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Abstract

Electronic Health Records (EHRs) are pivotal001
in clinical practices, yet their retrieval remains002
a challenge due to the reliance on exact match003
methods that fail to address semantic gaps.004
Recent advancements in dense retrieval offer005
promising solutions but existing models, both006
general-domain and biomedical-domain, fall007
short due to insufficient medical knowledge008
or mismatched training corpora. This paper009
introduces DR.EHR, a series of dense retrieval010
models specifically tailored for EHR retrieval.011
We propose a two-stage training pipeline uti-012
lizing MIMIC-IV discharge summaries to ad-013
dress the need for extensive medical knowledge014
and large-scale training data. The first stage015
involves medical entity extraction and knowl-016
edge injection from a biomedical knowledge017
graph, while the second stage employs large018
language models to generate diverse training019
data. We train two variants of DR.EHR, with020
110M and 7B parameters, respectively. Eval-021
uated on the CliniQ benchmark, our models022
significantly outperforms all existing dense re-023
trievers, achieving state-of-the-art results. De-024
tailed analyses confirm our models’ superior-025
ity across various match and query types, par-026
ticularly in challenging semantic matches like027
implication and abbreviation. Ablation stud-028
ies validate the effectiveness of each pipeline029
component, underscoring the model’s enhanced030
medical knowledge and adaptability to the EHR031
retrieval task. This work significantly advances032
EHR retrieval, offering a robust solution for033
clinical applications.034

1 Introduction035

Electronic Health Records (EHRs) hold significant036

value in various clinical practices, and EHR re-037

trieval plays an crucial role in enabling physicians038

to utilize EHRs more efficiently (Zhang et al., 2019;039

Ying et al., 2025). This step is essential in a wide040

range of clinical tasks, including patient cohort se-041

lection (Jin et al., 2021; Yang et al., 2021), EHR042

Question Answering (QA) (Pampari et al., 2018; 043

Lanz and Pecina, 2024), and patient chart review 044

(Gupta et al., 2024; Ye et al., 2021). 045

Despite the critical importance of this field, its 046

development has not progressed at a commensu- 047

rate pace. Most existing EHR retrieval systems, 048

whether in academic research or deployed in real- 049

world hospitals, still rely on exact match methods 050

(Ruppel et al., 2020; Negro-Calduch et al., 2021), 051

which inevitably suffer from the semantic gap issue 052

(Koopman et al., 2016; Edinger et al., 2012). A re- 053

cent EHR retrieval benchmark, CliniQ (Zhao et al., 054

2025), which separately evaluates various match- 055

ing types, quantitatively demonstrates that exact 056

match methods struggle with semantic matches, 057

even when augmented by query expansion using a 058

Knowledge Graph (KG). 059

Recently, Dense Retrieval (DR), which leverages 060

Pre-trained Language Models (PLMs) to generate 061

dense text representations for retrieval, has gar- 062

nered increasing research interest (Karpukhin et al., 063

2020). Owing to its inherent ability to capture se- 064

mantics and large-scale contrastive learning, DR 065

models have the potential to bridge the semantic 066

gap and have exhibited strong zero-shot capabili- 067

ties (Neelakantan et al., 2022; Xiao et al., 2023). In 068

the context of EHR retrieval, general-domain mod- 069

els such as bge (Xiao et al., 2023) and NV-Embed 070

(Lee et al., 2024) serve as strong baselines (Myers 071

et al., 2024), but they leave significant room for im- 072

provement due to insufficient medical knowledge 073

(Zhao et al., 2025). Biomedical-domain models, in- 074

cluding MedCPT (Jin et al., 2023) and BMRetriever 075

(Xu et al., 2024), also perform suboptimally de- 076

spite ample knowledge, likely due to the mismatch 077

between their training corpora and clinical notes. 078

Thus, there is a pressing need for an EHR dense re- 079

triever specifically designed for the task with com- 080

prehensive medical knowledge. 081

However, the development of an EHR retriever 082

has been severely limited by the lack of training 083
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data (Jin et al., 2023; Zhao et al., 2023). The re-084

