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ABSTRACT

Diffusion models have shown promise in forecasting future data from multivariate
time series. However, few existing methods account for recurring structures, or
patterns, that appear within the data. We present Pattern-Guided Diffusion Models
(PGDM), which leverage inherent patterns within temporal data for forecasting
future time steps. PGDM first extracts patterns using archetypal analysis and
estimates the most likely next pattern in the sequence. By guiding predictions with
this pattern estimate, PGDM makes more realistic predictions that fit within the set
of known patterns. We additionally introduce a novel uncertainty quantification
technique based on archetypal analysis, and we dynamically scale the guidance
level based on the pattern estimate uncertainty. We apply our method to two
well-motivated forecasting applications, predicting visual field measurements and
motion capture frames. On both, we show that pattern guidance reduces PGDM’s
prediction error by up to 40.67% and 11.10%, respectively. Compared to baselines,
PGDM also achieves lower error by up to 65.58% and 82.54%.

1 INTRODUCTION

Diffusion models are a class of generative models that perform generation by iteratively removing
noise from a noisy sample. These models are easier to train and generate higher quality images
compared to the previous state-of-the-art, generative adversarial networks (Dhariwal & Nichol,
2021). Recent work has found success in using diffusion models to forecast future steps of temporal
data (Chang et al., 2024; Feng et al., 2024; Gu et al., 2022; Hu et al., 2024; Li et al., 2022; Lv et al.,
2024; Rasul et al., 2021; Wen et al., 2023). Such methods, however, rarely leverage the recurring
structures that often manifest in temporal data. These appear, for example, in medical modalities
due to the physiology and anatomy of the human body. Basketball videos also contain repeated
structures due to standardized courts, player positions, and strategies. The few diffusion-based
forecasters that exploit these patterns often overlook changes over time and uncertainties in pattern
representation (Wang et al., 2024; Westny et al., 2024; Zhao et al., 2024).

In this paper, we present Pattern-Guided Diffusion Models (PGDM) for forecasting temporal data
with inherent patterns. Using archetypal analysis (Cutler & Breiman, 1994), we extract patterns
from training data, then train a guidance function to predict future pattern contributions to the data.
PGDM then forecasts future points guided by these predictions. To handle evolving patterns, we
introduce a novel uncertainty metric that dynamically tunes the scale of pattern guidance.

We evaluate PGDM on two impactful applications. First, we consider the clinical application of
visual field prediction. Visual field tests measure a patient’s functional vision, and the resulting
measurements manifeset common patterns across patients due to the anatomy of the eye. Furthermore,
forecasting future visual field measurements can serve as a decision aid for clinicians. On a real-world
visual field dataset, we find that pattern guidance reduces the error of PGDM predictions by up
to 40.67% on average. Furthermore, PGDM achieves up to 65.58% lower error on average compared
to baseline models. Next, we consider the application of forecasting future motion capture frames for
human motion prediction. Pose patterns frequently appear in common human movements, such as
walking and running. Predicting human motion may aid advancements in human robot collaboration
and autonomous driving. On motion capture frames for a variety of dance genres, we show that
PGDM is able to leverage even the diverse, highly dynamic patterns that present in dance motion.
Pattern guidance reduces the error of PGDM predictions by up to 11.10% on average, allowing
PGDM to surpass baselines by up to 82.54% on average.

In summary, our contributions are as follows.
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1. We present Pattern-Guided Diffusion Models (PGDM), which leverage inherent patterns
within temporal data.

2. We introduce a novel uncertainty quantification method based on archetypal analysis, and
we show that this uncertainty metric captures geometric distance from the training set.

3. We show that the proposed uncertainty quantification metric approximately lower bounds
the error of the pattern predictions that guide PGDM.

4. We propose a method to dynamically tune the level of pattern guidance based on the proposed
uncertainty metric.

2 RELATED WORKS

Diffusion models have been widely applied to temporal forecasting across many modalities and
applications. TimeGrad (Rasul et al., 2021) and LDT (Feng et al., 2024) forecast multivariate time
series conditioning on historical data, while BVAE (Li et al., 2022) uses a bi-directional VAE for the
reverse diffusion process. Models like USTD (Hu et al., 2024) and DiffSTG (Wen et al., 2023) focus
on spatio-temporal graphs, capturing spatial dependencies. Other applications include pedestrian
trajectory (Lv et al., 2024; Gu et al., 2022) and medical sensor signal prediction (Chang et al., 2024).
For a comprehensive overview, see Yang et al. (2024).

Few such diffusion-based forecasters attempt to leverage patterns within the data. Hypothesizing
that past patterns tend to reappear later, Diff-MGR (Zhao et al., 2024) conditions predictions on
previous patterns. Westny et al. (2024) also proposed to guide predictions of traffic trajectories using
patterns. As agent behaviors are often dictated by the environment (e.g., cars are likely to stay within
the lanes of a road), this approach conditions predictions on a map of the environment. Similarly to
Diff-MGR, Westny et al. (2024) assumes that apparent patterns within the temporal data will remain
constant over time, as predictions are conditioned on a fixed map. Wang et al. (2024) instead proposed
to guide predictions with dynamically changing patterns, captured by real-time camera readings.
They noted that humans are most likely to walk towards specific destinations within a scene, such as
a door, stairs, or a hallway. Their proposed EgoNav diffusion model therefore used segmented image
data as conditioning inputs for predicting human walking trajectories. However, these approaches do
not account for uncertainty in the guiding patterns. In contrast, our PGDM model adapts the level of
pattern guidance based on the estimated reliability of dynamically evolving patterns.

3 BACKGROUND

Let the data of interest be x ∈ Rd sampled from distribution p(x), which arrives in a temporal
sequence {xt} with time index t. We are concerned with such data that contains patterns, or repeating
structures. Given an observed history of length T over time t ∈ {1, 2, . . . , T}, we aim to predict
a horizon of length H over time t ∈ {T + 1, T + 2, . . . , T ′} with T ′ = T + H . Denote a set of
n of history and horizon pairs by {xi

1:T , x
i
T :T ′}ni=1. We use archetypal analysis, which identifies

patterns resembling real data rather than an abstraction, to overcome the challenge of extracting
useful patterns. Here, we provide a brief overview of diffusion models and archetypal analysis.

3.1 DIFFUSION MODELS

Diffusion models (Ho et al., 2020; Sohl-Dickstein et al., 2015) aim to learn and generate data from a
distribution p(x) through a forward and reverse process, in which noise is iteratively added to and
removed from the data, respectively. Given xt,0 ∼ p(xt) at time t, the fixed S-step forward process
creates a sequence of increasingly noisy samples xt,1, xt,2, . . . , xt,S . Note that here we use the
notation xt,s, where t denotes the time index and s denotes the diffusion step. The noisy samples are
drawn from the distribution q (xt,s|xt,s−1) := N

(√
1− βsxt,s−1, βsI,

)
, where β1, β2, . . . , βS is a

noise variance schedule. With appropriately chosen variance schedule, this distribution approaches a
standard normal as S → ∞. Conveniently, the noising step xt,s can be sampled in closed form given
xt,0, q (xt,s|xt,0) = N (

√
ᾱsxt,0, (1− ᾱs)I), where αs = 1− βs and ᾱs =

∏s
i=1 αi.

Conversely, the reverse process removes noise from xt,S ∼ N (0, I) to ultimately recover the training
distribution. The goal is to learn the distribution pθ (xt,s−1|xt,s) := N

(
µθ (xt,s, s) , σ

2
sI
)
. The
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(a) Example visual field archetypes. (b) Geometric interpretation.

