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Abstract

Electronic Health Records (EHRs) are pivotal
in clinical practices, yet their retrieval remains
a challenge due to the reliance on exact match
methods that fail to address semantic gaps.
Recent advancements in dense retrieval offer
promising solutions but existing models, both
general-domain and biomedical-domain, fall
short due to insufficient medical knowledge
or mismatched training corpora. This paper
introduces DR.EHR, a series of dense retrieval
models specifically tailored for EHR retrieval.
We propose a two-stage training pipeline uti-
lizing MIMIC-IV discharge summaries to ad-
dress the need for extensive medical knowledge
and large-scale training data. The first stage
involves medical entity extraction and knowl-
edge injection from a biomedical knowledge
graph, while the second stage employs large
language models to generate diverse training
data. We train two variants of DR.EHR, with
110M and 7B parameters, respectively. Eval-
uated on the CliniQ benchmark, our models
significantly outperforms all existing dense re-
trievers, achieving state-of-the-art results. De-
tailed analyses confirm our models’ superior-
ity across various match and query types, par-
ticularly in challenging semantic matches like
implication and abbreviation. Ablation stud-
ies validate the effectiveness of each pipeline
component, underscoring the model’s enhanced
medical knowledge and adaptability to the EHR
retrieval task. This work significantly advances
EHR retrieval, offering a robust solution for
clinical applications.

1 Introduction

Electronic Health Records (EHRs) hold significant
value in various clinical practices, and EHR re-
trieval plays an crucial role in enabling physicians
to utilize EHRs more efficiently (Zhang et al., 2019;
Ying et al., 2025). This step is essential in a wide
range of clinical tasks, including patient cohort se-
lection (Jin et al., 2021; Yang et al., 2021), EHR

Question Answering (QA) (Pampari et al., 2018;
Lanz and Pecina, 2024), and patient chart review
(Gupta et al., 2024; Ye et al., 2021).

Despite the critical importance of this field, its
development has not progressed at a commensu-
rate pace. Most existing EHR retrieval systems,
whether in academic research or deployed in real-
world hospitals, still rely on exact match methods
(Ruppel et al., 2020; Negro-Calduch et al., 2021),
which inevitably suffer from the semantic gap issue
(Koopman et al., 2016; Edinger et al., 2012). A re-
cent EHR retrieval benchmark, CliniQ (Zhao et al.,
2025), which separately evaluates various match-
ing types, quantitatively demonstrates that exact
match methods struggle with semantic matches,
even when augmented by query expansion using a
Knowledge Graph (KG).

Recently, Dense Retrieval (DR), which leverages
Pre-trained Language Models (PLMs) to generate
dense text representations for retrieval, has gar-
nered increasing research interest (Karpukhin et al.,
2020). Owing to its inherent ability to capture se-
mantics and large-scale contrastive learning, DR
models have the potential to bridge the semantic
gap and have exhibited strong zero-shot capabili-
ties (Neelakantan et al., 2022; Xiao et al., 2023). In
the context of EHR retrieval, general-domain mod-
els such as bge (Xiao et al., 2023) and NV-Embed
(Lee et al., 2024) serve as strong baselines (Myers
et al., 2024), but they leave significant room for im-
provement due to insufficient medical knowledge
(Zhao et al., 2025). Biomedical-domain models, in-
cluding MedCPT (Jin et al., 2023) and BMRetriever
(Xu et al., 2024), also perform suboptimally de-
spite ample knowledge, likely due to the mismatch
between their training corpora and clinical notes.
Thus, there is a pressing need for an EHR dense re-
triever specifically designed for the task with com-
prehensive medical knowledge.

However, the development of an EHR retriever
has been severely limited by the lack of training



data (Jin et al., 2023; Zhao et al., 2023). The re-
quired query-document relevant pairs were tradi-
tionally accessible only through manual annota-
tion. The prohibitive costs of such annotations in-
evitably constrain the dataset scale to only dozens
of queries, and the resulting models perform barely
on par with BM25 (Soni and Roberts, 2020). There
have been attempts to generate large-scale rele-
vance judgments automatically using string match
algorithms or Large Language Models (LLMs) (Shi
et al., 2022; Gupta et al., 2024). The increase in
dataset scale leads to significant improvements in
model performance. Yet, the queries used in these
works are still provided by human experts or fixed
vocabularies, limiting the scale and diversity of
the training data. Consequently, the models lack
generalizability and are only effective for specific
diseases or even particular queries.