quired query-document relevant pairs were tradi-085

tionally accessible only through manual annota-086

tion. The prohibitive costs of such annotations in-087

evitably constrain the dataset scale to only dozens088

of queries, and the resulting models perform barely089

on par with BM25 (Soni and Roberts, 2020). There090

have been attempts to generate large-scale rele-091

vance judgments automatically using string match092

algorithms or Large Language Models (LLMs) (Shi093

et al., 2022; Gupta et al., 2024). The increase in094

dataset scale leads to significant improvements in095

model performance. Yet, the queries used in these096

works are still provided by human experts or fixed097

vocabularies, limiting the scale and diversity of098

the training data. Consequently, the models lack099

generalizability and are only effective for specific100

diseases or even particular queries.101

In this work, we aim to develop a series of Dense102

Retrieval models for Electronic Health Record,103

dubbed DR.EHR. Specifically, to address the need104

for extensive medical knowledge and generalizable105

models, we propose a two-stage training pipeline106

based on MIMIC-IV discharge summaries (John-107

son et al., 2023). In the first stage, we extract med-108

ical entity mentions from the EHRs and perform109

massive knowledge injection using a biomedical110

KG. In the second stage, inspired by Doc2Query111

(Nogueira et al., 2019), we utilize LLMs to gener-112

ate relevant entities for each EHR to collect large-113

scale and diverse training data. The training data114

collection pipeline is summarized in Figure 1.115

We train two variants of DR.EHR, with 110M116

and 7B parameters, respectively, using contrastive117

learning with in-batch negatives. On CliniQ,118

DR.EHR-small significantly outperforms all exist-119

ing dense retrievers including 7B models, while120

our 7B variant demonstrates further improvement,121

achieving state-of-the-art results on the benchmark.122

Detailed analysis demonstrates that the superiority123

of DR.EHR is substantial and consistent across dif-124

ferent match types and query types. Specifically, it125

achieves near-perfect performance on string match-126

ing and exhibits notable improvements on the most127

challenging semantic matching, such as implication128

and abbreviation matching. Through extensive ab-129

lation studies, we validate the effectiveness of each130

component in the training pipeline, further substan-131

tiating the model’s enhanced medical knowledge132

and adaptability to EHR retrieval tasks.133

Our contributions can be summarized as follows:134

• We propose a two-stage training pipeline that 135

leverages knowledge injection and synthetic 136

data, addressing the lack of medical knowl- 137

edge in models and diverse training data of 138

large scale. 139

• We develop and release DR.EHR, a series of 140

state-of-the-art dense retrieval models specif- 141

ically designed for the task of EHR retrieval. 142

To the best of our knowledge, DR.EHR is the 143

first dense EHR retrieval model that is gener- 144

alizable to a wide range of medical entities. 145

• A detailed analysis demonstrates that DR.EHR 146

overcomes the limitations of general-domain 147

dense retrievers, exhibiting significantly richer 148

medical knowledge and enhanced semantic 149

matching capabilities. 150

2 Related Work 151

2.1 EHR retrieval 152

Most EHR retrieval methods rely on exact matches 153

and heavily leverage biomedical KGs (Hanauer 154

et al., 2015; Ruppel et al., 2020). One popular ap- 155

proach to utilizing KGs for EHR retrieval is to iden- 156

tify medical entities in the EHRs and then match 157

these entities with user queries (Bonacin et al., 158

2018; Goodwin and Harabagiu, 2017). Other sys- 159

tems use KGs for query expansion. By incorporat- 160

ing synonyms, abbreviations, and related concepts 161

of user queries, these methods can significantly 162

improve the recall rate (Zhu et al., 2013; Alonso 163

and Contreras, 2016). However, these methods are 164

limited to exact matching and fixed vocabularies, 165

and therefore struggle to process complex EHRs. 166

Constrained by the shortage of training data, 167

only a limited number of studies have explored the 168

application of supervised learning and language 169

models in this field. Soni and Roberts (2020) uti- 170

lized the data from TREC Medical Record tracks to 171

train a BERT-based re-ranker. However, only about 172

65 queries were used for training, and the resulting 173

model barely performed on par with BM25. Shi 174

et al. (2022) employed string matching to annotate 175

the training data on imaging reports, and trained a 176

dense retriever based on SentenceBERT (Reimers 177

and Gurevych, 2019). Despite its superiority on the 178

leave-out test set, only hundreds of queries were 179

incorporated, all focused on searching for diseases 180

and anatomical findings in imaging reports. There- 181

fore, their model lacks generality. Recently, Gupta 182

et al. (2024) trained the Onco-Retriever series using 183
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Past Medical History: 
1. hypertension; ... 3. GERD; 4.  s/p appendectomy...

Patient Note

Abbreviation
Reduction
by Llama

Knowledge
Graph

gastroesophageal 
reflux disease

acid reflux

digestive disorder

esophagus

Positive Samples
hypertension

high blood pressure 

cardiovascular disease

atherosclerosis risk

appendectomy

appendix removal

abdominal surgery

appendicitis

Original

Synonyms

Hypernyms

Related

Preprocessing
Chunking

Stage I Stage II

... 2. OA ; 3. GERD; ... 5. Left biceps 
tendon repair ...

