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Abstract

Recent advances in Video Large Language Models (VLLMs) have achieved re-
markable video understanding capabilities, yet face critical efficiency bottlenecks
due to quadratic computational growth with lengthy visual token sequences of
long videos. While existing keyframe sampling methods can improve temporal
modeling efficiency, additional computational cost is introduced before feature
encoding, and the binary frame selection paradigm is found suboptimal. Therefore,
in this work, we propose Dynamic Token compression via LLM-guided Keyframe
prior (DyToK), a training-free paradigm that enables dynamic token compression
by harnessing VLLMs’ inherent attention mechanisms. Our analysis reveals that
VLLM attention layers naturally encoding query-conditioned keyframe priors, by
which DyToK dynamically adjusts per-frame token retention ratios, prioritizing
semantically rich frames while suppressing redundancies. Extensive experiments
demonstrate that DyToK achieves state-of-the-art efficiency-accuracy tradeoffs.
DyToK shows plug-and-play compatibility with existing compression methods,
such as VisionZip and FastV, attaining 4.3 x faster inference while preserving
accuracy across multiple VLLMs, such as LLaVA-OneVision and Qwen2.5-VL.
Code is available at https://github.com/yu-lin-li/DyToK.

1 Introduction

Recent advancements in Video Large Language Models (VLLMs) [1} 12,13, 4] have demonstrated re-
markable capabilities in processing complex video content. However, their practical deployment faces
critical challenges when handling long videos [5} 6} 7], including excessive computational overhead,
slow inference speeds, and performance degradation caused by redundant visual information.

Existing solutions primarily focus on token compression through saliency metrics derived from either
LLM attention patterns [8, (9, |10] or visual encoder features [[L1} 12} |13]]. While LLM attention-based
methods selectively retain prompt-relevant tokens, their effectiveness heavily relies on layer-specific
attention maps, introducing instability as shallow layers yield noisy signals while deeper layers negate
computational benefits [14,[15]. Conversely, encoder feature-based approaches exploit intra-frame
token sparsity through CLS token attention [16]] or inter-patch correlations [[17] but uniformly apply
fixed compression ratios across frames, ignoring temporal dynamics critical for video understanding.
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Figure 1: Unveiling the keyframe prior in VLLMs. LLaVA-OneVision’s answers to video QA
tasks are shown on the left. On the right, we plot the averaged attention from the final text token
to visual tokens across all layers and within each frame. The top-8 frames by attention scores are
arranged in time order, and the Ground Truth (GT) keyframes are highlighted in red. We observe that
even when the model answers incorrectly, its attention still pinpoints the relevant frames, revealing a
strong task-dependent keyframe prior.

Motivation. Unlike token compression for images, which applies a single ratio, video frames
contain varying spatiotemporal information—some are critical for answering user queries, while
others may hold less relevance. This inherent variation suggests that the shared compression ratios
may be inappropriate for processing video frames. Consequently, a key question emerges: How can
we dynamically retain task-relevant information while filtering out the irrelevant components?

An intuitive solution to this question is to perform the keyframe selection where frames deemed
semantically relevant to user queries are prioritized while others are discarded, theoretically improv-
ing VLLMs’ inference efficiency. However, existing works [18}, [19] typically rely on pretrained
vision-language models or auxiliary modules to perform frame selection before the feature encoding,
introducing additional computational overhead that undermines the efficiency gains from frame
reduction. Moreover, the binary selection paradigm proves suboptimal as it irrevocably discards po-
tentially useful visual cues in unselected frames while retaining redundant information within chosen
frames, creating an efficiency-utility trade-off that restricts video understanding. This observation
suggests the need for a more nuanced approach to spatial-temporal information compression for
better preserving the task-relevant details within the constrained computational budget.

Our solution. To address this challenge, in this work, we propose Dynamic Token compression via
LLM-guided Keyframe prior (DyToK), a simple yet effective training-free method that performs
dynamic frame token compression for enhancing the efficiency of VLLMs. Instead of simply
discarding or retaining frames outright, DyToK introduces a dynamic compression approach tailored
for VLLMs. By leveraging the inherent attention mechanisms of VLLMs, DyToK selectively
preserves the most critical tokens across frames, prioritizing those with higher importance. This
ensures that keyframes retain more tokens, optimizing both efficiency and model performance. The
modular design of DyToK ensures seamless compatibility with existing token pruning techniques,
enabling plug-and-play integration without compromising efficiency.

Extensive evaluations on long-video benchmarks demonstrate DyToK’s superiority over state-of-the-
art methods. Under 20% token retention, our approach surpasses uncompressed baselines by 2.6%
accuracy on LongVideoBench. At extreme compression ratios (10% retention), DyToK achieves a
24.0% performance gain over the competitors. To summarize, our contributions are as follows:

* We empirically reveal that the attention layers in VLLMs inherently encode query-
conditioned keyframe priors that can be used for identifying the task-relevant information.

* We propose DyToK, a training-free compression paradigm that dynamically adjusts per-
frame token retention ratios based on the model’s intrinsic attention scores, achieving
adaptive temporal compression while preserving task-critical semantics.

* DyToK demonstrates strong plug-and-play compatibility across different models and com-
pression methods, attaining state-of-the-art efficiency-accuracy tradeoffs on three bench-
marks specifically designed for long-video analysis.



2 Background and Motivation

In the following, we provide a concise overview of foundational concepts that underlie this study in
Sec.[2.1] and highlight the key observations in Sec.[2.2] which offer valuable insights for motivating
the proposed approach.

2.1 Preliminaries

Architecture of VLLMs. Modern VLLMs [} 3} |4] are typically composed of three core com-
ponents: a vision encoder, a modality projector, and a LLM backbone. The vision encoder, often
pre-trained on large-scale image datasets (e.g., CLIP [16]], SigLip [[L7]), processes each video frame
into a sequence of visual tokens, with some variants incorporating video-specific pretraining [20, [21]]
for temporal modeling. The projector aligns these tokens with the LLM’s textual embedding space,
enabling cross-modal fusion. Finally, the LLM integrates the aligned visual and textual tokens to
generate contextually relevant responses.

Computational bottleneck analysis. Though VLLMs have shown promising performance, the
computational overhead impedes their practical applications. Specifically, the computational com-
plexity of VLLMs is dominated by the self-attention mechanism and Feed-Forward Networks (FFNs)
in transformer layers. For a model with 7" transformer layers, the total Floating Point Operations
(FLOPs) can be formulated as:

Total FLOPs = T' x (4nd® + 2n*d + 2ndm) , (D

where n denotes the input sequence length, d is the hidden dimension, and m represents the FFN’s
intermediate size. In video tasks, n is dominated by visual tokens n.;s, which often exceed textual
tokens 7ys + Nquestion by orders of magnitude through frame accumulation [12}22]. Reducing nyis is
thus crucial for improving inference efficiency.

Efficient inference paradigms for VLLMs. Recent advancements in efficient inference for VLLMs
can be categorized into two paradigms: LLM attention-based token pruning [10, [13]] and encoder
feature-based token selection [23| [24]]. The former (Fig. Eka)) dynamically eliminates redundant
visual tokens during LLM inference by leveraging cross-modal attention patterns from intermediate
layers, yet suffers from unstable pruning decisions due to shallow-layer attention noise. The latter
(Fig.[2|b)) statically selects tokens at the encoder output using feature correlations, but disregards
temporal dependencies critical for video comprehension.

Notably, existing keyframe selection techniques [[19} 18] primarily address issues arising from uni-
form input sampling in long videos, rather than optimizing for computational acceleration. Moreover,
their binary frame selection approach risks discarding useful tokens of the discarded frames, poten-
tially harming overall performance. Differently, in this study, we leverage a novel keyframe-aware
compression strategy (Fig.[2[c)) that actively reduces inference latency for different frames, by which
more tokens will be retained in the semantically important frames and fewer will be kept in those
less relevant, thereby enhancing efficiency without compromising the coherence among the temporal
semantics. A more comprehensive review of related works is provided in Appendix

2.2 Key Observations

Although prior compression methods [8, 13} 9] [10] have demonstrated promising results, key chal-
lenges persist. Most video understanding approaches [1, 2 [12, [9] directly adapt image-domain
techniques, processing each frame independently while overlooking inter-frame correlations. How-
ever, in practice, video frames exhibit strong temporal dependencies—some contain query-critical
information, while others contribute minimally. Therefore, to enable the dynamic frame-level token
compression, we need to establish an accurate estimation of temporal importance across video frames.

We start by considering whether the attention map can serve as an indicator of the importance of
frames. As shown in Fig. [T} we observe that the model consistently assigns peak attention scores
to query-relevant keyframes, irrespective of answer correctness. This persistent pattern indicates an
inherent bias toward semantically salient frames in the model’s attention mechanism. A detailed
analysis of keyframe prior in VLLMs is presented in Appendix B}
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Figure 2: Efficient inference methods for VLLMs. (a) LLM attention-based methods perform
token pruning during LLM inference by selecting visual tokens through cross-modal attention maps
from specific layers, hence suffer from constrained pruning accuracy due to their reliance on noisy
shallow-layer attention patterns. (b) Encoder feature-based methods prune tokens post-encoder using
inter-patch feature correlations, but neglect temporal dynamics essential for video understanding. (c)
Our approach uniquely exploits the keyframe priors embedded within LLMs to dynamically allocate
frame-specific compression ratios, enabling plug-and-play enhancement of temporal perception
capabilities in existing efficient VLLMs.

Deep attention layers provide good keyframe priors. An intuitive approach is to aggregate atten-
tion patterns from all LLM layers for frame importance estimation. However, despite its effectiveness,
this method necessitates full inference through the LLM, inevitably introducing computational in-
efficiency. Prior studies [25)[26] on transformer-based models show that shallow layers primarily
capture local features, whereas deeper layers parse more abstract, high-level semantics.

To investigate this, we conduct a series of experiments. The results in Tab. [3| reveal that deeper
layers exhibit more semantically meaningful and task-aware attention distributions, suggesting their
potential as reliable keyframe indicators. However, directly using deep-layer attention to guide early
layers within the same model introduces significant computational overhead—for instance, using
the deepest layer to guide the first layer nearly doubles inference costs. To this end, a new challenge
arises: How can we leverage deep-layer attention keyframe priors for dynamic token compression
while maintaining computational efficiency?

3 Methodology

3.1 Overview

To address the above issues, we propose DyToK, a training-free framework that adaptively allocates
per-frame compression ratios by leveraging the keyframe prior obtained from LLM. In Sec. [3.2]
DyToK starts by Temporal Importance Estimation, where a lightweight assistant model computes
frame-level importance scores, achieving a decent trade-off between efficiency and performance.
Then, in Sec. [3.3] we present Dynamic Frame-Level Compression to distribute the overall token
budget across frames according to these weights. This two-stage process yields a simple, effective,
and general framework that integrates seamlessly with both encoder feature-based and LLM attention-
based pruning paradigms. The overall framework of DyToK is demonstrated in Fig. 3]

3.2 Temporal Importance Estimation

Given a constrained budget for video token compression, it is necessary to allocate more tokens to
critical frames. Thus, evaluating frame-level temporal importance scores is crucial to determine their
relevance to the query, such that the token compression can be performed adaptively. To achieve this,
we leverage cross-modal attention weights from the LLM to quantify frame importance.
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Figure 3: Illustration of DyToK. We adaptively compress video tokens through two synergistic
components: (1) Temporal Importance Estimation leverages cross-modal attention from a lightweight
assistant model to identify keyframes, followed by (2) Dynamic Frame-Level Compression that
proportionally allocates token budgets to preserve salient content. This training-free paradigm
achieves superior efficiency-accuracy tradeoffs by dynamically adjusting compression ratios per
frame while maintaining compatibility with diverse token pruning methods.

