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ABSTRACT

Imbalanced data is ubiquitous in machine learning, such as medical or fine-grained
image datasets. The existing continual learning methods employ various techniques
such as balanced sampling to improve classification accuracy in this setting. How-
ever, classification accuracy is not a suitable metric for imbalanced data, and hence
these methods may not obtain a good classifier as measured by other metrics (e.g.,
recall, F1-score, Area under the ROC Curve). In this paper, we propose a solution
to enable efficient imbalanced continual learning by designing an algorithm to
effectively maximize one widely used metric in an imbalanced data setting: Area
Under the ROC Curve (AUC). We find that simply replacing accuracy with AUC
will cause gradient interference problem due to the imbalanced data distribution.
To address this issue, we propose a new algorithm, namely DIANA, which per-
forms a novel synthesis of model Decoupllng ANd Alignment. In particular, the
algorithm updates two models simultaneously: one focuses on learning the current
knowledge while the other concentrates on reviewing previously-learned knowl-
edge, and the two models gradually align during training. We conduct extensive
experiments on datasets across various imbalanced domains, ranging from natural
images to medical and satellite images. The results show that DIANA achieves
state-of-the-art performance on all the imbalanced datasets compared with several
competitive baselines. We further consider standard balanced benchmarks used in
lifelong learning to show the effectiveness of DIANA as a general lifelong learning
method.

1 INTRODUCTION

Natural data are inherently imbalanced: a few classes contain significantly more samples than other
classes. Current research on lifelong learning (Kirkpatrick et al., 2017; [Lopez-Paz et al.| 2017
Chaudhry et al., 2018b)) mostly focuses on balanced datasets, while ignoring the more challenging
imbalanced classification problem. This impedes applications of lifelong learning to online advertise-
ment (Hu et al., 2022), satellite imagery (Tasar et al.,[2019), or medical image classification (Irvin
et al.,[2019). Moreover, it is not suitable to use classification accuracy to assess the model perfor-
mance in these domains due to the data imbalanced issue. One of the popular metrics for measuring
the performance of classifiers on the imbalanced task is the Area Under the Curve (AUC) (Hanley
& McNeill, [1982; |1983). However, the current lifelong learning methods are limited to maximize
the classification accuracy (Kirkpatrick et al.,|2017; |Lopez-Paz et al., |2017; Chaudhry et al.,|2018b)
which makes them not suitable for imbalanced lifelong learning. Although one may tackle the
imbalanced problem by class balanced sampling (Chrysakis & Moens| [2020; De Lange & Tuytelaars|
2021; Kim et al., 2020) to form balanced training batches, these approaches still may not be able to
directly optimize metrics such as AUC.

Memory-based lifelong learning methods (Lopez-Paz et al., 2017;|Chaudhry et al.||2018bj |/Aljundi
et al.| 2019) achieve competitive performance across commonly used lifelong learning benchmarks.
In memory-based lifelong learning methods, a replay buffer is used to store a subset of examples
from old tasks for rehearsal. The gradient computed on the replay buffer (Lopez-Paz et al.,[2017) is
used as a reference to alter the direction of the gradient computed on the current task.

Proceeding from the memory-based lifelong learning methods for maximizing classification accuracy,
one may think of applying the existing methods and replacing the metric of classification accuracy
with AUC. One possible approach to directly maximize AUC for imbalanced lifelong learning is to
employ the minimax reformulation of AUC as in the literature of online AUC maximization (Ying
et al., [2016; [Liu et al.| [2020) . This minimax reformulation introduces a data-dependent decision
threshold of the model to decouple the pairwise formulation of the AUC objective which facilitates
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model update in an online fashion. However, we find that maximizing AUC with memory-based
lifelong learning introduces an issue called gradient interference. In particular, when the data stream
is imbalanced, the gradients computed on the current task can interfere with the gradients computed
on the replay buffer severely.

In this paper, we propose a novel algorithm, called DIANA, to address the gradient interference
problem when replacing accuracy with AUC in the imbalanced lifelong learning setting. We first
formulate the objective as a composite optimization problem as in [Lopez-Paz et al.|(2017); Chaudhry
et al.|(2018b));|Guo et al.| (2020). Similar to existing memory-based lifelong learning methods, we aim
to maximize AUC on both the current task and the replay buffer to prevent catastrophic forgetting.
Notably, DIANA is designed with two novel techniques to address the gradient interference problem:
model decoupling and alignment. In particular, DIANA decouples the learning of previous tasks
and current task into two models: one focuses on learning the current task while the other reviews
previously-learned knowledge. The two models gradually align during training due to an alignment
penalty. Since each model computes its own gradients, we can reduce interference between the
learning of the current task and the reviewing of old tasks. As we will show, the introduction of the
additional model greatly alleviates the gradient interference problem for maximizing AUC with an
imbalanced data stream continually, while still being computationally efficient.

Our contributions can be summarized as follows:

* We advance imbalanced lifelong learning through a completely orthogonal approach to the
traditional balanced sampling techniques, which enables the lifelong learning algorithm
to directly maximize an important metric (AUC) in the imbalanced data setting. We also
identify the gradient interference problem under imbalanced setting when the existing
memory-based lifelong learning methods are simply applied to maximize AUC.

* We design a new algorithm for maximizing AUC in imbalanced lifelong learning, DIANA,
which decouples conflicting gradients into two models with an alignment penalty. We show
that DIANA can alleviate the gradient interference problem.

» We verify the efficacy of DIANA on imbalanced lifelong learning benchmarks across natural
images, medical images, and satellite images. We show that DIANA outperforms several
state-of-the-art lifelong learning algorithms by a large margin (e.g., 6.5% AUC score on
average over five benchmark datasets). In addition, compared with the approaches which
purely use balanced sampling, we show that the DIANA method coupled with the balanced
sampling techniques can outperform these approaches by an average 6.6% AUC score on
five imbalanced datasets.

» We further expand the scope of our algorithm by considering maximizing AUC on balanced
multi-class classification problems, which are standard benchmarks in lifelong learning
literature.