Doc2Query

Patient Note

Positive 
Samples

Disease:  osteoarthritis, ...

Procedure: biceps tendon repair, ...

Drug:           esomeprazole, ...

MIMIC-IV

Figure 1: The training data collection pipeline of the two stages. In the first stage (left), the positive samples are
defined as string-matched entities, reduced abbreviations, and their synonyms, hypernyms, and related entities
sourced from the KG. In the second stage (right), the positive samples are generated by an LLM using Doc2Query.
Note: OA is an abbreviation for osteoarthritis, and esomeprazole is generated since it is commonly used to treat
GERD.

a private dataset and annotations based on GPT-3.5,184

with model parameter sizes of 500M and 2B. On185

the manually annotated test set, Onco-Retriever186

outperformed the properitary model developed by187

OpenAI and SFR-Embedding-Mistral (Rui Meng,188

2024), which is based on Mistral 7B (Jiang et al.,189

2023). Yet, they only used 13 queries related to190

oncology, severely limiting the model’s range of191

application. Clearly, there is a lack of an EHR192

retriever that can effectively address the semantic193

match challenge and be applied to a wide range of194

queries.195

2.2 Knowledge injection196

Knowledge injection has been widely adopted as an197

effective approach to enriching the models’ knowl-198

edge in the biomedical domain, primarily through199

KGs (Trajanov et al., 2022). Knowledge injection200

can be performed either during the pre-training201

phase or during fine-tuning for downstream tasks.202

Hao et al. (2020) incorporated a relationship predic-203

tion task constructed from UMLS, the most widely204

used biomedical KG, to enhance the model’s medi-205

cal capabilities. Michalopoulos et al. (2020) also206

utilized UMLS and introduced UmlsBERT. By en-207

hancing the model with semantic types of the en-208

tities and an additional prediction task for related209

entities, UmlsBERT demonstrated improvements210

across a variety of clinical tasks. Others focus on211

obtaining better entity representations via knowl-212

edge injection and language models (Yuan et al., 213

2020; Ying et al., 2024). CODER (Yuan et al., 214

2020) employed contrastive learning on terms and 215

relation triplets from UMLS to improve term nor- 216

malization, significantly outperforming existing 217

medical embeddings. Similarly, Liu et al. (2020) 218

introduced SapBERT, which used metric learning 219

to cluster synonyms and achieved state-of-the-art 220

results in medical entity linking tasks. 221

Knowledge injection has also been applied to 222

dense retrieval. Tan et al. (2023) fed an additional 223

entity embedding sequence into the BERT model 224

and used an entity similarity loss to inject knowl- 225

edge into the model. The resulting model, ELK, 226

outperformed general domain retrievers in zero- 227

shot biomedical retrieval tasks by a large margin. 228

2.3 Synthetic data for retrieval 229

Synthesizing data for retrieval may be traced back 230

to Doc2Query (Nogueira et al., 2019), which was 231

further expanded by Cheriton (2019). The idea be- 232

hind these methods was to generate pseudo queries 233

for documents as document expansion. With the 234

rapid development of dense retrieval, training data 235

soon became a scare resource, and research on 236

synthetic data for retrieval turned to generate rel- 237

evant queries from documents for model training. 238

Dai et al. (2022) utilized the FLAN model (Wei 239

et al., 2021) to generate pseudo queries for each 240

of the BEIR (Thakur et al., 2021) datasets. Wang 241
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et al. (2023) leveraged proprietary LLMs to gener-242

