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ABSTRACT

Self-supervised learning (SSL) has achieved strong results on coarse-grained tasks
but often struggles with fine-grained recognition, where categories differ only by
subtle local cues. For strong downstream transfer, features must form compact
within-class clusters with large inter-class margins at the fine level. However,
standard SSL losses either over-separate visually similar subcategories by treating
all non-positives as equally negative, or overlook part-based evidence and thus
merge them under coarse prototypes. We propose a multi-level regularization
framework that improves clustering across granularities. At the global level, a soft
variant of InfoNCE reduces false negatives and enhances class separation; at the
part level, clustering on local descriptors preserves subtle intra-class distinctions,
at the instance level, semantic descriptions from vision–language models provide
attribute-level anchors. Together, these components yield representations with bal-
anced clustering across granularities. Experiments on multiple fine-grained datasets
show consistent improvements in both classification and retrieval, validating the
effectiveness of our approach for fine-grained SSL.

1 INTRODUCTION

Self-supervised learning (SSL) has achieved remarkable success in learning visual representations
without human annotations, enabling models to exploit large-scale unlabeled data. Recent ad-
vances—spanning contrastive methods (Chen et al., 2020a; He et al., 2020) and non-contrastive
paradigms (Grill et al., 2020; Bardes et al., 2021; Oquab et al., 2023; Siméoni et al., 2025) have deliv-
ered strong performance on downstream tasks including image classification, object detection, and
semantic segmentation. However, SSL still underperforms in fine-grained visual recognition (FGVR),
where the objective is to distinguish visually similar subcategories (e.g., bird species or car models).
Such tasks impose stricter requirements on the discriminative ability of learned representations, as
subtle local differences must be captured reliably.

Recent studies have revealed that SSL representations tend to exhibit clustering behavior, where
learned features are naturally grouped into semantic categories. By decomposing SSL objectives
into an invariance term and a regularization term, (Ben-Shaul et al., 2023) demonstrate that while
the invariance term saturates early (e.g., in VICReg (Bardes et al., 2021)), the regularization term
continues to shape the geometry of feature space and is primarily responsible for the emergence
of semantic clustering. Such clustering structures yield well-formed feature arrangements that are
beneficial for downstream transfer, making the design of effective regularization particularly critical.

Although a number of SSL methods have been explored for fine-grained visual recognition (FGVR),
their performance remains limited. FGVR demands discrimination between visually similar sub-
categories (Shu et al., 2023; Wang et al., 2024), which requires preserving subtle and localized
cues throughout pre-training. We argue that the bottleneck lies less in invariance learning and more
in granularity mismatch in regularization: current objectives shape feature geometry mainly at a
coarse level, but lack explicit guidance at fine levels. As a consequence (Fig. 1), two failure modes
frequently arise: Over-dispersion (left). Fine categories scatter excessively around coarse clusters:
intra-class coherence is weak at the fine level despite clear coarse-level separation. Over-collapse
(middle). Fine categories collapse toward their coarse centers: fine-level distinctions vanish even
though coarse clusters are well formed. Ideal structure (right). Coarse categories are well separated
while fine-category centers remain distinct with balanced spacing. In Sec. 3, these phenomena are
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Samples

Coarse-grained Class center  

Fine-grained Class center  

Figure 1: Illustration of granularity-related failure modes in self-supervised learning. Left: Over-
dispersion, where coarse categories are separated but fine-grained categories scatter too widely.
Middle: Over-collapse, where fine-grained categories collapse into coarse centers, losing intra-coarse
distinctions. Right: Ideal structure, where coarse categories remain separated and fine-grained
categories form distinct, balanced clusters. In this visualization, each shape represents a coarse
category, each color within a shape denotes a fine category, solid symbols mark fine-category centers,
and stars mark coarse-category centers.

quantified by geometry-aware metrics (e.g., coherence and dispersion at both coarse and fine levels)
and empirical results show that multi-granularity regularization enhances the retention of fine-grained
cues, which correlates with improved recognition performance.

Motivated by these observations, and building on the analysis of (Ben-Shaul et al., 2023) which
links well-structured clustering with strong downstream transfer, we design CLUE, a framework
that explicitly strengthens fine-grained capabilities through CLUstEring-aware regularization. Con-
cretely, our approach integrates three complementary components: (1) Class-level regularization.
We employ a soft contrastive loss that addresses the limitations of InfoNCE (Weng et al., 2025).
Rather than treating all non-positives as equally negative, the soft assignment reweights pairwise
relations, reducing false negatives and yielding more coherent class-level structures. (2) Part-level
regularization. To capture subtle local differences, we extend the clustering objective to part-aware
representations derived from intermediate feature maps. Applying soft assignment at this level en-
courages the model to disentangle fine-grained subcategories within the same coarse class, mitigating
over-collapse. (3) Instance-level regularization. Finally, we incorporate textual guidance from
vision–language models (VLMs). By aligning image features with automatically generated textual
embeddings, the model is anchored to diverse semantic directions, which helps prevent instance-level
collapse and further enhances fine-grained discrimination. Together, these three components form a
multi-level regularization framework that balances coarse- and fine-grained structures, enabling SSL
models to achieve consistently stronger performance on fine-grained recognition benchmarks.

We evaluate our approach on widely used fine-grained benchmarks, including CIFAR-100 (Krizhevsky
et al., 2009), Stanford Cars (Krause et al., 2013), CUB-200 (Wah et al., 2011), and FGVC Air-
craft (Maji et al., 2013). Across these datasets, our method consistently surpasses strong SSL
baselines, yielding notable gains in top-1 accuracy and retrieval performance. In addition, we demon-
strate that the proposed components help alleviate the granularity-related failure modes discussed
above.

2 RELATED WORK

2.1 FINE-GRAINED SELF-SUPERVISED LEARNING

Self-supervised learning (SSL) has achieved remarkable progress in visual representation learning.
Contrastive methods such as SimCLR (Chen et al., 2020a) and MoCo (He et al., 2020) learn by enforc-
ing consistency between augmented views of the same image while repelling negatives, effectively
shaping instance-discriminative features. Later approaches including Barlow Twins (Zbontar et al.,
2021) and VICReg (Bardes et al., 2021) reduce redundancy and decorrelate features without explicit
negatives, while reconstruction-based paradigms such as MAE (He et al., 2022) and BEiT (Bao et al.,
2021) leverage masked image modeling to capture global structures. These methods yield strong
general-purpose representations and have become standard baselines in SSL.
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However, applying these frameworks directly to fine-grained recognition reveals critical limitations.
Instance-level objectives primarily emphasize global alignment and overlook subtle local cues, which
are essential for distinguishing visually similar subcategories (Cole et al., 2022). Contrastive methods
can suffer from over-dispersion by aggressively separating semantically related samples, while
redundancy-reduction or reconstruction-based methods may underexploit discriminative part-level
information, leading to over-collapse within coarse categories. Consequently, although SSL methods
transfer well to generic tasks, their ability to capture fine-grained semantics remains limited. Our
work addresses this gap by introducing explicit regularization across multiple granularities to preserve
both coarse- and fine-level structures.

