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Abstract

We propose a family of First Hitting Diffusion Models (FHDM), deep generative
models that generate data with a diffusion process that terminates at a random
first hitting time. This yields an extension of the standard fixed-time diffusion
models that terminate at a pre-specified deterministic time. Although standard dif-
fusion models are designed for continuous unconstrained data, FHDM is naturally
designed to learn distributions on continuous as well as a range of discrete and
structure domains.

1 Introduction

Standard diffusion processes used in ML can be classified into two categories: 1) infinite (or mixing)
time diffusion processes such as Langevin dynamics, which requires the process to run sufficiently
long to converge to the invariant distribution, whose property is leveraged for the purpose of learning
and inference; and 2) fixed time diffusion processes such as DDPM, SMLD, and Schrodinger bridges
[De Bortoli et al., 2021], which are designed to output the desirable results at a pre-fixed time.
Although fixed-time diffusion has been show to surpass infinite time diffusion on both speed and
quality, it still yield slow speed for modern applications due to the need of a pre-specified time and the
incapability to adapt the time based on the difficulty of instances and problems. Moreover, standard
diffusion models are naturally designed on Rd, and can not work for discrete and structured data
without special cares.

In this work, we study and explore a different first hitting time diffusion model that terminates at
the first time as it hits a given domain, and leverages the distribution of the exit location (known as
exit distribution, or harmonic measure [Oksendal, 2013]) as a tool for learning and inference. We
provide the basic framework and tools for first hitting diffusion models. We leverage our framework
to develop a general approach for learning deep generative models based on first hitting diffusion.
This approach generalizes SMLD and its SDE extensions but can be attractively applied to a range
of discrete and structured domains. This contrasts with the standard diffusion models, which are
restricted to continuous Rd data. In particular, we instantiate our framework to three cases, yielding
new diffusion models for learning 1) spherical, 2) binary and 3) categorical data.

2 Main Framework

2.1 First Hitting Diffusion Processes

Let Π∗ be a distribution of interest on a domain Ω ⊂ Rd. The goal is to construct a first hitting
stochastic process, which starts from a point outside of Ω and returns a sample drawn from Π∗ when
it first hits set Ω. We start with introducing the new first hitting model.
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Figure 1: The four hitting schemes introduced in this paper. A: fixed-time hit, the process terminates at a fixed
time; B: Sphere hit, hitting the boundary of a sphere from inside; C: Boolean hit, each coordinate terminates
when it hits 0 or 1 and the whole process terminates when all of its coordinates terminate; D: Categorical hit,
hitting the one-hot codes based on a conditioned process.

Let Z := {Zt : t ∈ [0,+∞)} be a continuous-time Markov process with probability law Q taking
value in a set V that contains Ω as a subset. Here Q is a probability measure defined on the space of
all continuous trajectories C([0,+∞), Rd). We use Qt to denote the marginal distribution of Zt at
time t. We assume that the process is initialized from a point Z0 outside of Ω. Denote by τ the first
hitting time of Zt on Ω, that is, τ = inft{t ≥ 0: Zt ∈ Ω}. We call that Zt is absorbing to set Ω if

i) The process enters Ω in finite time almost surely when initialized from anywhere in V , that is,
Q(τ < +∞ | Z0 = z) = 1, ∀z ∈ V .

ii) The process stops to move once it arrives at Ω, that is, Q(Zt+s = Zt | Zt ∈ Ω) = 1, ∀s, t ≥ 0.

We define the Poisson kernel of Q as the conditional distribution of Zτ given Zt = z, denoted
by QΩ(dx | Zt = z) := Q(Zτ = dx | Zt = z). The marginal distribution of Zτ , which we
write as QΩ(dx) = Q(Zτ = dx), is called the exit distribution, or harmonic measure. Note
that QΩ(dx) =

∫
V
QΩ(dx | Z0 = z)Q0(dz). The crux of our framework is to leverage the exit

distribution QΩ as a tool for statistical learning and inference, which is different from traditional
frameworks that exploit the properties of the distributions at a fixed time or at convergence.