ate diverse synthetic data across hundreds of thou-243

sands of tasks and 93 languages. In the biomed-244

ical domain, Xu et al. (2024) also relied on pro-245

prietary LLMs and generated synthetic data for246

biomedicine. So far, there has been no attempt to247

apply synthetic data for EHR retrieval.248

3 Methods249

We use MIMIC-IV discharge summaries as our250

training corpus. Following Zhao et al. (2025), we251

first clean the notes by removing all masks and252

excessive punctuation, and by converting all text to253

lowercase. Then, we split all patient records into254

100-word chunks with overlap of 10 words. Based255

on this training corpus, we propose a two-stage256

training pipeline with synthetic data specifically257

designed for EHR retrieval. The overall training258

data collection pipeline along with an example is259

demonstrated in Figure 1.260

3.1 Stage I: Knowledge injection pre-training261

In the first stage, we aim to enrich the model’s262

medical knowledge through contrastive learning.263

Specifically, for each note chunk used as an anchor,264

we first identify all entity mentions from it that265

are indexed in BIOS (Yu et al., 2022), the largest266

biomedical KG to date1, as the initial positive sam-267

ple set.268

Then, to further enhance the model’s abil-269

ities to identify abbreviations, we prompt270

Llama-3.1-8B-Instruct2 to perform abbrevia-271

tion reduction, and include the full names of the ab-272

breviations appearing in the note as additional pos-273

itive samples. We conduct several cleaning steps to274

remove any noise generated by the LLM, ensuring275

that the cleaned full names appear in BIOS. The276

prompt used for abbreviation reduction and the de-277

tailed cleaning process are described in Appendix278

A.279

Finally, as the core step to inject knowledge from280

the KG, we look up each positive entity in BIOS281

and incorporate their synonyms, hypernyms (is_a282

relationship), and related entities (other relation-283

ships such as may_treat and may_cause) into the284

positive sample set. We do not include hyponyms285

(reverse_is_a relationship) since the information286

contained in the note is insufficient to deduce the287

1We also tried UMLS, which yielded suboptimal results.
2https://huggingface.co/meta-llama/Llama-3.

1-8B-Instruct

hyponyms, and they will not be considered relevant 288

in the downstream retrieval task. 289

In summary, given an anchor note chunk, its pos- 290

itive sample set consist of string-matched entities, 291

full names of reduced abbreviations, and additional 292

terms incorporated through BIOS. 293

3.2 Stage II: Synthetic data fine-tuning 294

In the second stage, we aim to fine-tune the 295

model to optimize for the downstream EHR re- 296

trieval task using synthetic data. Following 297

CliniQ, we also focus on the task of entity re- 298

trieval, and consider three types of query enti- 299

ties: diseases, clinical procedures, and drugs. We 300

use Llama-3.1-8B-Instruct to generate various 301

types of entities separately and combine them as 302

the positive samples. For better semantic matching 303

capabilities, we prompt the LLM to generate enti- 304

ties that are either explicitly mentioned in or can 305

be implicitly inferred from each note chunk. The 306

prompts used are provided in Appendix B. 307

3.3 Model training 308

We train two models of different sizes: 309

DR.EHR-small, a BERT-based encoder with 110M 310

parameters, initialized from bge-base-en-v1.53 311

(Xiao et al., 2023); and DR.EHR-large, a 7B 312

decoder using the Mistral (Jiang et al., 2023) 313

architecture, initialized from NV-Embed-v2 314
4. These initialization choices are due to the 315

superior performance of these models within their 316

respective parameter sizes. 317

With different model architectures, the two 318

models use distinct pooling strategies. For 319

DR.EHR-small, we take the [CLS] embedding 320

from the last layer as the text representation. For 321

DR.EHR-large, we adopt last token pooling. The 322

similarity S(i, j) for an anchor i and a sample j is 323

calculated as the cosine similarity of the two text 324

embeddings. 325

In both stages, we train the model using Multi- 326

Similarity Loss (MSL, Wang et al., 2019) with 327

in-bach negatives. Formally, given an anchor i, 328

its positive samples P(i), and its negative samples 329

N (i), MSL first defines informative samples as 330

follows: 331

P ′(i) = {j|j ∈ P(i), S(i, j) < max
k∈N (i)

S(i, k)+ϵ}

(1) 332

3https://huggingface.co/BAAI/bge-base-en-v1.5
4https://huggingface.co/nvidia/NV-Embed-v2
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333

N ′(i) = {j|j ∈ N (i), S(i, j) > min
k∈P(i)

S(i, k)−ϵ}

(2)334

where ϵ is a hyperparameter. The loss for each335

anchor is calculated as follows:336

L =
log(1 +

∑
j∈P ′(i) exp(−α(S(i, j)− λ)))

α

+
log(1 +

∑
j∈N ′(i) exp(β(S(i, j)− λ)))