2.2 HIERARCHICAL AND PART-AWARE REPRESENTATION LEARNING

A number of self-supervised methods for FGVR explicitly model hierarchy or parts. Prototype-
based approaches (Tan et al., 2025) construct semantic prototypes and refine them stage-wise,
while Particle (Saha & Maji, 2023) discovers object parts and applies contrastive learning over
the discovered regions. HIRL (Xu et al., 2022) learns hierarchical image representations and S-
JEA (Manová et al., 2023) stacks joint-embedding branches to capture multi-scale invariances;
meanwhile, ViT-based SSL methods such as DINOv2 and CMD (Oquab et al., 2023; Bi et al., 2025)
show that multi-/local-crop strategies can implicitly enhance fine-grained modeling. Overall, these
works tend to operationalize hierarchy through architectural components (e.g., prototype heads, part
branches, stacked embeddings) or carefully designed cropping schemes.

CLUE is related to these methods in that it also incorporates a lightweight part-extraction module,
but its focus is different. Rather than designing a specific hierarchical architecture, CLUE starts
from a granularity-aware clustering perspective and treats global features, part descriptors, and
attribute-level (text) anchors as three coupled views that jointly shape the regularization term of
the SSL objective. The part module in CLUE is used as a vehicle to extend a soft clustering loss
to the local level, with the same assignment structure shared across global and part features, while
the VLM-guided term introduces additional attribute-level anchors. This shifts the emphasis from
building an explicit hierarchy of predictors to explicitly controlling how clusters form and separate
across granularities, and makes CLUE complementary to prior hierarchical SSL approaches (Tan
et al., 2025; Saha & Maji, 2023; Xu et al., 2022; Manová et al., 2023).

2.3 VISION-LANGUAGE MODELS AND SEMANTIC GUIDANCE

Large-scale vision–language models (VLMs) such as CLIP (Radford et al., 2021) and ALIGN (Jia
et al., 2021) have demonstrated remarkable transferability by aligning images and text in a joint
embedding space through large-scale contrastive pretraining on image–text pairs. These models
enable zero-shot and open-vocabulary recognition and have inspired follow-up work (Mu et al., 2022;
Gu et al., 2021) that integrates linguistic cues into visual representation learning. However, prior
efforts have primarily employed VLMs for global or class-level supervision, while their potential to
enhance fine-grained, part-level representations remains underexplored. In this work, we exploit VLM-
generated semantic cues as external anchors to guide self-supervised learning, thereby improving
fine-grained recognition especially under limited annotation.

3 GRANULARITY-AWARE COLLAPSE IN SSL

3.1 PRELIMINARIES

CDNV (Class-Distance Normalized Variance). Following Galanti et al. (2021), Class-Distance
Normalized Variance (CDNV) quantifies feature-variability collapse, i.e., the extent to which samples
from the same class are compressed into a narrow region of the feature space. Let f : Rd → Rp

denote the representation function, and let S1, . . . , SC ⊂ Rd be disjoint sets of samples belonging to
different classes. For any pair of classes (Si, Sj), CDNV is defined as

Vf (Si, Sj) =
Varf (Si) + Varf (Sj)

2
∥∥µf (Si)− µf (Sj)

∥∥2
2

, (1)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

where µf (S) is the class centroid in the feature space and Varf (S) = Ex∈S∥f(x)− µf (S)∥22 is the
within-class variance. The overall CDNV is obtained by averaging over all class pairs:

CDNV = Avg
i̸=j

Vf (Si, Sj). (2)

Intuitively, CDNV compares intra-class variance with inter-class centroid distance. A lower CDNV
implies that samples within a class form tight, compact clusters that are still well separated from
other classes. Hence, CDNV is a useful diagnostic for whether learned features balance compactness
and separability across categories.

NCC (Nearest Class-Center Separability). Normalized Class Confusion (NCC) evaluates how
well class centroids can serve as decision boundaries in the learned feature space. Formally, the
nearest class-center (NCC) classifier is defined as

h(x) = arg min
c∈[C]

∥∥f(x)− µf (Sc)
∥∥
2
, (3)

where µf (Sc) denotes the centroid of class c in the feature space. The NCC accuracy is then computed
by applying h(·) to all samples. High NCC accuracy implies that embeddings are naturally organized
around their class centroids, i.e., samples lie close to the correct centroid and far from others. This
centroid-like geometry is a hallmark of SSL representations and provides an interpretable measure of
class separability.

Granularity Variants. To capture hierarchical structure, we extend CDNV and NCC to multiple
granularities, yielding richer insights than standard fine-level metrics. Consider a dataset with Cfine

fine classes grouped into Ccoarse coarse classes via a mapping π : [Cfine]→ [Ccoarse]. Let Si denote
the sample set of fine class i, and SA =

⋃
i:π(i)=A Si the union of fine classes belonging to coarse

class A. We define three variants:

(1) CDNVA. For each coarse class A, we compute CDNV over the fine classes {Si : π(i) = A}.
This reflects the compactness and separability of fine categories within A. A lower CDNVA

means that fine classes in the same coarse group are tightly clustered around their centroids
yet remain distinguishable. In contrast to the global CDNVall, which aggregates over all fine
classes, CDNVA focuses specifically on intra-coarse compactness and separability.

(2) NCCfine. This metric computes NCC accuracy using fine-class labels and centroids µf (Si)
across all samples. Higher accuracy indicates that embeddings align closely with their fine-class
centroids, demonstrating stronger fine-level discriminability.

(3) NCCcoarse. This variant computes NCC accuracy using coarse-class labels and centroids
µf (SA). A higher score suggests that fine-class samples are well organized around their
coarse-class centroids, showing that the coarse semantic structure is well preserved in the
representation space.

In summary, CDNVA captures intra-coarse compactness and separability among fine classes within
each coarse group, whereas CDNVall reflects global relations across all fine classes. Similarly,
NCCfine and NCCcoarse evaluate alignment with fine- and coarse-level centroids, respectively. Taken
together, these metrics provide a complementary suite for quantifying clustering quality across
semantic granularities.

3.2 OBSERVATION

CIFAR-100 provides a hierarchical structure with 100 fine classes organized into 20 coarse categories
(five per coarse group). We pretrain a ResNet-50 on this dataset and evaluate the learned represen-
tations using the granularity-aware metrics introduced in Sec. 3.1. As shown in Fig. 2, the three
geometric patterns illustrated in Fig. 1, over-dispersion, over-collapse, and the ideal structure, indeed
manifest empirically. For reference, the dataset-level mean NCCfine on the training split is 59.16%;
unless otherwise specified, all reported results are computed on the training set.
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Figure 2: Empirical observation of granularity-aware met-
rics on CIFAR-100. Top: CDNVA across training epochs,
where lower values indicate tighter and more distinguish-
able fine-class clusters within each coarse group. Bot-
tom: NCCcoarse, where higher accuracy reflects stronger
alignment of samples with their coarse-class centroids, i.e.,
clearer coarse-level separation.

