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ABSTRACT

Vision-Language-Action (VLA) models have shown remarkable achievements,
driven by the rich implicit knowledge of their vision-language components. How-
ever, achieving generalist robotic agents demands precise grounding into physical
interactions, especially in contact-rich scenarios where fine-grained force control
is essential. We advance VLAs’ implicit knowledge beyond identifying what to
do, towards guiding how to physically interact with real world. This paper intro-
duces Tactile-VLA, a novel framework that deeply fuses vision, language, action,
and tactile sensing. This framework incorporates a hybrid position-force con-
troller to translate the model’s intentions into precise physical actions and a rea-
soning module that allows the robot to adapt its strategy based on tactile feedback.
Experiments demonstrate Tactile-VLA’s effectiveness and generalizability in three
key aspects: (1) enabling tactile-aware instruction following, (2) utilizing tactile-
relevant commonsense, and (3) facilitating adaptive tactile-involved reasoning. A
key finding is that the VLM’s prior knowledge already contains semantic under-
standing of physical interaction; by connecting it to the robot’s tactile sensors
with only a few demonstrations, we can activate this prior knowledge to achieve
zero-shot generalization in contact-rich tasks.

(a). Tactile-Aware Instruction 
Following 

Learned Skill
Applying low force for 

"insert USB gently"

Generalized Skill
Applying high force for "pull 

out charger hard"

(b). Utilizing Tactile-Relevant 
Common Sense

Known Object
Applying firm grip force for 

a heavy iron ball.

Unseen Object
Applying gentle grip force 

for a fragile pitaya.

(c). Adaptive Tactile-Involved 
Reasoning

Corrective Action
Increasing downward pressure based 
on reasoning for a successful wipe

Initial Failure
Wipe fails due to insufficient 

downward pressure in a new scenario.

Figure 1: Key capabilities of Tactile-VLA. (a) Generalizing language-based force control: It applies
force modifiers (e.g., ‘gently’) learned from one task to a new task for which it only learned the
motion. (b) Applying implicit common sense: The model automatically uses appropriate firm or
gentle grasps for unseen objects without explicit force commands. (c) Reasoning to overcome fail-
ure: It generalizes reasoning learned from wiping marker ink to autonomously increase force and
erase stubborn chalk from a blackboard after an initial failed attempt.
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1 INTRODUCTION

The development of generalist robotic agents—systems capable of understanding and executing a
wide variety of tasks in unstructured environments—has been greatly accelerated by the rise of
Vision-Language-Action (VLA) models (Brohan et al., 2022; Zitkovich et al., 2023; Black et al.,
2024; Pertsch et al., 2025; Wen et al., 2025). These models leverage pretrained vision-language
backbones to interpret abstract instructions and demonstrate impressive generalization abilities
across tasks, modalities, and environments. However, while current VLAs excel at high-level rea-
soning and planning, they often fall short when it comes to grounding their decisions in the fine-
grained physical realities of the world, particularly in contact-rich settings where precise force con-
trol is critical (Hao et al., 2025; Xue et al., 2025).

A key missing piece in this pursuit is tactile perception. Unlike vision and language, which offer
high-level semantic information, tactile sensing provides rich, local, and temporally dynamic feed-
back about physical interactions—information essential for tasks involving friction, compliance, or
material sensitivity (Spelmezan et al., 2009; Sinico et al., 2025). Although some recent efforts have
incorporated haptics into robotic frameworks (Pattabiraman et al.; Jones et al., 2025; Yu et al., 2025),
haptics is often treated merely as a supplementary perceptual modality, without direct involvement
in the policy’s action generation.