In this work, we aim to develop a series of Dense
Retrieval models for Electronic Health Record,
dubbed DR.EHR. Specifically, to address the need
for extensive medical knowledge and generalizable
models, we propose a two-stage training pipeline
based on MIMIC-IV discharge summaries (John-
son et al., 2023). In the first stage, we extract med-
ical entity mentions from the EHRs and perform
massive knowledge injection using a biomedical
KG. In the second stage, inspired by Doc2Query
(Nogueira et al., 2019), we utilize LLMs to gener-
ate relevant entities for each EHR to collect large-
scale and diverse training data. The training data
collection pipeline is summarized in Figure 1.

We train two variants of DR.EHR, with 110M
and 7B parameters, respectively, using contrastive
learning with in-batch negatives. On CliniQ,
DR.EHR-small significantly outperforms all exist-
ing dense retrievers including 7B models, while
our 7B variant demonstrates further improvement,
achieving state-of-the-art results on the benchmark.
Detailed analysis demonstrates that the superiority
of DR.EHR is substantial and consistent across dif-
ferent match types and query types. Specifically, it
achieves near-perfect performance on string match-
ing and exhibits notable improvements on the most
challenging semantic matching, such as implication
and abbreviation matching. Through extensive ab-
lation studies, we validate the effectiveness of each
component in the training pipeline, further substan-
tiating the model’s enhanced medical knowledge
and adaptability to EHR retrieval tasks.

Our contributions can be summarized as follows:

* We propose a two-stage training pipeline that
leverages knowledge injection and synthetic
data, addressing the lack of medical knowl-
edge in models and diverse training data of
large scale.

* We develop and release DR.EHR, a series of
state-of-the-art dense retrieval models specif-
ically designed for the task of EHR retrieval.
To the best of our knowledge, DR.EHR is the
first dense EHR retrieval model that is gener-
alizable to a wide range of medical entities.

* A detailed analysis demonstrates that DR. EHR
overcomes the limitations of general-domain
dense retrievers, exhibiting significantly richer
medical knowledge and enhanced semantic
matching capabilities.

2 Related Work
2.1 EHR retrieval

Most EHR retrieval methods rely on exact matches
and heavily leverage biomedical KGs (Hanauer
et al., 2015; Ruppel et al., 2020). One popular ap-
proach to utilizing KGs for EHR retrieval is to iden-
tify medical entities in the EHRs and then match
these entities with user queries (Bonacin et al.,
2018; Goodwin and Harabagiu, 2017). Other sys-
tems use KGs for query expansion. By incorporat-
ing synonyms, abbreviations, and related concepts
of user queries, these methods can significantly
improve the recall rate (Zhu et al., 2013; Alonso
and Contreras, 2016). However, these methods are
limited to exact matching and fixed vocabularies,
and therefore struggle to process complex EHRs.
Constrained by the shortage of training data,
only a limited number of studies have explored the
application of supervised learning and language
models in this field. Soni and Roberts (2020) uti-
lized the data from TREC Medical Record tracks to
train a BERT-based re-ranker. However, only about
65 queries were used for training, and the resulting
model barely performed on par with BM25. Shi
et al. (2022) employed string matching to annotate
the training data on imaging reports, and trained a
dense retriever based on SentenceBERT (Reimers
and Gurevych, 2019). Despite its superiority on the
leave-out test set, only hundreds of queries were
incorporated, all focused on searching for diseases
and anatomical findings in imaging reports. There-
fore, their model lacks generality. Recently, Gupta
et al. (2024) trained the Onco-Retriever series using
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Figure 1: The training data collection pipeline of the two stages. In the first stage (left), the positive samples are
defined as string-matched entities, reduced abbreviations, and their synonyms, hypernyms, and related entities
sourced from the KG. In the second stage (right), the positive samples are generated by an LLM using Doc2Query.
Note: OA is an abbreviation for osteoarthritis, and esomeprazole is generated since it is commonly used to treat

GERD.

a private dataset and annotations based on GPT-3.5,
with model parameter sizes of S00M and 2B. On
the manually annotated test set, Onco-Retriever
outperformed the properitary model developed by
OpenAl and SFR-Embedding-Mistral (Rui Meng,
2024), which is based on Mistral 7B (Jiang et al.,
2023). Yet, they only used 13 queries related to
oncology, severely limiting the model’s range of
application. Clearly, there is a lack of an EHR
retriever that can effectively address the semantic
match challenge and be applied to a wide range of
queries.