Over-dispersion (e.g., coarse ID 14).
Here NCCcoarse is clearly above the
dataset mean, yet CDNVA for its five
fine classes is markedly elevated and
NCCfine (34.28%) is depressed. This
indicates that fine classes scatter widely
despite good coarse-level separation,
matching the left pattern in Fig. 1.

Over-collapse (e.g., coarse ID 17). In
this case CDNVA is notably low and
NCCcoarse remains high, but NCCfine

(39.04%) stays below the mean. Fine
categories therefore contract toward the
coarse centroid and lose intra-coarse dis-
tinctions, corresponding to the middle
pattern in Fig. 1.

Ideal structure (e.g., coarse ID 9).
Here both NCCfine (73.52%) and
NCCcoarse are high, while CDNVA re-
mains relatively low. Fine clusters are
compact and separable, nested within
well-separated coarse groups, consistent
with the right pattern in Fig. 1.

These observations reveal that standard
SSL can break down at the fine level in
two opposite ways: over-dispersion or over-collapse, even when coarse structure appears satisfactory.
The root cause lies in how current objectives regulate geometry. On the one hand, contrastive
losses typically treat all non-positives as equally negative, which pushes apart visually similar (but
semantically related) samples and leads to over-dispersion. On the other hand, existing methods
underexploit local image cues that encode subtle distinctions, so fine classes may collapse toward
their coarse centroid. Without labels, the definition of “equivalence” remains ambiguous, making
this trade-off inherently challenging. Motivated by this analysis, we seek to preserve fine-grained
structure while maintaining coarse-level separation. In Sec. 4, we present a multi-level regularization
framework that integrates: (i) a global-level soft-alignment term to temper the effect of hard negatives,
(ii) a part-level term that leverages local descriptors to preserve intra-coarse distinctions, and (iii)
semantic cues from vision–language models to anchor instance-level uniqueness.

4 METHOD

4.1 SOFT-INFONCE AS A STRONGER BASELINE REGULARIZATION

Following (Ben-Shaul et al., 2023), the SSL objective can be decomposed into an invariance term and
a regularization term. While the invariance term quickly saturates in early training, the regularization
term continues to decrease and plays the dominant role in shaping semantic clustering. An effective
regularization should not only prevent representational collapse but also promote meaningful class
separation. However, the standard InfoNCE loss treats all non-positive pairs as equally negative,
ignoring the underlying fine-grained relations. This indiscriminate repulsion often leads to either
over-dispersion or collapse toward coarse-level centers.

To mitigate this limitation, we adopt ReSA (Weng et al., 2025) as our baseline. ReSA replaces the
hard one-to-one target distribution in InfoNCE with a soft assignment matrix, thereby alleviating the
uniform repulsion among non-positive samples. Formally, given a batch of 2m augmented samples,
let Z,Z ′ ∈ Rd×m denote the embeddings, and define the similarity matrix SZ = Z⊤Z ′. Standard
InfoNCE minimizes the cross-entropy loss with the identity matrix I as the target distribution:

LInfoNCE = − 1

2m

∑
i,j

Iij logD(SZ)ij + Iji logD(S⊤
Z )ji, (4)
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Figure 3: Pipeline of the proposed clustering-guided self-supervised learning framework (CLUE). (a)
Overall architecture: the Sinkhorn–Knopp algorithm is applied to the similarity matrix SH to produce
soft assignments AH , which guide both global and local contrastive losses. (b) Part-assignment
module: semantic part features are extracted from activation maps and used to capture fine-grained
distinctions. (c) Description generator: a vision–language model (VLM) produces discriminative
textual descriptions, which are embedded by CLIP-T into the text feature space to provide semantic
guidance for representation learning.

where D(·) denotes the row-wise softmax normalization with temperature τ . ReSA introduces
an online clustering step that produces a doubly-stochastic assignment matrix A ∈ Rm×m via
the Sinkhorn–Knopp algorithm. The resulting soft target distribution leads to the following soft
contrastive loss:

Lsoft-InfoNCE = − 1

2m

∑
i,j

Aij logD(SZ)ij +Aji logD(S⊤
Z )ji. (5)

When A = I , this reduces to standard InfoNCE. The doubly-stochastic constraint enforces balanced
assignments and prevents trivial collapse to a single mode. In practice, A is computed from the
encoder’s intermediate features (rather than the projection head), which have been shown to provide
more stable clustering (Weng et al., 2025).

Compared with InfoNCE, the gradients of Lsoft-InfoNCE reweight pairwise relations: similar samples
receive larger positive weights, which reduces false negatives and preserves fine-grained structures,
while truly dissimilar samples remain repelled. Thus, soft-InfoNCE offers a stronger and more
principled form of semantic regularization, and we use it as the foundation for our multi-level
extension in Sec. 4.

4.2 EXTENDING THE CLUSTERING LOSS TO PART-LEVEL

While the soft-InfoNCE in Sec. 4.1 mitigates over-dispersion at the global level, relying only on a
holistic feature vector h is insufficient for distinguishing instances within the same coarse class. To
explicitly capture fine-grained cues, we extend the clustering loss to operate on part-level features.

Part-aware representation. Given a convolutional feature map F ∈ RC×H×W , we adopt a
VLAD-like residual aggregation (Arandjelovic et al., 2016) to obtain K part descriptors: P =
{p1, p2, . . . , pK}, pk =

∑
u αuk (fu − ck), where fu is the local descriptor at spatial position u,

ck is the k-th part centroid, and αuk is the normalized assignment weight across parts. The resulting
descriptors are flattened and concatenated into a part-aware vector v = [p1, p2, . . . , pK ].
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Part-level soft contrastive loss. We replace the similarity matrix in Eq. equation 4 with part-aware
similarities SV = V ⊤V ′, where V stacks part-aware vectors from a batch. The same soft assignment
matrix A is reused to construct the part-level loss:

Llocal = −
1

2m

∑
i,j

Aij logD(SV )ij +Aji logD(S⊤
V )ji. (6)

This formulation mirrors Eq. equation 5, but in the part-aware coordinate system. Rather than acting
as an auxiliary objective, it imposes stronger regularization directly on discriminative local subspaces.

Geometric effect. VLAD-style residuals encourage local descriptors to cluster around multiple
part centroids, naturally forming multi-modal fine-grained subclusters within each coarse class. The
gradient of Lpart, proportional to D(SV )−A, enforces consistency between these subclusters and
the global soft assignment A. As a result, fine-grained categories are pushed apart while maintaining
intra-coarse coherence, thereby mitigating over-collapse and preserving subtle distinctions that would
otherwise be absorbed by coarse-class centers.

