.39 0.30 0.49 0.46

24

	Introduction
	Related Work
	MDLSeg: Minimum Description Length-based Segmentation
	Downstream Tasks
	Experimental Setting
	Results
	Conclusion
	Extended Results
	Pipeline Diagrams for Downstream Tasks
	Example Scene Break for Summarisation
	TVQA Significance Calcuation
	Name Assignment Algorithm
	Name Assignment Accuracy

	FFMPEG Commands
	Prompts
	ScreenWriter Prompts
	Summary Prompts for Comparison Systems

	Example Summaries
	Statistics on Predicted Scenes