β
(3)337

where α, β, and λ are hyperparameters. In our338

experiments, we use ϵ = 0.1, α = 2, β = 50, and339

λ = 0.5, determined by grid search.340

4 Experiments341

4.1 Statistics of the training data342

From the 332k discharge summaries in MIMIC-IV,343

we obtain over 5.8M note chunks, each 100 words344

long, for training, with an average of 17.5 chunks345

per note. In the first training stage, the positive sam-346

ples for each note chunk comprise three parts, with347

entities added from the KG further divided into348

three types: synonyms, hypernyms, and related en-349

tities. For training efficiency, we only include at350

most two synonyms, two hypernyms, and two re-351

lated entities for each positive entity sourced from352

string matching or abbreviation reduction. For each353

hypernym or related entity included, we also incor-354

porate at most one synonym. Consequently, for355

each positive entity, we add up to 10 terms from356

the KG. In our pilot study, adding more entities357

did not lead to significant improvement. Detailed358

statistics of these positive samples are presented in359

Table 1. On average, each note chunk is associated360

with 137.9 positive samples, resulting in a total of361

over 802M samples. Hypernyms, with an average362

of 50.9 samples per chunk, contribute the most,363

followed by related entities (38.6) and synonyms364

(30.2). Abbreviations account for the smallest pro-365

portion, with only 2.4 reduced abbreviations per366

chunk. Notably, nearly 28% of chunks have no367

positive samples from this source.368

In the second training stage, the number of posi-369

tive samples generated is significantly less than in370

the first stage. Detailed statistics, categorized by371

entity type, are provided in Table 2. On average,372

each chunk has 15.8 positive samples generated373

by the LLM, resulting in a total of nearly 86M374

samples. The generated entities exhibit a relatively375

even distribution among the three entity types.376

Table 1: Statistics of positive samples for each chunk
used in the first training stage. Avg: average; Q1: first
quartile; Q3: third quartile; KG: knowledge graph.

Source Avg Q1 Q3 Max Sum

String Match 15.7 12 20 64 91M
Abbreviation 2.4 0 3 25 14M
KG

Synonym 30.2 22 38 127 176M
Hypernym 50.9 38 64 185 296M
Related 38.6 25 51 216 225M

Overall 137.9 102 172 588 802M

Table 2: Statistics of positive samples for each chunk
used in in the second training stage. Avg: average; Q1:
first quartile; Q3: third quartile.

Entity Type Avg Q1 Q3 Max Sum

Disease 5.4 3 7 33 26M
Procedure 7.3 5 9 31 42M
Drug 4.6 2 6 32 20M

Overall 15.8* 11 20 63 86M
* The LLM may generate repeated entities in three rounds

so the combined count is less than the sum of three types.

4.2 Model training 377

In our experiments, the maximum token length is 378

set to 512 for note chunks and 16 for entities. To 379

facilitate batch training, we up-sample or down- 380

sample the positive entities of each chunk to a fixed 381

number. We employ distinct data allocation strate- 382

gies for the two models across two training stages, 383

due to the different GPU memory requirements of 384

the models and the varying dataset scales for each 385

stage. The detailed hyperparameters are presented 386

in Table 3. DR.EHR-large is trained with less data 387

due to the higher GPU memory constraints. 388

The models are trained using 8 Nvidia A800 389

GPUs. Following Lee et al. (2024), DR.EHR-large 390

is trained using low-rank adaptation (LoRA, Hu 391

et al., 2021) with rank 16, alpha 32 and a dropout 392

rate of 0.1. To further reduce GPU memory require- 393

ments, techniques including Bfloat 16 training and 394

DeepSpeed ZeRO-2 are applied to DR.EHR-large. 395

All training processes are optimized using AdamW 396

(Loshchilov and Hutter, 2017) with default param- 397

eters and a learning rate of 1e-4. We set a warmup 398

ratio of 0.1 and a linear decay for the learning rate 399

scheduler. 400
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Table 3: Data-related hyperparameters used for different
models across different training stages. Pos: the number
of positive samples per chunk.

Stage Model Pos Batch Size* Epoch

I
small 128 32 3
large 32 16 1

II
small 16 32 1
large 16 16 1

* With in-batch negatives, the ratio of positive to negative
samples is batch size minus one.