4.3 VLM-DRIVEN GUIDANCE FOR INSTANCE INFORMATION

Vision–language models (VLMs) excel at broad recognition and reasoning but often lack the gran-
ularity needed for fine-grained categorization (Peng et al., 2024; Jing et al., 2024). Even when a
VLM confuses closely related species at the class level, it typically produces reliable region-level
descriptions (e.g., attributes, textures, part shapes) that domain experts rely on to separate fine
categories (Zhao et al., 2025). Thus, although class predictions may be unreliable, the accompany-
ing textual cues provide stable fine-grained semantics that can serve as anchors for representation
learning. Building on this observation (Fig. 4), we regard a pre-trained VLM as an external expert
and incorporate its descriptions as semantic priors, following the spirit of recent VLM-assisted
approaches (Bang et al., 2024; El Banani et al., 2023; Shrivastava et al., 2021).

Common NighthawkChuck-will's-widow

Figure 4: Comparison between Chuck-will’s-
widow and Common Nighthawk. Although a VLM
may confuse them at the class level, it correctly
highlights fine-grained cues such as the “small, up-
tilted bill fringed with whisker-like bristles” and
the “rusty-orange bars on the tail and wing edges,”
which serve as key attributes for distinguishing the
two genera.

Complementary to the global and part-level
objectives, text guidance addresses both over-
dispersion and over-collapse. Images sharing
fine-grained attributes are drawn toward the
same textual anchors, which reduces variance
along attribute dimensions and lowers CDNV
without collapsing to zero. Meanwhile, within a
common coarse category, samples with distinct
attribute signatures are attracted to different an-
chors, effectively partitioning a coarse cluster
into multiple fine-level centers.

To generate such anchors, we design a simple
prompting strategy that (a) produces a global
summary of the image, (b) enumerates salient
parts and attributes, and (c) condenses these into
a concise description. After light de-duplication,
each description is encoded by a frozen CLIP
text encoder to yield ti. This semantic prior sta-
bilizes early clustering and injects fine-grained
supervision without labels. Given an image embedding vi and its corresponding text embedding ti,
we align them using a temperature-scaled cross-entropy:

Ltext = −
1

m

m∑
i=1

log
exp

(
⟨vi, ti⟩/τt

)∑m
j=1 exp

(
⟨vi, tj⟩/τt

) . (7)

Without loss of generality, we combine the three objectives into a single loss:

Ltotal = αLglobal + β Llocal + γ Ltext, (8)

where Lglobal is the soft-InfoNCE loss from Sec. 4.1, Llocal is the part-aware loss from Sec. 4.2,
and Ltext is the VLM-guided alignment from Sec. 4.3. The coefficients α, β, γ balance the relative
strength of each term; unless otherwise specified, we set them all to 1.
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Table 1: Fine-grained classification accuracy (%) and retrieval performance (Rank-1 / Rank-5, %) on
CUB200, Stanford Cars, and FGVC-Aircraft. Use a ResNet-50 backbone unless otherwise specified.

Method Classification Retrieval
CUB200 Cars Aircraft CUB200 Cars Aircraft

Rank1 Rank5 Rank1 Rank5 Rank1 Rank5

SimSiam (Chen & He, 2021) 46.75 45.72 38.52 16.24 – 12.45 – 18.49 –
MoCo v2 (Chen et al., 2020b) 63.98 62.02 51.13 39.72 67.14 30.51 56.15 30.02 52.87
LEWEL (Huang et al., 2022) 64.59 62.91 51.90 39.91 – 32.36 – 31.09 –
Contrastive Crop (Peng et al., 2022) 64.23 63.29 52.04 39.84 – 32.71 – 30.37 –
SAM-SSL-Bilinear (Shu et al., 2022) 64.94 62.85 52.83 40.08 – 33.19 – 30.52 –
MAE (He et al., 2022) 38.92 43.30 55.72 12.45 28.49 13.04 27.97 31.75 57.72
BEiT (Bao et al., 2021) 25.70 36.48 46.62 5.62 15.03 11.45 25.87 24.49 31.02
Barlow Twins (Zbontar et al., 2021) 33.45 31.91 34.77 15.24 38.35 11.99 30.17 16.32 35.55
VICReg (Bardes et al., 2021) 37.78 30.80 36.00 17.02 42.85 12.31 30.52 14.43 37.02
LCR (Shu et al., 2023) 65.24 63.96 53.22 41.26 – 34.74 – 31.55 –
LDF (Wang et al., 2024) 66.17 65.60 55.28 42.06 69.59 35.81 61.94 33.27 56.80
PAPN (Tan et al., 2025) 69.93 67.48 60.13 45.39 72.81 35.98 59.94 35.13 58.75
ReSA (Weng et al., 2025) 65.82 64.76 56.70 42.53 71.31 34.92 60.46 34.64 58.84
CLUE (Ours) 69.62 72.66 58.59 48.53 74.71 43.45 69.49 40.66 63.56

EsViT (Swin-T) (Li et al., 2021) 70.54 59.12 55.18 43.48 73.08 31.95 58.40 27.06 53.02
LoDisc (ViT-B) (Shi et al., 2025) 73.23 69.72 62.17 45.89 72.75 41.55 67.24 41.49 68.59
CLUE (ViT-B) (Ours) 77.83 75.67 62.76 61.93 83.91 52.05 78.14 40.26 65.11

5 EXPERIMENTS

In this section, we evaluate the performance of the proposed method on three fine-grained image
datasets: Caltech UCSD-Birds (CUB200) (Wah et al., 2011), Stanford Cars (Cars) (Krause et al.,
2013), FGVC-Aircraft (Aircraft) (Maji et al., 2013).

5.1 SETTINGS

5.1.1 IMPLEMENTATION DETAILS

For all experiments, we adopt ResNet-50 (He et al., 2016) as the backbone and a standard three-layer
MLP projector. Following common practice (He et al., 2020; Grill et al., 2020; Caron et al., 2020),
we use a momentum encoder with coefficient 0.999. The number of part centroids in the part-level
module is set to K = 3, which provides a good balance between capturing discriminative parts
and computational efficiency. All models are optimized with SGD under a cosine learning-rate
schedule. Our training protocol is aligned with prior work (Shu et al., 2023; Wang et al., 2024) for
fair comparison; further implementation details are provided in the Appendix. All experiments are
conducted on four NVIDIA RTX 3090 GPUs.

5.1.2 EVALUATION PROTOCOLS

We adopt two complementary evaluation settings: linear probing and image retrieval. Linear
probing is a widely used protocol in self-supervised learning (SSL). After pretraining, the backbone
is frozen and a linear classifier is trained on top of the learned representations. The classification
accuracy of this linear head serves as a direct measure of the discriminative quality of the features.
Image retrieval evaluates how well the representations capture semantic similarity. For each query
image, we perform nearest-neighbor search in the feature space and retrieve images from the gallery.
Performance is measured by rank-k accuracy, i.e., whether a correct match appears among the top-k
retrieved images. Unless otherwise specified, we report top-1 accuracy for linear probing and rank-1 /
rank-5 accuracy for retrieval.

