
Get More with LESS: Synthesizing Recurrence with
KV Cache Compression for Efficient LLM Inference

Harry Dong 1 Xinyu Yang 1 Zhenyu Zhang 2 Zhangyang Wang 2 Yuejie Chi 1 Beidi Chen 1 3

Abstract

Many computational factors limit broader deploy-
ment of large language models. In this paper,
we focus on a memory bottleneck imposed by
the key-value (KV) cache, a computational short-
cut that requires storing previous KV pairs dur-
ing decoding. While existing KV cache meth-
ods approach this problem by pruning or evict-
ing large swaths of relatively less important KV
pairs to dramatically reduce the memory foot-
print of the cache, they can have limited success
in tasks that require recollecting a majority of
previous tokens. To alleviate this issue, we pro-
pose LESS, a simple integration of a (nearly free)
constant sized cache with eviction-based cache
methods, such that all tokens can be queried at
later decoding steps. Its ability to retain infor-
mation throughout time shows merit on a vari-
ety of tasks where we demonstrate LESS can
help reduce the performance gap from caching
everything, sometimes even matching it, all while
being efficient. Relevant code can be found at
https://github.com/hdong920/LESS.

1. Introduction
Throughout its lifetime, the transformer architecture
(Vaswani et al., 2017) has made strides in natural language
processing (Lin et al., 2022), computer vision (Khan et al.,
2022), healthcare (Nerella et al., 2023), and many other do-
mains. Large language models (LLMs) (Zhang et al., 2022;
Scao et al., 2022; Fedus et al., 2022; Anil et al., 2023; Ope-
nAI, 2023; Touvron et al., 2023; Team et al., 2023; Jiang
et al., 2024) take transformers to the extreme by scaling

1Department of Electrical and Computer Engineering, Carnegie
Mellon University, USA 2Department of Electrical and Com-
puter Engineering, University of Texas at Austin, USA 3Meta
AI (FAIR), USA. Correspondence to: Harry Dong <har-
ryd@andrew.cmu.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

Figure 1. Toy (top row) and Llama 2 7B (bottom row) example
decoder attention maps with H2O as the underlying sparse policy.
In the top row, red/pink and grey squares are positive and zero
attention probabilities, respectively. In the bottom row, darker
colors indicate larger attention probabilities. Sparse attention poli-
cies zero out many positive attention probabilities. Our method,
LESS, ensures all previous tokens will have some contribution to
the attention layer output to better retain information.

the model, data, and context lengths to extraordinary levels.
This has been remarkably useful for complex tasks such as
chatbots, long document tasks, and biological sequences.
However, during deployment, these tasks require generating
long sequences or inputting large batch sizes, which places
an immense computational burden on the key-value (KV)
cache (Pope et al., 2023), the storage of all previous keys and
values at each layer to bypass recomputing them at future de-
coding steps. While this significantly saves computation, the
tradeoff is an explosion of memory consumption. In such
scenarios, the KV cache size often eclipses the model size.
For instance, the Llama 2 7B model (Touvron et al., 2023)
occupies about 26 GB of memory, but the KV cache for an
input of batch size 64 and sequence length 1024 occupies
64 GB of memory, nearly 2.5 times the model size. Hence,
addressing this accessibility issue is imperative as LLMs
continue to scale and break tight deployment constraints.

Thankfully, there have been initiatives to reduce the KV
cache size. A line of work, in which we refer to as sparse
policies or algorithms, explores the selection of the best

1

https://github.com/hdong920/LESS

Get More with LESS

subset of KV pairs to cache (Zhang et al., 2023; Liu et al.,
2023b; Han et al., 2023; Xiao et al., 2023). Although very
promising, these methods are inevitably and irrecoverably
discarding KV pairs deemed, in one way or another, less
important than others, leading to gaps in attention maps as
shown in Figure 1. Consequently, they are boldly assuming
tokens that are unimportant now will not hold significance
at future decoding steps, a faulty conjecture for tasks that
deviate from this pattern. For instance, using sparse policy
H2O (Zhang et al., 2023) on Falcon 7B (Almazrouei et al.,
2023) to summarize an article (BBC, 2015; Narayan et al.,
2018) produces a factually incorrect summary in Figure 2.

Figure 2. Incorrect summary by Falcon 7B with sparse policy H2O.

For the full article, see Figure 13 in Appendix D. One way
to combat information loss is to cache more tokens, but this
is far from memory efficient. An ideal KV cache policy
should 1) minimize performance degradation from a full
cache, 2) scale at a much slower rate than the full KV cache,
and 3) be cheap to integrate into existing pretrained LLMs.

Fortunately, with some investigation into the residual be-
tween full and sparse attention outputs, a better strategy
emerges. First, define the residual as ∆A = A −Asparse,
where A and Asparse are the full and sparse attention outputs,
respectively. Using top-k selection as our sparse policy, we
observe the residuals ∆A are in fact low-rank — more
so than A — based on Figure 3, a similar observation to
Chen et al. (2021). Even a very low-rank approximation
can nearly negate the performance degradation from sparse
caching. In turn, this finding motivates the use of low-rank
methods to approximate the residuals for efficient caches.