2 RELATED WORK

2.1 LIFELONG LEARNING

Lifelong learning is an important topic in machine learning (Thrun & Mitchell, [1995)) and is exten-
sively studied in recent years (Parisi et al., 2019; Mai et al., 2022; Borsos et al., 2020). The current
methods tackle lifelong learning from multiple objectives.

Regularization-based approaches: Regularization-based approaches aim at preserving important
weights for old tasks. Representative works include EWC (Kirkpatrick et al.,[2017) which adopted
Fisher information matrix, PI (Zenke et al.| 2017)) which introduced intelligent synapses, RWALK
(Chaudhry et al.,|2018a) which utilized a KL-divergence based regularization for preserving knowl-
edge of old tasks, and MAS (Aljundi et al., 2018)) in which the importance measure for each parameter
was computed based on how sensitive the predicted output function is to a change in this parameter.

Transfer learning-based methods: Transfer learning-based methods aim at leveraging knowledge
from old tasks for learning new tasks. Representative works include PROG-NN (Rusu et al.| [2016)
which adds a new “column” with lateral connections to previous hidden layers for each new task and
OWN (Zeng et al.| [2019) which enables networks to continually learn different mapping rules in a
context-dependent way.
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Memory-based approaches: Episodic memory based lifelong learning methods (Hayes et al., [2021;
Verwimp et al., 2021} [Jin et al., |2021) leverage a small episodic memory for storing examples
from old tasks. In GEM (Lopez-Paz et al.,2017), A-GEM (Chaudhry et al., [2018b), MEGA (Guo
et al., |2020) and OGD (Farajtabar et al.,|2019), the direction of the current gradient is modified to
overcome forgetting in lifelong learning. In MER (Riemer et al.,2018)), meta-learning is employed as
a subroutine for mitigating catastrophic forgetting. In iCARL (Rebulffi et al.| | 2017), class exemplars
are stored for each class and used for classification in class incremental lifelong learning. In
experience replay (ER) based methods (Chaudhry et al., [2019; |Aljundi et al., [2019), the model is
trained continuously with batch gradient descent by sampling examples from the current task and the
episodic memory. CTN (Pham et al.,[2020) exploits dual memory to store task-specific features.

Imbalanced lifelong learning: Existing imbalanced lifelong learning approaches mainly focus on
maintaining a balanced memory. CBRS (Chrysakis & Moens,, 2020) tackles imbalanced lifelong
learning by using a Class-Balanced memory population strategy. Similar to CBRS, PRS (Kim et al.|
2020), CoPE (De Lange & Tuytelaars} 2021)) and Rainbow Memory (Bang et al.,|2021) introduces
different class balanced sampling strategies.

2.2 AUC OPTIMIZATION

Online AUC maximization aims to design algorithms to overcome the difficulty of sampling pairwise
data due to the definition of AUC. [Zhao et al.| (2011) addressed this problem by maintaining a
buffer and stored representative examples to construct the positive-negative label pair to calculate the
gradient. |Gao et al.| (2013)) maintained the mean and the covariance matrix for the streaming data
and performed a gradient-based update. |Ying et al.[(2016) introduced the saddle point reformulation
of AUC maximization with the squared loss and developed an algorithm that can update the model
once receiving one data to maximize AUC. There are some future extensions of solving the saddle
point formulation under different scenarios, including algorithms with fast rate under function growth
condition (Liu et al.| | 2018)), deep learning (Liu et al.| 2020), proximal gradient methods (Lei & Ying|
2021]), variance reduction (Dan & Sahoo, 2021). However, none of them are directly applicable in
continual learning setting, since they do not take into account the catastrophic forgetting.

3 PRELIMINARIES

Lifelong Learning. We closely follow the lifelong learning settings in [Lopez-Paz et al.| (2017);
Chaudhry et al.| (2018b)); |(Guo et al.[ (2020). Specifically, we consider task-incremental lifelong
learning in which case the tasks are arriving sequentially. Suppose we have a total of T tasks:
{D:, ..., Dr}. For each task D;, we have a set of training examples {x;, y; }le In this paper, we
consider imbalanced classification, i.e., each class can have a different number of samples. The
given model fy, is trained continuously on the tasks over a single pass of the samples. After training,
the model is evaluated on the test datasets to assess its performance. The goal of task-incremental
lifelong learning is to achieve high performance across all tasks. The crux of task-incremental lifelong
learning is the catastrophic forgetting: the model tends to forget previously acquired knowledge while
being trained on a new task.

In memory-based lifelong learning methods (Lopez-Paz et al., 2017; |Chaudhry et al., 2018b; (Guo
et al., [2020)), a replay buffer is used to store a subset of examples from old tasks. The central idea
of (Lopez-Paz et al.| 2017} |Chaudhry et al., 2018b; |Guo et al., 2020) is to utilize the replay buffer
for computing gradients which serves as the reference for modifying the direction of the gradient
computed on the current task.

Online AUC Optimization. AUC is defined as the probability of the score of the positive sample
being larger than the negative example. Denote x € R? and y € {+1, —1} by feature and label
respectively, and denote z = (x, y) by the feature-label pair. We assume that z is sampled from an
unknown distribution P. Define p = Pr(y = 1) = E, [I|,—yj] as the likelihood of a random data
being positive, where I(-) is the indicator function. AUC for a general scoring function h : R? — R
is defined as

AUC(h) = Pr (h(w;x) > h(w;x)|ly = 1,9 = —1), 1)

where w is the model parameter, z = (x,y) and 2 = (x/,y’) are drawn independently from P,
h(w; x) is the scoring function parameterized by w. Following|Gao et al.{(2013);|Ying et al.| (2016);
Liu et al.|(2020), we use the squared function as a surrogate to replace the indication function and
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end up with the following loss function:

min B, (1~ h(wix) + h(wix'))2ly = 1.y’ = -1].
The above formulation depends on pairwise data with both positive and negative labels, so it is hard to
optimize in the online learning setting. It was shown in|Ying et al.[(2016)) that the AUC maximization
problem can be formulated as a minimax saddle point problem, and the stochastic gradient descent
ascent algorithm can be employed to solve this saddle point problem. The saddle point reformulation
is described in Proposition [I]

Proposition 1 (Ying et al.||2016) The optimization problem (3)) is equivalent to

i b =E, |F ) 7ba ; ) 2
el B 9000 = EaF ) @

where z = (x,y) ~ P, and

F(Wv a,b,a, Z) = (1 _p) (h(W,X) - a)2 H[y:1] —|—p(h(W;X) - b)zﬂ[y:—l] —p(l - p)a2

3)
+2(1+4+ ) (ph(w; X)H[y:_l] — (1 —p)h(w; x)H[y:H) .