Figure 1: Overview of archetypal analysis (AA). (a) Example archetypes extracted from a visual field dataset.
The archetypes capture visual loss patterns that consistently appear across glaucoma patients. Darker regions
indicate greater vision loss. (b) Given a dataset D (blue dots), AA identifies a set of archetypes A (red stars).
Within ConvA ⊆ ConvD (within red dashed line), any point can be reconstructed from A without error. For
any point x /∈ ConvA, the reconstruction error is the distance between x and ConvA.

denoising parameters θ are learned by optimizing the evidence lower bound (ELBO) on negative
log likelihood, − log pθ (xt,0). At inference time, samples from the learned distribution pθ (xt,0) are
generated by applying the reverse process over S steps to noisy samples.

3.2 ARCHETYPAL ANALYSIS

Archetypal analysis (AA) (Cutler & Breiman, 1994) extracts extremal patterns, or archetypes, from a
given dataset. These archetypes are themselves a combination of the data and therefore are realistic
and interpretable representations of the data’s significant patterns. Figure 1a shows examples extracted
from a visual field dataset. Furthermore, any point within the given dataset can be constructed as a
combination of these archetypes, allowing for the contribution of each pattern to be quantified.

More formally, given dataset D = {xi}ni=1, AA finds the p archetypes a1, a2, . . . ap ∈ Rd that
minimize the residual sum of squares (RSS) error,

mincij ,ai
j ∀i,j

∑n
i=1

∥∥∥xi −
∑p

j=1 cijaj

∥∥∥2 , (1)

subject to cij ≥ 0 ∀j and
∑p

j=1 c
i
j = 1 for each i ∈ {1, 2, . . . , n}, and where aj =

∑n
k=1 β

k
j x

k with
βk
j ≥ 0 ∀k and

∑n
k=1 β

k
j = 1 for each j ∈ {1, , 2, . . . , p}. That is, if zero reconstruction error is

achieved, then each xi ∈ D can be reconstructed as a convex combination of the archetypes, and
the archetypes are themselves a convex combination of the data. Then, given a set of identified
archetypes, any new data point can be reconstructed as a convex combination of the archetypes, with
coefficients found by minimizing the objective in equation 1 with fixed a1, a2, . . . , ap.

Figure 1b visualizes a geometric interpretation of AA. Intuitively, AA identifies a region in which any
point can be perfectly reconstructed by the archetypes. This region is the convex hull of the archetypes,
denoted ConvA for the archetype set A. In the ideal case when p = n, the set of archetypes is
exactly D, and the region of reconstructible points fully encompasses the dataset. In practice, p < n
is typically chosen, and the resulting archetypes instead lie on the boundary of ConvD (Cutler
& Breiman, 1994, Proposition 1). The archetype set therefore defines a reconstructible region
that closely, but often not fully, captures the dataset D. Furthermore, for any x /∈ ConvA, the
reconstruction error can be thought of as the distance between x and ConvA. In Section 4.2, we
show that this reconstruction error can be used to estimate the distance between x and the dataset D.

4 METHODS

Our goal is to learn the conditional distribution p(xT :T ′ |x1:T , P̂T :T ′), where P̂T,T ′ represents the
patterns estimated to manifest in the future. To determine a pattern representation space, we first
extract archetype set A from the training data. The representation space is the contribution of
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(a) PGDM. (b) AA information loss.

Figure 2: (a) Overview of Pattern-Guided Diffusion Models. A pattern guidance function estimates the future
patterns over a horizon. This prediction is performed in the archetype space, where the projected representation
captures the contribution of each pattern to the data. The predicted future patterns are supplied as conditioning
context to the diffusion model. The scale of the pattern guidance is dynamically tuned based on the uncertainty
of the input sequence. (b) Projection into the lower-dimensional archetype space loses information for any point
outside the convex hull of the archetypes ConvA. In this example, the sequence x1, x2, x3, x4 /∈ ConvA is
perturbed to the boundary of ConvA after reconstruction, losing important dynamical information.

archetypes to each data point. We then train our proposed Pattern-Guided Diffusion Model (PGDM)
to learn the desired conditional distribution.

Figure 2a summarizes PGDM, which is constructed from three key components. 1) A pattern
guidance function predicts the patterns P̂ that will appear over the future horizon. First, the input
sequence x1:T is projected to the archetype space, where the projected pattern representation cA(x1:T )
quantifies the contribution of each pattern to the data. The projected representation for the future
steps is then predicted, and the resulting estimate ĉA(xT :T ′) is lifted back to the original data space
as a predicted pattern P̂T :T ′ . 2) While prediction in the lower p-dimensional archetype space helps to
evade the curse of dimensionality, the projection operation naturally incurs an information loss. By
design, while any point xt ∈ ConvA can be projected with no information loss, this cannot be said
for a point xt /∈ ConvA, which may appear when the data’s patterns change over time. Figure 2b
visualizes this loss of information. We therefore introduce a novel Archetypal Analysis Uncertainty
Quantification (AAUQ) technique, which we show captures geometric distance from the training set.
This uncertainty metric also estimates a lower bound on the loss of the guidance function. 3) We use
the predicted pattern from the guidance function as additional conditioning context for the diffusion
model, following the general methodology of classifier-free diffusion guidance (Ho & Salimans,
2022). To account for uncertainties in the guidance function, we dynamically tune the guidance scale
based on our uncertainty metric. We now describe each of the three components in further detail.

4.1 GUIDANCE FUNCTION

First, we employ archetypal analysis to extract significant patterns from the training data. For
convenience, when the meaning is clear, we overload the notation A to indicate both the resulting set of
p < d archetypes {a1, a2, . . . , ap} ⊂ Rd and the matrix constructed from these archetypes A ∈ Rd×p.
These archetypes define an archetype, or pattern, space in p dimensions. Given archetypes A, let
the projection function that determines the pattern representation (i.e., the coefficients minimizing
objective equation 1) be cA : Rd → Rp. For any point xt, the reconstruction is x̂t = AcA(xt). We
denote the error of this reconstruction as LcA(xt) = ∥xt −AcA(xt)∥.

Next, we train a lightweight neural network fA : Rp×T → Rp×H to predict H future pattern
representations based on T past pattern representations. The error of this prediction function is
LfA(c1:T ) = ∥AcT :T ′ −AfA(c1:T )∥.

The guidance function fG : Rd×T → Rd×H is

fG(x1:T ) = AfA ◦ cA(x1:T ). (2)

Note that fG(x1:T ) is P̂T :T ′ in Figure 2a. We now show that a lower bound on the guidance function
error LfG is a function of the projection error LcA and pattern prediction error LfA .
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Theorem 1 (Bound on Guidance Function Error). For any sequence x1:T and horizon xT :T ′

pair, let the error of guidance function fG defined in Equation equation 2 be LfG(x1:T ) =
∥xT :T ′ −AfA (cA(x1:T ))∥. Then

LfG(x1:T ) ≥ LcA(xT :T ′)− LfA(x1:T ). (3)

Proof. Please see Appendix A for the proof.

It is clear from Theorem 3 that, if the prediction function fA has a reasonably low error, then the error
of the projection function cA can serve as an approximate lower bound for the error of the guidance
function fG. Therefore, an estimate of LcA may quantify the degree to which PGDM should "trust"
the guidance function, allowing the level of pattern guidance to be dynamically tuned. Next, we
introduce a novel uncertainty quantification technique that can be used as a proxy for LcA .