In this paper, we propose Tactile-VLA, a novel method and framework for deeply fusing vision, lan-
guage, action, and haptics for accomplishing contact-rich manipulation tasks. Moving beyond the
current paradigm, Tactile-VLA harnesses the implicit knowledge within vision-language models not
just for planning (Yang et al.; Wang et al., 2024; Mei et al., 2024; Hu et al.), but for directly guiding
physical interaction at the force control level. This is realized through a hybrid position-force con-
troller that translates the model’s learned force targets into precise physical actions, ensuring stability
and compliance during contact. This enables a more integrated and intelligent use of language to
regulate how actions are performed (e.g. “pick up the apple softly”), not just which actions are cho-
sen (e.g., “pick up the apple”). This fusion of language and haptics supports the emergence of more
physically grounded and generalizable robot behaviors. As illustrated in Figure 1, our experiments
demonstrate the benefits of this deeper integration across three dimensions: Tactile-Aware Instruc-
tion Following, which enables robots to learn the meaning of force-related language, such as adverbs
like “softly” or “hard”, allowing the robot to bridge the gap between abstract intent and physical exe-
cution, even in zero-shot scenarios; Tactile-Relevant Common Sense, which allows robots to apply
world knowledge and semantic reasoning to adjust their contact behavior based on object properties
and contextual cues; and Tactile-Involved Reasoning, which facilitates feedback-driven control ad-
justments and autonomous replanning. This is achieved through a Chain-of-Thought (CoT) process
where the model reasons over tactile feedback to diagnose failures and formulate corrective actions,
especially in the face of novel scenarios or failure cases.

Through Tactile-VLA, we take a step toward tactile-aware generalist agents capable of not only
understanding task objectives with semantic intent but also executing them physically with nuanced
control and robustness. Overall, our main contributions are threefold:

• We propose Tactile-VLA, a novel framework that introduces tactile sensing into VLA mod-
els, significantly enhancing semantic grounding and enabling more precise and physically-
aware force control in contact-rich tasks.

• We introduce Tactile-VLA-CoT, a reasoning-augmented variant that leverages chain-of-
thought style interpretation of real-time force feedback to handle task failures and uncer-
tainties, guiding the robot to adaptively replan and adjust its actions during execution.

• We demonstrate that Tactile-VLA achieves strong generalization in contact-rich tasks
across zero-shot, cross-object, and force-sensitive settings, outperforming standard VLA
baselines.

2 TACTILE-VLA METHODOLOGY

Tactile-VLA is designed for the fusion of vision, language, haptics, and action modalities to enable
more precise and tactile-aware robot manipulation, particularly in contact-rich tasks. This section
breaks down the key aspects of the Tactile-VLA framework. We begin by detailing the architecture
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Pretrained VLM

Gemma (2.6B)

Image Instruction

This whiteboard hasn’t 
been cleaned for a long 
time. Please clean the 
board hard.

Tactile Signal Proprioceptive State

Tactile-Aware 
Action Expert

(300M)

ViT Tokenizer Encoder Encoder z

x
y

Hybrid Controller

Tactile-VLA-CoT 

Figure 2: Overview of the Tactile-VLA architecture. Vision, language, tactile, and proprioceptive
inputs are separately encoded and fused via a pre-trained Vision-Language Model. The tactile-aware
action expert generates target position and force, enabling natural language-guided force control by
a hybrid controller and adaptive reasoning in contact-rich manipulation. The dashed block illustrates
a CoT-augmented variant, where Chain-of-Thought reasoning enables adaptive motion adjustments
based on environmental feedback to handle complex tasks.

and learning process of the policy (Sec. 2.1), followed by the hybrid controller that executes its
commands (Sec. 2.2). Then we introduce the CoT-based variant for adaptive reasoning (Sec. 2.3),
and conclude with the data collection process that enables the system to learn (Sec. 2.4).

2.1 POLICY ARCHITECTURE AND LEARNING

The core design objective of Tactile-VLA is to unlock the physical knowledge inherent in Vision-
Language-Action (VLA) models, translating their abstract understanding of interaction into precise,
real-world force control. This capability is essential for differentiating commands that share the
same motion but differ in force, such as “insert the USB firmly” versus “insert the USB gently”.
Our model achieves this by creating a direct mapping from multimodal sensory inputs to force-
aware action outputs, trained end-to-end with a flow matching objective.