It is worth mentioning that DIANA is also built upon the saddle point reformulation. The main

difference between our work and previous works is that our work focuses on developing memory-

based lifelong learning to maximize AUC in the imbalanced continual learning setting (to alleviate

catastrophic forgetting), instead of the traditional online learning setting.

4 DIANA

In this section, we introduce a novel algorithmic framework for optimizing AUC in the lifelong
learning setting with an imbalanced data stream. The proposed algorithmic framework is built upon
the memory-based lifelong learning methods which leverage a replay buffer for rehearsal. The
essence of the algorithmic framework is to maximize the AUC score both on the current task and
replay buffer as a composite optimization problem. We circumvent the requirement of a pair of
samples for computing AUC score based on the literature of online AUC optimization (Ying et al.,
2016; |L1u et al., [2018). By decoupling conflict gradients into two models and aligning gradually, we
effectively overcome the gradient interference problem caused by imbalanced data.

4.1 IMBALANCED LIFELONG LEARNING BY MAXIMIZING AUC

In lifelong learning, the model fy, is trained sequentially over T tasks. On each task ¢, the samples
are arriving in a batch-wise fashion. Let w¥ denote the model parameter on the k-th minibatch of
the t-th task. Define z; and z; as random variables following the distribution of the ¢-th task’s data
and the replay buffer’s data upon ¢-th task respectively. To balance the current task and the replay
buffer, similar to Guo et al[(2020) we define A1 (-), Ao(-) : R? + R as real-valued functions which
depend on the state of the model. On the k-th minibatch of the ¢-th task, we aim to solve the following
optimization problem:

max A (wh) - AUCH(W) + Aa(wh) - AUC,ef(W) :=
v “)
M(WE) By [AUCK(W;24,2.)] + Ao(wh) - Ea, 5 [AUCks(wid,,5.)],

where w is the model parameter, AUC;(w) denotes the population AUC at the ¢-th task, AUC (W)
denotes the population AUC of the replay buffer, z; (z_) and z; (z_) denote random samples
with positive (negative) labels on current task and replay buffer respectively, A (w},) and Ao (w?)
characterize the scaling factors of the two AUC values on current task and replay buffer respectively
on the k-th minibatch at the ¢-th task. The choice of the scaling factors determines the degree of
prioritizing the current task or replay buffer. We choose A1 (w) and \2(w},) based on the model
performance as in|Guo et al.|(2020).

However, by the pairwise formulation of AUC, to solve the problem (@), one needs to sample a pair
of positive and negative examples (z; and z_, zZ, and z_) at every iteration, which is not feasible
for lifelong learning. A natural idea to address this issue is to employ the minimax reformulation



Under review as a conference paper at ICLR 2023

30 ; 30
i

20

count
I —
]
count
N
o

© ..|||

o
20 40 60 80 100 120 140 160 20 40 60 80 100 120 140 160
degree degree

(a) Balanced ISIC2019 (b) Imbalanced ISIC2019

10

Figure 1: The distributions of the angles between the current gradient and reference gradient.

(Proposition |1) of AUC (Ying et al., |2016; [Liu et al., 2020), which ends up with the following
problem:

Hi\i,n[)‘l (wh) (a%ierlRZ max E, F(w,a,b,a;z;) +o(wh) (agl)ien]RZ max E;, F(w,a,b, a; 7¢)],
)

where F is defined in Equation (3)). This is equivalent to the following formulation,

min  max [\ (W},)E,, F(w, a1, b1, a1;2¢) + Ao (W) Ez, F(W, ag, ba, 03 24)] . (©6)

w,a1,az2,b1,bs 1,002

We can solve the problem (6) by stochastic gradient descent on variables w,ai,as, by, bs
and stochastic gradient ascent on variables «j,as. The stochastic gradient w.r.t. w is
MWV Ey (W, a1,b1,01;2¢) + Xa(Wh)VFw (W, ag, ba, a2; 2¢) which consists of the gradients
on the current task and the gradients on the replay buffer, we refer to the gradients as the current
gradient and reference gradient respectively.

4.2 GRADIENT INTERFERENCE PROBLEM

Imbalanced datasets are ubiquitous (Ramyachitra & Manikandan, [2014])) but are largely overlooked
by current research efforts on lifelong learning. We find that the imbalanced nature of the data
stream poses severe challenges for optimization. Specifically, the gradients on the current task and
the gradients on the replay buffer may interfere with each other during training due to a mismatch
of the data distribution of the current task and the replay buffer. In the following, we empirically
demonstrate this phenomenon on a real-world dataset.

We consider two settings: imbalanced data distribution and balanced data distribution. We construct
imbalanced data from the medical dataset ISIC2019 (Gutman et al.,[2016) which consists of 25331
images and 8 classes. These classes are divided into 4 disjoint tasks representing positive and negative
samples, respectively. We reduce the number of positive samples to be 5% of the negative ones. The
setting of balanced data is to keep the number of samples of different classes equal.

We train the models based on the formulation of Equation (6)) on balanced and imbalanced data
respectively. We compute the current gradient and reference gradient in each mini-batch. The angle
distribution is shown in Figure[I] In the balanced case, the angles between the current gradient and
the reference gradient are almost acute angles. In the imbalanced case, there appear to be more obtuse
angles. That means the gradients computed on the current task interfere with the gradients computed
on the replay buffer, severely affecting the training of the model.