4.2 UNCERTAINTY QUANTIFICATION FOR ARCHETYPAL ANALYSIS

Projection to the lower-dimensional archetype space may lose information. We therefore introduce a
novel uncertainty quantification metric based on archetypal analysis that captures this loss.
Definition 1 (Archetypal Analysis Uncertainty Quantification). For any sequence x1:T and archetype
set A, the uncertainty uA of the archetype projection is

uA(x1:T ) =
1
T

∑T
t=1 ∥xt −AcA(xt)∥. (4)

Intuitively, this Archetypal Analysis Uncertainty Quantification (AAUQ) metric is simply the average
reconstruction loss of the history sequence. AAUQ can also be geometrically interpreted as estimating
the average distance of x1:T from the training dataset.
Theorem 2 (AAUQ as Geometric Distance). Assume that a set of archetypes A = {aj}pj=1 is
extracted from a dataset D. Define d as the closest point in ConvD to xt. For any xt,

uA(xt)− δ ≤ dist(xt,ConvD) ≤ uA(xt) + δ, (5)

where δ = ∥AcA(xt)− d∥ and δ = 0 when p = n.

Proof. Please see Appendix B for the proof.

Remark 1. In Theorem 2, δ captures the ability of the archetypes to express the dataset D. This
can be seen in the proof of Theorem 2. This can also be understood from the example in Figure 1b,
in which dist(x,ConvA) is exactly uA(x), and δ is the distance between x̂ and the point on the
boundary of ConvD. This has interesting implications for the geometric interpretation of AAUQ
in the case that the archetypes perfectly reconstruct the data, which occurs when the number of
archetypes is equal to the size of the dataset. It is clear from Theorem 2 that if p = n,

uA(xt) = dist(xt,ConvD). (6)

4.3 PATTERN-GUIDED DIFFUSION MODELS

PGDM predicts future sequences xT :T ′ conditioned on the pattern prediction from the guidance func-
tion. We follow the methodology of classifier-free diffusion guidance, in which the model is trained
with conditioning dropout. This effectively learns two denoising models, ϵθ(zT :T ′,s, x1:T , P̂T :T ′)
and ϵθ(zT :T ′,s, x1:T , ∅), where ∅ is a null value and zT :T ′,s is the sample to be denoised at diffusion
step s. Algorithm 1 summarizes the training process of PGDM. For history and horizon sequences
sampled in Line 2, the guidance conditioning is set to the pattern prediction or a null value in Line 4.
With the loss function on Line 5, the denoising model learns to estimate the noise added to xT :,T ′ .

When generating samples with traditional classifier-free guidance, each denoising step uses a linear
combination of the conditional and unconditional predictions:

ϵ̂θ(zT :T ′,s, x1:T ) = wϵθ(zT :T ′,s, x1:T , P̂T :T ′) + (1− w)ϵθ(zT :T ′,s, x1:T , ∅),

where w ≥ 0 is the guidance scale. When w = 0, generation is unguided and sampled data are
more diverse. The guidance level increases with w, leading to less diverse but higher quality samples.

5
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Algorithm 1 PGDM Training

1: for all epochs do
2: Sample x1:T , xT :T ′ from the training set
3: s ∼ Uniform(1, . . . , S), ϵ ∼ N (0, I)

4: P̂T :T ′ = ∅ with probability pdrop, else P̂T :T ′ = fG(x1:T ) from eqn. equation 2
5: Take gradient descent step on ∇θ∥ϵ− ϵθ(

√
αsxT :T ′ +

√
1− αsϵ, x1:T , P̂T :T ′)∥2

6: end for

Algorithm 2 PGDM Inference

1: given x1:T

2: xT :T ′,S ∼ N (0, I)

3: P̂T :T ′ = fG(x1:T ) from eqn. equation 2
4: for s = S, . . . , 1 do
5: n ∼ N (0, I) if s > 1, else n = 0
6: Compute ϵ̂θ(zT :T ′,s, x1:T ) from eqn. equation 7

7: Sample xT :T ′,s−1 = 1√
αs

(
xT :T ′,s − 1−αs√

1−αs

)
ϵ̂θ(zT :T ′,s, x1:T ) +

√
βsn

8: end for
9: Compute w∗ = w(x1:T , 1, γ) from eqn. equation 8

10: Mix x̂T :T ′ = w∗P̂T :T ′ + (1− w∗)xT :T ′,0

While traditional classifier-free guidance is performed with constant guidance scale w, we instead
use a dynamic guidance scale w(x1:T ) that captures the trustworthiness of the guidance function:

ϵ̂θ(zT :T ′,s, x1:T ) = w(x1:T )ϵθ(zT :T ′,s, x1:T , P̂T :T ′) + (1− w(x1:T ))ϵθ(zT :T ′,s, x1:T , ∅), (7)

Definition 2 (Dynamic Guidance Scale). Let A be the set of archetypes extracted from the training
dataset. Given a maximum guidance scale w and maximum tolerable uncertainty γ, the dynamic
guidance scale for sequence x1:T is

w(x1:T , w, γ) = ReLU
(
−w

γ uA(x1:T ) + w
)
. (8)

Here, we measure the trustworthiness of our guidance function by our AAUQ uncertainty metric.
The uncertainty uA(x1:T ) is easy to compute and in practice, we find that the uA(x1:T ) is a good
proxy for estimating LcA(xT :T ′) and therefore the lower bound in Theorem 1. Hence, we design the
dynamic guidance scale so that, as uncertainty increases, the guidance scale w ∈ (0, w) decreases.
When the uncertainty exceeds γ, w = 0. In other words, PGDM follows the pattern guidance most
strictly when the data is in-distribution. For out-of-distribution data with unseen patterns, PGDM
relies less on pattern-guidance, reverting to a standard diffusion model in the extreme case.

Algorithm 2 summarizes the inference process of PGDM. In Line 2, noisy data is sampled from a
standard normal distribution. In Line 3, the patterns of the future sequence are predicted. Then, over
S reverse diffusion steps in Lines 4–7, the guided and unguided denoising models are combined with
dynamic guidance scale to iteratively remove noise. The resulting sequence prediction is sampled
from the learned distribution, which we expect to be tightly centered around the pattern prediction.
Finally in Lines 9 and 10, we mix the raw pattern prediction with the pattern-guided sequence
prediction using a dynamic mixing scale. We include this mixing step to mitigate some potential
practical challenges of PGDM. A full discussion of pattern mixing is included in Appendix C.

5 APPLICATIONS

We validate PGDM on two applications, visual field prediction and human motion prediction. To aid
in analyzing the effects of pattern guidance, we show the performance of two PGDM models selected
from our hyperparameter search for both applications. The first model, PGDMMAE, achieved the
lowest validation mean absolute error (MAE) with pattern guidance. The second model, PGDMGDE,
achieved the highest capacity for pattern guidance, or the greatest achievable improvement in MAE
by using guided predictions (w > 0) over unguided predictions (w = 0).

6
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For these two models, we compare performance with guidance to performance without guidance
and multiple baselines. While we would ideally compare PGDM to baselines that use some pattern
conditioning (Wang et al., 2024; Westny et al., 2024; Zhao et al., 2024), most existing methods
formalize patterns in a manner that is specific to the intended application, and therefore do not
translate to our applications. For others, we were unable to obtain sufficient implementation details
or code. Therefore, we instead select more general baseline techniques that do not use pattern
conditioning. For both applications, we compare PGDM to two well-cited and common diffusion-
based baselines for forecasting, TimeGrad (Rasul et al., 2021) and CSDI (Tashiro et al., 2021). While
CSDI is a data imputation technique, it can easily be extended for forecasting. For the visual field
application, we additionally compare PGDM to GenViT (Yang et al., 2022), a diffusion model with a
vision transformer backbone that has been applied to VF prediction by Tian et al. (2023).

Source code is supplied in the supplementary material. Complete implementation details for pattern
extraction and training, including hyperparameter selection, model architectures, and compute
resources, are provided in Appendix D.