Specifically, we compute attention scores between the last textual query token and visual tokens.
Given an input video of F' frames, query and key vectors at attention layer [ are represented as
Q; € R*D and K; € RV*D, respectively. V' denotes the number of visual tokens, and D is the
embedding dimension per head. The importance wy of frame f is then computed as:

1 QIKZT)
wf = — Y Softmax , 2)
! |£|§ (fD

where L is the set of layers considered for attention aggregation.

However, directly utilizing deep-layer attention to guide early layers within the same model introduces
significant computational overhead due to the unavoidable re-computation of earlier layers. To
address this, we propose leveraging an auxiliary lightweight assistant model derived from the same
architectural family as the primary model to facilitate the generation of temporal resampling strategies.
Experimental results in Tab. ] reveal that this compact assistant model achieves nearly identical
frame perception accuracy to the primary model despite being 14x smaller, while occasionally
demonstrating superior keyframe identification performance at certain compression ratios.

Furthermore, as discussed in Sec.[2.2] deeper layers tend to exhibit more semantically meaningful and
task-relevant attention distributions, providing superior priors for frame importance evaluation. To
leverage this property, we aggregate attention scores exclusively from the deep layers in the assistant
model. To this end, the calibrated temporal importance score 10y is obtained as:

. 1 QK >
We = —— Softmax < L, 3)
bl z;y VD

where £’ represents the selected subset of deep layers. The analysis of different layers, and the
comparison between wy and w; are provided in Sec. .2

3.3 Dynamic Frame-Level Compression

Based on the temporal importance scores, in this section, we allocate token budgets proportionally to
achieve frame-level dynamic compression, enhancing efficiency while preserving key information.

Token budget allocation. Specifically, the initial token assignment for each frame is computed
asay = [w X Tiotal |, Where @ t is the calibrated temporal importance score obtained in Eq. (EI),
ay denotes the preliminary token allocation for frame f, and T defines the global token budget.
Given F' frames within the input video, the set of remaining tokens 7}y, after the initial allocation is:

F
Trem = Thotal — Z af. 4
f=1



To fairly distribute these remaining tokens, we calculate fractional remainders 7y = (¢ X Tiota1) —a 5
for each frame. Frames are then sorted by descending order of 7 ¢, and the remaining tokens T}, are
sequentially allocated to the top-ranked frames until exhausted. This ensures frames that were closest
to receiving an additional token in the initial allocation get priority.

Then, to prevent excessive token allocation per frame, tokens exceeding the per-frame limit 75, are
reallocated to frames with available capacity according to their importance rankings. This yields the

final token assignment as: 4 = min(ay, Tnax ), With 2?21 ay = Tiota1 ensuring budget adherence.

Dynamic token compression. To perform token compression given the allocated budget, we
define a modular compression function Compression(xs,ays). Specifically, 2 denotes the raw
visual features (e.g., patch tokens) for frame f, and as represents the allocated token budget. This
function can instantiate any compatible token pruning strategy, including both encoder feature-based
approaches [[L1} 12, |13]] and LLM attention-based token pruning methods [8, 19, 10]. The output of
the function is the compressed token sequence z; for frame f:

z§ = Compression(zyf,ay). 5)
This design ensures that token reduction is tailored per frame based on its importance, while preserving
compatibility with various compression backbones.

As summarized in Alg.[I] by adaptively allocating more token budget to the task-relevant critical
frames, this strategy balances computational efficiency and performance, enabling dynamic adapta-
tions to diverse video content characteristics. More implementation details and compatibility with
different token compression methods are discussed in Sec. [d.1]

Algorithm 1 Adaptive Token Allocation and Compression Based on Frame Weights

Require: Frame data {x f}?:l’ importance weights {w f}?:l’ total budget Tiota1, per-frame token
upper limit T},
Ensure: Compressed tokens {zf}7_,
Initialize allocation: ay < [Ws X Tiotal]
Compute remaining tokens: Tyem  Trotal — Faf
Calculate fractional remainders: r¢ <— (W X Tiotal) — @y
Sort frames by descending order of 7
while 7}, > 0do
for frame f in sorted order do
ifay < Tax then
aj < ay+ 1, Trem ¢ Trem — 1
if T,c;n, = O then break
end if
end if
end for
: end while
. Redistribute excess tokens to frames below 7,,,, based on importance
: for each frame f € {1,..., F'} do
2y 4 Compression(zyf,ay) > Apply dynamic per-frame compression
: end for
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4 Experiments

To evaluate DyToK, we conduct extensive experiments across multiple benchmarks and baseline
VLLMs. The evaluation encompasses diverse video understanding tasks and token compression
methods to assess both performance and generalizability. The subsequent section details the evaluation
tasks, implementation settings, and key findings that align with our method.

4.1 Experimental Setup

We evaluate our method on three widely-used video understanding benchmarks: VideoMME 6],
LongVideoBench [[7], and MLVU [27], covering durations ranging from minutes to hours. Our



Method #l}retained ViQeoMME LongVideo MLVU Average
okens Short Medium Long Overall Bench Score %

Vanilla (TMLR) 6272 70.0 56.7 48.8 585 56.6 47.1 | 54.1 100
VisionZip (CVPR2025) 68.9 56.2 482 578 55.4 45.0 |52.7 97.4
VisionZip' 4704 714 552 49.0 58.6 56.0 46.0 | 535 98.9

+ DyToK (1 25%) 70.8 572 489 59.0 55.9 46.6 |53.8 99.4(+2.0)
DyCoke (cvPr2025) 709 564 48.8 58.7 55.3 47.5 | 53.8 99.4

+ DyToK 719 56.0 49.1 59.0 56.5 47.7 | 544 100.6 (+1.2)
VisionZip (cvPR2025) 66.8 56.6 482 572 53.8 43.7 | 51.6 95.4
VisionZip' 3136 703 56.8 49.2 58.8 56.0 455 | 534 98.7

+ DyToK (1 50%) 719 56.1 493 59.1 56.4 46.2 | 539 99.6 (+4.2)
DyCoke (cvPr2025) 70.0 558 493 584 554 46.6 | 535 98.9

+ DyToK 70.2 559 489 583 57.1 475 | 54.3 1004 (+1.5)
VisionZip (CVPR2025) 622 530 474 542 514 41.2 | 489 90.4
VisionZip! 1568 68.8 573 48.1 58.1 55.8 44.8 | 529 97.8

+ DyToK (1 75%) 69.2 56.8 489 583 55.4 46.3 |53.3 985 (+8.1)
DyCoke (cvPr2025) 68.2 56.1 477 573 54.6 435 | 51.8 95.7

+ DyToK 69.6 547 47.1 57.1 55.2 45.1 | 525 97.0(+1.3)
VisionZip (CVPR2025) 60.2 51.0 457 523 47.7 36.5 | 455 84.1
VisionZip' 1120 67.2 559 50.1 577 54.8 422 |51.6 95.4

+ DyToK (1 80%) 69.2 564 478 578 56.0 452 |53.0 98.0 (+13.9)
DyCoke (cvPr2025) 63.4 55.0 477 554 52.6 453 | 51.1 94.5

+ DyToK 65.1 542 473 556 53.2 44.6 | 51.1 94.5
VisionZip (CVPR2025) 470 442 422 445 414 29.8 | 38.6 71.3
VisionZip! 448 549 497 449 498 47.8 37.6 | 45.1 83.4

+ DyToK (1 90%) 61.0 51.1 476 532 504 42.8 | 48.8 90.2 (+18.9)
DyCoke (cvPr2025) 640 514 459 538 504 409 | 484 89.5

+ DyToK 623 51.6 46.6 535 50.2 43.6 | 49.1 90.8 (+1.3)

Table 1: Performance of DyToK integrated into encoder feature-based methods. The vanilla
setup processes 32 frames with 196 tokens each. The final column reports the average score across
benchmarks and the accuracy relative to the unpruned baseline. VisionZip' denotes our pooling-
compatible variant, and DyCoke here applies pruning exclusively at the encoder side.

evaluation follows the standard settings of LMMs-Eval [28]. Due to space limitations, we present
only key results for LLaVA-OneVision [1] in the main text. To validate generalizability across
different VLLM inference acceleration paradigms, we integrate DyToK into three state-of-the-art
methods: FastV [8] (LLM attention-based), VisionZip [[12]] (encoder feature-based), and DyCoke [[13]]
(hybrid pruning). For fair comparison, we align computational budgets to ensure equivalent FLOPs
across methods (Appendix [G.2)). Comprehensive results are provided in the Appendix, including
full experiments on 32-frame LLaVA-OneVision (Appendix [A.T)), evaluations of Qwen2.5-VL
(Appendix [A.2), analyses with extended video lengths (Appendix [A.3)), studies on broader model
sizes (Appendix [A.4), efficiency analysis (Appendix [C), and implementation details (Appendix [G).

4.2 Main Results

Effectiveness on encoder feature-based methods. We first evaluate DyToK on encoder feature-
based VisionZip and DyCoke (encoder), which performs static token selection using encoder features.
Notably, since VisionZip originally discards the spatial information of retained visual tokens, it is
incompatible with 2D pooling methods, which are widespread in today’s VLLMs. To address this
limitation, we adapt VisionZip by deferring pruning until completely passing through the projection
and pooling modules. Specifically, inter-patch correlations among pooled tokens serve as the pruning
metric. We denote our improved variant as VisionZip'.