4.3 MODEL DECOUPLING AND ALIGNMENT

To address the gradient interference problem, we introduce our algorithm DIANA. The high-level
idea is to use a relaxation of Equation (6] such that we can still learn useful information even if the
gradients at the current task and the replay buffer are conflicting. In particular, we first note the
equivalent formulation of (6)):

min max [\ (W},)E,, F(w, a1, b1, 01;2,) + Ao (V) Ez, F (v, a2, b, a2;24)]
w,v,a1,az2,by,by 1,02 ) ) (7)

s.t. w=w.
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Algorithm 1 Lifelong AUC Maximization with Model Decoupling and Alignment (DIANA)

1: Buffer + {}
2: fort < 1to T do
3:  fork <« 1to|D{"|do

4 if Buffer # {} then

5 ¢t <+ sampLE(Buffer)

6: Compute A1 (w},) and A2 (v})

7: else

8: Set A1 (w}) = 1and A2(vE) = 0.

9 end if

10: Update w, v, a1, az, b1, ba by one step of stochastic gradient descent w.r.t. the objective function
defined in (§)

11: Update a1, a2 by one step of stochastic gradient ascent w.r.t. the objective function defined in (8]) .

12: Buffer < Buffer | J(¢f)

13: Remove samples if the Buffer is full.

14: end for

15: end for

Since using the same model for data distribution of different tasks would lead to the gradient
interference problem, we propose a model decoupling and alignment technique to address the issue.
In particular, we propose to solve the following problem (8] to relax the equality constraint in (7),

min max [Al(WZ)EZtF(W, ar,bi,a1;z¢) + Mo (VE)Es, F(V, az, by, az; it)] + B - dist(w, v),

w,v,a1,a2,b1,b2 1,02
3

where dist(-, -) denotes a distance function between two models, and 5 > 0 is a penalty parameter.
The typical choice of dist can be squared loss, distillation loss (Hinton et al., [2015), etc. The term
B - dist(w, v) is referred to as the alignment penalty.

In view of Equation (), we know that we are decoupling one model as in into two models
w and v under the coordination of an alignment penalty, which has the following two benefits.
First, the formulation is a standard minimax optimization, where stochastic gradient descent ascent
suffices to solve it efficiently. Second, it can partially alleviate the gradient interference prob-
lem since conflicting gradients are decoupled. For example, in DIANA, the gradient w.r.t. w is
M (Wh)VwF(w, a1, b1, a1;2¢) + BVwdist(w, v). The gradient w.r.t. w consists of two terms, the
first term represents the current gradient which depends on the current data, while the second term
characterizes the gradient of the distance function between two models and it is independent of data.
Essentially, we undermine the impact of some noisy gradients on the model update. By pulling the
current model close to the model on the replay buffer in each step, the current model can essentially
learn from the model on the replay buffer to retain performance on old tasks.

For implementation, since we cannot solve (8) exactly, we use one step of stochastic gradient descent
ascent as an approximate solution. This is consistent with the literature of memory-based lifelong
learning (Chaudhry et al.,[2018b; |Guo et al.|[2020). Please refer to Algorithm for details.

5 EXPERIMENTS
5.1 EXPERIMENTAL SETUPS

Datasets: We perform experiments on popular lifelong learning benchmarks, Split-CIFAR (Zenke
et al., 2017), Split-CUB and Split-AWA?2 (Chaudhry et al.,[2018b)). Moreover, to further explore the
application of lifelong AUC Maximization in industry, a medical dataset ISIC2019 (Gutman et al.,
2016)) and a satellite dataset EuroSat (Helber et al., 2019) are also introduced as new benchmarks.
The medical dataset ISIC2019 consists of 25331 medical images. The goal for ISIC2019 is to classify
dermoscopic images among 8 different diagnostic categories: Melanoma, Melanocytic nevus, Basal
cell carcinoma, Actinic keratosis, Benign keratosis Dermatofibroma, Vascular lesion, Squamous
cell carcinoma, and none of them. While satellite dataset EuroSat covers 13 spectral bands and
consists of 10 classes with in total of 27,000 labeled and geo-referenced images, including cities,
rivers, and forests. We believe it is important to measure performance in real industrial scenarios,
especially for the medical scenario, which is naturally imbalanced and prefers AUC as the criterion
rather than accuracy. A false positive causes severe consequences, such as fault diagnosis of cancers.
Split-CIFAR and Split-CUB consist of 20 tasks, while Split-AWA?2 has 25 tasks, ISIC2019 has 4
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Figure 2: Evolution of average AUC during the lifelong learning process. For the results on EuroSat,
please see Figure [5]in Appendix.

tasks and EuroSat has 5 tasks. For ISIC2019, every two classes constitute a task (4 tasks in total since
ISIC2019 has 8 classes). Similar to ISIC2019, we construct one task with data from two classes (5
tasks in total since EuroSat has 10 classes).

Make Imbalanced: Following Yuan et al.|(2021)), we make training set imbalanced with a pre-
defined imbalanced ratio (imratio) and leave validation set and test set unchanged. According to
chosen imbalanced ratio, positive samples are randomly discarded, until the ratio of positive samples
to all samples equals the imbalanced ratio. Except for multi-class balanced classification and the
imbalanced ratio ablation in Appendix, we set imratio=0.05 in all experiments, which means that
only 5% data are positive. If a task has multiple classes, half of the classes are regarded as negative
and the rest are regarded as positive. For example, Split-CIFAR is separated into 20 disjoint tasks,
each task contains 5 classes, classes 0-3 are regarded as negative, and classes 4-5 are positive.