We propose LESS (Low-rank Embedding Sidekick with
Sparse policy) to learn the residual between the original
attention output and the attention output approximated by a
sparse policy. LESS does this by accumulating information
that would have been discarded by sparse policies into a
constant-sized low-rank cache or state, allowing for queries
to still access information to recover previously omitted
regions in attention maps (see Figure 1). We show that
LESS makes significant progress towards an ideal cache:

1. Performance Improvement: LESS synthesizes
sparse KV policies with low-rank states to bridge the
performance gap on a variety of tasks where these

Figure 3. Attention residuals exploration in Llama 2 7B on Wiki-
Text (Merity et al., 2016). Mean and 1000 sample relative singular
value plots of true attention outputs and residuals from top-512
sparse policy, showing the residual is much lower rank (left). End-
to-end performance (lower is better) using top-k caching with and
without low-rank approximations (right). A rank-4 approximation
virtually recovers the original performance.

sparse algorithms show cracks of weakness. In fact,
LESS improves the performance much more than sim-
ply dedicating that memory to storing more KV pairs.

2. Constant Low-rank Cache Size: Low-rank caches
in LESS occupy constant memory with respect to the
sequence length, and in our experiments, the extra
storage to accommodate LESS is nearly free, taking
up the equivalent space of only 4 extra KV pairs in our
experiments. Inspired by recurrent networks, the low-
rank state stores new information by recursive updates
rather than concatenation. As each sample has its own
cache, LESS provides the same proportional cache
reduction for small and large batch sizes.

3. Cheap Integration: Changes to the LLMs’ architec-
tures are small and do not perturb the original weights.
The only modifications to LLMs will be the addition
of tiny multilayer perceptions (MLPs) at each attention
layer. For example, using LESS with Llama 2 13B
adds fewer than 2% of the total number of parameters.
In addition, we can train LESS at each attention layer
independently from all others, bypassing expensive
end-to-end training. Trained once, LESS can transfer

2

Get More with LESS

to more relaxed settings while maintaining comparable
performance, further extending its applicability.

Our comprehensive experiments on Llama 2 (Touvron et al.,
2023) and Falcon (Almazrouei et al., 2023) with differ-
ent sparse policies (Zhang et al., 2023; Han et al., 2023;
Xiao et al., 2023) on a variety of tasks demonstrates LESS
as a highly performative method that reduces KV cache
memory. For instance, LESS recovers more than 40% of
the Rouge-1 degradation caused by a sparse policy on the
CNN/DailyMail dataset (Hermann et al., 2015; See et al.,
2017) with Falcon 7B. Finally, we provide an implemen-
tation of LESS that reduces the latency by up to 1.3× and
increases the throughput by 1.7× from the full cache.

Notation. We use unbolded letters (e.g. a,A), bold low-
ercase letters (e.g. a), bold uppercase letters (e.g. A) for
scalars, row vectors, and matrices, respectively. Let [A]i,·
and [A]·,i refer to the i-th row and column of A, respec-
tively. Additionally, define 0n×m as a matrix of zeros and
1n×m as a matrix of ones, both having shape n×m.

2. Background & Intuition
We start by building the intuition behind LESS. Sparse and
low-rank caches individually have noteworthy advantages
but also severe drawbacks. Understanding the mechanisms
of both (Section 2.1 and 2.2) allows us to effectively syn-
thesize sparse and low-rank structures to create LESS. In
Section 2.3, we show that this type of synthesis is a princi-
pled approach which has also found success in other areas.

2.1. KV Cache Policies

Many current methods to reduce the KV cache footprint
involve keeping a tiny subset of the keys and values either
with some pruning policy (Liu et al., 2023b; Zhang et al.,
2023; Han et al., 2023; Xiao et al., 2023; Ge et al., 2023;
Oren et al., 2024) or a local attention mechanism (Child
et al., 2019; Parmar et al., 2018). The former method can
be applied directly to trained models whereas the latter typ-
ically cannot, so with limited compute, deploying a KV
cache pruning policy is more practical. Such methods take
advantage of the observation that many tokens are irrelevant
for attention in some tasks and thus omitting them leads to
negligible performance loss. For instance, one of our base-
lines, H2O (Zhang et al., 2023), continuously accumulates
attention probabilities at each generation step to identify a
set of heavy-hitting tokens to be cached together with the
most recent tokens. Not explicitly designed for KV cache
compression, algorithms for infinite inference (Han et al.,
2023; Xiao et al., 2023) maintain a full cache, but as the
input sequence exceeds the maximum context length of a
model, KV pairs in the middle of the sequence are dropped.
Staying within the maximum context length, this results in
a cache that maintains the most recent and first few tokens.

Regardless of the sparse method, maintaining a tight KV
cache budget can seriously impair model performance, as
we will see in Section 4.

There also exist promising non-eviction based methods.
DMC involves using a large amount of data to fine tune
models to choose between accumulating or appending each
KV pair (Nawrot et al., 2024). CacheGen’s KV cache com-
pression at the bit-level takes a query-agnostic approach
(Liu et al., 2023a). In vision tasks, token merging is an
effective way to cut down the number of tokens to process
(Bolya et al., 2022; Renggli et al., 2022).