Our architecture employs a token-level fusion approach, deeply integrating multimodal informa-
tion within the input prefix to the transformer backbone. This design is critical for the advanced
reasoning capabilities of Tactile-VLA, particularly for the Chain-of-Thought (CoT) process in the
Tactile-VLA-CoT variant (Sec. 2.3). To achieve this, we introduce encoders tailored to the char-
acteristics of each modality. For visual information, we use a pretrained Vision Transformer (ViT)
encoder (Dosovitskiy et al., 2020) (E′

vis), similar to π0 (Black et al., 2024), to encode the last H
frames into a sequence of distinct token sets. For tactile signals, a simple MLP serves as the en-
coder E′

ψ , which processes the concatenated history of H tactile measurements into a single fused
token representing the interaction’s temporal dynamics. These resulting visual, tactile, and language
tokens are then concatenated to form the unified input prefix sequence St:

St = [E′
vis(It−H+1), . . . , E

′
vis(It), Elang(Lt), E

′
ψ([Tt−H+1, . . . , Tt])] (1)

where Elang is a common language tokenizer. St is then processed by the model’s Transformer trunk.
A non-causal attention mechanism over this prefix allows the vision, language, and tactile tokens to
cross-attend freely, creating a deeply integrated and contextual representation.

This rich representation forms the basis for generating force-aware actions. The prefix is then fed
to the tactile-aware action expert, which outputs an augmented action vector at that explicitly
specifies the target position Ptarget and the target contact force Ftarget. These targets are provided
by the expert demonstrations used for imitation learning. By including force directly in the action
space, the model can learn to control the intensity of physical interaction.

The model learns this complex mapping through end-to-end finetuning via imitation learning. The
process starts by initializing shared components with pre-trained parameters from π0 (Black et al.,
2024), a generalist vision-language-action policy. In contrast, newly introduced modules, such as
the tactile encoder and the modified action expert, are randomly initialized. The entire model is then
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finetuned by employing a Conditional Flow Matching (CFM) objective, where the loss function pe-
nalizes deviations in both the kinematic and force dimensions of the predicted action sequence. This
learning mechanism is what compels the model to leverage the VLM’s latent physical knowledge,
ultimately creating a direct mapping between linguistic nuances (e.g., “gently”) and their corre-
sponding physical force magnitudes (e.g., 0.5N ).

2.2 HYBRID POSITION-FORCE CONTROLLER

Once the tactile-aware action expert determines the target position and target force, a low-level con-
troller is required to balance these two distinct objectives. Our strategy is position-dominant and ulti-
mately realized through position commands, acknowledging that most manipulation tasks are domi-
nated by precise kinematic motion, with force control required merely during contact phases (Raibert
& Craig, 1981). To integrate force objectives, we adopt an indirect force control method inspired
by impedance control principles (Hogan, 1985). This involves translating force targets into adaptive
adjustments of the position command.

Q: Has the board been cleaned up?
A: Nope. There still remains some 
markings.
Q: What should I do next?
A: Shear force should be larger, 
while normal force is sufficient.

Human: “Clean the blackboard.”

Figure 3: The working pro-
cess of Tactile-VLA-CoT on
Wiping the Board task.

However, unlike classic impedance control which aims for passive
compliance, our objective is the active tracking of a target force.
The controller measures the force error ∆F = Ftarget − Fmeasured,
which is used to compute a corrective positional adjustment only
when its magnitude ∥∆F∥ exceeds a predefined threshold τ to en-
hance operational smoothness:

Phybird = Ptarget +

{
K ·∆F if ∥∆F∥ > τ

0 if ∥∆F∥ ≤ τ
(2)

where K is a gain matrix. A Proportional-Integral-
Derivative (Willis, 1999) controller then actuates the robot’s
joints to the dynamically updated Phybird. Specifically, we decouple
the control of two distinct force components: the net external force
and the internal grasping force. The key principle of this separation
is to establish two independent control channels. The gripper’s
Cartesian position is used to exclusively regulate the net external
force applied to an object, while the gripper width is used in parallel to control the internal grasping
force, thus dictating how firmly the object is held.

2.3 TACTILE-VLA-COT: REASONING-BASED ADAPTATION

While the core Tactile-VLA architecture provides fine-grained force control, leveraging its inherent
reasoning capabilities is key to further unlocking VLM’s potential for robust adaptation (Stone et al.;
Huang et al., 2023; Shi et al., 2024; Belkhale et al., 2024). To this end, we propose Tactile-VLA-CoT,
a variant that integrates Chain-of-Thought (CoT) to activate and utilize the VLM’s latent reasoning
skills (Wei et al., 2022; Chen et al., 2024; Zhang et al., 2024; Lin et al., 2025). In this variant,
force and tactile feedback are treated as more than just policy inputs; they become crucial cues for
adaptive reasoning and re-planning.