5.2 MAIN RESULTS

Table 1 reports a comprehensive comparison with prior methods on three fine-grained benchmarks.
Our method consistently outperforms the baselines in both classification and retrieval. In particular, it
surpasses LDF by +3.45, +7.06, and +3.31 points in classification accuracy on CUB200, Cars, and
Aircraft, respectively. Similar gains are observed in retrieval, where our approach achieves higher
rank-1 and rank-5 accuracy across all datasets. These results highlight the robustness of our framework
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Table 2: Classification accuracy (%) and retrieval performance (Rank-1 / Rank-5, %) for different
ablation configurations of the proposed CLUE framework. The baseline (#1) uses standard contrastive
learning with InfoNCE loss. Each row corresponds to incrementally adding key components: global
loss (soft clustering alignment), local loss (part-aware contrastive learning), and text loss (VLM-
guided semantic cues).

ID
Losses Classification Retrieval

Lglobal Llocal Ltext CUB200 Cars Aircraft CUB200 Cars Aircraft
Rank1 Rank5 Rank1 Rank5 Rank1 Rank5

#1 62.29 60.20 51.13 37.74 57.07 31.74 56.05 31.74 52.07
#2 ✓ 64.63 64.46 52.29 42.06 67.43 35.75 60.69 35.97 59.77
#3 ✓ 65.82 64.76 56.70 42.53 71.31 34.92 60.46 34.64 58.84
#4 ✓ ✓ 66.95 65.58 57.76 43.56 72.21 35.27 62.16 36.42 60.24
#5 ✓ ✓ ✓ 69.62 72.66 58.59 48.53 74.71 43.45 69.49 40.66 63.56

Table 3: Fine-grained classification accuracy (%) and retrieval performance (Rank-1 / Rank-5, %) on
CUB200 and FGVC-Aircraft for different number of clusters.

Clusters Classification Retrieval
CUB200 Cars Aircraft CUB200 Cars Aircraft

Rank1 Rank5 Rank1 Rank5 Rank1 Rank5

2 64.60 63.20 55.93 42.46 71.47 34.27 59.16 33.74 56.07
3 65.82 64.76 56.70 42.53 71.31 34.92 60.46 34.64 58.84
4 66.10 65.91 56.76 43.48 71.52 34.57 59.11 33.31 57.28
8 66.95 65.58 57.03 43.66 71.31 33.44 56.95 36.42 59.54

for both non-rigid objects (CUB200) and rigid categories (Cars, Aircraft), demonstrating its ability
to capture subtle inter-class differences. Moreover, when instantiated with a ViT-Base backbone,
our method further improves top-1 accuracy and consistently outperforms Transformer-based SSL
approaches such as EsViT Li et al. (2021) and LoDisc Shi et al. (2025) in both classification and
retrieval, confirming that the proposed multi-level regularization is architecture-agnostic and remains
effective on modern vision Transformers.

5.3 ABLATION STUDY

Figure 5: Clustering behavior on CIFAR-100.

Effect of Key Modules. We perform ablations
on CUB200, Stanford Cars, and FGVC-Aircraft
to isolate the contribution of each component
(Table 2). The baseline (#1) relies on standard
InfoNCE contrastive learning (Eq. equation 4).
Replacing it with global soft clustering align-
ment (#3; soft-InfoNCE, Eq. equation 5) leads
to clear gains in both classification and retrieval,
highlighting the benefit of adapting to batch-
level semantic structure. Adding the part-level
loss (#4; Sec. 4.2) provides further improve-
ments by leveraging local descriptors to cap-
ture fine-grained cues within coarse categories.
Additionally, incorporating the VLM-guided ob-
jective (#5; Sec. 4.3) achieves the strongest re-
sults, showing that external semantic anchors of-
fer complementary supervision. Taken together,
these results demonstrate that global soft alignment, part-level discrimination, and VLM guidance
contribute in a complementary and additive manner, producing the most effective fine-grained repre-
sentations. Finally, when training with only the text loss (#2), we observe a noticeable degradation
in linear probing performance, suggesting that VLM guidance alone is insufficient to learn strong
fine-grained visual representations.

Number of Clusters In the part-assignment module, deep descriptors are grouped into K clusters.
As shown in Table 3, setting K = 2 typically separates foreground from background but fails to
capture richer part-level semantics, leading to suboptimal performance. Increasing K to 4 yields clear
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The image depicts a bird in flight over a body of water. The bird has long wings with 
dark brown feathers and white tips on the wingtips. Its body is also dark brown, and 
it has a distinctive white patch near its tail. The background shows a blurred view of 
the ocean or sea, indicating that the bird is likely flying over a coastal area. The 
overall scene captures the gracefulness of the bird as it glides through the air.

Origin Cluster1 Cluster2 Cluster0

The image depicts a Northern Flicker woodpecker perched on a tree trunk. This 
bird is characterized by its spotted brown plumage with black spots, a red nape 
patch, and a black bib extending from the beak to the throat. The setting 
appears to be a dry, natural environment with scattered branches and leaves on 
the ground, suggesting a habitat typical for this species. The lighting indicates 
it might be taken during daylight hours, highlighting the intricate patterns and 
colors of the bird's feathers against  the textured bark of the tree."

The image depicts a black bird with distinctive orange markings on its face, perched 
on a rocky surface covered with patches of green vegetation. The bird's plumage is 
predominantly dark, with some lighter areas near its beak and eyes. It appears to be 
grooming itself, with one wing raised. The background consists of rugged rocks 
interspersed with small plants, suggesting a natural, possibly coastal habitat. The 
overall scene captures a moment of the bird's behavior within its environment.

Description

Figure 6: Visualization of the learned part clusters on fine-grained bird images. Each row shows
the original image (left) and the response maps of three clusters (Cluster 0–2). Warmer colors
indicate stronger activation of the corresponding cluster at that location. Cluster 0 consistently
focuses on discriminative regions such as the head and beak, Cluster 1 attends to the torso/wing area,
while Cluster 2 mainly captures background regions, illustrating that the part extractor discovers
semantically meaningful parts.

improvements, indicating that moderate granularity helps model fine-grained cues. However, further
enlarging K does not consistently provide additional benefits and can even degrade results due to
overfitting. Overall, the effect of cluster count tends to plateau beyond a moderate value. Balancing
discriminative power and computational cost, we fix K = 3 for all experiments in this paper.

Clustering Behavior of Module-Specific Clusters We evaluate clustering dynamics on CIFAR-
100 using three granularity-aware metrics: (1) the average CDNVA over the 20 coarse categories as
an indicator of cluster compactness, (2) the average NCCfine over the 100 fine classes to measure
fine-grained discrimination, and (3) the average NCCcoarse over the 20 coarse categories to reflect
super-class separability. An ideal outcome corresponds to a smaller CDNVA together with higher
NCCfine, while maintaining NCCcoarse. As shown in Figure 5, our module effectively suppresses
cluster collapse and enhances fine-grained discrimination, without sacrificing coarse-level separability.
This confirms its role in shaping balanced feature geometry across semantic granularities.