2.2. Low-rank Attention

Low-rank structures in attention have been explored exten-
sively (Tay et al., 2022), namely from the lens of recurrent
neural networks (RNNs). Unlike transformers, RNNs in-
tegrate information from all previous tokens into hidden
states, analogous low-rank structures to KV caches that or-
ganically occupy constant memory. In fact, this feature of
RNNs over transformers has motivated research in alterna-
tive architectures (Dao et al., 2022; Poli et al., 2023; Peng
et al., 2023; Sun et al., 2023; Gu & Dao, 2023), but for now,
their adoption in LLMs is very limited compared to trans-
formers. Though not as performative as these alternative
architectures, linear transformers that break apart the atten-
tion operation into kernels also maintain a constant sized KV
cache (Tsai et al., 2019; Katharopoulos et al., 2020; Choro-
manski et al., 2020; Peng et al., 2021) by reformulating the
cache into an RNN hidden state. These types of caching
mechanisms are low-rank since information is condensed
along the sequence axis, rather than explicitly maintaining
individual tokens. This is possible when we replace the soft-
max with a separable similarity metric ϕ(qt)ψ(Kt)

⊤ for
some row-wise functions ϕ and ψ, letting qt ∈ R1×D and
Kt ∈ Rt×D be the query and keys at step t, respectively.
To elaborate, if ϕ and ψ are such that

at = softmax
(
qtK

⊤
t√
D

)
Vt ≈

ϕ(qt)ψ(Kt)
⊤Vt

ϕ(qt)ψ(Kt)⊤1S×1
,

we just need to cache hidden states Ht = ψ(Kt)
⊤Vt ∈

RR×D and zt =
∑t
s=1 ψ([Kt]s) ∈ R1×R for inference

which can be expressed recursively as

Ht+1 = Ht + ψ(kt)
⊤vt,

zt+1 = zt + ψ(kt)

for each new KV pair (kt,vt). At initialization, H0 =
0R×D and z0 = 01×R. This is a clear improvement from
having to store ever increasing sizes of Kt and Vt, as the
memory consumption is independent from t. Note that our
presentation differs slightly since we do not constrain ϕ = ψ
(Chen et al., 2023). With this formulation, transformers act

3

Get More with LESS

like RNNs which occupy constant memory during gener-
ation by not appending but updating hidden states during
each generation step. Since LLMs are not typically trained
in this fashion, a major challenge is to induce this prop-
erty without significant computation or adjustment to the
original weights (Kasai et al., 2021). While its dilution of
information restricts its performance when specific tokens
need to be recalled with strong signals (Khandelwal et al.,
2018), this is exactly what a sparse KV cache algorithm can
do, so we can fully take advantage of its infinite compres-
sion capability to obtain some high level representation of
the less important tokens, meaning kernelized attention is a
good candidate method for LESS to learn the residual.

2.3. Sparse and Low-rank Decomposition

LESS follows a rich history of decomposing structures into
sparse and low-rank components. Particularly, the study of
robust principal component analysis (Candès et al., 2011;
Chandrasekaran et al., 2011) has shown this type of de-
composition greatly enhances approximation accuracy and
expressibility beyond just sparse or low-rank matrices alone.
Its success has spread to deep learning areas such as efficient
attention (Chen et al., 2021), model compression (Li et al.,
2023), and fine-tuning (Nikdan et al., 2024). Likewise, we
take inspiration from these works in our design.

3. Method
When we convert the intuition in Section 2 into an algorithm,
a couple technical challenges arise. One challenge is finding
an effective way to mix attention probabilities produced by
sparse policies and low-rank kernels. Second, we need to
design a framework general enough to work with a broad
class of sparse policies. In some cases, different sparse
policies may be preferable, so our method should be com-
patible with many sparse policies. Third, our method should
be cheap compute to develop. We show that LESS over-
comes all these challenges in a two step process: attention
computation followed by cache updates.

3.1. KV Caching with LESS

We propose LESS, a general method to synthesize low-rank
caches with any eviction-based sparse KV cache policy, C,
to close the performance gap from full KV caching while
being efficient. Notably, our method only adds a constant
sized cache which does not scale with the sequence length.
For the sparse policy, C, we require that it can output the
cached keys KC,t ∈ RBt×D, the cached values VC,t ∈
RBt×D, and the set of discarded KV pairs Dt at iteration t
where Bt ∈ N is the number of cached pairs.

Letting · denote both ϕ and ψ, we define our kernels as

ϕ(q) = |σϕ(σϕ(qWϕ,1)Wϕ,2)| (1)
ψ(k) = |σψ(σψ(kWψ,1)Wψ,2)Wψ,3| (2)

for activation functions σ·, W·,1 ∈ RD×R′
, W·,2 ∈ RR′×R,

and Wψ,3 ∈ RR×R. The element-wise absolute values
ensure the inner product ϕ(q)ψ(k)⊤ > 0 to preserve the
nonnegativity of attention probabilities. In the ideal case, if
ϕ(q)ψ(k)⊤ = eqk

⊤/
√
D for all q,k, then the result would

be the original attention probabilities.

Attention Calculation. Now, we describe the attention
calculation procedure summarized in Algorithm 1. At step
t, we find the query-key-value triplet (qt,kt,vt) from the
input token as usual. Recalling that we have cached KC,t,
VC,t, Ht, and zt from the previous generation step, append
kt to KC,t and vt to VC,t to obtain K ′

C,t ∈ R(Bt+1)×D and
V ′
C,t ∈ R(Bt+1)×D, respectively. Then, we can find ât, our

approximation of the original attention at, by computing

ât =
ϕ(qt)Ht + exp(qt(K

′
C,t)

⊤/
√
D)V ′

C,t

ϕ(qt)z⊤
t + exp(qt(K ′

C,t)
⊤/
√
D)1B×1

. (3)

During the prompting phase (i.e. t = 0), it is just regular
attention since H0 = 0R×D and z0 = 01×R.