The CoT process is realized by using VLM’s own pretrained decoder to generate an explicit inter-
nal monologue. This monologue allows the model to reason about the cause of a failure, such as
an unexpected slip, and formulate a corrective action. To enable this, we finetune the model with
a small, targeted dataset of demonstrations. Each sample in this dataset captures a specific failure
event (e.g., wiping a blackboard with slippage) and pairs the multimodal sensory stream with a lan-
guage annotation analyzing the failure’s cause. This training serves a dual purpose: first, it preserves
the VLM’s general reasoning abilities, mitigating catastrophic forgetting during finetuning. More
importantly, it extends this reasoning to the tactile modality, teaching the model to infer physical
phenomena from sensor signals, such as detecting insufficient downward pressure when wiping or
tool slippage from shear force signals.

In practice, this CoT reasoning is triggered at fixed intervals. This simple and effective approach
allows the model to periodically review its progress. The prompt structure first requires the model to
determine if the task was successfully done. If deemed a failure, the model is prompted to analyze
the underlying causes using the sensory feedback, as shown in Figure 3. The resulting reasoning
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output explicitly analyzes different force components (e.g., “grasping force is sufficient, but normal
force is too low”) and then formulates a new, corrective instruction to guide the next attempt, for
example, generating “wipe the board again, but apply more downward force.” This process enhances
the system’s ability to handle complex scenarios by making the adaptation process explicit and
grounded in physical interaction.

2.4 DATA COLLECTION

Go Pro Camera

Tactile Sensor

3D Printed Gripper  

Figure 4: Data collection setup

Accurate and semantically aligned tactile data is critical for
training agents in contact-rich scenarios. Conventional teleop-
eration is insufficient for this purpose, as the human operator
typically lacks direct force feedback. A policy collected this
way would inherently not depend on tactile information, ren-
dering it unsuited to the learning objective. To address this,
we constructed a specialized data collection setup by building
upon the Universal Manipulation Interface (UMI) (Chi et al.,
2024), a portable, handheld device. We augmented the UMI
gripper with dual high-resolution tactile sensors, capable of
capturing both normal and shear forces, allowing operators to
directly sense contact dynamics and provide demonstrations
that are explicitly guided by force. Details of temporal syn-
chronization and so on are illustrated in Appendix D.

3 EXPERIMENT

In this section, we investigate the effectiveness of our proposed Tactile-VLA model on different
tasks. Specifically, we conduct experiments on several contact-rich manipulation scenarios, which
require multi-modal perception including vision, language, and haptics. The goal of our experiments
is to answer three research questions: RQ1: How effectively can Tactile-VLA interpret and general-
ize abstract, force-related language commands across different contact-rich tasks? (Sec. 3.2) RQ2:
To what degree can the model leverage the VLM’s inherent common-sense knowledge to infer and
apply appropriate interaction forces for unfamiliar objects? (Sec. 3.3) RQ3: Does the integration
of tactile feedback enable the model to reason about physical failures and autonomously adapt its
force-based strategy to ensure task success? (Sec. 3.4)

3.1 IMPLEMENTATION DETAILS

Baselines. To answer the above questions, we compare the following baseline methods and ab-
lation methods with the proposed Tactile-VLA on various tasks: π0-base, a Vision-Language-
Action flow model for general robot control; π0-fast, a variant of π0-base; Tactile-VLA,
our method; and Tactile-VLA-CoT, a variant of Tactile-VLA with a CoT reasoning process.

Tasks and Data Collections. We mainly focus on three contact-rich manipulation tasks, as visu-
alized in Figure 5 and Figure 7: Charger/USB Insertion and Extraction, Tabletop Grasping, and
Wiping the Board. In Charger/USB Insertion and Extraction, the robot must pull out a charger
or USB and plug it into the correct socket. For the training data, we collected 100 demonstrations
each for “soft” and “hard” USB manipulations, and another 100 demonstrations for the charger task
to learn the basic motion. In Tabletop Grasping, the robot is required to grasp various objects with
an appropriate force, judging in advance whether they are heavy or fragile. This task was trained
using 50 demonstrations for each object. Six objects visualized in Figure 5 could be seen in the
training phase, while an additional six unseen objects are introduced for evaluation. In the Wiping
the Board task, the robot is expected to wipe a board with a default force, evaluate the result, and
then adjust the force as needed. To enable this reasoning, the training data consists of 100 success-
ful and 100 failed wiping demonstrations on a whiteboard, while the model has never encountered
wiping on a blackboard during training.