Metrics: Since our purpose is to maximize the AUC score, AUC (AU C'r) is used as the primary met-
ric. AUC'p represents the averaged AUC value when finishing training the T'-th task, where T is the
total number of tasks. On the other hand, to be consistent with previous works (Kamp et al.,[2018), Ac-
curacy (ACC'r) and Forgetting (F'GIr) are also reported. ACCr is the average accuracy tested on
all tasks after finishing training 7-th task. F'GIr measures the drop of AUC on past tasks after train-
ing on the T-th task. It’s defined as FGTr = = Z;‘.F:_f (maxyeqy,... p—13 AUCy; — AUCr ).
where AUC; ; is the AUC score tested on the j-th task after training on the {-th task.

Implementation Details: For Split-CIFAR, ISIC2019 and EuroSAT, we use a reduced
ResNet18 (Chaudhry et al) |2018b) to handle small input resolution. For Split-CUB and Split-
AWA?2, we use a standard ResNet18 pre-trained model on ImageNet. We set batch size as 64 for
Split-CIFAR, Split CUB, and Split-AWA?2, while batch size as 128 for ISIC2019 and EuroSAT. The
learning rate is 0.1 across different datasets and methods. As to memory size for each task, it’s fixed
to 64 for Split-CIFAR, Split CUB, and Split-AWA.. Fixed to 128 for ISIC2019 and EuroSAT.

Baselines: We consider EWC (Kirkpatrick et al., 2017) , MAS (Aljundi et al., 2018)), GEM (Lopez-
Paz et al.| 2017), A-GEM (Chaudhry et al.|[2018b), MEGA (Guo et al.,|2020), DER (Buzzega et al.|
2020) and GDumb (Prabhu et al., [2020) as baselines. EWC and MAS are regularization-based
approaches. GEM, A-GEM, MEGA, DER, and GDumb are built upon episodic memory. We also
consider a simple baseline that uses stochastic gradient descent to train these tasks sequentially
without any memory or regularization. It’s marked as SINGLE in our experiments. All baselines are
task-incremental and only require one-pass, so class-incremental(Shim et al.,|2021; Mai et al., | 2021)
and multiple-passes methods (Ebrahimi et al.| 2020; Mallya & Lazebnik| [2018) are not considered.

For a fair comparison, we use the same memory size and regular reservoir sampling (Chaudhry et al.,
2019) for all the memory-based methods, including GEM, A-GEM, DER, MEGA, and DIANA.
We want to point out that since the benchmark datasets are imbalanced, to be fair, GDumb is also
implemented with reservoir sampling (Chaudhry et al., 2019) instead of class-balanced sampling. We



Under review as a conference paper at ICLR 2023

Table 1: Comparison of ONE-MODEL and TWO-MODEL (DIANA)
Split-CIFAR  Split-CUB  Split-AWA2 ISIC2019 EuroSat
Method AUC (1) AUC (1) AUC (1) AUC (1) AUC ()

ONE-MODEL  58.7+ 1.7 735+23 79127 713£92 724+6.5
TWO-MODEL 68.4 + 2.0 704 +£0.7 982+1.1 73.6 =48 86.7+1.5

Table 2: Comparison of capacity on Split-CIFAR100

Method architecture AUC(1) % memory GFLOPS params
ONE-MODEL  ResNet34 56.2 1280 0.11 2.50M
TWO-MODEL ResNetl8(x2) 68.4 1280 0.12 2.24M

also compare our method with Rainbow-memory (RM) (Bang et al.,[2021) and CBRS (Chrysakis
& Moens, [2020), which use class-balanced sampling. The results are presented in Appendix [A] We
show that our method and class-balanced sampling can be combined to further improve performance.

5.2 RESULTS

In Figure 2] we present the evolution of average AUC during the lifelong learning process. We can
observe that DIANA dominates the baselines in most cases. An interesting observation is that DIANA
begins to gain advantages over baselines as the training proceeds. One plausible reason is that it
is harder to learn useful features for maximizing the AUC objective in the initial training process.
However, as shown in Figure 2] by optimizing the right objective as in the proposed DIANA, we can
achieve a high average AUC score in the long run. This observation indicates that DIANA has the
potential to handle large amounts of tasks.

We report results of AUCT, ACCr, and FGTr for all algorithms on the imbalanced benchmarks.
Details can be found in Appendix: Figure [d] Table [6] and Table[7} In terms of AUC score, our
DIANA outperforms other baselines with a large margin. In particular, compared with the best
baseline, DIANA improves 2.9% on Split-CIFAR, 9.0% on Split-CUB, 13.0% on Split-AWA?2, 1.4%
on ISIC2019, and 6.2% on EuroSat. This shows that it is more effective to directly optimize AUC as
in the proposed DIANA. It can also be observed that DIANA achieves the highest Accuracy ACCr
on all the datasets except ISIC2019, this further shows the discriminativeness of the learned features.

One interesting observation is that GDumb generally achieves a high AUC than other baselines
on the imbalanced benchmarks. However, it is worth noting that GDumb is trained offline on the
replay buffer with multiple passes over the data. GDumb avoids the gradient interference problem
by only leveraging the gradients on the replay buffer. However, in real-world lifelong learning
applications, the model needs to quickly adapt to the data with a single pass. This impedes the
practical applicability of GDumb. In contrast, DIANA is trained online with a single over the samples
which can be applied in real-time applications.

One model vs. two models. To verify the gradient interference problem discussed in Section |4.2]
we conduct ablation on ONE-MODEL and TWO-MODEL. ONE-MODEL denotes the method of
solving Equation (6) which is a naive combination of AUC maximization and memory-based lifelong
learning. It would suffer from the gradient interference problem due to conflict gradients computed
on the current task and the replay buffer. TWO-MODEL denotes the method of solving Equation
(a.k.a., DIANA). We denote the model w and v in Equation (8)) as the current model and reference
model respectively. Then the gradients of TWO-MODEL approach are the following. The gradient
w.r.t. current (reference) model is the summation over two parts: the gradient calculated based on
current (reference) task data, and the gradient of the distance function between two models.