We report the average score on all the benchmarks and also in percentage format for comparative
analysis, with the vanilla model’s accuracy serving as the 100% upper limit to comprehensively assess
the performance. As shown in Tab.|I} DyToK improves VisionZip by 4.2% average accuracy across



Method #Retained ViQeoMME LongVideo MLVU Average
Tokens Short Medium Long Overall Bench Score %o
Vanilla (TMLR) 6272 70.0 56.7 48.8 58.5 56.6 47.1 | 54.1 100.0
FastV (Eccv2024) 69.7 557 476 57.6 57.1 46.5 | 53.7 99.3
+ DyToK 70.4 567 482 584 56.8 46.8 | 54.0 99.8 (+0.5)

DyCoke (cvpr2025) @4;?’;) 709 564 48.8 58.7 55.3 475 | 538 99.4

+ DyToK 709 559 490 58.6 559 475 |54.0 99.8 (4+0.4)
FastV (ccv2024) 69.1 554 471 572 57.1 447 | 53 98.0

+ DyToK 1136 71.1 55.6 48.8 585 57.2 463 |54.0 99.8 (+1.8)
DyCoke (cvPR2025) 150% 70.0 55.8 493 584 554 46.6 | 535 98.9

+ DyToK ~ | 71.0 56.1 49.2 585 56.0 46.9 |53.8 99.4 (+0.5)
FastV (Eccv2024) 66.2 547 47.1 56.0 56.6 43.7 | 52.1 96.3

+ DyToK 1568 67.7 540 47.1 563 55.7 47.8 |53.3 98.5(+2.2)
DyCoke (cvPR2025) (1 75%) 682 56.1 4777 573 54.6 435 | 51.8 95.7

+ DyToK 71 67.1 558 483 57.1 54.8 454 | 524 969 (4+1.2)
FastV (Eccv2024) 58.0 51.7 436 51.1 51.2 38.3 | 46.9 86.7

+ DyToK 296 64.6 542 458 548 52.6 432 502 928 (+6.1)

DyCoke (cvpr2025) (1 85%) 65.1 53.6 453 547 522 425 1498 92.1

+ DyToK 66.1 52.8 463 55.1 52.4 429 |50.1 92.6 (+0.5)
DyCoke (cvpr2025) 448 64.0 514 459 538 50.4 409 | 484 89.5

+ DyToK (190%) | 649 523 454 54.2 50.4 41.2 | 48.6 89.8 (40.3)

Table 2: Performance of DyToK integrated into LLM attention-based methods. The evaluation
follows the same setup as above. DyCoke here only applies pruning at the LLM side.

benchmarks at 50% compression, demonstrating that our dynamic keyframe-aware compression
complements static feature-based approaches. The performance gap widens as compression ratios
increase (18.9% improvement at 90% compression), confirming that temporal importance awareness
becomes critical under aggressive pruning.

Effectiveness on LLM attention-based methods. To enhance the compatibility of the proposed
method with a broader range of existing pruning techniques, we also evaluate DyToK on LLM
attention-based Methods, such as FastV and DyCoke (LLM). Following the same experimental setup,
we report both the average score and the percentage relative to the unpruned LLaVA-OneVision
baseline. As shown in Tab. [2) DyToK improves performance across both pruning rates. At an
85% compression rate, DyToK improves FastV by 6.1% in accuracy across benchmarks, further
demonstrating the effectiveness and robustness of our method. Notably, at a 90% pruning rate, our
token budget allocation (Appendix [G.2)) reduces FastV’s retained visual tokens to zero and leaves
DyToK with no tokens to reallocate, so results for this case are omitted.

4.3 Ablation Studies

Effect of layer-level attention location on keyframe prior. As hypothesized in Sec. we
conduct a detailed analysis to further illustrate this core finding. To evaluate the impact of different
layers’ attention patterns on keyframe prior, we fix the retention ratio at 20%—a moderate setting
that effectively reduces redundancy without being overly aggressive. As shown in Tab. 3| we can
clearly observe that deeper layers provide significantly better keyframe priors compared to shallower
ones, with layers 20 and 23 achieving the best performance. The observed trend aligns with our
hypothesis: model performance improves as deeper layers are used for keyframe prior extraction,
which further proves the effectiveness of our method. To ensure generalizability without manual
tuning, we uniformly average the attention scores from the last one-third of layers for all models in
practical implementations. Please refer to Appendix [A.6|for further details.

Effect of the model size on keyframe prior. As discussed in Sec. using the full-size model to
extract attention maps for token pruning is computationally expensive. We therefore evaluate whether
a smaller model in the same VLLM family can assist pruning. We compare the pruning performance
of the standard 7B model with that of its smaller counterpart across several video understanding
tasks. Tab. 4] shows that the smaller model achieves comparable performance with significantly lower



Layer VideoMME LongVideo MLVU Average

Short Medium Long Overall Bench Score %
Vanilla (tMer) | 70.0  56.7 48.8 58.5 56.6 47.1 |54.1 100.0
0 62.6 53.1 464 54.0 52.0 40.8 [48.9 90.5

4 63.6 533 49.0 553 535 423 1504 93.1

8 64.1 534 473 550 534 415 [50.0 923

12 65.7 549 47.8 56.1 53.3 433 509 94.1

16 66.2 553 482 56.6 53.4 449 |51.6 954

20 68.1 56.6 47.8 575 55.5 463 |53.1 98.2

23 66.3 563 487 57.1 53.8 45.1 |52.0 96.1

Table 3: Performance of DyToK under different layer configurations. We conduct experiments
using a retention ratio of 20%, with the number of frames set to 32. In comparison, the baseline
LLaVA-OneVision retains its original configuration without any pruning or modification. The best
result is highlighted in red, while the second-best is shown in bold.

Method #Retained VideoMME LongVideo MLVU Average
Tokens Short Medium Long Overall Bench Score %
Vanilla (eR) | 6272 |70.0 567 488 58.5 56.6 47.1 [541 1000
Base 4704 |719 568 488 59.1 55.7 475 [541 1000
Tiny (1 25%) [70.8 572 489 59.0 55.9 46.6 |53.8 99.4 (—0.6)
Base 3136 |71.8 572 49.0 59.3 55.9 46.0 |537 993
Tiny 150% 1719 561 493 59.1 56.4 46.2 539 99.6 (+0.3)
Base 1568 |704 57.1 48.1 58.6 57.2 46.6 541  100.0
Tiny (L 75%) |69.2 56.8 489 583 55.4 463 |53.3 98.5(—1.5)
Base 1120 [703 56.4 48.1 583 55.8 465 |535 989
Tiny (1 80%) 1692 564 478 57.8 56.0 452 |53.0 98.0(—0.9)
Base 448 639 527 473 546 52.7 415 |496 917
Tiny (1 90%) |61.0 51.1 476 532 50.4 428 |488 902 (—1.5)

Table 4: Performance of DyToK with different LLM sizes for keyframe prior. The Base setting
uses LLaVA-OneVision-7B to provide the keyframe prior, while the Tiny setting employs LLaVA-
OneVision-0.5B for the same purpose. All experiments are conducted with 32 input frames.

computational cost (14x) while incurring minimal performance degradation. More ablations on
token allocation upper limit (Appendix [A.7), importance estimation strategies (Appendix [A.8)), and
textual token selection (Appendix[A.9)) are detailed in the Appendix.

S Concluding Remarks

Summary. In this paper, we analyze attention maps in VLLMs and observe a strong correlation
between attention scores and keyframes, along with the insight that deeper layers provide more
effective priors for keyframe selection. Building on these findings, we propose DyToK, a simple yet
effective method that leverages the inherent priors of LLMs to reduce vision tokens while preserving
video understanding capabilities. DyToK is a plug-and-play method compatible with both attention-
and encoder-based approaches, demonstrating broad applicability across different architectures.

Limitation and future work. Although employing a lightweight assistant model to approximate
the original model for keyframe prior generation improves performance while ensuring efficiency,
this work has not yet to propose a better method to avoid introducing additional models. Future
efforts will focus on further optimization to address this issue.
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Figure 4: Performance gains of DyToK under various retention ratios. Performance comparison
of SOTA acceleration methods with and without DyToK on LLaVA-OneVision under 32-frame input.
Experiments conducted on VideoMME, LongVideoBench, and MLVU across varying retention ratios
show that integrating DyToK consistently improves accuracy, demonstrating its effectiveness in en-
hancing long-video understanding. The scores presented in the figure represent average performance
across the three benchmarks. For detailed results, please refer to Tab. [5]and Tab. 6]

A More Experimental Results

A.1 Full Experiments on 32-Frame LLaVA-OneVision

In the Tab.[T]and Tab. 2] of the main text, we evaluate the effectiveness of DyToK using a lightweight
assistant model to generate keyframe priors for token pruning under a 32-frame setting with LLaVA-
OneVision. To further validate the generalizability and efficacy of DyToK, this section expands upon
those findings by employing the primary model’s attention scores directly as temporal importance
indicators to dynamically allocate token budgets. Experiments are conducted across three widely
recognized benchmarks: VideoMME, LongVideoBench, and MLVU. Results corresponding to
identical experimental conditions in the main text are aligned for consistency.

As demonstrated in Tab. [5]and Tab.[6] DyToK consistently enhances performance across different
VLLM inference acceleration paradigms, specifically encoder feature-based and LLM attention-based
methods. Under relatively moderate token reduction ratios (25%-50%), DyToK improves upon
baseline pruning methods by effectively preserving keyframe tokens, resulting in notable gains of up
to 4.2% (VisionZip, 50% token reduction) and up to 2.4% (FastV, 50% token reduction) in average
scores. Notably, at more aggressive compression settings (75%-90% token reductions), the advantage
of DyToK becomes even more pronounced, delivering substantial accuracy improvements—up to
20.4% for VisionZip at 90% reduction and 9.6% at 75% reduction, clearly highlighting DyToK’s
capability to significantly mitigate accuracy degradation under extreme token pruning scenarios.

A.2 Experiments on Qwen2.5-VL

To further demonstrate the generalization capability of our method, we conduct experiments on
the recently released Qwen2.5-VL [3] model, which has gained prominence in the current VLM
community. This model introduces architectural components not aligned with previous pruning
methods, including sliding window attention and 3D convolutions—both of which are rarely present
in earlier models. As a result, we adapt the logic of existing state-of-the-art pruning methods to
suit this architecture. The experiments are conducted using uniform sampling of 32 frames with the
Qwen2.5-VL 7B model. Detailed results are presented in Tab.[7}

Notably, across all retention ratios when used with FastV, our method achieves a substantial per-
formance gain—exceeding 10 points in most settings. Remarkably, it even outperforms the vanilla