5
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WoodIron cubeBattery

Piyata Melon

Charger

Solid & Heavy

Solid & Light

Fragile & Light

(a) (b)

Figure 5: (a) The charger insertion and extraction task. (b) A selection of objects for the tabletop
grasping task, only including in-domain (ID) items, categorized by their physical properties.

3.2 TACTILE-RELEVANT INSTRUCTION FOLLOWING

This experiment is designed to evaluate a core hypothesis of our work: whether Tactile-VLA
can learn a generalizable understanding of force-related adverbs (e.g., “softly”, “hard”) from one
task and apply that semantic knowledge to a different, unseen task. Specifically, we investigate
if the model, after being trained to associate “softly” and “hard” with specific force profiles in a
USB insertion task (Task A), can successfully transfer this understanding to a charger insertion task
(Task B) for which it has only learned the motion but received no corresponding linguistic force
commands. This tests for true semantic grounding, where language directly modulates physical
interaction in a zero-shot context.

We define two distinct but kinematically similar contact-rich tasks, which are visualized in Fig-
ure 5(a):

• Task A (USB Insertion and Extraction): The robot is trained on demonstrations of
pulling out a USB cable and re-inserting it into another socket. The training data for this
task is augmented with explicit, force-related natural language instructions, such as, “pull
out and insert the USB softly into the left socket”.

• Task B (Charger Insertion and Extraction): The robot learns to pull out a power charger
and plug it into a power strip. Crucially, the expert demonstrations for this task contain
only the kinematic motions; no language instructions related to force (“softly”/“hard”) are
provided during its training phase.

We compare the performance of our Tactile-VLA against two baselines, π0 and π0-fast, which
lack our tactile-fusion architecture. Evaluation is based on two key metrics: (1) Success Rate (%)
for both tasks to measure overall robustness and precision, and (2) Applied Insertion Force (N) to
quantify how the models interpret adverbial commands during the charger insertion task, for which
they were not explicitly trained.

Table 1: Success rates on USB/Charger in-
sertion and extraction tasks.

Model USB (%) Charger (%)

π0-base 5 40
π0-fast 0 25
Tactile-VLA 35 90

Results and Analysis. Our results, presented in Ta-
ble 1 and Table 2, demonstrate Tactile-VLA’s su-
perior performance and generalization capability. As
shown in Table 1, Tactile-VLA achieves a signif-
icantly higher success rate than both baselines across
the two tasks. We attribute this to the deep fusion
of tactile feedback, which allows for more precise
and adaptive control during the critical contact-rich
phases of insertion, reducing failures from misalign-
ment or excessive force.

More importantly, Table 2 provides direct evidence for rich semantic generalization. For the learned
task, our model correctly applied distinct forces corresponding to the explicitly trained words
“softly” (0.51N) and “hard” (2.57N). It also successfully generalized within the same task to a
spectrum of unseen but related adverbs, correctly inferring intermediate forces for commands like
“gently” (0.75N) and “firmly” (1.98N).
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Table 2: Applied force (N) under different instructions.

Model
Learned Task (USB) Generalized Task (Charger)

Learned Words Generalized Words Zero-shot

‘softly’ ‘hard’ ‘gently’ ‘firmly’ ‘rigidly’ ‘harder’ ‘softly’ ‘hard’

π0 2.41 2.68 2.35 2.72 2.53 2.29 6.61 5.69
π0-fast 2.61 2.33 2.79 2.45 2.26 2.58 7.37 6.42
Tactile-VLA 0.51 2.57 0.75 1.98 2.42 2.94 4.68 9.13

Even more impressively, the model demonstrated an ability to extrapolate beyond the bounds of
its training data, applying 2.94N for the novel command “harder”—a force greater than that for the
trained “hard” command. This understanding was effectively transferred in the zero-shot generalized
task, where our model applied a strong 9.13N force for ‘hard’ and a significantly lower 4.68N for
‘softly’. This demonstrates a learned, generalizable, cross-modal understanding of force-related
language. In stark contrast, the π0-base and π0-fast baselines, lacking the mechanism to ground
this language in physical force, failed to differentiate their applied force; as shown in the table, their
force application shows no correlation with the adverbial commands across all conditions. This
highlights our model’s ability to bridge the gap between abstract language and nuanced physical
execution, a key advancement for creating more intelligent and versatile robotic agents.