As shown in Table |1, TWO-MODEL outperforms ONE-MODEL in all benchmarks except for
Split-CUB. In particular, TWO-MODEL is better than ONE-MODEL by +10.3%, +19.9%, +2.3%,
and +14.3% on Split-CIFAR, Split-AWA?2, ISIC2019, and EuroSat respectively.

We conduct a detailed analysis on the reason why TWO-MODEL is better than ONE-MODEL on
Split-CIFAR but a bit worse on Split-CUB. We probe this problem by observing the angle between
the current gradient and reference gradient in ONE-MODEL. Concretely, we follow GEM and
A-GEM by firstly storing the gradients computed on the current mini-batch and the episodic memory,
then calculating the angle between them. We repeat this the process in each iteration and show the
distribution the angles on two standard datasets (balanced and imbalanced) with a histograms in
Figure in Appendix. Especially, we experimentally find that 9.68% of the angles are obtuse in
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Table 3: The multi-class results of average AUC, average ACC, and average Forgetting (FGT) of
different methods on Split CIFAR100, Split CUB200, and Split AWA?2.

Split-CIFAR Split-CUB Split-AWA?2
Method | Ayc ()% ACC (1)% FGT (1)% | AUC ()% ACC (D% FGT ()% | AUC ()% ACC (D% FGT (1)%

SINGLE|75.8 2.0 428 £3.4 12.7£2.1|91.9+24 48.1+6.3 32+23|51.0+2.1 58.0+0.7 284 +29
EWC 764 +18 439+£24 11.94+14|91.5+2.6 472+63 3.8+£25|51.7+£13 57.9+1.6 28.7+3.8
MAS 782+ 1.7 445+£33 81+£19(927+£2.1499+6.2 26+2.1|50.1+0.1 53.6+6.2 285+39
A-GEM [81.6+09 545+£1.7 724+£09 |928 +£0.8 544+75 1.1£1.1|51.14+32 59.6+08 273+ 1.6
Gdumb |759+09 494+14 26+04 928+ 1.8 65.5+2.3 03 £50.2| 544+34 60.8+2.7 14.1+6.1
DER 80.3+1.2 40.7+£25 894+12(926+2.8 595+9.0 1.5+0.7|71.3£16.0 63.1 £3.4 153+9.2
MEGA |62.2+2.7 323+£24 108 +£2.2|89.6+4.0 50.6+73 43+£25|51.1+1.0 59.6+56 12.8+29

DIANA |89.5+0.3 65.5+£0.9 1.2+1.2|934+£0.6 643+1.8 0.2+0.1]92.6+14 82.5+23 03+0.2

imbalanced Split-CIFAR; while only 3.16% are obtuse in imbalanced Split-CUB. Fewer obtuse angles
indicate the gradient interference problem is less severe, so ONE-MODEL is better on Split-CUB.
One possible reason for the Split-CUB dataset to have fewer obtuse angles is that the images in
Split-CUB dataset are fine-grained and different tasks have high similarity, so the gradients between
tasks and memory are more likely to be similar.

We have the following conjecture based on the results above: when the data on different tasks has
very different distributions, TWO-MODEL is preferred over ONE-MODEL and vice versa.

Furthermore, to eliminate the concern of unfair comparison, we compare the capacity in terms of
episodic memory size, computation (GFLOPS, i.e., one billion (10%) floating-point operations per
second), and the number of parameters. We enlarged the one-model approach’s model architecture to
match the two-model storage. Table 2] presents the comparison under same capacity. With nearly the
same capacity, TWO-MODEL still outperforms ONE-MODEL. In conclusion, it’s the decoupled and
aligned mechanism itself that benefits imbalanced lifelong learning, not the extra model parameters.

Multi-class Balanced Classification. To further verify the effectiveness of our algorithm on general
lifelong learning, we conduct experiments on standard multi-class classification benchmarks without
making datasets imbalanced. Similar to most of the existing AUC maximization literature, our
algorithm focuses on binary classification. In order to apply DIANA for general lifelong learning
problems, we extend our method to accommodate multi-class AUC maximization following works
(Liu et al., [2020; [Yang et al., |2021). If there are c classes, we have c output scores from the network,
one score for each class. If a sample belongs to i-th class, the corresponding score at i-th position is
treated as positive and the rest scores negative, a binary AUC loss is calculated based on these scores.
By iterating over c classes, multi-class AUC loss accumulates. To obtain AUC metric in multi-class
form, we calculate AUC score for each class pair (i.e., one versus all) and then perform the average.

Table [3] presents results on standard Split-CIFAR, Split-CUB200 and Split-AWA2. Because most
of the baselines have reported the accuracy and tuned hyper-parameters on Split-CIFAR, we just
follow their settings. As to Split-CUB200 and Split-AWA2, the setups follow Section[5.1] DIANA
outperforms other baselines in terms of AUC, Accuracy, and forgetting. Particularly, on Split-
CUB200, DIANA obtains a slightly lower accuracy than Gdumb but the highest on the AUC metric.
The results show that our method is not only suitable for imbalanced scenarios but also works well
under general lifelong learning settings such as multi-class classification on balanced datasets.

More ablations in Appendix. Due to limited space, more ablations are studied in Appendix,
including results with balanced sampling in Appendix A, imbalanced ratio in Appendix C, balanced
vs. imbalanced in Appendix D, and space and time complexity in Appendix E.

6 CONCLUSION

In this paper, we study AUC optimization under imbalanced continual learning settings. We propose a
novel algorithm DIANA based on the minimax reformulation of the AUC objective. We systematically
study the gradient interference problem on imbalanced data, both theoretically and empirically. We
demonstrate that this problem can be alleviated by employing two models with model decoupling
and alignment: one for the current task and the other for past tasks, and they gradually align during
the training. We extend our algorithm to multi-class AUC maximization in general balanced lifelong
learning. Compared to existing memory-based and regularization-based approaches, the proposed
algorithm achieves a higher AUC score as well as less forgetting. One limitation is that our approach
uses two models and increases slightly computational cost.
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Table 4: The results of memory-based methods with Class Balanced Reservoir Sampling on Split
CIFAR100, Split CUB200, and Split AWA?2.