Cache Updates. With the attention computed, we need
to prepare the necessary ingredients for iteration t + 1 by
finding KC,t+1, VC,t+1, Ht+1, and zt+1. The first two are
simple since the sparse policy will return KC,t+1, VC,t+1,
and Dt+1. Before freeing Dt+1 from memory, we embed
its information into Ht+1 and zt+1:

Ht+1 = Ht +
∑

(k,v)∈Dt+1

ψ(k)⊤v, (4)

zt+1 = zt +
∑

(k,v)∈Dt+1

ψ(k). (5)

After this, Dt+1 can be deleted, and we are prepared for the
following generation step. Intuitively, Ht+1 and zt+1 are
updated recursively by keys and values that have been newly
pruned at each decoding step. As such, they are constant
size repositories of information from all deleted KV pairs
which becomes clear when we expand the recursion:

Ht+1 =
∑

(k,v)∈
⋃t+1

i=1 Di

ψ(k)⊤v, (6)

and similarly for zt+1.

3.2. Implementation Details

Inexpensive Training. With our inference-time protocol
outlined, we now describe how we can cheaply train our ker-
nel functions ϕ and ψ. Because training end-to-end is time

4

Get More with LESS

Figure 4. LESS algorithm during inference. At each decoding step, attention is calculated as in (3). To prepare for the next decoding step,
the cache is updated by placing the most recent KV pair into the sparse policy cache, and if it has exceeded capacity, a KV pair will be
evicted and integrated into the low-rank cache Ht before being deleted.

Algorithm 1 Generation Step with LESS
Input: C, qt,kt,vt
Load KC,t,VC,t,Ht, zt from memory.
K ′

C,t ← concatenate(KC,t,kt)
V ′
C,t ← concatenate(VC,t,vt)

Obtain ât via (3).
Obtain KC,t+1,VC,t+1,Dt+1 from sparse KV cache al-
gorithm C.
Update Ht+1 via (4).
Update zt+1 via (5).
Save KC,t+1,VC,t+1,Ht+1, zt+1.
Delete Dt+1.
Return: ât

consuming and resource intensive, we choose to train ϕ and
ψ at each layer independent of all other layers which already
surprisingly gives strong results. The training objective is
to minimize the ℓ2 distance to the output projection of the
original attention layer using that layer’s inputs. All weights
except for those in ϕ and ψ are frozen. As a result, the only
computational requirements are the abilities to backpropa-
gate through a single attention layer and run inference on
the full model to collect a dataset of attention layer inputs
and outputs, which for all models we experiment with, can
be done on a single GPU. With more devices, training each
layer can be parallelized. While inference follows recur-
sive updates of Ht and zt, this does not impede parallelism
along the sequence axis because we can just construct the
full attention matrix where entries not computed by sparsely

cached KV pairs, as determined by whichever sparse policy
we train on, will be found by the kernel functions.

All training runs used identical hyperparameters for simplic-
ity. LESS was trained using Adam (Kingma & Ba, 2014)
for 40 epochs with an initial learning rate of 0.001 which
halved every 10 epochs. We fixed the hidden layer dimen-
sion R′ = 512, used a dropout rate of 0.3 within the kernels,
and let all nonlinear functions σϕ and σψ to be GELUs.
None of the original model’s weights are updated. First, we
sampled 512 sequences for Llama 2 models (Touvron et al.,
2023) and 1024 sequences for Falcon (Almazrouei et al.,
2023) from the C4 training set (Raffel et al., 2019). Since
Falcon’s context length is half of Llama 2’s, the training
sets have the same number of tokens. Next, queries, keys,
and values at each layer would be collected as each sample
propagated through the models. These collected features
(fed in batches of 2) would be used to train the kernels at
each layer independently using some sparse policy at some
sparsity level. For multi-query attention (Shazeer, 2019), we
extend H2O to aggregate attention scores across all query
attention heads to determine KV pairs to evict.

We find that the kernel initialization is critical. As we will
show in our experiments (Section 4), the sparse policies
already have decent performance which we want to use as a
starting point. As such, we add learnable scalars between
layers in ψ which are initially set to 10−4, so the influence
of LESS during the first few gradient steps is small. In
this way, the sparse policy acts as a warm start, and we can
immediately reduce the sparse policy’s residual.

5

Get More with LESS

Efficient Generation. We also develop an implementa-
tion that enhances throughput and reduces the latency of
LLM generation of LESS. For the sparse cache, we adapt
the implementation from Zhang et al. (2023) to support
any KV cache eviction algorithm efficiently. To avoid data
movement in memory, we directly replace the evicted KV
pair with the newly-added one. As our kernels are small
MLPs with GELUs, we implement a fused linear kernel that
absorbs the activation into the layer before to avoid writing
the intermediate results to DRAM for the low-rank cache.

4. Experiments
Here, we demonstrate the impressive performance of LESS
across multiple datasets, models (Llama 2 and Falcon),
sparse policies (Zhang et al., 2023; Han et al., 2023; Xiao
et al., 2023; Oren et al., 2024), and sparsity levels, despite
allocating only approximately 4 tokens of storage to the
low-rank state. In Section 4.1, LESS achieves the closest
performance to the full cache in language modeling and
classification tasks. For example, evaluated with 2%H2O in
Llama 2 7B, LESS reduces the word perplexities on Wiki-
Text and PG-19 by over 20% from H2O alone, relative to
the full cache performance. Section 4.2 shows similar gains
in summarization. For example, LESS reduces Rouge-1 de-
gredation by 10%H2O in Falcon 7B on CNN/DailyMail by
41.4%. In Section 4.3, we note the lower latency (1.1−1.3×
reduction) and higher throughput of LESS (1.7× higher)
compared to full caching. Finally, in Section 4.4, we discuss
different characteristics of LESS, namely the recovery of
true attention probabilities, kernel size scaling, and capabili-
ties for long sequences.