The effect of the Part Extractor Our part extractor groups spatial features into clusters that corre-
spond to semantically coherent regions in the image. To illustrate its behavior, we visualize several
examples in Fig. 6. Even though no bounding-box annotations are used during training, the module
automatically discovers meaningful parts: for instance, one cluster (Cluster 0) consistently focuses on
the head and beak region, while another (Cluster 2) concentrates on the background. Similar patterns
are observed across different categories, which aligns well with the common intuition in fine-grained
recognition that stable, reusable parts are crucial for discrimination. In the visualizations, higher
response (“hotter” colors) indicates stronger focus from the corresponding cluster on that region.

6 CONCLUSION

We studied the problem of fine-grained recognition in self-supervised learning, where standard
objectives often suffer from over-dispersion or over-collapse of fine categories. To address this, we
proposed a multi-level regularization framework that integrates soft-InfoNCE, part-aware learning,
and VLM-guided alignment to shape feature geometry across granularities. Experiments on CUB200,
Stanford Cars, and FGVC-Aircraft demonstrated consistent improvements in both classification and
retrieval, with ablations confirming the complementary effect of each module. Our results highlight
the importance of granularity-aware regularization for learning discriminative and transferable
representations without labels.
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ETHICS STATEMENT

This work does not inyolve human subjects, personally identifiable information, or sensitive data. All
datasets used are publicly available, properly cited, and comply with their respective licenses. The
proposed methodology is designed for fine-grained self-supervised learning research and does not
introduce foreseeable risks of misuse or harmful societal impact. We have adhered to the ICLR Code
of Ethics throughout the research and preparation of this paper.

REPRODUCIBILITY STATEMENT

To facilitate reproducibility of CLUE, we provide comprehensive dataset descriptions and full experi-
mental details in in Appendix A, The supplementary materials include the complete source code,
training scripts, and step-by-step instructions, covering data preprocessing, model configurations, and
hyperparameters, enabling independent verification of all reported results.
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A IMPLEMENTATION DETAILS

A.1 DATASETS

We conducted experiments on widely used fine-grained recognition datasets to validate the effective-
ness of our algorithm. Specifically, CUB-200-2011 consists of 11,788 images spanning 200 bird
species, with 5,994 images allocated for training and 5,794 for testing. The Stanford Cars dataset
comprises 16,185 images across 196 categories, divided into 8,144 training images and 8,041 testing
images. FGVC-Aircraft includes 10,000 images covering 100 categories, with 6,667 images used for
training and 3,333 reserved for testing.

For additional evaluation, we also consider four commonly used recognition benchmarks. The Oxford
102 Flowers dataset contains 8,189 images from 102 flower categories, following the standard split
into training, validation, and test sets. The Oxford-IIIT Pet dataset includes 7,349 images of 37 breeds
of cats and dogs, with roughly half of the images used for training and the remainder for testing.
Food-101 consists of 101,000 images from 101 food categories, with 750 training images and 250
test images per class. Caltech-256 contains 30,607 images spanning 256 object categories, where we
follow the conventional protocol and sample a fixed number of images per class for training while
using the remaining images for testing.

A.2 SETTINGS

As a biologist, distinguish the bird species in the 
image and provide the corresponding judgment 
criteria using 5 brief words.

Albatross. Large wingspan, oceanic habitat.

Describe the 5 most distinguishing features in the 
image, listed in the form of 1, 2, 3.

1. Large wingspan.
2. Brown plumage.
...

Summarize the category and features of the image 
in a short paragraph.

The image depicts a seabird, specifically an Albatross, 
captured mid-flight over the ocean. The bird's large wingspan, 
brown plumage, long slender beak, dark tail feathers, and the 
dynamic motion of its wings are prominent features. The 
background showcases  a  blurred ocean with waves, 
emphasizing the bird's natural habitat and flight behavior.

Figure 7: An example of generating a discrimina-
tive image description through a chain-of-thought
dialogue with a vision-language model.

For all our experiments, we use ResNet-50 (He et al.,
2016) as the backbone, initialized with ImageNet-1K
pre-trained weights, and employ a standard three-
layer MLP as the projector. This initialization is kept
consistent with prior fine-grained SSL works such as
LCR(Shu et al., 2023) and PAPN(Tan et al., 2025):
we use the official TensorFlow ResNet-50 checkpoint
trained in a supervised manner on ImageNet-1K only.

Following common practice (He et al., 2020; Grill
et al., 2020; Caron et al., 2020), we adopt a momen-
tum encoder; in our main experiments the momentum
coefficient is fixed to 0.999. To ensure a fair com-
parison, this choice is aligned with LCR(Shu et al.,
2023) and LDF(Wang et al., 2024), which also use a
momentum value of 0.999. For reference, other self-
supervised methods such as ReSA(Weng et al., 2025)
and DINO(Caron et al., 2021) decrease the effective
update rate by gradually increasing the momentum
from 0.996 to 1.0 over training. Since clustering in
our framework is performed online, there is no need
for a memory bank to store negatives as in MoCo.
Instead, to ensure sufficient diversity within each
batch, we set the batch size to 512, which is still
much smaller than the queue size commonly used in
MoCo-style methods. The number of prototypes for part-level clustering is set to N = 3.

Based on the above settings, the only tuned hyperparameters are the optimizer-related ones, including
the learning rate, weight decay, and the number of warm-up epochs, which are adjusted according to
the specific encoder architecture and dataset; all other settings are kept fixed. We follow the linear
scaling rule, setting the learning rate as lr = lrbase × batch_size/256. After the warm-up phase, the
learning rate decays following a cosine schedule.

For the MAE baseline (He et al., 2022), we follow the official protocol, employing a ViT-Small
backbone with a masking ratio of 75% and pre-training for 100 epochs to ensure a fair comparison.
ViT-Small is chosen because its model size is comparable to that of ResNet-50. Unless otherwise
specified, all methods share the same data preprocessing pipeline and optimization hyperparameters.
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Images Descriptions
The image depicts a bird swimming in water. The bird has a predominantly brown 
plumage with lighter patches on its head and neck. It possesses a long, pointed 
beak typical of seabirds adapted for catching prey. Its wings are partially submerged, 
indicating it is actively swimming or diving. The water around the bird shows ripples 
and splashes, suggesting movement. The background consists of a calm body of 
water with gentle waves, providing a natural aquatic habitat for the bird.
The image depicts a vibrant red cardinal perched on a lichen-covered branch. The 
bird's striking plumage is characterized by its bright red feathers, black mask 
around the beak, and a prominent crest atop its head. The background is a soft 
green gradient, providing a natural contrast that highlights the cardinal's vivid 
coloration. The branch, adorned with patches of white lichen, adds texture to the 
scene, emphasizing the bird's delicate perch. This composition captures the essence 
of nature, showcasing the cardinal's beauty against a serene backdrop.
The image depicts a bird perched on a tree branch against a clear blue sky. The bird 
has a predominantly gray head with a black patch around its neck and a speckled 
pattern on its body. Its tail feathers are reddish-brown, adding a striking contrast 
to its overall appearance. The background is slightly blurred, highlighting the bird as 
the focal point. The branches surrounding the bird have sparse leaves, suggesting it 
might be autumn or early spring. The lighting indicates that the photo was taken 
during daylight hours, possibly under direct sunlight.