Split-CIFAR Split-CUB Split-AWA2
Method AUC M% ACC(M% FGT ()% | AUC (M% ACC (M% FGT ()% | AUC(1)% ACC(M% FGT ()%

A-GEM |58.3 3.5 60.3+0.3 19.5£3.6/50.8 £4.0 50.2+0.3 17.6 2.5 554+ 1.8 499 £4.0 30.6 £2.6
Gdumb |70.6 1.4 63.1+09 63+0.5 (66855 553+52 43 +£27|984+08 925+26 02406
DER 649 +32 583+1.4 134+£33/650£5.8 51.7+£2.0 103 £3.2/86.1£14.1 71.6+£8.0 10.6+11.4
MEGA |66.1 5.7 59.4+2.6 324+15|50.8£1.1 50.0+04 13.0+£2.1|57.1+63 505£59 173 £14
RM 774+19 69817 43+£19 |588+28 544+1.1113£12|805+£60 71.1+£88 56+£2.0

DIANA [76.7+ 1.0 693 +£1.7 31407 |73.4£2.1 51.0+0.5 0.2+£03]99.5+£0.2 87.4+29 01=£0.1

Table 5: The results of memory-based methods with Class Balanced Reservoir Sampling on medical
images ISIC2019 and satellite images EuroSat.
ISIC2019 EuroSat
Method | syc ()%  ACC%  FGT ()% | AUC(D)%  ACC(1%  FGT (1)%

A-GEM | 66.5+103 90.6+0.1 128+119 | 794+44 556+40 144+50
Gdumb | 57.2£90 71.1+£159 229+£9.1 |81.6+84 734+89 24+£66
DER 61.8+£137 845+126 17.7+17.1 |812+£45 653+£62 74+42
MEGA 549+9.6 623+159 188+10.7 | 77.8+7.3 69.7+103 2.0+3.6
RM 728 £5.0 71.5+£37 103+25 | 8.3+£26 793£15 07+£42

DIANA | 77.7+42 782447 1.9+32 |909+17 838+27 -1.0+18

A DIANA OUTPERFORMS OTHER METHODS WITH CLASS BALANCED
SAMPLING

For imbalanced lifelong learning, class balanced sampling is an efficient way to alleviate the harm
of imbalanced data stream in some cases. Class-Balancing Reservoir Sampling (CBRS) (Chrysakis
& Moens| |2020) is an enhanced Reservoir Sampling strategy for memory-based methods under
imbalanced lifelong learning settings. It maintains a class-balanced memory by replacing instances
of the major class. Thus, in experience replay, training batches from episodic memory are collected
in a balanced form. However, since memory-based methods require data from both the current task
and episodic memory, they still need to handle an imbalanced data stream from the current task even
though the memory is balanced. Moreover, the distributions of balanced and imbalanced data streams
differ significantly, which may lead to server gradient interference between these two streams.

We examine memory-based approaches with CBRS instead of vanilla Reservoir Sampling, the
learning rate and batch size are consistent with section[5.1] We implement CBRS according to the
pseudo-code described in [Chrysakis & Moens|(2020). When the memory is not full, all samples
are stored in memory. After the memory is full, all classes are categorized as the full class and the
not-full class. Once a class has been the largest class in memory, it’s marked as the full class and
would be ignored by the population. On the contrary, the instances of the full class would be replaced
by the not-full class.

Table [] and [5] present the results with CBRS. The evolution of average AUC during the lifelong
learning process is shown in Figure [3| GEM is not included because this algorithm is not compatible
with CBRS, it uses Ring Buffer instead of Reservoir Sampling and each task has individual memory
space. Compared with vanilla Reservoir sampling in Table [6] and [7] using CBRS significantly
improves the performance of most algorithms, except A-GEM. On Split-CIFAR, A-GEM, GDumb,
DER, MEGA, and DIANA increase 1.5%, 5.1%, 2.5%, 3.0%, and 8.3% in terms of AUC score
respectively. We also compare DIANA with another class-balanced method Rainbow Memory
(RM), it uses a different class-balanced sampling strategy. Our proposed DIANA beats RM except
Split-CIFAR.

We give a detailed analysis of each method below.

* A-GEM obtains no benefits from CBRS. Since the current data stream is still imbalanced,
we analyze that it’s not suitable for A-GEM to rectify the current gradient based on the
reference gradient which is computed on a balanced replay buffer.
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Figure 3: Evolution of average AUC of memory-based methods with Class Balanced Reservoir
Sampling.

* GDumb has stable and significant increments on all 5 datasets, because it’s only trained on
balanced memory data, and doesn’t suffer from the gradient interference problem.

* DER increases on Split-CIFAR, Split-AWA?2, and EuroSat, while dropping performance on
ISIC2019 and Split-CUB.

* MEGA gets boosted on Split-CIFAR and Split-CUB, but drops on the other three datasets.

* DIANA has much better AUC than other methods as shown in Table d and Table[3 There
are two interesting observations. First, on ISIC2019 dataset, DIANA has worse accuracy
than A-GEM (78.2% versus 90.6%) but better AUC value (77.7% versus 66.5%). The
reason is that the dataset ISIC2019 is very imbalanced (See SectionlﬂlDatasets). Second,
on EuroSat dataset, DIANA has a negative forgetting measure, which means that DIANA
with CBRS can help learn previous tasks when learning new tasks.

In summary, DIANA achieves higher AUC than other memory-based approaches when applying
Class-Balancing Reservoir Sampling. DIANA has consistent improvements on all 5 datasets.
We have a conjecture that the two-model framework alleviates the gradient interference between
imbalanced data stream and balanced replay buffer, according to Section [d.2]

B RESULT DETAIL

We show the detailed results of all the methods on imbalanced benchmarks and practical data in
Figure[d] Table[f]and Table
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Figure 4: Performance of DIANA and other baselines on Split-CIFAR, Split-CUB, Split-AWA2,
ISIC, and EuroSAT, each result is averaged after 5 runs with different random seeds. The Standard
Deviation (std) is represented by the black line.