14



Method Vi.deoMME LongVideo MLVU Average
Short Medium Long Overall — Bench Score %
Upper Bound, 6272 tokens
Vanilla (TMLR) 70.0 567 488 585 56.6 471 | 54.1 100
Retain 4704 tokens (| 25%)
VisionZip (cvpr2025) | 68.9  56.2 482 57.8 554 45.0 | 52.7 97.4
VisionZip' 714 552 490 58.6 56.0 46.0 | 53.5 98.9
+ DyToK 70.8 572 489 59.0 55.9 46.6 | 53.8 99.4 (+2.0)
+ DyToK (7B) 719 568 488 59.1 55.7 475 | 541 100 (+2.6)
DyCoke (cvpr2025) | 70.9  56.4 488  58.7 553 475 | 53.8 99.4
+ DyToK 719 560 49.1 59.0 56.5 477 | 544 100.6 (+1.2)
+ DyToK (7B) 720 559 490 59.0 56.3 47.6 | 543 1004 (+1.0)
Retain 3136 tokens (| 50%)
VisionZip (cvpr2025) | 66.8  56.6 482 57.2 53.8 437 | 51.6 95.4
VisionZip' 703 56.8 492 588 56.0 455 | 534 98.7
+ DyToK 719 56.1 493 59.1 56.4 46.2 | 539 99.6 (+4.2)
+ DyToK (7B) 71.8 572 490 593 55.9 46.0 | 537 99.3 (+3.9)
DyCoke (cvpr2026) | 70.0 558 493 584 55.4 46.59 | 5355 98.9
+ DyToK 702 559 489 583 57.1 475 | 543 1004 (+1.5)
+ DyToK(7B) 71.0 567 492 59.0 56.6 47.1 | 542 100.2 (+1.3)
Retain 1568 tokens (| 75%)
VisionZip (cvpr2025) | 62.2  53.0 474 542 514 412 | 489 90.4
VisionZip' 68.8 573 481 58.1 55.8 448 | 529 97.8
+ DyToK 69.2 568 489 583 55.4 463 | 533 985 (+8.1)
+ DyToK (7B) 704  57.1 48.1 58.6 57.2 46.6 | 541 100 (+9.6)
DyCoke (cvpr2025) | 68.2  56.1 477 573 54.6 435 | 51.8 95.7
+ DyToK 69.6 547 471 571 55.2 451 | 525 97.0(+1.3)
+ DyToK(7B) 68.0 549 472 56.7 53.7 456 | 52.0 96.1(+0.4)
Retain 1120 tokens (| 80%)
VisionZip (cvpr2025) | 60.2  51.0 457 523 47.7 36.5 | 455 84.1
VisionZip' 672 559 501 577 54.8 422 | 51.6 95.4
+ DyToK 692 564 478 578 56.0 452 | 53.0 98.0(+13.9)
+ DyToK (7B) 703 564  48.1 583 55.8 46.5 | 53.5 989 (414.8)
DyCoke (cvpr2025) | 63.4 550 47.7 554 52.6 453 | 51.1 94.5
+ DyToK 65.1 542 473 556 532 446 | 51.1 94.5(+0.0)
+ DyToK (7B) 66.6 534 467 556 524 449 | 51.0 943(-0.2)
Retain 448 tokens (| 90%)
VisionZip (cvpr2025) | 47.0 442 422 445 414 29.8 | 38.6 71.3
VisionZip' 549 497 449 498 47.8 37.6 | 45.1 83.4
+ DyToK 61.0 S51.1 476 532 50.4 42.8 | 48.8 90.2 (+18.9)
+ DyToK (7B) 639 527 473 546 52.7 415 | 49.6 91.7 (+20.4)
DyCoke (cvpr2025) | 64.0  51.4 459 538 50.4 409 | 484 89.5
+ DyToK 623 516 466 535 50.2 43.6 | 49.1 90.8 (+1.3)
+ DyToK (7B) 614 521 461 532 50.6 413 | 484 89.5(+0.0)

15

Table 5: Full experiments of DyToK integrated into encoder feature-based methods on 32-frames
LLaVA-OneVision. The vanilla setup processes 32 frames with 196 tokens each. The final column
reports the average score across benchmarks and the accuracy relative to the unpruned baseline.
VisionZipT denotes our pooling-compatible variant, and DyCoke here applies dynamic per-frame
compression ratio allocation exclusively at the encoder side.



Method ‘ Vi.deoMME LongVideo MLVU ‘ Average
‘ Short Medium Long Overall — Bench ‘ Score %
Upper Bound, 6272 tokens
Vanilla (me) [ 700 567 488 585 56.6 47.1 | 541 100
Retain 4704 tokens (| 25%)
FastV (eccv2024) 69.7 557 476 576 57.1 46.5 | 53.7 99.3
+ DyToK 704 567 482 584 56.8 46.8 | 540 99.8 (+0.5)
+DyToK (7B) | 70.1 559 484 58.1 57.6 46.4 | 540 99.8 (+0.5)
DyCoke (cvpr2025) | 70.9  56.4  48.8  58.7 55.3 475 | 53.8 99.4
+ DyToK 709 559 490 586 55.9 475 54 99.8 (+0.4)
+DyToK (7B) | 709 557 48.6 584 55.7 477 | 539 99.6 (+0.2)
Retain 3136 tokens (| 50%)
FastV (eccv2024) 69.1 554 471 572 57.1 44.7 53 98.0
+ DyToK 71.1 556 488 585 57.2 46.3 54 99.8 (+1.8)
+DyToK (7B) | 71.1 563 47.6 583 57.4 47.1 | 543 1004 (+2.4)
DyCoke (cvpr2025) | 70.0 558 493 584 55.4 46.6 | 53.5 98.9
+ DyToK 71.0 56.1 492 585 56.0 469 | 53.8 994 (+0.5)
+DyToK (7B) | 70.7 559 489 585 56.1 46.7 | 53.8° 994 (+0.5)
Retain 1568 tokens (| 75%)
FastV (eccv2024) 66.2 547 471 560 56.6 43.7 | 52.1 96.3
+ DyToK 67.7 54.0 47.1 563 55.7 478 | 533 98.5(+2.2)
+ DyToK (7B) 69.4 56.1 472 576 56.0 458 | 53.1 982 (+1.9)
DyCoke (cvpr2025) | 68.2  56.1 477 573 54.6 435 | 51.8 95.7
+ DyToK 67.1 558 483 57.1 54.8 454 | 524 969 (+1.2)
+DyToK (7B) | 68.6 552 49.0 57.6 55.2 46.2 53 98.0(+1.1)
Retain 896 tokens (| 85%)
FastV (Eccv2024) 58.0 51.7 43.6 51.1 51.2 38.3 | 469 86.7
+ DyToK 64.6 54.2 45.8 54.8 52.6 432 | 502 92.8 (+6.1)
+ DyToK (7B) 67.1 55.1 46.0 56.1 54.0 44.0 | 514 95.0 (+8.3)
DyCoke (cvpr2025) | 65.1  53.6 453 547 52.2 425 | 49.8 92.1
+ DyToK 66.1 528 463 55.1 52.4 429 | 50.1 92.6 (+0.5)
+DyToK (7B) | 654 527 463 5438 52.7 419 | 498 92.1(+0.0)
Retain 448 tokens (| 90%)
DyCoke (cvpr2025) | 64.0  51.4 459 53.8 50.4 409 | 484 89.5
+ DyToK 64.9 52.3 454 542 50.41 412 | 48.6 89.8 (+0.3)
+ DyToK (7B) 64.3 51.9 45.1 538 513 425 | 492 909 (+1.4)

Table 6: Full experiments of DyToK integrated into LLM attention-based methods on 32-frames
LLaVA-OneVision. The evaluation follows the same setup as above. DyCoke here only applies
dynamic per-frame compression ratio allocation at the LLM side.
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Method VideoMME LongVideoBench MLVU Average
Score Y%
Upper Bound
Vanilla ey | 60.7 577 447 | 544 100
Retain 75% tokens
VisionZip! 59.7 56.5 446 | 53.6 98.5
+ DyToK (7B) 59.3 57.0 43.1 | 53.1 97.6 (—0.9)
FastV (Eccv2024) 58.7 56.1 41.5 | 52.1 96.3
+ DyToK (7B) 60.7 58.3 454 | 54.8 100.1 (+3.8)
Retain 50% tokens
VisionZip' 59.6 56.8 45.0 | 53.8 98.9
+ DyToK (7B) 60.2 56.8 438 | 536 98.5(—0.4)
FastV (Eccv2024) 55.7 53.2 36.8 | 48.6 89.3
+ DyToK(7B) 60.8 57.9 44.1 54.3 99.8 (+10.5)
Retain 25% tokens
VisionZip' 59.2 55.1 443 | 529 97.2
+ DyToK (7B) 59.9 55.3 445 | 532 97.8(+0.6)
FastV (Eccv2024) 53.1 49.3 340 | 455 83.6
+ DyToK(7B) 58.8 54.5 433 | 522 96.0 (+12.4)
Retain 15% tokens
VisionZip' 58.3 55.4 41.6 | 51.8 95.2
+ DyToK (7B) 58.4 54.1 42.5 51.7 95.0(-0.2)
FastV (Eccv2024) 48.9 47.1 32.8 | 429 78.9
+ DyToK (7B) 56.9 51.1 39.8 | 49.3 90.6 (+11.7)
Retain 10% tokens
VisionZipJr 55.8 53.2 41.7 | 50.2 92.3
+ DyToK (7B) 57.1 53.1 436 | 51.3 943 (+2.0)
FastV (Eccv2024) 423 423 246 | 364 66.9
+ DyToK (7B) 42.3 42.3 24.6 | 364 669 (+0.0)

Table 7: Performance of DyToK integrated into VisionZip and FastV on Qwen2.5-VL. The
vanilla setup processes 32 frames. The final column reports the average score across benchmarks and
the accuracy relative to the unpruned baseline. VisionZipT denotes our pooling-compatible variant.

(non-pruned) setting at a 75% retention ratio by 0.1%, demonstrating the strong effectiveness of our
approach. In the extreme case of a 10% retention ratio, our method combined with VisionZip also
yields a 2% improvement, further confirming its robustness under aggressive compression.

A.3 Experiments on Extended Video Length

To further verify DyToK’s effectiveness on longer video sequences, we conduct supplementary
experiments using a uniform sampling of 64 frames with LLaVA-OneVision, as presented in Tab.
This experiment complements the findings in the main text by evaluating DyToK’s scalability and
robustness when dealing with increased temporal context.

The experimental results demonstrate DyToK’s consistent superiority across various token retention
ratios. At moderate compression levels (25%-50%), DyToK notably enhances performance, achieving
up to 7.0% improvement in average accuracy compared to baseline methods at a 50% token retention
ratio. Remarkably, under more severe compression conditions (75%-90% token reduction), DyToK’s
advantage becomes even more pronounced. Specifically, at a retention ratio of just 10% of the
original tokens (896 tokens), DyToK achieves substantial accuracy gains of up to 24.0% over baseline
methods, highlighting its capability to preserve essential temporal information efficiently.
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Method VideoMME LongVideo MLVU Average
Short Medium Long Overall — Bench Score %
Upper Bound, 12544 tokens
Vanilla (TMLR) 70.8 569 487 5838 57.7 50.0 | 55.5 100
Retain 9408 tokens (| 25%)
VisionZip (cver 2026) | 70.3 557  50.1  58.7 56.0 439 | 529 95.3
VisionZip' 71.1 568 489 589 58.0 49.6 | 55.5 100
+ DyTok 71.0 566 497 59.1 58.2 48.6 | 553 99.6 (+4.3)
+ DyTok (7B) 70.8 572 484 585 58.3 49.1 | 553 99.6 (+4.3)
Retain 6272 tokens (| 50%)
VisionZip (cvpr 2025) | 69.0  57.1  49.1 584 55.2 423 | 520 93.7
VisionZip' 724 560 484 59.0 57.7 48.7 | 55.1 99.3
+ DyTok 72.1 578 492 597 58.5 48.1 | 554 99.8 (+6.1)
+ DyTok (7B) 722 581 49.0 5938 58.3 49.7 | 559 100.7 (+7.0)
Retain 3136 tokens (| 75%)
VisionZip (cvpr 2025) | 65.6 534 482 55.7 51.5 423 | 49.8 89.7
VisionZip' 703 558 481 58.1 56.6 474 | 54.0 97.3
+ DyTok 716 574 491 594 57.8 46.5 | 546 984 (48.7)
+ DyTok (7B) 72,7 577 481 595 58.4 474 | 55.1 993 (+9.6)
Retain 2240 tokens (| 80%)
VisionZip (cvpr 2025) | 61.6 529  46.1 535 48.5 37.1 | 464 83.6
VisionZip' 70.1 564 480 582 55.5 46.8 | 53.5 96.4
+ DyTok 70.1 563 48.7 584 56.1 46.1 | 53.5 96.4 (+12.8)
+ DyTok (7B) 716 57.1 478 588 59.2 477 | 552 99.5(+15.9)
Retain 1792 tokens (| 85%)
VisionZip (cvpr 2026) | 58.1  50.6 443 51.0 46.7 34.0 | 439 79.1
VisionZip' 674 548 471 564 54.5 429 | 513 92.4
+ DyTok 69.0 558 48.1 57.6 55.3 45.0 | 52.6 94.8 (+15.7)
+ DyTok (7B) 706 569 479 584 57.7 46.5 | 542 97.7(+18.6)
Retain 896 tokens (| 90%)
VisionZip (cvpr 2025) | 47.8 453 419 450 42.1 29.0 | 38.7 69.7
VisionZip' 567 521 459 516 479 36.8 | 454 81.8
+ DyTok 640 529 472 547 53.6 42.6 | 50.3 90.6 (+20.9)
+ DyTok (7B) 659 558 463 56.0 55.1 450 | 52.0 93.7 (+24.0)