Figure 8: Visualization of discriminative descriptions identified by a vision-language model (VLM)
on the CUB-200 dataset. The highlighted descriptions in red denote the most discriminative textual
cues associated with the corresponding bird images.

For a fair comparison with LoDisc (ViT-B) (Shi et al., 2025), we adopt a ViT-Base backbone in our
ViT-based experiments, matching the model size used in LoDisc. Likewise, both ViT-Small and
ViT-Base are initialized from the official TensorFlow checkpoints pre-trained in a supervised manner
on ImageNet-1K.

All experiments are conducted on 4 NVIDIA RTX 3090 GPUs.

B GENERATING DESCRIPTION WITH VLM

We explored using Vision-Language Models (VLMs) to generate discriminative descriptions. Inspired
by the chain-of-thought approach, we adopted a multi-turn dialogue process for description generation.
As illustrated in Figure 7, we first assign a specific role for each dataset, and then prompt the model
from both global and local perspectives. Finally, a comprehensive textual description is generated for
each image, ensuring appropriate length and detail.

After obtaining the generated feature descriptions, we utilize the text encoder of CLIP to project the
textual information into the feature space. These projected text features serve as anchors, aiding the
model’s learning process.

Figure 8 presents example visualizations of discriminative descriptions generated by GLM-4V-flash
on the CUB-200 dataset. Although GLM-4V-flash is not currently the most advanced vision-language
model, it is nonetheless capable of effectively identifying and articulating distinctive image features.

C MORE EXPERIMENTS

To further validate the generality of CLUE, we additionally evaluate on three fine-grained benchmarks
(Flowers, Pets, Food-101) and a more generic recognition benchmark (Caltech-256). For all these
datasets, we strictly follow the training protocol described in the main text: the same ResNet-50
backbone initialized from the ImageNet-1K supervised checkpoint, identical data augmentations,
batch size, number of epochs, and optimizer settings. The only change is the underlying dataset. For
LCR, we use the official implementation and re-train under this unified setup to obtain the numbers
reported in Tables 4 and 5.
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Table 4: Fine-grained classification accuracy (%) and retrieval performance (Rank-1 / Rank-5, %) on
Flowers, Pets, and Food-101.

Method Classification Retrieval
Flower Pet Food Flower Pet Food

Rank1 Rank5 Rank1 Rank5 Rank1 Rank5

LCR (Shu et al., 2023) 85.24 90.73 73.34 90.26 97.15 89.78 97.77 52.62 74.70
ReSA (Weng et al., 2025) 84.17 91.82 72.91 93.89 97.92 89.24 97.87 56.08 75.99
CLUE (Ours) 86.28 91.63 83.37 95.51 98.06 90.68 97.87 67.14 83.89

Table 5: Fine-grained classification accuracy (%) and retrieval performance (Rank-1 / Rank-5, %) on
Caltech-256.

Method Classification Retrieval
Rank1 Rank5

LCR (Shu et al., 2023) 74.44 75.82 87.85
ReSA (Weng et al., 2025) 84.07 78.36 88.04
CLUE (Ours) 86.39 80.22 90.90

The results show that CLUE consistently matches or outperforms strong baselines across all four
datasets. On the fine-grained benchmarks in Table 4, CLUE achieves the best classification accuracy
on Flowers (86.28%, +1.0 over LCR) and Food-101 (83.37%, more than +10 points over both LCR
and ReSA), and also yields higher rank-1 retrieval scores on all three datasets, e.g., +14.5 points over
LCR on Food-101. On Pets, CLUE attains competitive classification performance (91.63%) while
still improving rank-1 retrieval over both LCR and ReSA. On the more generic Caltech-256 dataset
(Table 5), CLUE significantly surpasses LCR (86.39% vs. 74.44% in classification, and 80.22% vs.
75.82% in rank-1 retrieval) and also improves over ReSA. These results indicate that the proposed
multi-level regularization not only benefits fine-grained recognition but also transfers well to broader
object recognition scenarios.

D GEOMETRIC IDENTITIES AND OPTIMIZATION VIEW OF CLUE

It is widely acknowledged that providing a rigorous theoretical explanation of how regularization
terms induce clustered representations is challenging; (Ben-Shaul et al., 2023) have emphasized this
difficulty in their discussions of representation learning. Inspired by prior geometric analyses of
contrastive and prototype-based methods (Wang & Isola, 2020; Khosla et al., 2020; Snell et al., 2017),
we take a modest step in this direction. In this appendix, we present a simple geometric view of how
the proposed multi-level regularization shapes the feature space. We show that our objectives tend to
(i) reduce intra-class variance and (ii) enlarge inter-class separation, thereby improving the CDNV
metric used in the main text.

Throughout, we assume that feature vectors are ℓ2-normalized, i.e., ∥zi∥2 = 1 for all i, which is
standard in contrastive learning.

D.1 INTRA-CLASS VARIANCE AND SIMILARITY

Let C be a set of indices (e.g., a class or a cluster) with |C| = n and centroid

µ =
1

n

∑
i∈C

zi.

Define the intra-class variance

Varin(C) =
1

n

∑
i∈C

∥∥zi − µ
∥∥2
2
.

Lemma 1 (Variance–similarity identity). For unit-norm vectors, the intra-class variance is

Varin(C) = 1− Simin(C), Simin(C) =
1

n2

∑
i,j∈C

⟨zi, zj⟩. (9)
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Proof. Expanding the variance,

Varin(C) =
1

n

∑
i∈C

(
∥zi∥22 − 2⟨zi, µ⟩+ ∥µ∥22

)
.

Using ∥zi∥22 = 1 and 1
n

∑
i∈C⟨zi, µ⟩ = ∥µ∥22 gives Varin(C) = 1− ∥µ∥22. Finally,

∥µ∥22 =

〈
1

n

∑
i

zi,
1

n

∑
j

zj

〉
=

1

n2

∑
i,j∈C

⟨zi, zj⟩ = Simin(C).

Thus, on the unit sphere, maximizing intra-class similarity Simin(C) is exactly equivalent to mini-
mizing intra-class variance Varin(C).

D.2 CLASS SEPARATION AND INTER-CLASS SIMILARITY

Consider two disjoint sets C and C ′ with |C| = n, |C ′| = n′ and centroids

µ =
1

n

∑
i∈C

zi, µ′ =
1

n′

∑
j∈C′

zj .