We explore three sparse policies: H2O (Zhang et al., 2023),
Λ-masking from the infinite generation literature (Han et al.,
2023; Xiao et al., 2023), and TOVA (Oren et al., 2024).
When using H2O, the sparse KV cache is equally split be-
tween the heavy hitter tokens and the recent tokens (e.g. 5%
H2O cache consists of 2.5% heavy hitters and 2.5% recent
tokens). For Λ-masking, the cache consists of the first 4 and
most recent tokens. The percentages represent how much of
the model’s max context length is cached, so regardless of
input length, the cache size remains the same for fairness.
Since the sparsity level can translate to different numbers of
tokens among models based on the max input lengths, we
include Table 1 as a quick reference for the models we eval-
uate on, Llama 2 and Falcon. The token count is rounded
down to the nearest even number to make sure H2O can
have an even split.

For our experiments, we set the kernel size R = 8, unless
otherwise stated. Thus, while minuscule, the size of H is
nonzero, equivalent to caching 4 extra tokens. We ignore
the influence of z since it only has R entries. As such, when
evaluating on a task at α% sparsity, we compare LESS

Table 1. Token counts at different sparsity levels.
MODEL MAX LENGTH # TOKENS AT 2%/5%/10%

LLAMA 2 4096 80 / 204 / 408
FALCON 2048 40 / 102 / 204

with the sparse policy C at α% sparsity and at α% sparsity
plus additional tokens to match the extra space taken by
H (e.g. 4 tokens in experiments where R = 8), which we
denote as Baseline and Baseline+, respectively. Both
are inherently sparse-only policies. A visual representation
of the different baselines can be found in Figure 5. Note
that the sparsity level and policy C will vary throughout
our experiments depending on the context. The purpose of
evaluating Baseline is to compare the performance gain
from extra tokens and the low-rank state H . Additionally,
we evaluate the full KV cache to observe how far we are
from the unconstrained potential of the original model. For
our method, we denote it as LESS (β%) where β is the
percent cache sparsity LESS was trained on with some
sparse policy depending on the context.

Figure 5. Experimental setup. First, a sparse policy is chosen as
the underlying policy behind all methods. Then, we compare per-
formance among the full cache model, Baseline, Baseline+,
and LESS. Baseline+ and LESS use the same amount of stor-
age which is slightly larger than the requirements of Baseline.

4.1. Language Modeling & Classification

We start with validating our method trained at different
sparsity levels on some language modeling and classification
tasks at different sparsity levels using Language Modeling
Evaluation Harness (Gao et al., 2023). For these tasks, we
use the same setup as in training by masking out query-
key interactions depending on the sparse policy and having
LESS capture the masked probabilities. In addition, we
purposefully mismatch training and testing sparsity levels to

6

Get More with LESS

Table 2. Llama 2 7B WikiText and PG-19 word perplexities with
H2O as the primary underlying sparse policy. Numeric column
names indicate the sparsity levels during test time. Lower is better.

H2O METHOD 2% H2O 5% H2O 10% H2O

WikiText
FULL CACHE 8.791 8.791 8.791
BASELINE 13.333 9.863 9.295
BASELINE+ 12.718 9.842 9.288
H2O+PERFORMER 13.332 9.863 9.296
LESS (2%) 10.745 9.658 9.261
LESS (5%) 11.321 9.657 9.239
LESS (10%) 14.577 9.693 9.230

PG-19
FULL CACHE 23.787 23.787 23.787
BASELINE 37.013 27.939 25.451
BASELINE+ 35.832 27.829 25.429
H2O+PERFORMER 36.996 27.938 25.451
LESS (2%) 32.157 27.887 26.322
LESS (5%) 33.195 27.089 25.979
LESS (10%) 41.204 27.201 25.134

uncover insight on the transferability between test sparsity
levels. To illustrate why a learned kernel is necessary, we
also evaluate H2O with Performer kernels (Choromanski
et al., 2020) based on random Fourier features (Rahimi &
Recht, 2007), which we denote as H2O+Performer.

Table 2 shows Llama 2 7B performance on WikiText (Mer-
ity et al., 2016) and PG-19 (Rae et al., 2019; Gao et al.,
2020) using H2O. Looking at the scenarios where training
sparsity is equal to the test sparsity, our method is able to
achieve much lower word perplexities than the baselines.
Notably, LESS beats Baseline by a wider margin than
Baseline+ and H2O+Performer, indicating that LESS
uses the space of 4 extra tokens most effectively. The lack-
luster performance of H2O+Performer suggests that learned
kernels are needed to make a noticeable improvement. More-
over, LESS trained at one sparsity level can often generalize
reasonably to higher sparsity levels especially on WikiText,
even sometimes matching the performance of ones trained
at the test sparsity level. The reverse is less effective but can
still be better than the baselines. However, all methods are
still quite far from the full cache performance.

Evaluation results (Clark et al., 2019; Cui et al., 2020) with
Λ-masking in Table 3 show LESS’s benefit to a different
sparse policy (though less performative than H2O). Similar
to the case with H2O, LESS closes the gap from full caching
but cannot match the performance completely. TOVA also
observes similar benefits in language modeling, shown Ap-
pendix B. While LESS is efficacious for language model-
ing and classification, we also want to assess its utility for
generation where the KV cache storage becomes a critical
bottleneck.

Table 3. Llama 2 7B performance on WikiText (word perplexity),
MuTual (16-shot R@1), and BoolQ (10-shot accuracy) with 5%
Λ-masking as the primary underlying sparse policy.