Table 8: Performance of DyToK on 64-frames LLaVA-OneVision. The vanilla setup processes
64 frames with 196 tokens each. The final column reports the average score across benchmarks and

the accuracy relative to the unpruned baseline. VisionZip' denotes our pooling-compatible variant.
DyTok(7B) indicates that token pruning guided by 7B model.
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Method 100% 25% 20% 15%
Vanilla 414 N/A N/A NA
FastV N/A 236 223 17.1
DyToK (3B guides 32B) | N/A 355 354 299
DyToK (7B guides 32B) | N/A 363 349 339

Table 9: Experiments on broader model size. We conduct experiments utilizing Qwen2.5-VL (3B,
7B, and 32B) on the MLVU benchmark. Specifically, models are evaluated using 32 input frames,
with retention ratios ranging from 15% to 25%, based on the FastV pruning method.

Overall, these findings confirm DyToK’s effectiveness in significantly mitigating performance degra-
dation under extreme compression scenarios, reinforcing its general applicability and robustness for
longer video sequences.

A.4 Experiments on Broader Model Size

Beyond the 0.5B guiding 7B experiments using LLaVA-OneVision already presented in the main
text, we conduct additional extensive experiments using Qwen2.5-VL on the MLVU benchmark,
which covers a wider range of commonly used model sizes (3B, 7B, and 32B), as shown in Tab. E}
For the experiments in this section, we adopt a 4-bit NormalFloat (NF4) quantization configuration
with double quantization and bfloatl6 compute, and enable FlashAttention-2 during inference.
The use of these heterogeneous quantization regimes is a pragmatic choice dictated by hardware-
resource constraints, primarily regarding device memory capacity and memory bandwidth/throughput
characteristics, on our evaluation platforms.

These experimental results provide two further insights. First, video models inherently possess
keyframe priors regardless of model size. Second, such priors are not constrained by model scale, as
even lightweight models can exhibit keyframe perception capabilities comparable to those of larger
models. Notably, at a 20% retention ratio, the 3B Qwen2.5-VL assistant model surpasses the 7B
variant by a substantial margin, further validating the feasibility of using a lightweight assistant model
to provide keyframe priors in DyToK.

A.5 Experiments on General Descriptive Queries

To assess DyToK'’s ability to select keyframes for general descriptive queries (i.e., the query does not
explicitly point to specific visual content), we conduct captioning experiments on VideoChatGPT [29]
using LLaVA-OneVision (7B), which includes prompts like “What is happening in the video?”
Following Dynamic-VLM [30], we use GPT-3.5-Turbo-0613 for quantitative scoring, with the results
summarized in Tab.

We attribute DyToK’s advantage to its effectiveness in identifying both “semantic keyframes” (relevant
to query semantics) and “content keyframes” (capturing key scene or event transitions), making it
well-suited for general descriptive queries. This distinguishes DyToK from CLIP-based methods,
which rely solely on semantic matching. To support our claim, we replace DyToK’s cross-modal
attention-based frame weight estimation with CLIP-based semantic similarity. Implementation details
follow AKS [19]. Results remain consistent, as shown in Tab. [T1}

A.6 Ablation on Keyframe Prior Layer Selection

In the main text (Tab. 3, we partially discuss the effectiveness of extracting keyframe priors from
different layers of LLM. To comprehensively investigate the impact of various layer configurations,
this section provides detailed results from a full set of ablation studies on layer selection. We explore
multiple configurations, including individual layers as well as combinations of consecutive layers
segmented into thirds and sixths of the model’s depth, to verify the potential advantage of aggregating
multiple consecutive layers for enhancing keyframe priors. This extended analysis further supports
the observation discussed in Sec. [2.2] specifically highlighting that deeper attention layers yield more
reliable keyframe priors.
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Method | REMIOM | o cu  a po TU | Average
Score %
Vanilla 100% | 311 317 279 283 220 | 282  100.0
VisionZip | . | 291 308 272 274 203 | 270 957
DyToK 304 315 279 280 217 | 279 989
VisionZip | .| 262 286 250 242 181 | 244 865
DyToK 301 311 276 268 210 | 273 968
VisionZip | | 220 248 214 208 161 | 210 745
DyToK 291 302 267 254 197 | 262 929
VisionZip | [ 146 185 151 158 124 | 153 543
DyToK 262 275 238 224 184 | 237 840

Table 10: Experiments on general descriptive queries. We conduct experiments on VideoChatGPT
using LLaVA-OneVision (7B) with 32 input frames, based on the VisionZip pruning method at
retention ratios ranging from 10% to 50%.

Method Relt{e“:::it(i)on Short Medium Long Overall | Relative (%)
Vanilla 100% 69.9 56.7 489 585 100.0
DyToK (w/ CLIP) 25% 68.3 56.9 49.1 58.1 99.4
DyToK 69.2 56.8 489 583 99.7
DyToK (w/ CLIP) 15% 64.6 53.9 484 556 95.1
DyToK 66.3 55.0 48.7  56.7 97.0
DyToK (w/ CLIP) 10% 57.6 50.9 458 514 87.9
DyToK 61.0 51.1 47.6 532 91.0

Table 11: Comparison of DyToK and CLIP-based keyframe selection. We conduct experiments
on LLaVA-OneVision (7B) using 32 input frames, with retention ratios ranging from 10% to 25%,
based on the VisionZip pruning method.

Tab. [I2] reports performance across alternative layer-selection strategies. We find that aggregating
attention from the deepest third of layers (layers 16 to 23) achieves strong results, reaching 98.0% of
baseline performance under a 20% retention ratio. Although its accuracy is slightly lower than that
of the best-performing single layer (layer 20), its fixed percentage-based configuration generalizes
better across models compared to manually tuning layer selection for each individual model. More
broadly, accuracy improves with increasing layer depth: configurations leveraging later attention
layers consistently exceed those restricted to earlier or shallower selections, indicating that temporally
salient information is concentrated toward the top of the network. These findings substantiate
the hypothesis that deeper attention layers more effectively capture relevant temporal cues under
pruning-aware settings.

A.7 Ablation on Token Allocation Upper Limit

As discussed in Appendix [B.T|and Sec.[3.3] to ensure token budgets allocated using frame weights
remain within reasonable bounds for each frame and mitigate the adverse effects of temporal atten-
tion outliers, we introduce a predefined upper limit for tokens per frame. If the allocated tokens
exceed this upper limit, excess tokens are truncated and redistributed to other frames. This section
comprehensively evaluates the influence of various upper limit settings on DyToK.

Tab. [T3]presents detailed results across multiple upper limit configurations. Our findings reveal that
setting a moderately restrictive upper limit significantly enhances performance. Particularly, an upper
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Layer VideoMME LongVideoBench MLVU 7Average
Short Medium Long Overall Score %

Vanilla (tmir) | 70.0  56.7 48.8 58.5 56.6 47.1 |54.1 100
0 62.6 53.1 464 54.0 52.0 40.8 489 90.5
4 63.6 533 49.0 553 53.5 423 504 93.1
8 64.1 534 473 55.0 53.4 415 [50.0 92.3
12 65.7 549 478 56.1 53.3 433 509 94.1
16 66.2 553 482 56.6 53.4 449 |51.6 954
20 68.1 56.6 478 57.5 55.5 463 |53.1 98.2
23 66.3 563 487 57.1 53.8 45.1 |52.0 96.1
0.7 64.7 533 484 555 53.5 43.7 1509 94.0
8.15 66.0 554 48.0 565 54.8 445 1519 96.0
16.23 69.2 564 478 578 56.0 452 |53.0 98.0
0.3 63.2 540 487 553 542 424 150.6 935
4.7 65.6 53.8 488 56.0 54.5 439 |51.5 952
8.11 66.9 553 497 573 552 449 1525 970
12.15 66.3 57.1 483 573 53.8 41.6 509 94.1
16.19 67.0 562 46.7 56.6 54.8 427 514 949
20.23 69.3 557 487 579 54.5 46.1 |52.8 97.6

Table 12: Performance of DyToK under different layer configurations. We conduct experiments
using a retention ratio of 20%, with the number of frames set to 32. In comparison, the baseline
LLaVA-OneVision retains its original configuration without any pruning or modification. The best
result is highlighted in red, while the second-best is shown in bold.

Upper Limit/Frame VideoMME Egoschema LongVideoBench MLVU | Average
Short Medium Long Overall Subset Total
Vanilla (TMLR) 70.0 56.7 488 585 62.0 60.0 56.6 471 56.6
196 69.2 564 478 57.8 622 5938 56.0 452 54.7
176 69.0 563 479 577 622 59.8 55.8 45.0 54.6
147 68.7 563 48.1 577 624 59.8 56.2 44.7 54.6
118 68.0 560 48.0 573 62.0 59.9 55.9 447 54.5
98 68.4 558 479 574 628 599 55.8 46.6 54.9
78 68.2 553 49.0 575 62.0 59.8 56.4 45.5 54.8
49 68.0 567 49.0 579 632 60.2 55.1 45.2 54.6

Table 13: Performance of DyToK under different upper limit configurations. We conduct
experiments using a retention ratio of 20%, with the number of frames set to 32. In comparison, the
baseline LLaVA-OneVision retains its original configuration without any pruning or modification.
The best result is highlighted in red, while the second-best is shown in bold.
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Method Retention | yigeomme LOREVideo yyy vy | Average
Score %
Vanilla 100% 58.5 56.6 47.1 | 54.1 100.0
Attention Entropy-Based 58.3 55.9 456 | 533 985
Feature Entropy-Based 5% 583 54.8 429 | 520 96.1
Feature Magnitude-Based 58.3 56.0 448 | 53.1 98.1
DyToK 58.3 55.4 46.3 | 53.3 985
Attention Entropy-Based 55.2 52.8 434 | 505 932
Feature Entropy-Based 15% 552 52.7 449 | 509 94.1
Feature Magnitude-Based 54.7 533 43.8 | 50.6 935
DyToK 56.7 54.2 434 | 533 96.0
Attention Entropy-Based 50.6 48.1 38.6 | 45.7 845
Feature Entropy-Based 10% 50.7 48.8 384 | 459 849
Feature Magnitude-Based 50.6 474 379 | 453 837
DyToK 53.2 50.4 42.8 | 48.8 90.2

Table 14: Ablation on importance estimation strategies. We conduct experiments on LLaVA-
OneVision (7B) using 32 input frames, with retention ratios ranging from 10% to 25%, based on the
VisionZip pruning method.

limit of 98 tokens per frame achieves the highest average performance of 54.9, closely followed by
the configuration with 78 tokens per frame at 54.8. These settings indicate that tighter upper limits
efficiently suppress temporal attention outliers without excessively restricting token allocation to
keyframes, thereby maintaining robust model accuracy.