4.3 Model evaluation401

We evaluate our models on CliniQ, a comprehen-402

sive and publicly available EHR retrieval bench-403

mark of large scale. CliniQ is constructed with404

1k patient summaries from MIMIC-III, split into405

16.5k chunks of 100 words each. It contains over406

1k queries of three types: diseases, clinical proce-407

dures, and drugs, collected from structured codes408

in MIMIC and annotated by GPT-4o. It incor-409

porates two retrieval settings: Single-Patient re-410

trieval where models are tasked with ranking the411

chunks of a single patient note given a query, and412

Multi-Patient retrieval, where model are required413

to retrieve relevant chunks from the entire set of414

16.5k chunks. On Single-Patient Retrieval, models415

are evaluated with Mean Reciprocal Rank (MRR),416

Normalized Discounted Cumulative Gain (NDCG),417

and Mean Average Precision (MAP). On Multi-418

Patient Retrieval, models are evaluated with MRR,419

NDCG at 10, and recall at 100. CliniQ provides420

additional semantic match assessment by further421

classifying the relevance judgments into various422

categories.423

4.4 Main results424

The performance of DR.EHR on CliniQ is425

presented in Table 4, in comparison with426

bge-base-en-v1.5, MedCPT5 (Jin et al.,427

2023), text-embedding-3-large by Ope-428

nAI, gte-Qwen2-7B-Instruct6 (Li et al., 2023),429

and NV-Embed-v2. Our proposed models demon-430

strate superior performance on CliniQ. Specifically,431

DR.EHR-small with 110M parameters outper-432

forms all existing dense retrievers, including433

the proprietary embedding model by OpenAI434

5https://huggingface.co/ncbi/
MedCPT-Article-Encoder

6https://huggingface.co/Alibaba-NLP/
gte-Qwen2-7B-instruct

and state-of-the-art 7B models, by a remarkable 435

margin. The large variant with 7B parameters 436

demonstrate further significant improvement on 437

Multi-Patient Retrieval. The advantages of DR.EHR 438

are consistent and substantial across both retrieval 439

settings and all metrics. Notably, we improve the 440

MAP on Single-Patient Retrieval from the previous 441

SOTA of 80.21 to 89.12 for DR.EHR-small and 442

88.92 for DR.EHR-large, and the Recall@100 on 443

Multi-Patient Retrieval from the previous SOTA 444

of 51.54 to 64.11 for DR.EHR-small and 67.20 for 445

DR.EHR-large. 446

5 Analysis 447

5.1 Semantic match assessment 448

The detailed results of the semantic match assess- 449

ment in CliniQ are presented in Table 5. For brevity, 450

we only report the average scores of MRR, NDCG, 451

and MAP. DR.EHR demonstrates significant im- 452

provements over the baseline models. Specifically, 453

DR.EHR addresses the challenge of insufficient ex- 454

act match capabilities observed in general domain 455

dense retrievers (Zhuang et al., 2023) in the context 456

of EHR retrieval, achieving near-perfect perfor- 457

mance on the string match benchmark in CliniQ. 458

In terms of semantic matches, DR.EHR-small out- 459

performs its initialization model by more than 10% 460

across all categories, with a notable improvement 461

of over 26% in abbreviation matching. These sub- 462

stantial gains underscore the effectiveness of the 463

proposed pipeline. Through extensive knowledge 464

injection and meticulously synthesized data, the 465

models have learned to capture deep semantic as- 466

sociations between terms and represent them effec- 467

tively in their embeddings. 468

5.2 Query type assessment 469

The detailed results for different query types (dis- 470

ease, procedure, and drug) are presented in Table 6. 471

We additionally include the BM25 baseline, which 472

achieves the best performance for drug searches in 473

Multi-Patient Retrieval. The superiority of BM25 474

on this benchmark may be attributed to the fact 475

that most drug queries consist of single words that 476

appear verbatim in the notes. DR.EHR demonstrates 477

consistent and significant improvements across all 478

query types. Notably, it addresses the limitations 479

of other dense retrievers in drug matching, improv- 480

ing the average scores by 12% and 24% in the two 481

retrieval settings, respectively. 482
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Table 4: Performance of various dense retrievers on CliniQ. QE: Query expansion. Dim: Dimension of the
embeddings. R@100: Recall at 100.

Model Size Dim
Single-Patient Multi-Patient

MRR NDCG MAP MRR NDCG@10 R@100

bge-base-en-v1.5 110M 768 82.48 83.59 74.54 54.97 56.51 39.50
MedCPT 220M* 768 84.23 85.49 77.42 47.21 50.07 41.97
text-embedding-3-large - 3072 85.16 86.09 78.36 59.54 60.45 48.75
gte-Qwen2-7B-Instruct 7B 3584 84.59 85.33 77.02 60.39 62.06 48.04
NV-Embed-v2 7B 4096 86.57 87.36 80.21 59.48 62.06 51.54

DR.EHR-small 110M 768 92.96 93.26 89.12 67.06 68.75 64.11
w/o stage I 110M 768 91.61 92.00 87.15 65.55 67.59 60.42

DR.EHR-large 7B 4096 93.01 93.19 88.92 68.95 71.32 67.20
* MedCPT has separate query encoder and document encoder, so we count the parameter size as the summation of both models.

Table 5: Performance of various dense retrievers and ablation study on Single-Patient Retrieval, dissected by match
types. The score for each type is the average of MRR, NDCG, and MAP. In the ablation study part, "w/o stage I"
indicates the removal of stage I training, and each row starting with "+" represents adding extra training data in
stage I to the previous row, with the same training data split as in Table 1.