Visual Field Prediction. Pattern-Guided Diffusion models are especially useful in medical settings,
where data often reflects consistent patterns due to anatomy. For instance, 24-2 visual field (VF) tests
measure light sensitivity in decibels (dB) at 52 central points of vision, with specific loss patterns
linked to structural eye damage (e.g., nerve fiber bundle loss) (Keltner et al., 2003). Figure 1a
illustrates archetypal patterns from VF data, where darker areas indicate reduced vision. Forecasting
VF outcomes can support clinicians in diagnosis, progression identification, and treatment planning.

We evaluate PGDM on the public the University of Washington Humphrey Visual Field (UWHVF)
dataset (Montesano et al., 2022). To the best of our knowledge, UWHVF is the only publicly available
24-2 VF dataset, containing 7,428 sequences from 3,871 patients. The UWHVF measurements
capture the patient’s light sensitivity compared to normative data, ranging from -38 dB to 50 dB. That
is, a negative (positive) dB indicates worse (better) vision than typical. Due to the few follow-up
visits per patient, we predict H = 1 step into the future based on the past T = 3 steps. Additionally,
as VF measurements are taken at non-constant time increments, we also condition predictions on
the recorded age at each VF measurement and the desired time horizon for prediction. Thus, the
one-step-ahead prediction can be made for an arbitrary length time period. We create multiple
forecasting sequences from each patient in a sliding window fashion, resulting in 6,171 sequences.

Human Motion Prediction. We also apply PGDM to predict future frames of human motion capture
data, a task relevant to domains including human robot interaction and autonomous driving (Lyu et al.,
2022). Human motion often involves repeated body positions when executing common movements
(e.g., walking, running, dancing). While our visual field application demonstrates PGDM’s utility in
the clinical domain, the motion prediction application presents a more challenging task with more
rapidly evolving signals and longer prediction horizons.

We evaluate PGDM on the AIST++ dataset (Li et al., 2021), which contains motion capture frames
capturing 3D motion from 10 dance genres. Predicting dance motion is more challenging for PGDM
compared to locomotion, as the variety of dance genres and styles leads to a rich set of patterns with
less periodic progressions over time. The AIST++ dataset captures the skeleton with 3D pose data for
17 keypoints, which represent specific joints or locations in the body. For consistency across heights,
we normalize all data to the scale [0, 100]. We predict H = 5 steps into the future based on a past
sequence of T = 3 steps. We create multiple forecasting sequences from each motion capture video,
resulting between 36, 739 and 105, 504 sequences across the 10 genres.

5.1 RESULTS

Pattern Extraction. We extract p = 13 archetypal patterns from UWHVF, shown in Figure 1a.
We extract between p = 12 and p = 22 archetypes for each genre of AIST++. Figure 3 shows
the archetypes extracted from the break dancing frames (see Appendix E for remaining genres).
Appendix F reports the reconstruction error of the extracted patterns and the guidance function error.

AAUQ approximately lower bounds the guidance function error. Motivated by Theorem 1,
PGDM uses AAUQ to determine the appropriate level of guidance. In Figure 4, we compare AAUQ
measurements to the MAE of the guidance function. In both applications, we observe that AAUQ is
indeed proportional to a linear lower bound on the guidance function error.
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Figure 3: Nineteen archetypes extracted from AIST++ break dancing frames.

(a) VF prediction. (b) Motion prediction.

Figure 4: AAUQ approximately lower bounds the guidance function error for both applications.

Pattern guidance reduces prediction error. Table 1 reports the mean absolute error (MAE) of
PGDMMAE and PGDMGDE with and without pattern guidance. Compared to unguided predictions,
pattern guidance reduces prediction error significantly. On UWHVF, guidance reduces the error
of PGDMGDE and PGDMMAE by up to 40.67% and 20.90%, respectively. On AIST++, guidance
reduces the error by up to 11.10% and 8.73%, respectively. To further study the impact of pattern
guidance, we also show in Table 2 the performance of PGDMMAE and PGDMGDE on UWHVF with
w = 1, 2, 3, 4, 5. Similar results on AIST++ and qualitative examples are shown in Appendix G. In
general, the standard deviation of MAE decreases as the guidance scale increases towards the optimal
w choice, indicating that guidance improves both consistency and quality of predictions. Notably, we
also find that excessive pattern guidance may lead to diminishing returns. In practice, an appropriate
w may be selected in a manner similar to a hyperparameter search.

PGDM outperforms baselines. Table 1 also compares the performance of PGDMMAE and
PGDMGDE to our baselines. Across the board, PGDMMAE with pattern guidance achieves sig-
nificantly lower MAE than GenViT, TimeGrad, and CSDI. On UWHVF, PGDMMAE with guidance
surpasses GenViT, TimeGrad, and CSDI by up to 65.58%, 29.36%, and 7.20%, respectively. On
AIST++, PGDMMAE surpasses TimeGrad and CSDI by up to 82.54% and 36.49%, respectively.
However, we note that PGDMMAE outperforms baselines even without guidance (w = 0) on some
AIST++ genres (e.g., break dancing). In these cases, to better demonstrate that PGDM’s performance
comes from pattern guidance, rather than model training alone, we also emphasize the results for
PGDMGDE. Even when unguided PGDMGDE performs worse than baselines, pattern guidance al-
most always reduces the error of PGDMGDE is to a lower or competitive level compared to baselines.
These results demonstrate that pattern guidance is essential for higher quality predictions.

6 CONCLUSIONS

In this paper, we proposed Pattern-Guided Diffusion Models (PGDM), which leverage inherent
archetypal patterns to forecast future steps from multivariate time series data. PGDM is guided by a
pattern guidance function that predicts future patterns within the data. To estimate the trustworthiness
of this guidance function, we introduced a novel uncertainty quantification metric that approximately

8
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Table 1: Mean absolute error of PGDMMAE, PGDMGDE, and baselines for both the visual field prediction
(UWHVF dataset) and the human motion prediction (10 dance genres from AIST++ dataset) case studies. For
PGDMMAE and PGDMGDE with w > 0, we show the guidance scale result that achieved the lowest error (for
w = 1, 2, 3, 4, 5 evaluations, see Appendix G). Mean and standard deviation are taken across five samples.

Visual Field Prediction

GenViT TimeGrad CSDI PGDMGDE PGDMGDE PGDMMAE PGDMMAE

w = 0 w > 0 w = 0 w > 0

8.61±0.0018 4.19±0.0327 3.19±0.0421 5.20±0.0407 3.08±0.0153 3.75±0.0437 2.96±0.0117

Human Motion Prediction

Genre TimeGrad CSDI PGDMGDE PGDMGDE PGDMMAE PGDMMAE

w = 0 w > 0 w = 0 w > 0

Break 2.10±0.0064 0.47±0.0010 0.52±0.0032 0.46±0.0013 0.41±0.0032 0.39±0.0011

House 3.71±0.0159 1.02±0.0045 0.90±0.0013 0.82±0.0017 0.79±0.0017 0.74±0.0011

Ballet Jazz 1.32±0.0098 0.55±0.0054 0.49±0.0004 0.45±0.0010 0.42±0.0008 0.39±0.0002

Street Jazz 1.65±0.0102 0.56±0.0054 0.60±0.0016 0.54±0.0005 0.52±0.0017 0.48±0.0008

Krump 2.37±0.0067 0.77±0.0017 0.88±0.0016 0.79±0.0011 0.77±0.0016 0.70±0.0013

LA Hip Hop 3.30±0.0157 0.78±0.0023 0.90±0.0009 0.82±0.0005 0.80±0.0010 0.74±0.0006

Lock 3.03±0.0086 0.76±0.0028 0.78±0.0017 0.71±0.0021 0.72±0.0011 0.67±0.0005

Middle Hip Hop 3.35±0.0113 1.04±0.0048 1.05±0.0034 0.96±0.0033 0.88±0.0014 0.82±0.0015

Pop 2.55±0.0105 0.70±0.0053 0.52±0.0013 0.49±0.0007 0.47±0.0008 0.44±0.0017

Wack 1.03±0.0047 0.44±0.0042 0.49±0.0054 0.47±0.0083 0.44±0.0044 0.41±0.0031

Table 2: Mean absolute error (MAE) of PGDMMAE and PGDMGDE on the VF prediction application (UWHVF
dataset) with varying levels of guidance. Percent improvements over baselines are shown in the ∆ MAE (%)
columns. Mean and standard deviation are taken across five samples.