Λ METHOD WIKITEXT (↓) MUTUAL BOOLQ

FULL CACHE 8.79 55.08 80.40
BASELINE 10.66 53.50 77.28
BASELINE+ 10.64 53.27 77.46
LESS (5%) 10.12 54.51 78.65

Table 4. Llama 2 13B and Falcon 7B generation quality compari-
son on CNN/DailyMail and XSum with 408 sparse tokens (10%
and 20% of the context lengths of Llama 2 and Falcon, respec-
tively) with H2O as the primary underlying sparse policy. Llama
2 13B is given 5 shots while Falcon 7B is given 3 shots due to its
shorter context length. Values are in the format [Rouge-1/2/L].

H2O METHOD CNN/DAILYMAIL XSUM

Llama 2 13B
FULL CACHE 27.55/9.96/25.80 33.14/13.05/27.33
BASELINE 23.57/7.35/22.04 33.09/13.09/27.44
BASELINE+ 23.40/7.31/21.88 33.09/13.06/27.41
LESS (2%) 25.27/7.76/23.64 33.40/12.98/27.41
LESS (5%) 24.45/7.70/22.87 33.15/13.02/27.39

Falcon 7B
FULL CACHE 25.92/8.52/24.15 27.17/8.83/22.67
BASELINE 21.26/5.95/19.73 24.50/7.65/20.50
BASELINE+ 21.31/6.16/19.75 24.55/7.66/20.56
LESS (5%) 23.00/6.28/21.28 24.94/8.17/20.94
LESS (10%) 23.22/6.37/21.53 25.21/8.28/21.17

4.2. Summarization

Now, we move on to generation, specifically summarization,
to test the ability to generate longer and coherent sequences
by synthesizing numerous tokens. Unlike in our language
modeling evaluations, the model will have access to all
tokens during the prompting phase with the sparse policy
and LESS only kicking in during the subsequent generation
steps. Consequently, generation sparse policies are funda-
mentally different from the language modeling masks LESS
is trained on, yet despite this, we show that our method
maintains its superior performance.

In Tables 4 and 5, we see LESS achieves better ROUGE
(Lin, 2004) scores than purely H2O on the CNN/DailyMail
(Hermann et al., 2015; See et al., 2017), MultiNews (Fab-
bri et al., 2019), and XSum (Narayan et al., 2018) datasets.
Even at exceptionally low sparsity levels, H2O can capture
a significant amount of the full cache’s performance. This
is even more surprising for Falcon models which already
cache many times fewer tokens than Llama 2 due to the
multi-query attention mechanism. Despite this, we observe
LESS surpasses the already strong performance of H2O
across the board where H2O underperforms compared to
the full cache. Like in language modeling, we again see that

7

Get More with LESS

Table 5. Llama 2 7B performance on MultiNews (1-shot),
CNN/DailyNews (5 shot), and XSum (5-shot) with 5% and 10%
H2O as the primary underlying test sparse policies. Values are in
the format [Rouge-1]/[Rouge-2]/[Rouge-L].

H2O METHOD 5% H2O 10% H2O

MultiNews
FULL CACHE 23.79/6.87/21.35 23.79/6.87/21.35
BASELINE 13.38/3.25/12.25 19.44/4.97/17.73
BASELINE+ 13.58/3.32/12.41 19.44/4.96/17.72
LESS (2%) 15.31/3.73/14.03 20.32/5.24/18.51
LESS (5%) 15.42/3.80/14.14 20.55/5.29/18.70

CNN/DailyMail
FULL CACHE 26.25/9.34/24.40 26.25/9.34/24.40
BASELINE 18.18/4.92/16.89 20.04/6.09/18.66
BASELINE+ 18.24/4.91/16.85 20.15/6.21/18.73
LESS (2%) 18.71/5.40/17.34 20.76/6.40/19.32
LESS (5%) 19.21/5.44/17.80 22.29/6.85/20.69

XSum
FULL CACHE 30.65/11.11/25.40 30.65/11.11/25.40
BASELINE 29.03/10.77/24.28 30.68/11.54/25.58
BASELINE+ 28.94/10.78/24.15 30.64/11.49/25.59
LESS (2%) 30.72/11.53/25.57 30.34/10.98/25.31
LESS (5%) 30.03/11.19/25.03 30.82/11.17/25.56

the improvement from Baseline to Baseline+ pales
in comparison to the improvement induced by LESS, some-
times even matching the full cache performance as in XSum.
Again, we also see the transferability of LESS to other spar-
sity levels. See Appendix D for example generation outputs.

4.3. Latency and Throughput

Following Sheng et al. (2023), we benchmark the generation
throughput and latency of LESS on an NVIDIA A100 80G
GPU using FP16 precision. We focus on the Llama 2 7B and
13B models, with all speedup results tested end-to-end with
both prompting and generation phases. To measure its per-
formance when generating long sequences or inputting large
batch sizes, we use synthetic datasets where all prompts are
padded to the same length and batched together. The same
number of tokens are generated for each prompt. We test
different combinations of prompt and generation lengths.

Table 6 shows results with sequence lengths from 4K to 10K.
With the same batch size, LESS reduces the latency by 1.1−
1.3× compared to the full cache, though slightly slower than
H2O. Moreover, LESS saves memory to allow larger batch
sizes with a 1.7× improvement on generation throughput
for Llama 2 7B, closely matching the performance of H2O.

4.4. Empirical Analysis and Ablations

Now that we have shown that LESS is simple and effective,
we share some interesting characteristics of our method.