2.2 Knowledge injection

Knowledge injection has been widely adopted as an
effective approach to enriching the models’ knowl-
edge in the biomedical domain, primarily through
KGs (Trajanov et al., 2022). Knowledge injection
can be performed either during the pre-training
phase or during fine-tuning for downstream tasks.
Hao et al. (2020) incorporated a relationship predic-
tion task constructed from UMLS, the most widely
used biomedical KG, to enhance the model’s medi-
cal capabilities. Michalopoulos et al. (2020) also
utilized UMLS and introduced UmIsBERT. By en-
hancing the model with semantic types of the en-
tities and an additional prediction task for related
entities, UmISBERT demonstrated improvements
across a variety of clinical tasks. Others focus on
obtaining better entity representations via knowl-

edge injection and language models (Yuan et al.,
2020; Ying et al., 2024). CODER (Yuan et al.,
2020) employed contrastive learning on terms and
relation triplets from UMLS to improve term nor-
malization, significantly outperforming existing
medical embeddings. Similarly, Liu et al. (2020)
introduced SapBERT, which used metric learning
to cluster synonyms and achieved state-of-the-art
results in medical entity linking tasks.

Knowledge injection has also been applied to
dense retrieval. Tan et al. (2023) fed an additional
entity embedding sequence into the BERT model
and used an entity similarity loss to inject knowl-
edge into the model. The resulting model, ELK,
outperformed general domain retrievers in zero-
shot biomedical retrieval tasks by a large margin.

2.3 Synthetic data for retrieval

Synthesizing data for retrieval may be traced back
to Doc2Query (Nogueira et al., 2019), which was
further expanded by Cheriton (2019). The idea be-
hind these methods was to generate pseudo queries
for documents as document expansion. With the
rapid development of dense retrieval, training data
soon became a scare resource, and research on
synthetic data for retrieval turned to generate rel-
evant queries from documents for model training.
Dai et al. (2022) utilized the FLAN model (Wei
et al., 2021) to generate pseudo queries for each
of the BEIR (Thakur et al., 2021) datasets. Wang



et al. (2023) leveraged proprietary LLMs to gener-
ate diverse synthetic data across hundreds of thou-
sands of tasks and 93 languages. In the biomed-
ical domain, Xu et al. (2024) also relied on pro-
prietary LL.Ms and generated synthetic data for
biomedicine. So far, there has been no attempt to
apply synthetic data for EHR retrieval.

3 Methods

We use MIMIC-IV discharge summaries as our
training corpus. Following Zhao et al. (2025), we
first clean the notes by removing all masks and
excessive punctuation, and by converting all text to
lowercase. Then, we split all patient records into
100-word chunks with overlap of 10 words. Based
on this training corpus, we propose a two-stage
training pipeline with synthetic data specifically
designed for EHR retrieval. The overall training
data collection pipeline along with an example is
demonstrated in Figure 1.

3.1 Stage I: Knowledge injection pre-training

In the first stage, we aim to enrich the model’s
medical knowledge through contrastive learning.
Specifically, for each note chunk used as an anchor,
we first identify all entity mentions from it that
are indexed in BIOS (Yu et al., 2022), the largest
biomedical KG to date!, as the initial positive sam-
ple set.

Then, to further enhance the model’s abil-
ities to identify abbreviations, we prompt
Llama-3.1-8B-Instruct’ to perform abbrevia-
tion reduction, and include the full names of the ab-
breviations appearing in the note as additional pos-
itive samples. We conduct several cleaning steps to
remove any noise generated by the LLM, ensuring
that the cleaned full names appear in BIOS. The
prompt used for abbreviation reduction and the de-
tailed cleaning process are described in Appendix
A.