3.3 TACTILE-RELEVANT COMMON SENSE

In real-world manipulation tasks, robots must exhibit the ability to generalize prior knowledge across
modalities. In particular, the integration of prior knowledge from a VLM into haptic signals is
critical for effective manipulation. For instance, the robot must adapt its grasp by reasoning about
an object’s properties, applying different magnitudes of force for distinct categories: a firm force for
Solid & Heavy objects, a moderate force for Solid & Light objects, and a gentle force for Fragile
& Light objects to prevent damage. This capacity to adapt the applied force based on prior visual
and contextual knowledge is essential for performing a variety of manipulation tasks effectively.

Table 3: Success rates (%) for grasping various objects without causing deformation. The models
are evaluated on in-domain (ID) and out-of-domain (OOD) objects, with training primarily focused
on medium-stiffness items. Rates are calculated from 10 trials per object.

Model Solid & Heavy Objects Solid & Light Objects Fragile & Light Objects

ID OOD ID OOD ID OOD
Iron cube Battery Nail Steel Ball Wood block Charger Plastic Toy Pitaya Melon BlueBerry PaperBox

π0-base 100 80 30 60 60 70 40 30 50 0 0 0
π0-fast 70 60 10 70 70 50 30 40 40 10 0 0

Tactile-VLA 100 90 100 90 90 100 80 90 90 80 100 90

During training, the robot learns the appropriate grasping force for each object category. A selec-
tion of these in-domain objects, categorized by their properties, is shown in Figure 5(b). A grasp
is considered successful if the object is securely lifted in a single attempt without observable de-
formation. Notably, even within these more specific categories, the precise force required may still
vary between individual objects. Once the robot has learned the grasping forces for these objects,
we proceed with evaluations on both in-domain and out-of-domain objects. These evaluations test
the robot’s ability to generalize across a range of object types not encountered during training.

Results and Analysis. The results demonstrate that Tactile-VLA successfully learns the haptic
information corresponding to in-domain objects, while also exhibiting strong generalization to out-
of-domain objects. As shown in Table 3, our model achieves substantially higher success rates
in grasping both in-domain and out-of-domain objects compared to baselines, especially for fragile
items where it succeeds without causing damage. Furthermore, Figure 6 shows that Tactile-VLA
correctly infers the appropriate interaction force, applying hard, medium, or soft grasps to heavy,
light, and fragile objects respectively, even for those it has never seen before. This finding provides
compelling evidence that our model successfully transfers knowledge from the VLM to the tactile
modality, endowing the robot with strong generalization capabilities. Rather than merely fitting to
training data, the model appears to leverage prior knowledge to handle a broader range of scenarios,
demonstrating its potential for real-world applications in contact-rich manipulation tasks.
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Figure 6: Applied grasping force for various objects, categorized by hardness and whether they are
in-domain (ID) or out-of-domain (OOD). Each bar represents the mean applied force over 5 trials,
with error bars indicating the standard deviation.

(a) (b) (c)

Figure 7: Generalizing Wiping Strategies through Tactile-Involved Reasoning. (a) The model is first
trained to wipe marker ink from a whiteboard. (b) In a zero-shot transfer to a novel blackboard task,
this initial policy fails as the applied force is too low for chalk. (c) By reasoning over the physical
feedback of the failure, the model adapts its strategy, increases the applied force, and successfully
completes the task.

3.4 TACTILE-INVOLVED REASONING

To validate our model’s capacity for adaptive reasoning, we designed an experiment to specifically
test its ability to interpret physical feedback and autonomously adjust its strategy. This moves be-
yond merely following instructions to demonstrating an understanding of task success or failure
through tactile interaction, a key claim of our work. We investigate whether Tactile-VLA-CoT
can generalize a learned reasoning process from a familiar task (wiping a whiteboard) to a novel,
physically distinct scenario (wiping a blackboard), which requires a different level of force, as illus-
trated in Figure 7.