Table 6: The results of average AUC, average ACC, and average Forgetting (FGT) of different
methods on Split CIFAR100, Split CUB200, and Split AWA?2.

Split-CIFAR Split-CUB
ACC ()% FGT ()% | AUC ()% ACC (1)%

Split-AWA2
Method ACC (D% FGT ()%

AUC (1)% FGT (L)% | AUC (1%

SINGLE |58.9 £+ 3.0
EWC 644 +£2.7
MAS 57.4+09
GEM [652+1.6
A-GEM |56.8 £4.6
GDumb [65.5 +£2.7
DER 62.6 3.2
MEGA |63.1 £3.0

60.1 £0.2 159 £3.3|542£25
60.3+£0.6 10.0£2.2|51.5+09
60.0+£03 17.1 £1.2|51.7£ 1.0
61.5+0.1 11.9+£1.1{554+£1.0
60.2+0.3 199 £5.0/51.6 £2.0
614+20 60+34|614+1.1
59.6 £1.2 169 £3.1/65.7 £4.4
61.5+13 5.5+2.0|50.1£3.0

50.1£0.5
50.1 £0.4
50.1£0.4
50.4 £ 0.6
50.1£0.5
50.5 £ 0.8

149 £2.7(55.0 £5.3
16.6 £0.6{56.2 £5.9
155+£19(574£52
15.5+0.7[69.6 £5.5
17.5 £1.1{56.4 £3.2
6.0+£0.8 852443
53.5+21 11.2£3.8(804 £33
50.6 £0.3 16.1 £3.9(653 £5.3

47.6 £0.5 33.8 £ 6.4
470+£13 322+5.6
474 +13 30654
543 +44 21.7+54
477+£04 315£62
722+£15 1.9+0.9
63.1+£64 153+£1.7
50.8 £5.4 20.5+5.0

DIANA [68.4 + 2.0

62.3+0.9 6.6+1.2(70.4+0.7

523403 24+0.7(982+1.1

787+34 20+03

Table 7: The results of average AUC, average ACC, and average Forgetting (FGT) of different
methods on medical images ISIC2019 and satellite images EuroSat.

ISIC2019

Method | 5¢ M%

ACC (D%

FGT ()% | AUC (1)%

EuroSat
ACC (D)% FGT ()%

SINGLE |61.7 7.7
EWC 592 +£8.1
62.5+6.5
71.3+6.5
66.3 £6.5
722+42
69.2 +3.9
71.1+£53

84.1

86.7£5.0
86.7+5.0
86.7£5.0
843 +4.6
86.7 £ 4.8
90.4 £+ 0.5

858 £4.7

17.7 £5.3169.3 £ 6.0
19.4+£6.1|76.3 £6.3
175+ 6.0|74.6 £ 4.4
72+2.0 80.5+32
139 £5.2(74.0 £6.5
44420 |783+£55
95+£54|739+26
59+£24|798+3.1

+4.5

56.0 £ 1.5 20.0£6.5
553+£27 101 £72
564 +4.0 13.1 £ 6.4
61.0+£54 83+4.1
58.0+34 13.5+63
649+46 48+19
586 +£20 17.5+39
558+43 53+24

DIANA |73.6 + 4.8

852 +£3.7

55+25 867 1.5

66.0 =18 3.8+ 1.7

C IMBALANCED RATIO

In Figure [6] we vary the imbalanced ratio to evaluate the robustness of different methods. We
consider three imratio settings: {0.01,0.05,0.1}. As expected, when the imratio increases, all the
algorithms generally achieve better performance. Across all three settings, DIANA achieves the
highest performance except when ¢mratio = 0.01 on ISIC2019. It is worth mentioning that when
imratio is 0.01, i.e., only 1% of samples are positive, all the methods drop drastically including
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Figure 5: Evolution of average AUC on EuroSat.
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Figure 6: Average AUC on the data with different imbalanced ratio.

DIANA. The possible reason is that when imratio is 0.01, the positive samples are very rare so it is
difficult for all the methods to learn efficiently.

D BALANCED VERSUS IMBALANCED

In this section, it’s studied how imbalance affects lifelong learning. In hyperplane, if the direction of
gradient descent changes a lot, it’s probably unstable and hard to optimize. Thus, we can exploit the
deviation of direction to indicate whether a task is getting harder or not. We first store all gradients in
a task and get an averaged gradient as an anchor. Then calculate the angle between the anchor and
each mini-batch gradient. Drawing the histograms of angle deviation, we can see the distribution
of gradient direction before and after making it imbalanced. It’s plotted in Figure[7] After making
imbalanced, the histograms have a wider range and larger std, which means the directions of gradient
vary more dramatically.

E TIME AND SPACE COMPLEXITY

We experimentally explore the time and space complexity of DIANA algorithm. All the experiments
are performed on a single GTX-1080Ti GPU. The running time of the algorithm is reported in Table (8]
Our TWO-MODEL-based approach increases slightly computational cost but improves significantly
performance than A-GEM and MEGA. As for space complexity, DIANA uses the same memory size
as those reply methods like A-GME and MEGA.
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Figure 7: The distributions of the directions of the gradients on the current tasks. (a) balance std:
1.59, imbalance std: 3.50; (b) balance std: 2.58; imbalance std: 3.85; (c)balance std: 2.24, imbalance
std: 5.52.
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Figure 8: The distributions of the angles between the current gradient and reference gradient, where
the proportion of angles greater than 90 degrees is: (a) 1.05%, (b) 3.16%, (c) 0.13%, (d) 9.68%

Table 8: Comparison of time and space complexity on Split-CIFAR

Method \ Training time (s) memory

Single 8.8 0
EWC 78.6 0
MAS 77.3 0
GEM 109 1280
A-GEM 17.1 1280
Gdumb 8.8 1280
DER 20.0 1280
MEGA 15.7 1280
DIANA 34.5 1280
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