Model MAE (dB) ∆ MAE (%) ∆ MAE (%) ∆ MAE (%) ∆ MAE (%)
vs. GenViT vs. TimeGrad vs. CSDI vs. w = 0

w = 0 3.75±0.0437 56.48±0.50 10.69±1.17 -17.32±1.55 -
w = 1 2.96±0.0117 65.58±0.14 29.36±0.67 7.20±1.25 20.90±0.71

PGDMMAE w = 2 2.97±0.0112 65.54±0.13 29.29±0.67 7.10±1.27 20.81±0.73

w = 3 2.97±0.0108 65.51±0.13 29.23±0.67 7.03±1.29 20.75±0.76

w = 4 2.97±0.0107 65.48±0.13 29.17±0.67 6.95±1.31 20.68±0.78

w = 5 2.97±0.0104 65.45±0.12 29.10±0.66 6.86±1.32 20.60±0.80

w = 0 5.20±0.0407 39.60±0.47 -23.95±1.10 -62.83±2.59 -
w = 1 3.16±0.0212 63.28±0.24 24.65±0.76 1.01±1.44 39.21±0.23

PGDMGDE w = 2 3.13±0.0201 63.67±0.23 25.44±0.76 2.06±1.43 39.85±0.23

w = 3 3.10±0.0187 63.93±0.21 25.99±0.74 2.77±1.41 40.29±0.24

w = 4 3.09±0.0170 64.09±0.20 26.32±0.72 3.20±1.39 40.55±0.25

w = 5 3.08±0.0153 64.16±0.18 26.47±0.70 3.40±1.39 40.67±0.27

lower bounds the guidance function error. Finally, we proposed to dynamically tune the level to
which PGDM follows the pattern guidance based on this uncertainty metric. We found that PGDM
outperforms baseline models, and pattern guidance reduces the error of PGDM. Two limitations
of PGDM present interesting avenues for future work. First, PGDM has less benefit for out-of-
distribution data exhibiting unseen patterns. Second, the use of AAUQ as an approximate lower-
bound for guidance function error assumes that the temporal data is relatively continuous and does
not rapidly change between the observed history and target prediction window. In some cases, this
assumption is violated (e.g., rapidly changing signals sampled with a low frequency). Based on these
limitations, PGDM may be further improved by updating the set of extracted patterns at inference
time and accounting for signal dynamics when calculating the guidance scale.
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A PROOF OF THEOREM 1

For convenience, let X = x1:T and Y = xT :T ′ . Then we have

LfG(X) = ∥Y −AfA (cA(X))∥
= ∥Y −AfA (cA(X)) +AcA(Y )−AcA(Y )∥
≥ ∥Y −AcA(Y )∥ − ∥AfA (cA(X))−AcA(Y )∥
= LcA(Y )− LfA(X).

The inequality above follows from the reverse triangle inequality.

B PROOF OF THEOREM 2

First, observe that uA(xt) is the distance between xt and the set ConvA. This can be seen by noting
that

cA(xt) = argmin
c

∥xt −Ac∥ = arg min
x̄∈ConvA

∥xt − x̄∥ , (9)

where c ∈ Rp has positive elements that sum to one. Let x̂ = AcA(xt). Recall from Definition 1 that
uA(xt) = ∥xt − x̂∥.

Similarly, dist(xt,ConvD) is defined as

dist(xt,ConvD) = min
d̄∈ConvD

∥∥xt − d̄
∥∥ .

Let d be such that dist(xt,ConvD) = ∥xt − d∥.

The remainder of the proof follows from a straightforward application of the reverse triangle inequal-
ity:

∥x̂− d∥ = ∥x̂− d+ xt − xt∥
≥ |∥xt − d∥ − ∥xt − x̂∥| .
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Then, we have

−∥x̂− d∥ ≤ ∥xt − d∥ − ∥xt − x̂∥ ≤ ∥x̂− d∥ .

With some rearranging, we arrive at Equation equation 4 by letting δ = ∥x̂− d∥.

Now note that if p = n, then selecting A = D minimizes the archetypal analysis objective equa-
tion 1 (Cutler & Breiman, 1994, Proposition 1) with RSS of 0, and A fully expresses D. Then
ConvA = ConvD and x̂ = d. Finally, δ = 0. We briefly remark that δ therefore captures the
expressiveness of the archetypes.

C PATTERN MIXING

In Lines 9 and 10 of Algorithm 2, we include an additional pattern mixing step in our sequence
prediction process. The final PGDM prediction is a linear combination of the raw pattern prediction
from the guidance function and the the pattern-guided output of the diffusion model. We include
this step to overcome some of the practical challenges of PGDM. In practice, we find that PGDM’s
capacity for pattern guidance is highly dependent on appropriate architecture design. We therefore
include pattern mixing as an additional step to overcome this challenge.

While pattern mixing improves prediction quality, pattern guidance is still necessary. Figure 5
illustrates the impact of pattern guidance and pattern mixing. Without guidance, the model may make
highly varied predictions that are far from the groundtruth. With pattern guidance, PGDM narrows
the distribution of predictions and shifts it towards the ground truth. Pattern mixing further shifts the
distribution, without affecting sample diversity. Our results demonstrate exactly this. The unguided
PGDM prediction has higher error and variance. With guidance and mixing, the error and standard
deviation are significantly reduced, demonstrating that both pattern guidance and pattern mixing aid
in improving predictions.

Figure 5: Impacts of pattern guidance and pattern mixing.

D IMPLEMENTATION DETAILS

For both case studies, we split our data into 70% training, 15% validation, and 15% test sets. For the
motion capture data, we remove rotations around the vertical axis and supply the isolated rotation
angles as additional inputs to PGDM and the baseline models. This normalizes the direction in which
the motion capture skeletons are facing, allowing for more straightforward pattern extraction.

To train our guidance function, we first extract archetypal patterns from the most recent VF xT of
each sequence in the training set. By extracting archetypes from only a single point in each sequence,
we avoid leakage between the training, validation, and test sets. We select the number of archetypes
p by a hyperparameter search through p = 2, . . . , 25 with selection criterion following Elze et al.
(2015). We then train our pattern prediction model (see Figure 6 for architecture) to predict the pattern
representation of each sequence. We train the model with the Adam optimizer on a KL-divergence
loss function with the hyperparameters shown in Table 3 and patience 20. These hyperparameters
were selected over a search of batch size 32 to 64 and learning rate 10−4 to 5 × 10−4, with mean
absolute error (MAE) as selection criterion.
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Table 3: Hyperparameter choices for pattern prediction model.

Pattern Prediction Model PGDMMAE PGDMGDE

Batch Size LR Batch Size LR Epochs Batch Size LR Epochs
UWHVF 32 1× 10−4 32 5× 10−5 200 64 1× 10−5 100

Break 32 5× 10−4 32 1× 10−3 300 64 5× 10−4 200
House 64 5× 10−4 32 1× 10−3 300 32 5× 10−4 200

Ballet jazz 64 5× 10−4 32 1× 10−3 300 64 5× 10−4 300
Street jazz 64 5× 10−4 32 1× 10−3 300 64 1× 10−3 200

Krump 64 5× 10−4 32 1× 10−3 300 32 5× 10−4 200
LA Hip Hop 64 5× 10−4 32 1× 10−3 300 32 5× 10−4 200

Lock 64 5× 10−4 32 1× 10−3 300 32 1× 10−3 200
Middle Hip Hop 64 5× 10−4 32 1× 10−3 300 64 5× 10−4 200

Pop 32 5× 10−4 32 1× 10−3 300 32 5× 10−4 200
Wack 32 5× 10−4 32 1× 10−3 300 32 5× 10−4 300

Figure 6: Pattern prediction model and pattern-guided diffusion model for visual field prediction.