Finally, as the core step to inject knowledge from
the KG, we look up each positive entity in BIOS
and incorporate their synonyms, hypernyms (is_a
relationship), and related entities (other relation-
ships such as may_treat and may_cause) into the
positive sample set. We do not include hyponyms
(reverse_is_a relationship) since the information
contained in the note is insufficient to deduce the

'We also tried UMLS, which yielded suboptimal results.
2https://huggingface.co/meta—llama/Llama—B.
1-8B-Instruct

hyponyms, and they will not be considered relevant
in the downstream retrieval task.

In summary, given an anchor note chunk, its pos-
itive sample set consist of string-matched entities,
full names of reduced abbreviations, and additional
terms incorporated through BIOS.

3.2 Stage II: Synthetic data fine-tuning

In the second stage, we aim to fine-tune the
model to optimize for the downstream EHR re-
trieval task using synthetic data. Following
CliniQ, we also focus on the task of entity re-
trieval, and consider three types of query enti-
ties: diseases, clinical procedures, and drugs. We
use Llama-3.1-8B-Instruct to generate various
types of entities separately and combine them as
the positive samples. For better semantic matching
capabilities, we prompt the LLLM to generate enti-
ties that are either explicitly mentioned in or can
be implicitly inferred from each note chunk. The
prompts used are provided in Appendix B.

3.3 Model training

We train two models of different sizes:
DR.EHR-small, a BERT-based encoder with 110M
parameters, initialized from bge-base-en-v1.53
(Xiao et al., 2023); and DR.EHR-large, a 7B
decoder using the Mistral (Jiang et al., 2023)
architecture, initialized from NV-Embed-v2
4. These initialization choices are due to the
superior performance of these models within their
respective parameter sizes.

With different model architectures, the two
models use distinct pooling strategies.  For
DR.EHR-small, we take the [CLS] embedding
from the last layer as the text representation. For
DR.EHR-large, we adopt last token pooling. The
similarity S(, j) for an anchor ¢ and a sample j is
calculated as the cosine similarity of the two text
embeddings.

In both stages, we train the model using Multi-
Similarity Loss (MSL, Wang et al., 2019) with
in-bach negatives. Formally, given an anchor <,
its positive samples P (i), and its negative samples
N (i), MSL first defines informative samples as
follows:

P(i) = {3l € P(0). S(i.4) < max S(i,K)+e)
o))

3https://huggingface.co/BAAI/bge—base—en—v1.5
*https://huggingface.co/nvidia/NV-Embed-v2
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N'(@) = {4l € N(3),S(i,7) > min S(i,k)—e}
keP (i)
(2)

where € is a hyperparameter. The loss for each
anchor is calculated as follows:

o tog(l+ 2 jepip ¥P(—a(SG 5) = V)

L log(l + ZjEN’(i) eXp(ﬁ(S(ivj) - )‘)))

s
3)
where «, 3, and A\ are hyperparameters. In our
experiments, we use € = 0.1, « = 2, 5 = 50, and
A = 0.5, determined by grid search.

4 Experiments

4.1 Statistics of the training data

From the 332k discharge summaries in MIMIC-1V,
we obtain over 5.8M note chunks, each 100 words
long, for training, with an average of 17.5 chunks
per note. In the first training stage, the positive sam-
ples for each note chunk comprise three parts, with
entities added from the KG further divided into
three types: synonyms, hypernyms, and related en-
tities. For training efficiency, we only include at
most two synonyms, two hypernyms, and two re-
lated entities for each positive entity sourced from
string matching or abbreviation reduction. For each
hypernym or related entity included, we also incor-
porate at most one synonym. Consequently, for
each positive entity, we add up to 10 terms from
the KG. In our pilot study, adding more entities
did not lead to significant improvement. Detailed
statistics of these positive samples are presented in
Table 1. On average, each note chunk is associated
with 137.9 positive samples, resulting in a total of
over 802M samples. Hypernyms, with an average
of 50.9 samples per chunk, contribute the most,
followed by related entities (38.6) and synonyms
(30.2). Abbreviations account for the smallest pro-
portion, with only 2.4 reduced abbreviations per
chunk. Notably, nearly 28% of chunks have no
positive samples from this source.