Reconstructing Attention Probabilities. Sparse KV
cache policies can delete tokens that may be needed later on.
A way to see this is to construct the sparse attention matrix
and compare with the full one. In Figure 1, H2O zeroes
out many relatively high attention probabilities with a bias
towards keeping early tokens. More examples are in Ap-
pendix A. Visually, LESS provides a sketch of the deleted
tokens which appears to reasonably reconstruct trends.

Numerically, we measure the similarity of each row in the
attention matrix with corresponding rows produced by H2O
and LESS with the Hellinger distance, which for two dis-
crete probability vectors, p and q, is defined as

H(p, q) := ∥√p−√q∥2/
√
2 (7)

where the square root is elementwise. The value ofH(p, q)
ranges from 0 to 1, where a lower value indicates greater sim-
ilarity. In Figure 6, we see that our method more accurately
replicates the original attention probability distributions as
measured by the Hellinger distance. We choose to aggregate
each layer separately since the attention distribution patterns
tend to vary dramatically throughout the model.

0 5 10 15 20 25 30
Layer

10−3

He
llin

ge
r D

ist
an

ce

2% Baseline+
LESS (2%)
5% Baseline+
LESS (5%)

Figure 6. Layer-wise Llama 2 7B mean Hellinger distance from
original attention probabilities, aggregated across WikiText evalua-
tion samples. The underlying sparse policy is H2O. Here, LESS
is evaluated based on their training sparsity percentages.

Larger Kernels. In our experiments, we fixed R = 8, and
as we show in Figure 7, the performance generally increases
as R increases. However, at a certain point, the marginal
benefit derived from increasing R is less than shifting more
of the KV cache to the sparse policy, suggesting that a small
low-rank cache is enough.

Providing Hope for Long Sequences. Model perfor-
mance appears to be highly correlated with the input se-
quence length regardless of the caching method. As shown
in Figure 8, even the full cache model performance drops
dramatically and immediately as the prompt length in-
creases. Baseline+ and LESS (1% H2O) appear to
perform similarly for shorter sequences but diverge for
longer sequences where we see LESS is more performative.

8

Get More with LESS

Table 6. Llama 2 7B and 13B’s generation throughput and latency on an A100 GPU. In the sequence length column, we use “5000 +
5000” to denote a prompt length of 5000 and a generation length of 5000. “OOM” stands for out-of-memory.

SEQ. LENGTH MODEL SIZE BATCH SIZE METRIC FULL CACHE BASELINE+ LESS (5%)

5000+5000 13B 4 LATENCY (S) 257.3 185.2 204.7
2048+2048 7B 24 LATENCY (S) 116.7 78.3 95.1

2048+2048 7B 24 THROUGHPUT (TOKENS/S) 421.2 627.7 516.9
2048+2048 7B 64 THROUGHPUT (TOKENS/S) OOM 819.2 699.2

3 4 5 6 7 8 9
log2 Kernel Size

9.5

10.0

10.5

11.0

11.5

12.0

12.5

PP
L

2% Baseline+
LESS (2%)
5% Baseline+
LESS (5%)

Figure 7. Llama 2 7B WikiText word perplexity (lower is better) as
the kernel size quadruples, compared against Baseline+ which
occupies the same space. The sparse KV cache policy is H2O.

This follows our intuition since for sparse cache policies, a
smaller fraction of KV pairs is saved as the sequence length
increases, so more information is omitted. This is where a
low-rank state can help to recover some of this information.

5. Conclusion and Future Work
To tackle the KV cache bottleneck, we introduce LESS
which has demonstrated itself to be an effective way to
boost eviction-based KV cache algorithms. Motivated by
the necessity to maintain information that would have been
discarded, the constant-sized LESS recovers a significant
portion of the performance lost due to maintaining a small
cache across a variety of scenarios and intensities, despite
being cheap to train and deploy. There are many exciting av-
enues of work that can enhance LESS or build upon it, such
as improving kernel design and investigating the residual of
LESS. Such directions will further push the performance of
a condensed KV cache to that of a complete cache, allowing
LLMs to accomplish the same tasks with less.

Acknowledgements
The work of H. Dong is supported in part by the Liang Ji-
Dian Graduate Fellowship, the Michel and Kathy Doreau
Graduate Fellowship in Electrical and Computer Engineer-
ing, and the Wei Shen and Xuehong Zhang Presidential
Fellowship at Carnegie Mellon University. Z. Wang is in

Figure 8. Relationship between Rouge-1 score and prompt length
for Llama 2 7B with different cache methods on CNN/DailyMail
(top) and XSum (bottom). The test sparse KV cache policy is 5%
H2O for all models. As these results can be fairly noisy, the lines
are k-nearest regression lines where k is 10% of the dataset size.

part supported by a Google Research Scholar Award and
the NSF AI Institute for Foundations of Machine Learning
(IFML). The work of Y. Chi is supported in part by the
grants NSF DMS-2134080 and ONR N00014-19-1-2404.
B. Chen is supported in part by MOFFETT AI gift funding.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. As our work improves LLM effi-
ciency, there is the potential risk that it may be easier to use
these models for unethical or unlawful purposes, such as
spreading misinformation. While this is a notable concern,
the benefits of making LLMs more accessible are plenty,

9

Get More with LESS

such as expediting research progress in multiple domains
and improving technological equity. Thus, we think the net
benefit is overwhelmingly positive and warrants publication.

References
Almazrouei, E., Alobeidli, H., Alshamsi, A., Cappelli, A.,

Cojocaru, R., Debbah, M., Goffinet, E., Heslow, D., Lau-
nay, J., Malartic, Q., Noune, B., Pannier, B., and Penedo,
G. Falcon-40B: an open large language model with state-
of-the-art performance. 2023.