Define the inter-class similarity

Simout(C,C
′) =

1

nn′

∑
i∈C, j∈C′

⟨zi, zj⟩.

Lemma 2 (Centroid distance decomposition). The squared distance between centroids satisfies

∥µ− µ′∥22 = Simin(C) + Simin(C
′)− 2 Simout(C,C

′). (10)

Proof. We have
∥µ− µ′∥22 = ∥µ∥22 + ∥µ′∥22 − 2⟨µ, µ′⟩.

Using ∥µ∥22 = 1
n2

∑
i,j∈C⟨zi, zj⟩ = Simin(C), similarly ∥µ′∥22 = Simin(C

′), and

⟨µ, µ′⟩ = 1

nn′

∑
i∈C,j∈C′

⟨zi, zj⟩ = Simout(C,C
′),

we obtain equation 10.

This shows that increasing intra-class similarities Simin(C), Simin(C
′) and decreasing inter-class

similarity Simout(C,C
′) both enlarge the centroid distance.

D.3 CONNECTION TO CDNV

For two sets C and C ′ with centroids µ, µ′, the pairwise CDNV metric (Eq. (1) in the main text) is

CDNV(C,C ′) =
Varin(C) + Varin(C

′)

2 ∥µ− µ′∥22
. (11)

Assuming µ ̸= µ′, Lemma 1 and Lemma 2 give

CDNV(C,C ′) =

(
1− Simin(C)

)
+
(
1− Simin(C

′)
)

2
(
Simin(C) + Simin(C ′)− 2 Simout(C,C ′)

) . (12)

Thus, strictly increasing Simin(C), Simin(C
′) and strictly decreasing Simout(C,C

′) decreases the
numerator and increases the denominator, and therefore strictly reduces CDNV(C,C ′).

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

D.4 OPTIMIZATION DYNAMICS OF SOFT-INFONCE

We now show how the Soft-InfoNCE loss used in CLUE acts on the pairwise similarities in a way
that matches the CDNV analysis above.

Let S ∈ Rm×m be a similarity matrix and define a row-wise softmax (for simplicity, without explicit
temperature) by

Dij =
exp(Sij)∑m
k=1 exp(Sik)

.

Let A ∈ Rm×m be a row-stochastic target matrix (
∑

j Aij = 1 for all i), and consider

L(S,A) = − 1

m

m∑
i=1

m∑
j=1

Aij logDij . (13)

Lemma 3 (Gradient of row-softmax cross-entropy). For the loss L(S,A) in equation 13,

∂L

∂Sij
=

1

m

(
Dij −Aij

)
, i, j = 1, . . . ,m. (14)

Proof. Writing L = 1
m

∑
i Li with Li = −

∑
j Aij logDij and using

logDij = Sij − log
(∑

k

exp(Sik)
)
,

a standard calculation shows ∂
∂Sij

logDik = δjk − Dij , hence ∂Li

∂Sij
= Dij − Aij and ∂L

∂Sij
=

1
m (Dij −Aij).

Corollary 4 (Effect on pairwise similarities). A gradient descent step Sij ← Sij − η ∂L/∂Sij with
η > 0 has:

• if Aij > Dij , then ∂L/∂Sij < 0 and Sij increases (the pair (i, j) is pulled closer);

• if Aij < Dij , then ∂L/∂Sij > 0 and Sij decreases (the pair (i, j) is pushed apart).

In CLUE, A is obtained from a Sinkhorn-based clustering and assigns larger mass to semantically
related examples. Therefore the global and local regularization terms:

• increase similarities for pairs that should be close (increasing Simin and reducing the CDNV
numerator);

• decrease similarities for unrelated pairs (reducing Simout and increasing the CDNV denom-
inator).

By Lemma 1 and Lemma 2, this means that the global and local losses tend to reduce intra-class
variance and enlarge inter-class distances, thus decreasing CDNV.

D.5 PREVENTION OF TRIVIAL COLLAPSE VIA TEXT GUIDANCE

Finally, we show that a CLIP-style text alignment loss rules out the trivial solution where all image
features collapse to the same constant vector.

Let vi be (normalized) image features and ti the corresponding text features. Consider the CLIP-style
loss

Ltext = −
1

m

m∑
i=1

log
exp(⟨vi, ti⟩/τ)∑m
j=1 exp(⟨vi, tj⟩/τ)

, (15)

with temperature τ > 0, and let

pij =
exp(⟨vi, tj⟩/τ)∑m
k=1 exp(⟨vi, tk⟩/τ)

be the softmax probabilities.
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Lemma 5 (Constant mapping is not stationary). Assume that the text features {ti}mi=1 are not all
equal. Then the mapping v1 = · · · = vm = c (for any constant c) is not a stationary point of Ltext.

Proof. The gradient w.r.t. vi is

∂Ltext

∂vi
=

1

mτ

( m∑
j=1

pijtj − ti

)
.

If v1 = · · · = vm = c, then pij does not depend on i, say pij = pj , and

∂Ltext

∂vi
=

1

mτ

(∑
j

pjtj − ti

)
.

Stationarity would require
∑

j pjtj = ti for all i, i.e., all ti equal the same convex combination of
{tj}, which is impossible if the {ti} are not all identical. Hence at least one gradient is nonzero.

Therefore, the text-based regularization term explicitly rules out the trivial “all features are identical”
solution and helps prevent extreme instance-level collapse, complementing the clustering-based
global and local regularization discussed above.

E VISUALIZATION

For a clearer illustration of the model’s effectiveness, we conduct Grad-CAM visualizations on the
evaluation datasets, highlighting the regions most relevant to fine-grained discrimination 9.

Figure 9: Grad-CAM visualizations on fine-grained benchmarks. Compared with baseline SSL,
our CLUE model attends more accurately to discriminative regions (e.g., textures, shapes, or parts),
which facilitates precise recognition and highlights its advantage in fine-grained categorization.

F THE USE OF LARGE LANGUAGE MODELS(LLMS)

Large Language Models (LLMs) were used only as language and formatting assistants during
manuscript preparation. Specifically, LLMs were employed to (i) polish grammar and improve
fluency, (ii) standardize terminology, tense, and voice, (iii) suggest alternative phrasings for clarity
and concision, and (iv) provide suggestions for table layouts and LaTeX typesetting (e.g., caption
style, column alignment, and cross-referencing).
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Within our proposed framework, LLMs are included solely as supportive modules, functioning as
tools to facilitate the architecture rather than as core research contributions.

LLMs did not participate in designing experiments, analyzing data, deriving theoretical results, or
drawing conclusions. All technical ideas, methods, proofs, experimental protocols, and findings
are authored, validated, and interpreted by the authors. All LLM-assisted edits were reviewed and
approved by the authors to ensure accuracy and faithfulness to the intended meaning.
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