In the second training stage, the number of posi-
tive samples generated is significantly less than in
the first stage. Detailed statistics, categorized by
entity type, are provided in Table 2. On average,
each chunk has 15.8 positive samples generated
by the LLM, resulting in a total of nearly 86M
samples. The generated entities exhibit a relatively
even distribution among the three entity types.

Table 1: Statistics of positive samples for each chunk
used in the first training stage. Avg: average; Q1: first
quartile; Q3: third quartile; KG: knowledge graph.

Source Avg Q1 Q3 Max Sum
String Match 157 12 20 64 91M
Abbreviation 2.4 0 3 25 14M
KG
Synonym 302 22 38 127 176M
Hypernym 509 38 64 185 296M
Related 386 25 51 216 225M
Overall 1379 102 172 588 802M

Table 2: Statistics of positive samples for each chunk
used in in the second training stage. Avg: average; Q1:
first quartile; Q3: third quartile.

Entity Type Avg Q1 Q3 Max Sum
Disease 5.4 3 7 33 26M
Procedure 7.3 5 9 31 42M
Drug 4.6 2 6 32 20M
Overall 158" 11 20 63 86M

* The LLM may generate repeated entities in three rounds
so the combined count is less than the sum of three types.

4.2 Model training

In our experiments, the maximum token length is
set to 512 for note chunks and 16 for entities. To
facilitate batch training, we up-sample or down-
sample the positive entities of each chunk to a fixed
number. We employ distinct data allocation strate-
gies for the two models across two training stages,
due to the different GPU memory requirements of
the models and the varying dataset scales for each
stage. The detailed hyperparameters are presented
in Table 3. DR.EHR-1arge is trained with less data
due to the higher GPU memory constraints.

The models are trained using 8 Nvidia A800
GPUs. Following Lee et al. (2024), DR.EHR-1arge
is trained using low-rank adaptation (LoRA, Hu
et al., 2021) with rank 16, alpha 32 and a dropout
rate of 0.1. To further reduce GPU memory require-
ments, techniques including Bfloat 16 training and
DeepSpeed ZeRO-2 are applied to DR.EHR-1arge.
All training processes are optimized using AdamW
(Loshchilov and Hutter, 2017) with default param-
eters and a learning rate of 1e-4. We set a warmup
ratio of 0.1 and a linear decay for the learning rate
scheduler.



Table 3: Data-related hyperparameters used for different
models across different training stages. Pos: the number
of positive samples per chunk.

Stage Model Pos Batch Size® Epoch
small 128 32 3
large 32 16 1
I small 16 32
large 16 16 1

* With in-batch negatives, the ratio of positive to negative
samples is batch size minus one.

4.3 Model evaluation

We evaluate our models on CliniQ, a comprehen-
sive and publicly available EHR retrieval bench-
mark of large scale. CliniQ is constructed with
1k patient summaries from MIMIC-III, split into
16.5k chunks of 100 words each. It contains over
1k queries of three types: diseases, clinical proce-
dures, and drugs, collected from structured codes
in MIMIC and annotated by GPT-40. It incor-
porates two retrieval settings: Single-Patient re-
trieval where models are tasked with ranking the
chunks of a single patient note given a query, and
Multi-Patient retrieval, where model are required
to retrieve relevant chunks from the entire set of
16.5k chunks. On Single-Patient Retrieval, models
are evaluated with Mean Reciprocal Rank (MRR),
Normalized Discounted Cumulative Gain (NDCG),
and Mean Average Precision (MAP). On Multi-
Patient Retrieval, models are evaluated with MRR,
NDCG at 10, and recall at 100. CliniQ provides
additional semantic match assessment by further
classifying the relevance judgments into various
categories.