A.8 Ablation on Importance Estimation Strategies

To investigate the effects of various importance estimation strategies on the performance, we conduct
ablation studies comparing our proposed cross-modal attention-based frame weighting method
(utilized in the Temporal Importance Estimation stage) with entropy-based and magnitude-based
approaches. Specifically, we explore the following alternative importance estimation strategies.

Attention Entropy-Based: For each frame, compute the attention weights of the last query token
over all visual tokens. Calculate the entropy of these attention weights and normalize the results to
obtain the frame weights.

Feature Entropy-Based: Compute the information entropy of visual tokens along the feature
dimension. For each frame, average the entropy of all tokens and normalize the values to derive the
frame weights.

Feature Magnitude-Based: Calculate the L2 norm of visual tokens for each frame. Average the
norms and normalize the results to obtain the frame weights.

Tab. [T4] shows that DyToK consistently outperforms entropy and magnitude-based methods across
different retention ratios.

A.9 Ablation on Textual Token Selection

To explore whether relying solely on the last textual token can fully capture the sequence’s semantics,
we conduct ablations on multiple long video benchmarks using LLaVA-OneVision (7B) under various
retention ratios.

As shown in Tab. at higher retention ratios (e.g., 75%, 50%), using only the last query token
performs better. At more aggressive ratios (e.g., 25%, 15%), using all query tokens yields further
gains. We hypothesize that the last token acts as a precise but narrow selector, while all tokens offer
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Method Retention | yigeomme LonEVideo yyyyy 7&‘::”%;
Vanilla 100% 58.5 56.6 47.1 | 54.1 100.0
FastV 57.6 57.1 46.5 | 53.7 99.3
DyToK (all query tokens) 75% 58.1 57.1 454 | 535 989
DyToK (last query token) 58.4 56.8 46.8 | 54.0 99.8
FastV 57.2 57.1 447 | 53.0 98.0
DyToK (all query tokens) | 50% 58.2 58.0 456 | 539 99.6
DyToK (last query token) 58.5 57.2 463 | 540 99.8
FastV 56.0 56.6 437 | 52.1 963
DyToK (all query tokens) | 25% 56.9 58.0 473 | 54.1 100.0
DyToK (last query token) 56.3 55.7 478 | 53.3 985
FastV 51.1 51.2 383 | 469 86.7
DyToK (all query tokens) 15% 54.1 53.1 44.4 | 505 933
DyToK (last query token) 54.8 52.6 432 | 502 92.8

Table 15: Ablation on textual token selection. We conduct experiments on LLaVA-OneVision (7B)
using 32 input frames, based on the FastV pruning method.

broader coverage with higher recall. When visual evidence is abundant, precision reduces noise;
when it is scarce, broader semantic coverage becomes essential.

B Detailed Analysis of Keyframe Prior in VLLMs

In this section, we provide an in-depth description and qualitative analysis of the keyframe prior
phenomenon observed in VLLMs. We believe our findings will aid future research in understanding
and addressing related challenges.

B.1 Temporal Attention Outlier Phenomenon

Motivation and methodology. As described in Sec. effective token compression should
dynamically allocate tokens according to each frame’s relevance to the query, i.e., assigning more
tokens to informative frames and fewer to less relevant ones. Accurate indicators of frame contribution
are thus essential. We investigate whether the VLLM attention map can serve as such an indicator.
Specifically, we compute attention weights from the last textual token to all visual tokens at each
layer of the VLLM, producing fine-grained layer-frame correlations. Averaging these attention
weights across frames and layers yields a temporal importance score, quantifying each frame’s overall
relevance. Similarly, averaging attention weights across the entire visual token sequence per layer
indicates each layer’s contribution to video comprehension.

Experimental observations. We conduct experiments with 32-frame and 64-frame inputs, as
illustrated in Fig. E] and Fig. @ Both LLaVA-OneVision [1] and LLaVA-Video [2]] consistently exhibit
accurate identification of keyframes relevant to specific queries. For example, when asked, "Which of
the following outcomes occurs when the boy with brown hair and no glasses indicates the feather?",
both models prominently attend to keyframe 23. However, we also notice a consistent bias toward
disproportionately high attention allocation at the initial and final frames, regardless of their semantic
irrelevance or even absence of meaningful information.

This phenomenon, termed Temporal Attention Outlier, becomes significantly pronounced with 64-
frame inputs, wherein an additional, highly prominent outlier frame appears consistently in the middle
of the sequence. Remarkably, this outlier frame remains constant across different queries for the
same video and generally lacks relevant semantic content.
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Input Video

Question: What activities do
students engage in within the room?

LLaVA-OV: Practicing spell.

Question: Which of the following
outcomes occurs when the boy with
brown hair and no glasses indicates
the feather?

LLaVA-OV: The feather floats up.

Question: What activities do
students engage in within the room?

LLaVA-Video: Practicing spell.

Question: Which of the following
outcomes occurs when the boy with
brown hair and no glasses indicates
the feather?

LLaVA-Video: The feather floats up.
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Figure 5: Analysis of VLLMs with 32-frame inputs. We visualize the attention behavior of LLaVA-
OneVision and LLaVA-Video on a 32-frame video input under different queries. Each row shows the
model’s predicted answer, the layer-frame correlation heatmap, the frame-wise attention distribution,
and the layer-wise attention weights. Both models exhibit consistent and accurate localization of
task-relevant keyframes. However, we also observe a recurring bias toward the initial and final frames,
where attention is disproportionately high despite their limited relevance.
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Input Video

Question: What color is the cell
membrane of the virus-invaded cell
in the video?

LLaVA-OV: Red.

Question: Where does mRNA come
from in the video?

LLaVA-OV: COVID-19 virus.

Question: What color is the cell
membrane of the virus-invaded cell
in the video?

LLaVA-Video: Red.

Question: Where does mRNA come
from in the video?

LLaVA-Video: COVID-19 virus.

Layer-Frame Correlation Key Frames Key Layers

i.

Figure 6: Analysis of VLLMs with 64-frame inputs. This figure presents the behavior of LLaVA-
OneVision and LLaVA-Video on 64-frame inputs. Compared to the 32-frame case, the temporal
attention bias becomes more prominent. In addition to edge-frame outliers, a strong and persistent
attention peak emerges at a middle-frame location across different queries. This central outlier does
not consistently contain meaningful visual content yet dominates attention allocation, revealing a
new form of modality-invariant attention artifact we term as Temporal Attention Outlier.
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Layer 0 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
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Figure 7: Frame-level attention maps of LLaVA-OneVision across 28 layers. Attention visual-
izations for the mid-sequence outlier frame reveal a pronounced and consistent activation pattern
from layers 12 to 20, all focusing on the same non-semantic background patch. The similarity across
layers reveals a copy-paste-like effect, indicating a temporal attention outlier that persists across the
model hierarchy.

Related work and interpretation. Similar attention outlier phenomena have been observed in
other domains. Registers [31] identify certain tokens in visual Transformers exhibiting extraordinarily
high output norms despite lacking semantic content. Such tokens aggregate global information rather
than local patch representations. Analogously, CLIPtrase [32] and DeCLIP [33] report "proxy/global
token" effects in vision language models, where specific tokens gain disproportionate attention,
diluting local semantic relationships and negatively impacting downstream dense prediction tasks.
Streamingl.LM introduces the "attention sink" concept, observing structural anomalies whereby
non-semantic initial tokens dominate attention distributions due to normalization constraints imposed
by softmax operations.

Collectively, these studies highlight a general drawback in transformer attention mechanisms: cer-
tain non-informative tokens inevitably absorb disproportionate attention to maintain computational
stability under softmax normalization. The temporal attention outlier phenomenon observed here
is a temporal manifestation of this mechanism, distorting accurate attention allocation based on
semantic relevance. This misallocation undermines the robustness and effectiveness of dynamic token
compression strategies.

Mitigation strategies. Considering this detrimental effect, we suggest explicit strategies to mitigate
attention outliers. As detailed in Sec.[3.3] imposing an upper limit 75,4, on tokens per frame during
budget allocation can effectively suppress outlier frames’ influence by reallocating surplus tokens to
genuinely important frames. Experimental results summarized in Tab. [[3]demonstrate that lowering
T'maz €nhances post-pruning model accuracy.
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Figure 8: Frame-level attention maps of LLaVA-Video across 28 layers. Similar to LLaVA-
OneVision, a distinct attention concentration is observed from layers 12 to 20, fixated on a spatially
narrow and semantically irrelevant region. The uniformity of these patterns across layers highlights
the presence of a systematic temporal attention outlier within VLLM:s.

B.2 Visualizing and Characterizing Temporal Attention Outliers

To further characterize temporal attention outliers, we visualize attention distributions at the frame-
token level across layers (Fig. [7] and Fig. [8). For 64-frame inputs, a distinct bright horizontal
line appears consistently at layers 12-20, corresponding precisely to the mid-sequence attention
outlier frame. Detailed visualization reveals these layers exclusively attend to a single background
patch within the outlier frame, with strikingly similar attention patterns across layers, resembling a
"copy-paste" effect.

This comprehensive visualization reinforces the understanding that temporal attention outliers
consistently manifest at specific layers, target non-semantic regions, and represent a systematic rather
than random anomaly within the VLLM architecture.

B.3 Exploring Keyframe Bias in VLLMs

The discovery of temporal attention outliers raises a fundamental question: Does an inherent bias
toward specific frames ("keyframe bias") exist within VLLMs? To investigate this hypothesis, we
present LLaVA-OneVision with semantically empty inputs, including black, white, and noise videos,
matching the original video’s frame count and resolution.