Example 2.1 (Sphere Hitting). As shown in Figure 1-B, let V = {x ∈ Rd : ∥x∥ ≤ 1} be the unit
ball and Ω = Sd := ∂V the unit sphere. Let Z be a Brownian motion starting from z ∈ V and
stopped once it hits the boundary Ω. It is written as

QSd : dZt = I(∥Zt∥ < 1)dWt, Z0 ∈ V, (1)

where Wt is a Wiener process; the indicator function I(∥Zt∥ < 1) sets the velocity to zero and hence
stops the process once Zt hits Ω. The Poisson kernel in this case is a textbook result:

QSd

Ω (dx | Zt = z) ∝ 1− ∥z∥2

∥x− z∥d
× µΩ(dz), where µΩ is the surface measure on Ω = Sd. (2)

Example 2.2 (Boolean Hitting). As shown in Figure 1-C, let V = [0, 1]d be the unit cube and
Ω = Bd := {0, 1}d the Boolean cube. Let Z be a Brownian motion starting from Z0 ∈ V and
confined inside the cube V in the following way:

QBd : dZt,i = I(Zt,i ∈ (0, 1))dWt,i, ∀i ∈ {1, 2, · · · , d},

where Zt,i is the i-th element of Z. Here, each coordinate Zt,i stops to move once it hits one of the
end points (0 or 1). It can be viewed as a particle flying in a room that sticks on a wall once it hits it.

Proposition 2.3. The Poisson kernel of QBd is a simple product of Bernoulli distributions:

QBd

Ω (x | Zt = z) = Ber(x|z) :=
d∏

i=1

Ber(xi|zi), where Ber(xi|zi) = xizi + (1− xi)(1− zi);

Ber(xi|zi) is the likelihood function of observing xi ∈ {0, 1} under Bernoulli(zi) with zi ∈ [0, 1].

Example 2.4 (Fixed Time Hitting). Our first hitting framework includes the more standard models
with fixed terminal time. To see this, let Z̄t = (t, Zt) be a stochastic process Zt with law Q augmented
with time t as one of its coordinates. Let V = [0, t]× Rd and Ω = {t} × Rd, where Ω is a vertical
plane on the augmented space. Then the hitting time τ equals t deterministically, and the exit
distribution equals the marginal distribution of Zt at time t. See Figure 1-A, for illustration.
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2.2 Diffusion Process Tools: Conditioning and h-transform

We introduce some basic tools for diffusion processes, including how to conduct conditioning, and
exponential tilting (via h-transform) on diffusion processes. We apply these tools to the first hitting
models we have. The readers can find related background in Oksendal [2013], Särkkä and Solin
[2019].

Assume Z is a general Ito diffusion process in V that is absorbed to Ω, denoted as ItoΩ(b, σ),

Q ∼ ItoΩ(b, σ) : dZt = bt(Zt)dt+ σt(Zt)dWt, ∀t ∈ [0,+∞), Z0 ∼ Q0, (3)

where bt(x) ∈ Rd is the drift term and σt(x) ∈ Rd×d is a positive definite diffusion matrix. We
always assume that b and σ are sufficiently regular to yield a unique weak solution of (3).

Conditioning A step in our work is to find the distribution of the trajectories of a process Q
conditioned on a future event, e.g., the event of hitting a particular value x at exit, that is, {Zτ = x}.
A notable result is that the conditioned diffusion processes are also diffusion processes. Given a point
x ∈ Ω on the exit surface, the process of Q(· | Zτ = x) can be shown to be the law of the following
diffusion process [Doob and Doob, 1984, Särkkä and Solin, 2019]:

Q(·|Zτ = x) : dZt =
(
bt(Zt) + σ2

t (Zt)∇Zt
log qΩ(x | Zt)

)
dt+ σt(Zt)dWt, Z0 ∼ µ0|x, (4)

where qΩ(x | z) is the density function of the Poisson kernel QΩ(dx | Zt = z) w.r.t. a reference
measure µΩ on Ω, and σ2 is the matrix square of σ, and the conditional initial distribution µ0|x =
Q0(· | Zτ = x) is the posterior probability of Z0 given Zτ = x.