4.4 Main results

The performance of DR.EHR on CliniQ is
presented in Table 4, in comparison with
bge-base-en-v1.5, MedCPT° (Jin et al.,
2023), text-embedding-3-large by Ope-
nAl, gte-Qwen2-7B-Instruct® (Li et al., 2023),
and NV-Embed-v2. Our proposed models demon-
strate superior performance on CliniQ. Specifically,
DR.EHR-small with 110M parameters outper-
forms all existing dense retrievers, including
the proprietary embedding model by OpenAl

5https://huggingface.co/ncbi/
MedCPT-Article-Encoder

6https://huggingface.co/Alibaba—NLP/
gte-Qwen2-7B-instruct

and state-of-the-art 7B models, by a remarkable
margin. The large variant with 7B parameters
demonstrate further significant improvement on
Multi-Patient Retrieval. The advantages of DR.EHR
are consistent and substantial across both retrieval
settings and all metrics. Notably, we improve the
MAP on Single-Patient Retrieval from the previous
SOTA of 80.21 to 89.12 for DR.EHR-small and
88.92 for DR.EHR-1arge, and the Recall@100 on
Multi-Patient Retrieval from the previous SOTA
of 51.54 to 64.11 for DR.EHR-small and 67.20 for
DR.EHR-1large.

S Analysis

5.1 Semantic match assessment

The detailed results of the semantic match assess-
ment in CliniQ are presented in Table 5. For brevity,
we only report the average scores of MRR, NDCG,
and MAP. DR.EHR demonstrates significant im-
provements over the baseline models. Specifically,
DR.EHR addresses the challenge of insufficient ex-
act match capabilities observed in general domain
dense retrievers (Zhuang et al., 2023) in the context
of EHR retrieval, achieving near-perfect perfor-
mance on the string match benchmark in CliniQ.
In terms of semantic matches, DR.EHR-small out-
performs its initialization model by more than 10%
across all categories, with a notable improvement
of over 26% in abbreviation matching. These sub-
stantial gains underscore the effectiveness of the
proposed pipeline. Through extensive knowledge
injection and meticulously synthesized data, the
models have learned to capture deep semantic as-
sociations between terms and represent them effec-
tively in their embeddings.

5.2 Query type assessment

The detailed results for different query types (dis-
ease, procedure, and drug) are presented in Table 6.
We additionally include the BM25 baseline, which
achieves the best performance for drug searches in
Multi-Patient Retrieval. The superiority of BM25
on this benchmark may be attributed to the fact
that most drug queries consist of single words that
appear verbatim in the notes. DR. EHR demonstrates
consistent and significant improvements across all
query types. Notably, it addresses the limitations
of other dense retrievers in drug matching, improv-
ing the average scores by 12% and 24% in the two
retrieval settings, respectively.
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Table 4: Performance of various dense retrievers on CliniQ. QE: Query expansion. Dim: Dimension of the
embeddings. R@100: Recall at 100.

Single-Patient Multi-Patient
Model Size Dim
MRR NDCG MAP MRR NDCG@10 R@100

bge-base-en-v1.5 110M 768 82.48 83.59 74.54 5497 56.51 39.50
MedCPT 220M" 768 8423 8549 7742 4721 50.07 41.97
text-embedding-3-large - 3072 85.16 86.09 78.36 59.54 60.45 48.75
gte-Qwen2-7B-Instruct 7B 3584 84.59 8533 77.02 60.39 62.06 48.04
NV-Embed-v2 7B 4096 86.57 87.36 80.21 59.48 62.06 51.54
DR.EHR-small 110M 768 9296 9326 89.12 67.06 68.75 64.11

w/o stage | 110M 768 91.61 92.00 87.15 65.55 67.59 60.42
DR.EHR-1large 7B 4096 93.01 93.19 88.92 68.95 71.32 67.20

* MedCPT has separate query encoder and document encoder, so we count the parameter size as the summation of both models.

Table 5: Performance of various dense retrievers and ablation study on Single-Patient Retrieval, dissected by match
types. The score for each type is the average of MRR, NDCG, and MAP. In the ablation study part, "w/o stage I"
indicates the removal of stage I training, and each row starting with "+" represents adding extra training data in
stage I to the previous row, with the same training data split as in Table 1.