We train our diffusion model (see Figure 6 for architecture) with the Adam optimizer on a mean square
error loss function with the hyperparameters shown in Table 3. For the VF prediction application,
these hyperparameters were selected over a search of batch size 32 to 64, learning rate 10−5 to
5× 10−5, and 100 to 1000 epochs. For the motion prediction application, the model was trained with
learning rate scheduling, and the hyperparameters were selected over a search of batch size 32 to
64, learning rate 5 × 10−4 to 10−3 and 200 to 300 epochs. In both applications, for our selection
criterion, we measure MAE with maximum guidance scale w̄ = 1, . . . , 10 and no pattern mixing,
and we choose only from models with the highest capacity for pattern guidance (i.e., error continues
to reduce with increasing w̄). Of these, we select the models with lowest achievable MAE over
the tested range of w̄. To better evaluate the full effect of pattern guidance on model performance,
we also select models with the highest impact of pattern guidance over the tested range of w̄ (e.g.,
the greatest achievable percent decrease in error from applying guidance). For all PGDM models,
we train with conditioning dropout probability pdrop = 0.2. We evaluate with maximum tolerable
uncertainty γ = 0.1, 0.03, 0.06, 0.04, 0.04, 0.05, 0.05, 0.06, 0.06, 0.03, and 0.05 for UWHVF, break,
house, ballet jazz, street jazz, krump, LA hip hop, lock, middle hip hop, pop, and wack, respectively.
These were chosen based on the range of uncertainties on the validation data.

For our baselines TimeGrad and CSDI, we select hyperparameters following the published imple-
mentation details. For the GenViT model, we select hyperparameters from a hyperparameter search,
as those published in Tian et al. (2023) were for a simpler task with H = 1 and T = 1. We train with
batch size 16, learning rate 10−5, and 50 epochs. These hyperparameters were selected from a search
over batch size 8 to 16, learning rate 10−5 to 5× 10−5, and 10 to 50 epochs, with MAE as selection
criterion. We chose these ranges based on the hyperparameters used in Tian et al. (2023).

All experiments were performed on a machine with 42 GB of GPU memory. Each model requires
less than 1 GB.
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E PATTERNS EXTRACTED FROM AIST++

Figures 7 to 15 show the patterns extracted from each genre of the AIST++ dataset.

Figure 7: Twenty two archetypes extracted from AIST++ house dancing frames.

Figure 8: Fifteen archetypes extracted from AIST++ ballet jazz dancing frames.

Figure 9: Fourteen archetypes extracted from AIST++ street jazz dancing frames.
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Figure 10: Twenty two archetypes extracted from AIST++ krump dancing frames.

Figure 11: Twenty two archetypes extracted from AIST++ LA hip hop dancing frames.

Figure 12: Twenty two archetypes extracted from AIST++ lock dancing frames.
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Figure 13: Twenty two archetypes extracted from AIST++ middle hip hop dancing frames.

Figure 14: Nineteen archetypes extracted from AIST++ pop dancing frames.

Figure 15: Twelve archetypes extracted from AIST++ wack dancing frames.
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F EVALUATION OF PGDM COMPONENTS

Table 4 shows the reconstruction error of the extracted patterns, the error of the pattern prediction
model, and the error of the guidance function.

Table 4: Mean absolute error (MAE) of the guidance function and its components. Note that the
pattern prediction is performed in the pattern representation space, with range (0, 1).

Archetypal Analysis Pattern Prediction Guidance Function
UWHVF 2.3146 0.0466 3.1560

break 0.7929 0.0111 0.8440
house 1.6591 0.0111 1.7636

ballet jazz 0.6269 0.0156 0.6698
street jazz 1.3009 0.0108 1.3438

krump 1.6768 0.0085 1.7677
la hip hop 1.6707 0.0107 1.7622

lock 1.3892 0.0102 1.4743
middle hip hop 1.8489 0.0113 1.9682

pop 0.9886 0.0106 1.0572
wack 0.5353 0.0166 0.5973

G IMPACT OF PATTERN GUIDANCE

In the main text, we observed that pattern guidance reduces the error of PGDM’s predictions. To
further illustrate this point, qualitative examples for both applications are shown in Figure 16. For VF
prediction, we show five example H = 1 step-ahead predictions from PGDMGDE. When pattern
guidance is not used (w = 0), PGDM makes a noisy prediction based only on the past visual field
data. When pattern guidance is added (w = 5), PGDM incorporates the pattern prediction in its
forecast. The outcome resembles a mixture of the pattern prediction and the unguided prediction
(see Ex. 2 of 16a). For motion prediction, we show one example H = 5 step ahead prediction for
PGDMGDE. In this example, we highlight the bent right leg of the skeleton. Without pattern guidance
(w = 0), the model predicts nearly no motion in the leg across the horizon. In contrast, the guidance
function predicts a set of patterns that change over time, matching the moving right leg of the ground
truth frames. When guidance is used (w = 2), PGDM incorporates this motion into its prediction and
forecasts more accurate future frames.

(a) VF prediction.
(b) Motion prediction.

Figure 16: Qualitative examples of pattern guidance for PGDMGDE on a) the visual field prediction
application and b) the human motion prediction application.
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In Tables 5 to 14, we show the quantitative effect of pattern guidance levels w = 1, 2, 3, 4, 5 on
PGDM for the human motion prediction application. Each table corresponds to one of the dance
genres in the AIST++ dataset. In general PGDMMAE and PGDMGDE achieve their best performances
with relatively light guidance. Beyond this point, the pattern guidance has diminishing returns, even
increasing the prediction error when the guidance scale is too high. In practice, the appropriate w
may be selected in a manner similar to a hyperparameter search. We also observe that, in most cases,
the standard deviation of the MAE decreases as w increases up to the optimal w̄. This indicates that
pattern guidance improves both the quality and the consistency of predictions.

Table 5: Mean absolute error (MAE) of PGDMMAE, PGDMGDE, and baselines on the break dancing genre of
the AIST++ dataset. Percent improvements over baselines are shown in the ∆ MAE (%) columns. Mean and
standard deviation are taken across five samples.

Model MAE (dB) ∆ MAE (%) ∆ MAE (%) ∆ MAE (%)
vs. TimeGrad vs. CSDI vs. w = 0

TimeGrad 2.10±0.0064 - - -
CSDI 0.47±0.0010 - - -

w = 0 0.41±0.0032 80.33±0.10 12.54±0.15 -
w = 1 0.39±0.0011 81.56±0.08 17.99±0.15 6.24±0.12

PGDMMAE w = 2 0.39±0.0011 81.63±0.08 18.32±0.16 6.61±0.13

w = 3 0.40±0.0009 80.99±0.06 15.45±0.16 3.33±0.25

w = 4 0.42±0.0010 79.89±0.09 10.54±0.17 -2.28±0.31

w = 5 0.45±0.0011 78.51±0.09 4.42±0.15 -9.28±0.31

w = 0 0.52±0.0032 75.25±0.18 -10.06±0.76 -
w = 1 0.47±0.0022 77.61±0.13 0.41±0.62 9.51±0.31

PGDMGDE w = 2 0.46±0.0013 78.00±0.11 2.16±0.42 11.10±0.38

w = 3 0.48±0.0006 77.26±0.09 -1.12±0.23 8.12±0.49

w = 4 0.50±0.0011 76.06±0.12 -6.48±0.19 3.25±0.68

w = 5 0.53±0.0015 74.62±0.13 -12.90±0.23 -2.58±0.81

Table 6: Mean absolute error (MAE) of PGDMMAE, PGDMGDE, and baselines on the house dancing genre of
the AIST++ dataset. Percent improvements over baselines are shown in the ∆ MAE (%) columns. Mean and
standard deviation are taken across five samples.