The experiment is centered on a “Wipe the Board” task, structured to assess adaptive reasoning.
In the training phase, data is collected on a whiteboard. This dataset contains a mix of successful
demonstrations and various failure cases. For instance, some demonstrations feature insufficient
force, failing to erase the marker. These failure cases are paired with supervisory text that artic-
ulates a corrective thought process (e.g., “The force was too light. A stronger force is needed.
Now trying with 5N.”) to train the reasoning module of Tactile-VLA-CoT. Successful demon-
strations using higher, appropriate forces are also included, reinforcing the connection between the
correct force and task success. Subsequently, in a zero-shot generalization test, the robot is pre-
sented with a blackboard—a novel object whose chalk markings require significantly more force to
erase. The robot is instructed simply to “Wipe the board.” After an initial attempt with a default
force proves insufficient, the Tactile-VLA-CoT model is expected to autonomously trigger its
Chain-of-Thought reasoning as shown in Figure 3. This allows it to analyze the tactile feedback and
adapt its action plan by increasing the applied force, without any prior training on blackboards.

Results and Analysis. As shown in Table 4, our results show that Tactile-VLA-CoT
successfully generalizes its reasoning capabilities to the novel blackboard task. In the
zero-shot test, the robot initially attempted to wipe the chalk with a default force of
3.5 N, which failed. Recognizing the lack of progress from physical feedback, the
CoT module generated a chain of reasoning concluding that greater force was required.
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Table 4: Success rate over ID and OOD scenarios.

Type In Domain
(Whiteboard)

Out of Domain
(Blackboard)

π0-base 40 0
π0-fast 45 0

Tactile-VLA 80 15
Tactile-VLA-CoT 75 80

Subsequently, the model autonomously in-
creased the applied force to 6.7 N—a level 34%
greater than the 5 N force associated with the
attempts in the whiteboard training data. This
adaptation was sufficient to successfully erase
the chalk mark. On the original whiteboard
task, Tactile-VLA achieved a high success
rate, significantly outperforming the baseline
VLA. In the more challenging zero-shot black-
board scenario, the distinction was stark: our model succeeded through reasoning-based force adap-
tation, whereas the baseline model failed completely. Although the baseline could replicate the
wiping motion, it lacked the mechanism to interpret the tactile failure and could not increase its
force, repeatedly executing the same ineffective, low-force action. This highlights the critical role of
tactile-centered reasoning in achieving robust and generalizable manipulation in contact-rich tasks.

4 RELATED WORK

Vision-Language-Action (VLA) Models. The advent of large-scale VLA models has transformed
robot manipulation. Influential works such as RT-1 (Brohan et al., 2022), RT-2 (Zitkovich et al.,
2023), Octo (Team et al., 2024), π0 (Black et al., 2024), VIMA (Jiang et al.), PALM-E (Driess et al.,
2023), OpenVLA (Kim et al.), and Gato (Reed et al.) have demonstrated unprecedented generaliza-
tion by mapping vision and language inputs to action sequences. While effective, VLAs that rely
mainly on visual feedback face limitations in contact-rich tasks where vision can be occluded or
ambiguous. Recent work thus explores integrating tactile and force sensing into the VLA paradigm,
with examples including concurrent works like FuSe (Jones et al., 2025), ForceVLA (Yu et al.,
2025), and other vision-tactile-language policies (Lin et al., 2024; Huang et al.). Unlike concur-
rent works that focus on finetuning with auxiliary losses (Jones et al., 2025) or modality-specific
routing (Yu et al., 2025), Tactile-VLA’s primary contribution is demonstrating that a VLM’s latent
space already contains a rich, semantic understanding of physical interaction; by directly connecting
this to tactile sensors with only a few demonstrations, we unlock this prior knowledge to achieve
zero-shot generalization in contact-rich tasks.

Tactile Integration in Robot Policies. Beyond the VLA paradigm, extensive research has explored
integrating tactile signals into robot policies. The technical strategies are diverse, ranging from
classic control methods to modern learning-based policies for tasks like grasping (Calandra et al.,
2018; Polic et al., 2019), insertion (Dong et al., 2021; Ma et al., 2019), in-hand manipulation (She
et al., 2021; Qi et al., 2023), fabric handling (Sunil et al., 2023), and tool use (Wang et al., 2021).
These efforts have produced a variety of effective, specialized policies. Among learning-based
approaches, strategies such as hierarchical architectures that decouple planning and control (Xue
et al., 2025), reinforcement learning with shaped rewards (Schoettler et al., 2020), force-centric
imitation learning (Liu et al., 2024), and end-to-end visuo-tactile policies (Yu et al.) have been
developed. While these specialized policies perform well on their target tasks, the lack of language
limits their ability to follow novel instructions, reason about abstract goals, or use commonsense.
Our work aims to combine the physical precision of these tactile-informed policies with the semantic
flexibility and broad world knowledge of modern VLAs.