Intuitively, the additional drift term ∇Zt
log pΩ(x | Zt) plays the role of steering the process towards

the target x, with an increasing magnitude as Zt approaches Ω (because PΩ(· | Zt = z) converges to
a delta measure centered at x when z approaches Ω). This process is known as a diffusion bridge,
because it is guaranteed to achieve Zτ = x at the first hitting time with probability one.

Proposition 2.5. For QSd , the process conditioned on Zτ = x ∈ Sd at exit is

QSd(· | Zτ = x) : dZt = I(∥Zt∥ < 1)

(
∇Zt

log
1− ∥Zt∥2

∥x− Zt∥d
dt+ dWt

)
. (5)

Here the additional drift term (colored in blue) grows to infinity if ∥Zt∥ → 1 but ∥Zt − x∥ is large,
and hence enforces that Zτ = x when we exit the unit ball.

Proposition 2.6. For QBd , the process conditioned on Zτ = x ∈ {0, 1}d at exit is

QBd(·|Zτ = x) : dZt,i = I(Zt,i ∈ (0, 1))

(
2xi − 1

xizi + (1− xi)(1− zi)
dt+ dWt,i

)
, ∀i. (6)

The additional drift term (colored in blue) enforces that Zτ,i = xi at the exit time as the drift would
be infinite if zi is still far from xi when zi is close to {0, 1}.

Proposition 2.7. For the fixed time diffusion in Example 2.4, let QT be the standard Brownian motion
dZt = dWt stopped at a fixed time t = T , then Q conditioned on QT (Z|ZT = x) is

QT (·|Zτ = x) : dZt = I(t ≤ T )

(
Zt − x

T − t
dt+ dWt

)
. (7)

The additional drift (colored in blue) forces ZT = x as it grows to infinity if Zt ̸= x while t → T .

h-Transform Assume we want to modify the Markov process Z such that its exit distribution QΩ

matches the desirable target distribution Π∗. Doob’s h-transform Doob and Doob [1984] provides
a simple general procedure to do so. Note that by disintegration theorem, we have Q(dZ) =∫
QΩ(dx)Q(dZ | Zτ = x), which factorizes Q into the product of the exit distribution and the

conditional process given a fixed exit location Zτ = x. To modify the exit distribution of Q to Π∗,
we can simply replace QΩ with Π∗ in the disintegration theorem, yielding

QΠ∗
(dZ) :=

∫
Π∗(dx)Q(dZ | Zτ = x) = π∗(Zτ )Q(dZ), with π∗(Zτ ) :=

dΠ∗

dQΩ
(Zτ ), (8)
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where π∗ = dΠ∗

dQΩ
is the Radon–Nikodym derivative (or density ratio) between Π∗ and QΩ, and QΠ∗

is called an h-transform of Q. Intuitively, QΠ∗
is the distribution of trajectories Z ∼ Q(·|Zτ = x)

when the exit location x is randomly drawn from x ∼ Π∗. We can also view π∗(Zτ ) as an importance
score of each trajectory Z based on its terminal state Zτ , and QΠ∗

is obtained by reweighing (or
tilting) the probability of each trajectory based on its score.

If Q is a diffusion process, then QΠ∗
is also a diffusion process. In addition, QΠ∗

is the law of the
following diffusion process:

QΠ∗
: dZt =

(
bt(Zt) + σ2

t (Zt)∇z log h
Π∗

t (Zt)
)
dt+ σt(Zt)dWt, Z0 ∼ QΠ∗

0 (9)

where the initial distribution QΠ∗

0 and hΠ∗
in the drift term are defined as

QΠ∗

0 (dz) =

∫
Ω

π∗(x)Q(Zτ = dx, Z0 = dz) (10)

hΠ∗

t (z) = EQ[π
∗(Zτ ) | Zt = z] =

∫
Ω

π∗(x)Q(Zτ = dx | Zt = z). (11)

It is clear that h coincides with π∗ on the boundary, that is, hπ∗(x, t) = π∗(x) for all x ∈ Ω, t ≥ 0.
The name of h-transform comes from the fact that hΠ∗

is a (space-time) harmonic function w.r.t. Q
in the light of a mean value property: hΠ∗

t (z) = EQ[h
Π∗

t+s(Zt+s) | Zt = z], ∀s, t > 0. QΠ∗
yields a

simple variational representation in terms of Kullback–Leibler (KL) divergence.