Model MAE (dB) ∆ MAE (%) ∆ MAE (%) ∆ MAE (%)
vs. TimeGrad vs. CSDI vs. w = 0

TimeGrad 3.71±0.0159 - - -
CSDI 1.02±0.0045 - - -

w = 0 0.79±0.0017 78.63±0.12 22.11±0.35 -
w = 1 0.74±0.0012 80.04±0.11 27.24±0.31 6.59±0.10

PGDMMAE w = 2 0.74±0.0011 80.12±0.11 27.53±0.29 6.96±0.09

w = 3 0.76±0.0012 79.47±0.12 25.16±0.28 3.91±0.17

w = 4 0.80±0.0014 78.39±0.12 21.25±0.34 -1.11±0.20

w = 5 0.85±0.0019 77.05±0.14 16.35±0.42 -7.40±0.29

w = 0 0.90±0.0013 75.64±0.11 11.19±0.39 -
w = 1 0.83±0.0012 77.60±0.12 18.35±0.36 8.06±0.11

PGDMGDE w = 2 0.82±0.0017 77.80±0.12 19.10±0.40 8.90±0.25

w = 3 0.85±0.0017 77.13±0.13 16.62±0.42 6.11±0.23

w = 4 0.89±0.0019 76.03±0.14 12.64±0.29 1.63±0.17

w = 5 0.94±0.0014 74.75±0.13 7.96±0.29 -3.64±0.14
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Table 7: Mean absolute error (MAE) of PGDMMAE, PGDMGDE, and baselines on the ballet jazz dancing
genre of the AIST++ dataset. Percent improvements over baselines are shown in the ∆ MAE (%) columns.
Mean and standard deviation are taken across five samples.

Model MAE (dB) ∆ MAE (%) ∆ MAE (%) ∆ MAE (%)
vs. TimeGrad vs. CSDI vs. w = 0

TimeGrad 1.32±0.0098 - - -
CSDI 0.55±0.0054 - - -

w = 0 0.42±0.0008 67.94±0.19 22.83±0.84 -
w = 1 0.39±0.0002 70.00±0.22 27.79±0.71 6.43±0.14

PGDMMAE w = 2 0.40±0.0005 69.36±0.24 26.25±0.68 4.43±0.24

w = 3 0.44±0.0006 66.91±0.28 20.34±0.75 -3.23±0.31

w = 4 0.48±0.0012 63.51±0.32 12.17±0.89 -13.82±0.46

w = 5 0.53±0.0013 59.71±0.33 3.01±1.02 -25.68±0.50

w = 0 0.49±0.0004 62.75±0.30 10.34±0.83 -
w = 1 0.45±0.0010 66.10±0.28 18.39±0.85 8.98±0.19

PGDMGDE w = 2 0.45±0.0010 65.61±0.30 17.21±0.86 7.67±0.22

w = 3 0.49±0.0011 62.84±0.33 10.54±0.95 0.23±0.26

w = 4 0.54±0.0009 58.90±0.35 1.05±1.01 -10.35±0.23

w = 5 0.60±0.0012 54.27±0.41 -10.09±1.13 -22.78±0.28

Table 8: Mean absolute error (MAE) of PGDMMAE, PGDMGDE, and baselines on the street jazz dancing genre
of the AIST++ dataset. Percent improvements over baselines are shown in the ∆ MAE (%) columns. Mean and
standard deviation are taken across five samples.

Model MAE (dB) ∆ MAE (%) ∆ MAE (%) ∆ MAE (%)
vs. TimeGrad vs. CSDI vs. w = 0

TimeGrad 1.65±0.0102 - - -
CSDI 0.56±0.0054 - - -

w = 0 0.52±0.0017 68.58±0.25 6.58±0.79 -
w = 1 0.48±0.0010 70.66±0.23 12.76±0.76 6.62±0.19

PGDMMAE w = 2 0.48±0.0008 70.87±0.22 13.39±0.80 7.29±0.18

w = 3 0.49±0.0009 70.23±0.22 11.49±0.85 5.26±0.20

w = 4 0.51±0.0009 69.07±0.23 8.03±0.91 1.56±0.22

w = 5 0.54±0.0009 67.53±0.25 3.45±0.95 -3.34±0.25

w = 0 0.60±0.0016 63.85±0.26 -7.49±1.02 -
w = 1 0.55±0.0007 66.66±0.23 0.88±0.99 7.79±0.19

PGDMGDE w = 2 0.54±0.0005 67.12±0.20 2.25±0.97 9.06±0.19

w = 3 0.55±0.0005 66.41±0.21 0.12±0.96 7.08±0.17

w = 4 0.58±0.0004 65.08±0.22 -3.82±0.97 3.41±0.21

w = 5 0.60±0.0005 63.39±0.22 -8.84±1.00 -1.25±0.21
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Table 9: Mean absolute error (MAE) of PGDMMAE, PGDMGDE, and baselines on the krump dancing genre of
the AIST++ dataset. Percent improvements over baselines are shown in the ∆ MAE (%) columns. Mean and
standard deviation are taken across five samples.

Model MAE (dB) ∆ MAE (%) ∆ MAE (%) ∆ MAE (%)
vs. TimeGrad vs. CSDI vs. w = 0

TimeGrad 2.37±0.0067 - - -
CSDI 0.77±0.0017 - - -

w = 0 0.77±0.0016 67.56±0.13 -0.04±0.31 -
w = 1 0.71±0.0014 70.27±0.13 8.30±0.31 8.33±0.08

PGDMMAE w = 2 0.70±0.0013 70.40±0.13 8.70±0.31 8.73±0.12

w = 3 0.73±0.0011 69.31±0.13 5.33±0.30 5.37±0.12

w = 4 0.77±0.0010 67.53±0.13 -0.14±0.28 -0.11±0.13

w = 5 0.82±0.0008 65.26±0.12 -7.15±0.25 -7.11±0.16

w = 0 0.88±0.0016 62.85±0.12 -14.59±0.26 -
w = 1 0.79±0.0010 66.50±0.11 -3.32±0.24 9.84±0.07

PGDMGDE w = 2 0.79±0.0011 66.87±0.12 -2.18±0.28 10.83±0.10

w = 3 0.81±0.0012 65.91±0.12 -5.14±0.31 8.25±0.11

w = 4 0.84±0.0013 64.39±0.13 -9.84±0.33 4.14±0.11

w = 5 0.89±0.0012 62.59±0.13 -15.39±0.34 -0.70±0.12

Table 10: Mean absolute error (MAE) of PGDMMAE, PGDMGDE, and baselines on the LA hip hop dancing
genre of the AIST++ dataset. Percent improvements over baselines are shown in the ∆ MAE (%) columns.
Mean and standard deviation are taken across five samples.