Model String Synonym Abbreviation Hyponym Implication

bge-base-en-v1.5 86.75 71.57 57.15 64.42 52.75
NV-Embed-v2 87.34 83.28 72.13 75.07 59.96

DR.EHR-small 97.34 86.01 83.37 76.88 67.56
w/o stage I 97.27 82.13 78.31 71.06 63.91
+ String Match 97.60 81.37 78.26 70.23 63.18
+ Abbreviation 97.47 81.69 80.40 69.98 63.96
+ KG–Synonym 97.66 84.07 80.79 71.31 64.35
+ KG–Hypernym 97.42 85.87 81.86 75.71 64.19

DR.EHR-large 97.59 86.26 85.08 74.96 65.32

Table 6: Performance of various retrieval methods and ablation study for different query types. The score for each
type is the average of MRR, NDCG, and MAP in Single-Patient Retrieval, and the average of MRR, NDCG@10,
and Recall@100 in Multi-Patient Retrieval. In the ablation study part, "Stage I +" indicates using only the specific
type of synthesized data for training during stage II.

Model
Single-Patient Multi-Patient

Disease Procedure Drug Disease Procedure Drug

BM25 64.69 64.81 72.08 33.76 33.55 76.91
bge-base-en-v1.5 75.98 75.83 82.47 40.46 41.48 62.06
NV-Embed-v2 81.95 82.82 86.04 51.50 54.11 63.76

DR.EHR-small 87.52 83.95 94.61 51.58 50.90 86.03
Stage I + Disease 72.04 64.77 77.09 49.60 44.49 60.15
Stage I + Procedure 70.98 68.29 89.75 45.15 48.86 80.75
Stage I + Drug 59.97 57.10 90.62 33.28 32.14 85.49

DR.EHR-large 75.04 70.79 94.13 54.37 52.65 88.89
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5.3 Ablation study483