5 CONCLUSION

This paper introduced Tactile-VLA, a framework built on the fundamental finding that Vision-
Language-Action models (VLMs) possess a latent, semantic understanding of physical interaction
that can be unlocked for complex, contact-rich tasks. Our core contribution is an architecture that
deeply fuses tactile sensing as a native modality, creating the essential bridge between the VLM’s
abstract knowledge and the dynamics of physical force. By connecting the VLM to tactile sen-
sors with only a few demonstrations, we have shown it is possible to unlock this powerful prior
knowledge to achieve zero-shot generalization in tasks requiring nuanced physical interaction.
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A TASKS AND EVALUATIONS

Charger/USB insertion and extraction. In this task, the robot is required to remove a USB con-
nector or a charger from its original socket and subsequently insert it into the correct one. We define
task success only when the robot fully completes the entire sequence of actions and applies suffi-
cient force to ensure the plug is firmly seated in the socket; otherwise, the attempt is considered a
failure. Compared to the two-pronged charger, the USB connector has a smaller aperture and a more
constrained tolerance margin, resulting in a relatively lower success rate.

Tabletop Grasping. In this task, the robot receives images of various objects along with textual
prompts, and is required to apply different levels of grasping force to lift the objects from the table
and place them into a red tray whose location is randomly determined. For each object, the robot
must first identify its position and then grasp it with precision. Soft objects must not be deformed
during the process, whereas denser objects require sufficient force to ensure a stable grasp. Task suc-
cess is defined strictly as placing the object securely into the tray; any deviation from this outcome
is considered a failure.

Wiping the Board. In this task, the robot is required to grasp a blackboard eraser with sufficient
normal and tangential force, and then drag it to erase the writing on the board. The primary challenge
lies not only in the successful execution of the wiping action itself, but also in the robot’s ability to
assess task success in real time, in order to decide whether additional wiping is necessary and how
the applied force should be adjusted. The task is considered successful only if, upon completion
of the wiping motion, all writing on the blackboard has been removed, the eraser is returned to
its original position, and no excessive redundant attempts have been made. Otherwise, the task is
regarded as a failure.

B HARDWARE SETUP

Our primary platform is a single 7-DoF Franka arm equipped with a Weiss WSG-50 parallel-jaw
gripper. A wrist-mounted GoPro camera with fisheye lens provides wide-angle observations. The
arm is mounted on a custom height-adjustable table that can be pushed by a person—while not
autonomous, this mobility allows us to evaluate the policy beyond traditional laboratory environ-
ments. The action space is 7-dimensional (6-DoF end-effector pose plus gripper width). Expert
demonstrations for this platform are collected using UMI described in Section 2.4.

Figure 8: Failure in Tabletop Grasping task.

C FAILURE CASES

Despite the promising performance of Tactile VLA, it still makes mistakes under certain circum-
stances. As shown in the Figure 8, under adverse lighting conditions the robot may fail to accurately
localize the target object, thereby being unable to successfully complete the pick-and-place task.
Similarly, for tasks requiring fine-grained manipulation, such as USB insertion, although Tactile
VLA achieves a substantially higher success rate than the baselines, it remains limited to only 35%.
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In most cases, the robot struggles to perform mid-air alignment and insertion into the correct socket,
ultimately resulting in task failure. We firmly believe that training Tactile VLA on a larger-scale
robotic dataset will yield significantly higher success rates across these challenging tasks.

D DATA COLLECTION SETUP

For our tactile-aware UMI, we carefully considered the problem of temporal synchronization. Be-
fore each collection session, we align the timestamps across all data streams. During collection,
we capture 100Hz tactile feedback and 20Hz visual data, then subsequently down-sample the high-
frequency tactile signals to match them with their corresponding visual frames. The resulting VLA-
T training dataset contains precisely synchronized multimodal information from vision, language,
tactile sensing, and action trajectories.
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