2.3 Learning First Hitting Diffusion Models

Assume Π∗ is unknown and we observe it through an i.i.d. sample {x(i)}ni=1 drawn from Π∗. We
want to fit the data with a parametric diffusion process ItoΩ(sθ, σ) in V that is absorbing to Ω,

Pθ : dZt = sθt (Zt)dt+ σt(Zt)dWt, Z0 ∼ Pθ
0, (12)

such that the exit distribution Pθ
Ω matches the unknown Π∗. Here sθt (z) is a deep neural network with

input (z, t) and parameters θ. We should design sθ and σ properly to ensure the absorbing property.

The standard approach to estimate Π∗ is maximum likelihood estimation, which can be viewed as ap-
proximately solving minθ KL(Π∗ || Pθ

Ω). However, calculating the likelihood of the exit distribution
Pθ
Ω of a general general diffusion process is computationally intractable. To address this problem,

we fix Q as a “prior” process, and augment the data distribution Π∗ to the h-transform QΠ∗
, whose

exit distribution QΠ∗

Ω matches Π∗ by definition. Note that we can draw i.i.d. sample from QΠ∗
in a

“backwar” way: first drawing an exit location x ∼ Π∗ from the data, and then draw the trajectory Z
from Q(·|Zτ = x) with the fixed exit point. To train a generative model, we train Pθ to fit it with the
data drawn from QΠ∗

by maximum likelihood estimation:

min
θ

{
L(θ) := KL(QΠ∗

|| Pθ) ≡ −EZ∼QΠ∗
[
log pθ(Z)

]
+ const,

}
,

where pθ = dPθ

dQΠ∗ is Radon–Nikodym density function of Pθ relative to QΠ∗
. By the chain rule of

KL divergence (??), we have KL(Π∗ || Pθ
Ω) ≤ KL(QΠ∗ || Pθ). Therefore, if minimizing the KL

divergence allows us to achieve Pθ ≈ QΠ∗
, we should also have Pθ

Ω ≈ QΠ∗

Ω = Π∗.

Using Girsanov theorem [Liptser and Shiriaev, 1977], we can calculate the density function pθ and
hence the loss function.
Proposition 2.8. Assume Q in (3), and Pθ in (12) are absorbing to Ω. We have

L(θ) = 1

2
EQΠ∗

[∫ τ

0

∥∥σt(Zt)
−1(sθt (Zt)− bt(Zt | Zτ ))

∥∥2 dt− log pθ0(Z0)

]
+ const, (13)

where bt(z|x) := bt(z) + σ2
t (z)∇z log pΩ(x|z) is the drift of the conditioned process Q(·|Zτ = x)

in (4), and pθ0 is the probability density function of the initial distribution Pθ
0. In addition, θ∗ achieves

the global minimum of L(θ) if

sθ
∗

t (z) = EZ∼QΠ∗ [bt(z|Zτ ) | Zt = z], Pθ∗

0 = QΠ∗

0 = Ex∼Π∗ [Qx
0(·)].
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Therefore, the optimal drift term sθ
∗

t should match the conditional expectation of bt(z|x) with
x ∼ QΩ(·|Zt = z), which coincides with the drift of QΠ∗

in (9). The initial distribution of Pθ should
obviously match the initial distribution of QΠ∗

. In practice, we recommend eliminating the need of
estimating Pθ0 by starting Q from a deterministic point Z0 = z0, in which case Pθ should initialize
from the same deterministic point.
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