We conduct three ablation studies using484

DR.EHR-small. First, we ablate the stage I485

training and present the results in Tables 4 and486

5. The results demonstrate that the knowledge487

injection phase significantly contributes to the488

final performance of DR.EHR, particularly on489

Recall@100 for Multi-Patient Retrieval. Detailed490

analysis of different match types reveals that this491

contribution is primarily attributed to semantic492

matches. The knowledge injection phase improves493

model performance by approxiamately 5% across494

all semantic match types.495

To gain a deeper understanding of the contribu-496

tions of knowledge injection, we divide the Stage497

I training data into five parts, as shown in Ta-498

ble 1, and sequentially incorporate each part to499

demonstrate their individual effects. The results,500

presented in Table 5, demonstrate that each por-501

tion of the training data significantly enhances per-502

formance on the corresponding benchmark, con-503

firming that DR.EHR effectively acquires extensive504

knowledge from KGs. Notably, the additional train-505

ing data also improves performance on other types506

of matching in most cases, indicating enhanced507

generalizability of DR.EHR.508

For the second stage training, we divide the syn-509

thetic data according to the generated query types,510

and use them separately to train a series of mod-511

els. As expected, results in Table 6 demonstrates512

that synthetic data tailored to specific query types513

improves model performance on the correspond-514

ing benchmark. Surprisingly, however, combining515

various types of synthetic data further enhances516

model capabilities significantly across all query517

types compared to models trained on individual518

data types. This synergistic effect of "1+1+1>3"519

might suggest that our model benefits from transfer520

learning during the second stage of training. When521

exposed to diverse query types, DR.EHR learns522

to capture broader semantic patterns and deeper523

knowledge connections, resulting in enhanced gen-524

eralization capabilities and improved learning effi-525

ciency.526

5.4 Case study527

We conduct several case studies comparing528

bge-base-en-v1.5 and DR.EHR-small. For each529

match type, one example is selected, and the530

queries, note chunks, corresponding ranks, and co-531

sine similarities generated by the two models are532

provided in Appendix C. The rank is calculated 533

after excluding relevant chunks of other match 534

types, and the cosine similarity is computed be- 535

tween the query and the relevant part (see Table 536

7) within the chunks. Our observations reveal 537

that DR.EHR-small successfully identifies various 538

types of matches, and its higher cosine similarities 539

demonstrate its ability to learn extensive medical 540

knowledge and represent information in clinical 541

notes more effectively. 542

6 Conclusion 543

In this paper, we propose a two-stage training 544

pipeline specifically designed for the task of EHR 545

retrieval. The first stage employs KGs for knowl- 546

edge injection through pre-training, while the sec- 547

ond stage fine-tunes the model for the retrieval task 548

with synthetic data generated by LLMs. Using this 549

pipeline, we develop and release DR.EHR, a state-of- 550

the-art EHR retriever available in two model sizes. 551

Extensive experiments demonstrate that DR.EHR 552

significantly outperforms baseline models across 553

various settings, match types, and query types. No- 554

tably, our model exhibits exceptional capabilities 555

in both string matching and semantic matching. 556

Ablation studies confirm the contribution of each 557

component in the training pipeline, underscoring 558

its overall effectiveness. 559

7 Limitations 560

This study has several limitations. First, the evalu- 561

ation of our model is restricted to a single bench- 562

mark, specifically the task of entity retrieval. The 563

neglect of other query types, such as natural lan- 564

guage questions and complex criteria, is due to the 565

lack of publicly available benchmarks. We call 566

for future efforts to construct richer and more di- 567

verse public benchmarks. Second, the quality of 568

synthetic data in both stages of our work could be 569

improved, as noise exists in both KGs and LLM- 570

generated data. However, conducting data quality 571

filtering on such a large scale is computationally 572

intensive and exceeds our current resource con- 573

straints. Third, while hard negatives are known to 574

significantly enhance model performance, partic- 575

ularly during task-specific fine-tuning (e.g., stage 576

II training) (Karpukhin et al., 2020; Zeng et al., 577

2022), the design of synthetic hard negative data 578

is non-trivial. We leave this challenge for future 579

research. 580
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A Details of Abbreviation Reduction842

The prompt used for abbreviation reduction is pro-843

vided in Figure 2. After reducing abbreviations, we844

conduct the following cleaning steps to eliminate845

potential noise generated by the LLM:846

1. We remove abbreviations that do not appear847

in the original note.848

2. We remove full names that are identical to849

their abbreviations.850

3. We remove full names that are not indexed in851

BIOS.852

The Prompt for Abbreviation Reduction
Replace the abbreviations of medical entities with their full names in the 
clinical note below. For one abbreviation, only output once unless it refers 
to different full names in the note. If no abbreviation is found in the note, 
please output "NA". Otherwise, output in the following format (only output 
the terms and nothing else):
###[abbreviation]
***[full name]
...

For example:
###ct
***computed tomography

###wbc
***while blood cell

Now the task begins. Here is the note:
{note}

Figure 2: The prompt used for abbreviation reduction.
{note} is the placeholder for the note to be processed.

The Prompt for Synthetic Data Generation
{note}

Briefly summarize the {entity_type} explicitly mentioned or that can be 
implicitly inferred from the medical record above. Only output the entity 
names (in their standardized terms) in a list. Do not output the reasons.

Output format:
- Entity 1
- Entity 2
...

Figure 3: The prompt used for synthetic data generation.
{note} is the placeholder for the note to be processed,
and {entity_type} takes on the values of diseases, clini-
cal procedures, and drugs.

4. We remove abbreviations that are only one 853

character long. 854

B Prompt for synthetic data generation 855

The prompt used for synthetic data generation is 856

given in Figure 3. 857

C Case studies 858

We present several cases in Table 7 where 859

bge-base-en-v1.5 fails to retrieve the relevant 860

chunk, while DR.EHR succeeds. One example is 861

provided for each match type. 862
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Table 7: Case studies of the performance of DR.EHR compared to bge-base-en-v1.5 on Singel-Patient Retrieval.
The last two columns are the rank of the corresponding chunk and the cosine similarity given by the two models. The
rank is calculated after removing relevant chunks of other match types. The cosine similarity is between the query and
the relevant part (in red).

Match Type Query Patient note bge DR.EHR

String ceftriaxone
... She was given Vanc, Ceftriaxone, Flagyl,
2L IVF, and started on levophed ...

12 / 1.00 1 / 1.00

Synonym phenytoin ... MEDICINE Allergies: Dilantin1... 7 / 0.61 1 / 0.86

Abbreviation hypertension ...Past Medical History: (1) HTN2(2) ... 15 / 0.61 1 / 0.89

Hyponym
interruption of
the vena cava

... Prophylaxis: IVC filter3and Pneumoboots. ... 5 / 0.59 1 / 0.61

Implication
diabetes
mellitus

... Medications on Admission: lipitor 40mg
po qday metformin41000mg po bid ...

11 / 0.66 2 / 0.86

1 Dilantin is a brand name of phenytoin.
2 HTN is the common abbreivation for hypertension.
3 IVC filter is a subtype of interruption of the vena cava.
4 Metformin is a common hypolycemic agent.
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