Model String Synonym Abbreviation Hyponym Implication
bge-base-en-v1.5 86.75 71.57 57.15 64.42 52.75
NV-Embed-v2 87.34 83.28 72.13 75.07 59.96
DR.EHR-small 97.34 86.01 83.37 76.88 67.56

w/o stage | 97.27 82.13 78.31 71.06 63.91

+ String Match 97.60 81.37 78.26 70.23 63.18

+ Abbreviation 97.47 81.69 80.40 69.98 63.96

+ KG-Synonym  97.66 84.07 80.79 71.31 64.35

+ KG-Hypernym  97.42 85.87 81.86 75.71 64.19
DR.EHR-1large 97.59 86.26 85.08 74.96 65.32

Table 6: Performance of various retrieval methods and ablation study for different query types. The score for each
type is the average of MRR, NDCG, and MAP in Single-Patient Retrieval, and the average of MRR, NDCG@ 10,
and Recall@ 100 in Multi-Patient Retrieval. In the ablation study part, "Stage I +" indicates using only the specific
type of synthesized data for training during stage II.

Single-Patient Multi-Patient
Model
Disease Procedure Drug Disease Procedure Drug
BM25 64.69 64.81 72.08 33.76 33.55 76.91
bge-base-en-v1.5 75.98 75.83 82.47 40.46 41.48 62.06
NV-Embed-v2 81.95 82.82 86.04 51.50 54.11 63.76
DR.EHR-small 87.52 83.95 94.61 51.58 50.90 86.03

Stage I + Disease 72.04 64.77 77.09  49.60 44.49 60.15
Stage I + Procedure ~ 70.98 68.29 89.75  45.15 48.86 80.75
Stage I + Drug 59.97 57.10 90.62  33.28 32.14 85.49
DR.EHR-large 75.04 70.79 94.13 5437 52.65 88.89




5.3 Ablation study

We conduct three ablation studies using
DR.EHR-small. First, we ablate the stage I
training and present the results in Tables 4 and
5. The results demonstrate that the knowledge
injection phase significantly contributes to the
final performance of DR.EHR, particularly on
Recall@100 for Multi-Patient Retrieval. Detailed
analysis of different match types reveals that this
contribution is primarily attributed to semantic
matches. The knowledge injection phase improves
model performance by approxiamately 5% across
all semantic match types.

To gain a deeper understanding of the contribu-
tions of knowledge injection, we divide the Stage
I training data into five parts, as shown in Ta-
ble 1, and sequentially incorporate each part to
demonstrate their individual effects. The results,
presented in Table 5, demonstrate that each por-
tion of the training data significantly enhances per-
formance on the corresponding benchmark, con-
firming that DR. EHR effectively acquires extensive
knowledge from KGs. Notably, the additional train-
ing data also improves performance on other types
of matching in most cases, indicating enhanced
generalizability of DR.EHR.

For the second stage training, we divide the syn-
thetic data according to the generated query types,
and use them separately to train a series of mod-
els. As expected, results in Table 6 demonstrates
that synthetic data tailored to specific query types
improves model performance on the correspond-
ing benchmark. Surprisingly, however, combining
various types of synthetic data further enhances
model capabilities significantly across all query
types compared to models trained on individual
data types. This synergistic effect of "1+1+1>3"
might suggest that our model benefits from transfer
learning during the second stage of training. When
exposed to diverse query types, DR.EHR learns
to capture broader semantic patterns and deeper
knowledge connections, resulting in enhanced gen-
eralization capabilities and improved learning effi-
ciency.

5.4 Case study

We conduct several case studies comparing
bge-base-en-v1.5 and DR.EHR-small. For each
match type, one example is selected, and the
queries, note chunks, corresponding ranks, and co-
sine similarities generated by the two models are

provided in Appendix C. The rank is calculated
after excluding relevant chunks of other match
types, and the cosine similarity is computed be-
tween the query and the relevant part (see Table
7) within the chunks. Our observations reveal
that DR.EHR-small successfully identifies various
types of matches, and its higher cosine similarities
demonstrate its ability to learn extensive medical
knowledge and represent information in clinical
notes more effectively.