Model MAE (dB) ∆ MAE (%) ∆ MAE (%) ∆ MAE (%)
vs. TimeGrad vs. CSDI vs. w = 0

TimeGrad 3.30±0.0157 - - -
CSDI 0.78±0.0023 - - -

w = 0 0.80±0.0010 75.83±0.13 -1.95±0.36 -
w = 1 0.74±0.0007 77.55±0.11 5.31±0.33 7.12±0.05

PGDMMAE w = 2 0.74±0.0006 77.64±0.11 5.70±0.33 7.50±0.09

w = 3 0.76±0.0007 76.90±0.11 2.59±0.35 4.45±0.11

w = 4 0.80±0.0007 75.70±0.11 -2.49±0.37 -0.53±0.12

w = 5 0.85±0.0007 74.19±0.12 -8.86±0.38 -6.78±0.13

w = 0 0.90±0.0009 72.82±0.15 -14.62±0.34 -
w = 1 0.82±0.0009 75.04±0.14 -5.29±0.32 8.14±0.02

PGDMGDE w = 2 0.82±0.0005 75.16±0.12 -4.77±0.32 8.59±0.05

w = 3 0.85±0.0004 74.24±0.12 -8.66±0.33 5.19±0.08

w = 4 0.90±0.0006 72.77±0.13 -14.84±0.40 -0.19±0.12

w = 5 0.96±0.0007 71.00±0.15 -22.33±0.45 -6.73±0.12
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Table 11: Mean absolute error (MAE) of PGDMMAE, PGDMGDE, and baselines on the lock dancing genre of
the AIST++ dataset. Percent improvements over baselines are shown in the ∆ MAE (%) columns. Mean and
standard deviation are taken across five samples.

Model MAE (dB) ∆ MAE (%) ∆ MAE (%) ∆ MAE (%)
vs. TimeGrad vs. CSDI vs. w = 0

TimeGrad 3.03±0.0086 - - -
CSDI 0.76±0.0028 - - -

w = 0 0.72±0.0011 76.12±0.10 4.24±0.23 -
w = 1 0.67±0.0005 78.07±0.06 12.08±0.29 8.18±0.12

PGDMMAE w = 2 0.67±0.0003 77.95±0.06 11.60±0.32 7.68±0.16

w = 3 0.70±0.0007 76.89±0.07 7.35±0.29 3.25±0.14

w = 4 0.75±0.0009 75.31±0.09 0.99±0.27 -3.40±0.13

w = 5 0.81±0.0012 73.34±0.09 -6.90±0.37 -11.63±0.25

w = 0 0.78±0.0017 74.17±0.09 -3.57±0.29 -
w = 1 0.71±0.0022 76.51±0.12 5.80±0.23 9.04±0.22

PGDMGDE w = 2 0.71±0.0021 76.52±0.11 5.86±0.35 9.11±0.31

w = 3 0.75±0.0015 75.44±0.11 1.53±0.24 4.92±0.19

w = 4 0.80±0.0013 73.71±0.10 -5.40±0.26 -1.76±0.13

w = 5 0.87±0.0008 71.47±0.09 -14.39±0.34 -10.45±0.17

Table 12: Mean absolute error (MAE) of PGDMMAE, PGDMGDE, and baselines on the middle hip hop dancing
genre of the AIST++ dataset. Percent improvements over baselines are shown in the ∆ MAE (%) columns.
Mean and standard deviation are taken across five samples.

Model MAE (dB) ∆ MAE (%) ∆ MAE (%) ∆ MAE (%)
vs. TimeGrad vs. CSDI vs. w = 0

TimeGrad 3.35±0.0113 - - -
CSDI 1.04±0.0048 - - -

w = 0 0.88±0.0014 73.79±0.11 15.40±0.46 -
w = 1 0.82±0.0009 75.52±0.10 20.99±0.44 6.61±0.09

PGDMMAE w = 2 0.82±0.0015 75.52±0.09 20.99±0.43 6.60±0.10

w = 3 0.85±0.0004 74.59±0.09 17.99±0.42 3.06±0.17

w = 4 0.90±0.0007 73.10±0.11 13.18±0.46 -2.63±0.18

w = 5 0.96±0.0015 71.21±0.13 7.10±0.48 -9.82±0.18

w = 0 1.05±0.0034 68.67±0.13 -1.11±0.37 -
w = 1 0.96±0.0040 71.31±0.12 7.40±0.26 8.42±0.22

PGDMGDE w = 2 0.96±0.0033 71.49±0.06 7.99±0.33 9.00±0.31

w = 3 0.99±0.0020 70.51±0.05 4.83±0.30 5.87±0.31

w = 4 1.04±0.0030 68.92±0.05 -0.30±0.29 0.80±0.39

w = 5 1.10±0.0019 67.03±0.08 -6.40±0.37 -5.23±0.21
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Table 13: Mean absolute error (MAE) of PGDMMAE, PGDMGDE, and baselines on the pop dancing genre of
the AIST++ dataset. Percent improvements over baselines are shown in the ∆ MAE (%) columns. Mean and
standard deviation are taken across five samples.

Model MAE (dB) ∆ MAE (%) ∆ MAE (%) ∆ MAE (%)
vs. TimeGrad vs. CSDI vs. w = 0

TimeGrad 2.55±0.0105 - - -
CSDI 0.70±0.0053 - - -

w = 0 0.47±0.0008 81.57±0.09 32.95±0.58 -
w = 1 0.44±0.0017 82.54±0.12 36.49±0.72 5.27±0.25

PGDMMAE w = 2 0.44±0.0015 82.54±0.11 36.47±0.64 5.24±0.17

w = 3 0.46±0.0013 81.82±0.09 33.88±0.54 1.38±0.20

w = 4 0.49±0.0018 80.60±0.12 29.43±0.65 -5.26±0.23

w = 5 0.54±0.0019 78.99±0.12 23.59±0.73 -13.97±0.23

w = 0 0.52±0.0013 79.44±0.09 25.21±0.57 -
w = 1 0.49±0.0015 80.70±0.07 29.81±0.36 6.16±0.23

PGDMGDE w = 2 0.49±0.0007 80.83±0.08 30.25±0.49 6.75±0.17

w = 3 0.50±0.0010 80.19±0.08 27.93±0.57 3.65±0.12

w = 4 0.54±0.0017 78.99±0.09 23.56±0.56 -2.20±0.31

w = 5 0.58±0.0015 77.39±0.11 17.74±0.59 -9.98±0.35

Table 14: Mean absolute error (MAE) of PGDMMAE, PGDMGDE, and baselines on the wack dancing genre of
the AIST++ dataset. Percent improvements over baselines are shown in the ∆ MAE (%) columns. Mean and
standard deviation are taken across five samples.

Model MAE (dB) ∆ MAE (%) ∆ MAE (%) ∆ MAE (%)
vs. TimeGrad vs. CSDI vs. w = 0

TimeGrad 1.03±0.0047 - - -
CSDI 0.44±0.0042 - - -

w = 0 0.44±0.0044 57.55±0.45 0.61±1.39 -
w = 1 0.41±0.0031 59.74±0.32 5.73±1.47 5.15±0.66

PGDMMAE w = 2 0.42±0.0028 58.75±0.29 3.41±1.45 2.82±0.79

w = 3 0.45±0.0019 56.21±0.23 -2.52±1.26 -3.16±0.73

w = 4 0.48±0.0015 52.93±0.20 -10.20±1.13 -10.88±0.82

w = 5 0.52±0.0020 49.26±0.27 -18.78±1.01 -19.53±0.91

w = 0 0.49±0.0054 52.11±0.44 -12.12±1.81 -
w = 1 0.47±0.0083 54.15±0.67 -7.36±2.59 4.26±0.79

PGDMGDE w = 2 0.48±0.0082 52.83±0.64 -10.45±2.48 1.49±0.83

w = 3 0.52±0.0077 49.71±0.58 -17.76±2.43 -5.02±0.64

w = 4 0.56±0.0060 45.86±0.46 -26.77±2.18 -13.06±0.30

w = 5 0.60±0.0045 41.48±0.28 -37.02±1.90 -22.21±0.64
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