As illustrated in Fig.[9] significant attention peaks consistently appear at the initial, final, and mid-
sequence frames, even without semantic content. This result strongly suggests an inherent structural
bias within VLLMs toward these frames. Potential explanations include mechanisms similar to
"attention sinks" [34]], which manage excess attention distribution, or global patches [31}, 32, 33|
used to aggregate information across sequences, facilitating processing under causal masking. Future
research should further clarify these mechanisms.
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Input Video Layer-Frame Correlation Key Frames Key Layers

Figure 9: Visualization of the keyframe bias in VLLMs. Each row corresponds to a variant
of synthetic input (black/white/noise videos) with minimal semantic content. The middle column
presents the layer-frame correlation heatmaps, where a distinct vertical stripe indicates a mid-sequence
attention outlier across layers 12 to 20. The right two plots show the corresponding frame-wise and
layer-wise importance scores, with a sharp peak at the outlier frame. These consistent patterns across
diverse non-semantic inputs reveal the systematic nature of keyframe bias in VLLMs.

We hope that our detailed exploration of keyframe bias and temporal attention outliers may provide
useful insights for future research, contributing to more robust and interpretable VLLMs.

C Efficiency Analysis

In this section, we present additional experiments evaluating the efficiency improvements of DyToK,
demonstrating significant reductions in GPU memory usage, FLOPs, and inference time with minimal
impact on model accuracy.

GPU memory usage. We first analyze the GPU memory efficiency of DyToK using LLaVA-
OneVision (7B) on the VideoMME benchmark with 32-frame inputs. Experiments are conducted
across various token retention ratios, ranging from 10% to 75%. As shown in Tab. [I6] GPU memory
consumption decreases substantially with lower retention ratios, achieving a maximum memory
reduction of 77.9%. Memory savings are significantly influenced by model size, stabilizing around
17.3 GB at retention ratios of 50% and below, which approximates the minimal GPU memory
footprint limited by the model’s weights.

Inference time analysis. To evaluate DyToK’s inference efficiency, we measure the prefilling time
on the VideoMME benchmark using LLaVA-OneVision (7B) with 32 input frames. As indicated in
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Retention LongVideo

Method Ratio FLOPs (T) Memory (GB) Latency (ms) | VideoMME Bench MLVU | Avg.
Vanilla 100% 40.8 222 48.3 58.5 56.6 47.1 |54.1
DyToK 75% 32.6 20.2 44.1 59.0 55.9 46.6 |53.8
DyToK 50% 21.9 17.3 23.5 59.1 56.4 46.2 | 539
DyToK 25% 12.2 17.3 11.3 58.3 55.4 46.3 |53.3
DyToK 20% 9.6 17.3 10.7 584 55.4 437 | 525
DyToK 15% 8.4 17.3 10.4 56.7 54.2 434 | 514
DyToK 10% 59 17.3 10.8 532 50.4 42.8 |48.8

Table 16: Analysis of DyToK on FLOPs, GPU memory, and prefilling time. We conduct
experiments on the LLaVA-OneVision model using 32 input frames, with pruning rates ranging
from 10% to 75%, based on the VisionZip pruning method. For comparison, the baseline LLaVA-
OneVision retains its original configuration without any pruning or modification.

Tab.[T6] DyToK notably accelerates inference speed as the token retention ratio decreases. Specifically,
at a 50% retention ratio, DyToK achieves a 2.1x speedup, improving further to 4.3x at a 25%
retention ratio compared to the vanilla model.

Accuracy-efficiency trade-off. DyToK provides a balanced trade-off between accuracy and com-
putational efficiency. At a moderate 50% retention ratio, DyToK retains 99.6% of the original model
accuracy, accelerates inference by 2.1x, and reduces GPU memory usage by 22.1%. At a lower
retention ratio of 25%, DyToK maintains 98.5% accuracy alongside a 4.3 inference speedup. Even
at the extreme retention ratio of 10%, equivalent to retaining approximately 14 tokens per frame,
DyToK still preserves 90.2% accuracy, underscoring its robustness under aggressive compression.

D Related Works

Vision-Language Models. Inspired by the success of large language models (LLMs) [36} 37, [38]
39], recent Vision—Language Models (VLMs) combine a visual encoder [16| [17} 40, 41] with a
pretrained LLM [37, 36]] to enable large-scale multimodal reasoning. Pioneering systems such as
BLIP-2 [42] and LLaVA [43] pass visual features through a lightweight projector before concatenating
with textual tokens. While effective, this design suffers from a significant token-length bottleneck:
a single high-resolution image (672x672 in LLaVA-NeXT [44]]) yields over 2,000 patch tokens,
overwhelming the textual prompt. Multi-image or video inputs [1} 2} 3] further increase the sequence
length. Therefore, maintaining model performance under a constrained visual token budget is critical
for the continued advancement of VLMs.

Efficient Vision-Language Models. In the development of VLMs, two main approaches have
been proposed to accelerate inference, targeting the two core components of the system. One
common strategy involves pruning on the encoder side [[12] 145} 46|47, 48]. These methods typically
identify dominant tokens and merge contextual tokens to preserve information from pruned tokens.
Another prevalent approach focuses on pruning within the LLM itself. For example, FastV [§] selects
important vision tokens based on attention scores but neglects the contribution of low-attention tokens.
Sparse VLM [22] incorporates text guidance via cross-modal attention, yet faces similar limitations.
DART [49] addresses this by considering not only high-priority tokens but also applying token
reduction techniques to retain information from low-attention tokens. These methods collectively
aim to reduce the KV cache size and improve inference efficiency in LLMs.

Efficient Video-Language Models. Due to the large number of vision tokens in video inputs, recent
video compression methods [10} 13} 50] have attracted growing attention. In the early stages, most
pruning techniques were adapted from image-based approaches, which inevitably overlooked the
temporal dependencies inherent in video data. For example, PruneVID [10] clusters video tokens and
selects those most relevant to the query tokens, yet it fails to fully capture temporal continuity. More
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recent approaches have begun to address this limitation. FastVID [50], for instance, incorporates both
temporal and visual context to perform spatiotemporal token pruning at the input stage, offering a
more holistic approach to video token reduction.

Frame Selection Methods. Given the varying information density across video frames, most
existing VLLMs [3} [1, 2 20] adopt fixed-duration sampling strategies. However, this uniform
sampling often leads to sub-optimal performance, as it fails to account for the relevance of specific
frames to the query. Several recent works [51} 52} 53] aim to improve frame selection by clustering
input frames to minimize redundancy, but these methods typically incur high computational overhead
during the selection process. An alternative line of work [54] dynamically allocates tokens to each
frame based on their query relevance. QuoTA [54], for instance, employs a lightweight model to
evaluate the relationship between each frame and the query in order to assign token budgets, but this
introduces significant latency prior to inference. In contrast, our approach eliminates redundancy
before inference by leveraging attention weight scores as indicators for token allocation.

E Efficient inference paradigms for VLLMs

Recent advancements in efficient inference for VLLMs can be categorized into two paradigms: LLM
attention-based token pruning [[10} [13] and encoder feature-based token selection [23| 24]. These
paradigms differ fundamentally in their operational stages, criteria for token importance, and stability
under varying conditions.

LLM Attention-Based Token Pruning. As shown in Fig. [2(a), this paradigm dynamically prunes
redundant visual tokens during the LLM inference stage. It operates by ranking token importance at
intermediate transformer layers within the LLM, typically using attention scores as criteria. Tokens
with lower importance scores are progressively discarded in subsequent layers. Theoretically, the
computational cost reduction can be modeled as:

LY Cu) + Xk, Clin)
S Cn)

where C'(n) denotes the FLOPs of a transformer layer processing n tokens, K is the pruning start
layer, and 7; < n; represents the retained token count after pruning.

1 , (6)

While this approach aligns token retention with task-specific textual prompts, its efficacy hinges
critically on the quality of attention maps from designated pruning layers. Shallow layers often
produce noisy attention signals due to insufficient semantic integration, whereas deeper layers yield
delayed pruning decisions that diminish computational savings. This layer-specific dependency
introduces instability, particularly for long video sequences requiring multi-layer reasoning.

Encoder Feature-Based Token Selection. Differently, this paradigm reduces redundancy at the visual
encoder’s output stage by selecting tokens based on intrinsic feature importance before feeding them
to the LLM, as depicted in Fig. [2(b). Importance is quantified through static criteria derived from
encoder self-attention patterns or feature activations, such as the average attention received by each
token across all spatial or temporal positions. The token set is then truncated to a subset of size
k < n, achieving a theoretical FLOPs reduction ratio of:

Cproj +LLM (k )

1- )
C4];)roj +LLM (n)

)

where Ciroj+Lm(-) encompasses both projector and LLM computations. This paradigm avoids
layer-specific dependencies by leveraging stable encoder-derived features, ensuring consistent token
selection regardless of downstream LLM depth.

Our method can be seamlessly integrated into both of these VLLM inference acceleration paradigms
in a training-free and plug-and-play manner. By leveraging the inherent keyframe prior within
VLLMs, DyToK provides temporal frame-importance weights to guide underlying token compression
strategies. This allows more tokens to be retained for keyframes that are critical to the current task
while reducing token allocation for redundant frames. Under limited token budgets, DyToK helps
focus the model’s attention on truly informative keyframes and enhances the temporal perception
capabilities of VLLMs.
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F Evaluation Benchmarks
We conducted experiments on these widely used long video understanding benchmarks.

VideoMME. VideoMME [6]] comprises 2,700 human-annotated multiple-choice questions drawn
from 900 videos (== 254h) across 6 visual domains and 30 sub-fields; the evaluation therefore covers a
wide spectrum of spatial scenes and temporal durations, probing models’ ability to track multimodal
cues (frames + audio + subtitles) from 11-second clips up to 1-hour stories.

LongVideoBench. LongVideoBench [[7] comprises 6,678 human-curated multiple-choice questions
built on 3,763 web videos (up to 1h) and their subtitles, organized into 17 fine-grained categories that
revolve around a novel "referring-reasoning" task, thereby requiring models to localize, retrieve, and
integrate visual-linguistic evidence over very long spatial-temporal contexts.

EgoSchema. EgoSchema [55] comprises around 5,000 five-option multiple-choice questions col-
lected from 250h of egocentric footage, emphasizing very long-form temporal reasoning—each
three-minute clip demands tracing objects and actions over intrinsic time spans that are 5-10x longer
than prior datasets, thereby stressing both spatial perception and extended temporal coherence.

MLVU. MLVU [27] comprises 3,102 multiple-choice questions that span 9 distinct long-video
understanding tasks, challenging models to handle videos ranging from 3 minutes to 2 hours and to
reason over plot, temporal order, event retrieval, and other facets that jointly test fine-grained spatial
recognition and long-range temporal logic.

G Implementation Details

G.1 Experimental Settings

The vanilla LLaVA-OneVision employs SO400M [17] as its vision encoder and Qwen2 [37] as its
language model. The bilinear pooling strategy reduces the number of vision tokens per frame from
729 to 196. We use two settings for the total number of frames—32 and 64—consistent with prior
work [56}157]]. This results in 6,272 tokens for 32 frames and 12,544 tokens for 64 frames.