6 Conclusion

In this paper, we propose a two-stage training
pipeline specifically designed for the task of EHR
retrieval. The first stage employs KGs for knowl-
edge injection through pre-training, while the sec-
ond stage fine-tunes the model for the retrieval task
with synthetic data generated by LLMs. Using this
pipeline, we develop and release DR . EHR, a state-of-
the-art EHR retriever available in two model sizes.
Extensive experiments demonstrate that DR.EHR
significantly outperforms baseline models across
various settings, match types, and query types. No-
tably, our model exhibits exceptional capabilities
in both string matching and semantic matching.
Ablation studies confirm the contribution of each
component in the training pipeline, underscoring
its overall effectiveness.

7 Limitations

This study has several limitations. First, the evalu-
ation of our model is restricted to a single bench-
mark, specifically the task of entity retrieval. The
neglect of other query types, such as natural lan-
guage questions and complex criteria, is due to the
lack of publicly available benchmarks. We call
for future efforts to construct richer and more di-
verse public benchmarks. Second, the quality of
synthetic data in both stages of our work could be
improved, as noise exists in both KGs and LLM-
generated data. However, conducting data quality
filtering on such a large scale is computationally
intensive and exceeds our current resource con-
straints. Third, while hard negatives are known to
significantly enhance model performance, partic-
ularly during task-specific fine-tuning (e.g., stage
II training) (Karpukhin et al., 2020; Zeng et al.,
2022), the design of synthetic hard negative data
is non-trivial. We leave this challenge for future
research.
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A Details of Abbreviation Reduction

The prompt used for abbreviation reduction is pro-
vided in Figure 2. After reducing abbreviations, we
conduct the following cleaning steps to eliminate
potential noise generated by the LLM:

1. We remove abbreviations that do not appear
in the original note.

2. We remove full names that are identical to
their abbreviations.

3. We remove full names that are not indexed in
BIOS.
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The Prompt for Abbreviation Reduction

Replace the abbreviations of medical entities with their full names in the
clinical note below. For one abbreviation, only output once unless it refers
to different full names in the note. If no abbreviation is found in the note,
please output "NA". Otherwise, output in the following format (only output
the terms and nothing else):

#i#t#[abbreviation]

***[full name]

For example:
#iHict
***computed tomography

###wbc
***while blood cell

Now the task begins. Here is the note:
\{note}

J

Figure 2: The prompt used for abbreviation reduction.
{note} is the placeholder for the note to be processed.

The Prompt for Synthetic Data Generation

{note}

Briefly summarize the {entity_type} explicitly mentioned or that can be
implicitly inferred from the medical record above. Only output the entity
names (in their standardized terms) in a list. Do not output the reasons.

Output format:
- Entity 1
- Entity 2

N J

Figure 3: The prompt used for synthetic data generation.
{note} is the placeholder for the note to be processed,
and {entity_type} takes on the values of diseases, clini-
cal procedures, and drugs.

4. We remove abbreviations that are only one
character long.

B Prompt for synthetic data generation

The prompt used for synthetic data generation is
given in Figure 3.

C Case studies

We present several cases in Table 7 where
bge-base-en-v1.5 fails to retrieve the relevant
chunk, while DR.EHR succeeds. One example is
provided for each match type.
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Table 7: Case studies of the performance of DR.EHR compared to bge-base-en-v1.5 on Singel-Patient Retrieval.
The last two columns are the rank of the corresponding chunk and the cosine similarity given by the two models. The
rank is calculated after removing relevant chunks of other match types. The cosine similarity is between the query and
the relevant part (in red).

Match Type Query Patient note bge DR.EHR
. . ... She was given Vanc, Ceftriaxone, Flagyl,
String ceftriaxone OL IVF, and started on levophed ... 12/1.00 1/1.00
Synonym phenytoin ... MEDICINE Allergies: Dilantin'... 7/0.61 1/0.86
Abbreviation hypertension ...Past Medical History: (1) HTNZ2) ... 15/0.61 1/0.89
Hyponym interruption of .. Prophylaxis: IVC filter’and Pneumoboots. ... 5/0.59 1/0.61
the vena cava
L diabetes ... Medications on Admission: lipitor 40mg
Implication mellitus po qday metformin*1000mg po bid ... 117066 270.86

Dilantin is a brand name of phenytoin.
HTN is the common abbreivation for hypertension.
IVC filter is a subtype of interruption of the vena cava.

1
2
3
4 Metformin is a common hypolycemic agent.
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