To validate the generalization ability of DyToK on different VLLM inference acceleration paradigms,
we integrate DyToK into the existing SOTA methods, FastV [§], VisionZip [12], and DyCoke [13]],
which perform visual token pruning inside LLM, between the visual encoder and LLM, and on both
sides, respectively. Specifically, FastV performs token pruning based on the text-to-visual attention
extracted from a specific layer in LLM, VisionZip utilizes inter-patch feature correlations to apply
token pruning after the visual encoder and before LLM, while DyCoke prunes visual tokens before
and after entering into LLM, where the Token Temporal Merging (TTM) strategy compresses the
redundancy in the temporal dimension by token merging on the encoder side, and the Dynamic
Pruning (DP) strategy prunes visual tokens in the decoding stage based on the last query-to-visual
attention on the LLM side.

G.2 Token Budget Alignment

To ensure a fair comparison, we limit all methods to the same token budget. Based on this budget, we
calculate the actual compression ratios specific to each one of FastV, DyCoKe, and VisionZip, so
that the FLOPs of the computation of visual tokens during inference remain strictly consistent across
methods.

To this end, we use a simple yet effective strategy to align the computational cost of different pruning
strategies by keeping the total number of visual tokens processed by LLM across all layers the same.
Assuming an LLM with L layers, token pruning occurs at layer K. Let IV represent the initial number
of visual tokens per layer before pruning, and M denote the number of tokens retained after pruning
at layer K. To quantify the average computational cost per layer, we introduce R, satisfying the
following equation:

KxN+(L-K)xM=LXxR. (8)

Thus, two methods can be considered computationally equivalent if their respective 12 values match.
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Dominant Contextual Retention Ratio Numerical Sum Approximate Sum

168 28 100% 196 196
126 21 75% 147 147
84 14 50% 98 98
42 7 25% 49 49
30 5 20% 39.2 35
24 4 15% 29.4 28
12 2 10% 19.6 14

Table 17: Token budget allocation under different retention ratios in DyToK-enhanced Vi-
sionZip. A fixed 6:1 ratio is maintained between dominant and contextual tokens. The total number
of retained tokens is rounded down to the nearest multiple of 7 to meet this ratio, resulting in lower
actual token counts, especially under extreme compression.

Adaptation of VisionZip. When integrating DyToK into VisionZip, to standardize hyperparameter
settings across experiments, we maintain a fixed dominant-to-contextual token ratio of 6:1 per frame.
Given that LLaVA-OneVision originally processes 196 tokens per frame, exact division isn’t feasible,
necessitating approximate rounding. To deliberately introduce a challenging scenario highlighting
DyToK’s robustness, we uniformly round down token counts to multiples of seven (see Tab.[G.2).
Token budgets used in subsequent methods are also aligned with the values presented in this table. The
rounding strategy significantly reduces the effective token budget, particularly at extreme compression
levels. For instance, at a 10% retention ratio, this rounding strategy yields approximately 40% fewer
tokens compared to standard calculations without rounding. Consequently, accuracy scores under
identical nominal retention ratios in this paper may appear slightly lower than those reported in
comparable literature. However, this deliberate choice does not obscure the clear superiority of
DyToK’s performance.

Adaptation of DyCoke. We hypothesize that token pruning in LLM only occurs at the prefilling
stage for computational overhead alignment. However, DyCoke doesn’t perform token pruning in
LLM during the prefilling phase in order to obtain the KV Cache of all visual tokens across all layers
for dynamic pruning in the decoding stage. The prefilling stage is crucial for some benchmarks
like VideoMME in which LLM generates short responses (e.g. one token). Thus, we transform the
dynamic pruning strategy in the second stage of DyCoke into static and only perform pruning in the
prefilling stage for fair comparison.

Adaptation of token compression methods to Qwen2.5-VL. Qwen2.5-VL adopts a sliding-
window computation strategy that supports video frames of arbitrary resolution. At the end of its
encoder, it introduces a patch merger module that reduces computational overhead by merging every
four spatially adjacent visual tokens into one. However, this architecture poses significant challenges
for the adaptation of token compression methods designed for other VLLMs.

Unlike the common 2D pooling techniques (e.g., bilinear or average pooling) used in models like
LLaVA-OneVision and LLaVA-Video [2], Qwen2.5-VL [3]] performs token merging by reshaping the
token layout and feeding it into an MLP to fuse features in the embedding space. To accommodate
this mechanism in encoder feature-based methods such as VisionZip, we retain the MLP-based
merging strategy for the hidden states. However, to align the attention weights and importance scores,
originally computed before merging with the post-merging hidden states, we apply spatially localized
averaging to these metrics using the same compression ratio.

In addition, Qwen2.5-VL employs Multimodal Rotary Position Embedding (MRoPE), a positional
encoding scheme that encodes each visual token based on its precise temporal, height, and width
indices. Compression methods like VisionZip, which discard original token positions during pruning,
are therefore inherently incompatible with mRoPE. To address this issue, we degrade the multimodal
mROoPE to a standard 1D RoPE, consistent with the approach used for LLaVA-OneVision, ensuring
compatibility without altering the model architecture.
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H Visualization of Per-Frame Token Compression

To intuitively illustrate the effectiveness of dynamic token compression via LLM-guided keyframe
prior, we visualize per-frame compression results on video-question pairs randomly sampled from
the widely used VideoMME [6] benchmark. Each input video is uniformly sampled to 8 frames, with
the ground-truth keyframes marked by red pentagrams and all other frames denoted by yellow circles
in temporal order.

Fig. [I0] Fig. 1] Fig. [I2] and Fig. [I3] present results for an encoder feature-based method, Vi-
sionZip [[12], under an extreme token retention ratio of 10%. When the token budget is uniformly
allocated across frames, VisionZip fails to sufficiently preserve information from critical keyframes
while retaining excessive tokens from less relevant frames. This leads to substantial semantic
distraction and ultimately incorrect answers. In contrast, our DyToK-enhanced version leverages
LLM-guided keyframe priors to assign token budgets based on frame-level importance. As a result,
DyToK effectively prioritizes tokens for keyframes that are most relevant to the question, while ag-
gressively compressing redundant frames, leading to enhanced temporal perception under constrained
computational budgets.

Fig.[T4] Fig.[I3] Fig.[16] and Fig.[I7]show similar comparisons for an LLM attention-based method,
FastV [8]], evaluated under a 15% retention ratio. Uniform token allocation again results in a loss of
key semantic content and an accumulation of redundant context. DyToK consistently mitigates these
issues by dynamically adjusting token budgets across frames, demonstrating its general applicability
across different VLLM inference acceleration paradigms.

To accurately illustrate the actual attention distribution guided by the keyframe prior in the token
budget allocation process, we applied smoothing techniques to certain temporal attention outliers,
details of which can be found in Appendix Importantly, DyToK is designed as a training-free,
lightweight, and pluggable module capable of dynamically assigning compression ratios based
on frame-query relevance. Our visualizations clearly demonstrate its effectiveness in dynamically
allocating token budgets. However, the precise distribution and exact positions of retained tokens
within individual frames depend on the underlying pruning method, such as VisionZip or FastV.
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Q: In the video, what does the man’s
facial expression look like when he Input Video
sees the scorpion skewer?

Keyframe Prior

visionZip

A: Joy.

w/DyToK V'

A: Disgust.

Figure 10: Example 1 comparing VisionZip and VisionZip w/ DyToK under 10% retention ratio.
The DyToK-enhanced method better preserves keyframe tokens and suppresses temporal redundancy
under the limited budget.

M Q: When is the zodiacal light

visible from the video? Input Video

Keyframe Prior

VisionZip X

A. On March 24.

w/ DyToK «

A. On March 19.

Figure 11: Example 2 comparing VisionZip and VisionZip w/ DyToK under 10% retention ratio.
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Q: What kind of clothes is the

speaker wearing? Input Video

Keyframe Prior

visionZip 3

A: Blue jacket.

w/DyToK V'

A: Green plaid shirt.

Figure 12: Example 3 comparing VisionZip and VisionZip w/ DyToK under 10% retention ratio.

Q: What is the specific sentence in
the smart phone that makes the man ~ Input Video
embarrassed?

Keyframe Prior

VisionZip x

A: Smoke Sig 2.0.

w/ DyToK «

A: BTW...you got
something in your teeth!

Figure 13: Example 4 comparing VisionZip and VisionZip w/ DyToK under 10% retention ratio.
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Q: What does the panda use to fight

with enemies in the video? Input Video
4 \ FoaN / \ Keyframe Prior
N~ N N~ o AT

! \

!
FastV x
A: A bamboo.
w/ FastV «
A: A stick.

Figure 14: Example 1 comparing FastV and FastV w/ DyToK under 15% retention ratio.
The DyToK-enhanced variant achieves better focus on keyframe regions and reduces attention to
temporally redundant content under the constrained token budget.

Q: How many times does the
interviewed girl appear in the Input Video
video?

/_\/\L/\A B \/\/ \\ N Keyframe Prior
. 7N \J__/-\/_CJ\__/—\/‘\/\A“ < —
) , 7’ \\ N N

N

o\ - —
FastV x
i A: 3.
0 : .. w/ DyToK «
= A: 2.

Figure 15: Example 2 comparing FastV and FastV w/ DyToK under 15% retention ratio.
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Q: Which object does the creature
hold in its hand?

Input Video

Keyframe Prior

FastV x

A: Sunglasses.

w/DyToK V'

A: A pistol.

Figure 16: Example 3 comparing FastV and FastV w/ DyToK under 15% retention ratio.

g Q: Which country do the athletes

§
Ttk ‘,,,? shown at the beginning of the video Input Video
come from?

FastV x

A: Brazil.

w/DyToK V'

A: Germany.

Figure 17: Example 4 comparing FastV and FastV w/ DyToK under 15% retention ratio.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers, and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Claims in the abstract and introduction align with our key motivation in
Sec.[2.2]and our experiment result in Sec.[4.2]

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We have clarified our limitations in this paper.

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: More details of the theoretical analysis and evaluation settings can be found in
the appendix.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

» Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We comprehensively clarify our method DyToK and present the detailed
algorithm pseudo code. Our implementation details and specific parameter settings can be
found in the appendix.

Guidelines:
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The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our code and models will be made publicly available after publication.

Guidelines:

The answer NA means that paper does not include experiments requiring code.

Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: First, DyToK is a new training-free MLLM acceleration paradigm. Second, in
our experiment, we clearly present our experiment setting and the token budget alignment
strategy for fair comparison.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: More experimental details and results will be present in the appendix and
supplementary materials.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The detailed experimental setting and inference platform can also be found in
the appendix or supplementary materials.

Guidelines:
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9.

10.

11.

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: This work complies with NeurIPS Ethics Guidelines (no human subjects
involved).

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:

Justification: This work aims to accelerate the inference efficiency of VLLMs while main-
taining their performance. No social impacts involved.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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Answer:
Justification: We don’t present high-risk models.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer:
Justification: Our work only presents a novel training-free VLLM acceleration paradigm.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer:
Justification: We don’t present a new dataset or new models.
Guidelines:

» The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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15.

16.

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer:

Justification: This work is purely algorithmic/theoretical and does not involve any human
subjects or crowdsourcing.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: DyToK uses an assistant model derived from the same model family but with
extra small parameters to generate frame weights, guiding us to perform dynamic pruning.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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