Anil, R., Dai, A. M., Firat, O., Johnson, M., Lepikhin, D.,
Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z.,
Chu, E., Clark, J. H., Shafey, L. E., Huang, Y., Meier-
Hellstern, K., Mishra, G., Moreira, E., Omernick, M.,
Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang,
Y., Abrego, G. H., Ahn, J., Austin, J., Barham, P., Botha,
J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M.,
Cheng, Y., Cherry, C., Choquette-Choo, C. A., Chowd-
hery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S.,
Devlin, J., Dı́az, M., Du, N., Dyer, E., Feinberg, V., Feng,
F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S.,
Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou,
L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., It-
tycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun,
M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li,
M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu,
F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V.,
Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A.,
Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope,
R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A. C.,
Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A.,
Smilkov, D., So, D. R., Sohn, D., Tokumine, S., Valter,
D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P.,
Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y.,
Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng,
C., Zhou, W., Zhou, D., Petrov, S., and Wu, Y. Palm 2
technical report, 2023.

BBC. Fracking still opposed in wales, ministers
tell councils. The British Broadcasting Corpora-
tion, 2015. URL https://www.bbc.com/news/
uk-wales-politics-33935224.

Bolya, D., Fu, C.-Y., Dai, X., Zhang, P., Feichtenhofer, C.,
and Hoffman, J. Token merging: Your vit but faster. arXiv
preprint arXiv:2210.09461, 2022.

Brumfield, B. Death toll rises quickly as conflict rages in
yemen. The Cable News Network, 2015. URL https:
//www.cnn.com/2015/04/06/middleeast/
yemen-conflict-houthis-saudi-arabia/
index.html.

Candès, E. J., Li, X., Ma, Y., and Wright, J. Robust principal

component analysis? Journal of the ACM (JACM), 58(3):
1–37, 2011.

Chandrasekaran, V., Sanghavi, S., Parrilo, P. A., and Willsky,
A. S. Rank-sparsity incoherence for matrix decomposi-
tion. SIAM Journal on Optimization, 21(2):572–596,
2011.

Chen, B., Dao, T., Winsor, E., Song, Z., Rudra, A., and Ré,
C. Scatterbrain: Unifying sparse and low-rank attention.
Advances in Neural Information Processing Systems, 34:
17413–17426, 2021.

Chen, Y., Tao, Q., Tonin, F., and Suykens, J. A. Primal-
attention: Self-attention through asymmetric kernel svd in
primal representation. arXiv preprint arXiv:2305.19798,
2023.

Child, R., Gray, S., Radford, A., and Sutskever, I. Gen-
erating long sequences with sparse transformers. arXiv
preprint arXiv:1904.10509, 2019.

Choromanski, K., Likhosherstov, V., Dohan, D., Song, X.,
Gane, A., Sarlos, T., Hawkins, P., Davis, J., Mohiuddin,
A., Kaiser, L., et al. Rethinking attention with performers.
arXiv preprint arXiv:2009.14794, 2020.

Clark, C., Lee, K., Chang, M.-W., Kwiatkowski, T., Collins,
M., and Toutanova, K. Boolq: Exploring the surprising
difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019.

Cui, L., Wu, Y., Liu, S., Zhang, Y., and Zhou, M. Mutual: A
dataset for multi-turn dialogue reasoning. arXiv preprint
arXiv:2004.04494, 2020.

Dao, T., Fu, D. Y., Saab, K. K., Thomas, A. W., Rudra,
A., and Ré, C. Hungry hungry hippos: Towards lan-
guage modeling with state space models. arXiv preprint
arXiv:2212.14052, 2022.

Fabbri, A. R., Li, I., She, T., Li, S., and Radev, D. R.
Multi-news: a large-scale multi-document summariza-
tion dataset and abstractive hierarchical model, 2019.

Fedus, W., Zoph, B., and Shazeer, N. Switch transform-
ers: Scaling to trillion parameter models with simple
and efficient sparsity. The Journal of Machine Learning
Research, 23(1):5232–5270, 2022.

Gao, L., Biderman, S., Black, S., Golding, L., Hoppe, T.,
Foster, C., Phang, J., He, H., Thite, A., Nabeshima, N.,
et al. The pile: An 800gb dataset of diverse text for
language modeling. arXiv preprint arXiv:2101.00027,
2020.

Gao, L., Tow, J., Abbasi, B., Biderman, S., Black, S., DiPofi,
A., Foster, C., Golding, L., Hsu, J., Le Noac’h, A., Li,

10

https://www.bbc.com/news/uk-wales-politics-33935224
https://www.bbc.com/news/uk-wales-politics-33935224
https://www.cnn.com/2015/04/06/middleeast/yemen-conflict-houthis-saudi-arabia/index.html
https://www.cnn.com/2015/04/06/middleeast/yemen-conflict-houthis-saudi-arabia/index.html
https://www.cnn.com/2015/04/06/middleeast/yemen-conflict-houthis-saudi-arabia/index.html
https://www.cnn.com/2015/04/06/middleeast/yemen-conflict-houthis-saudi-arabia/index.html

Get More with LESS

H., McDonell, K., Muennighoff, N., Ociepa, C., Phang,
J., Reynolds, L., Schoelkopf, H., Skowron, A., Sutawika,
L., Tang, E., Thite, A., Wang, B., Wang, K., and Zou,
A. A framework for few-shot language model evaluation,
12 2023. URL https://zenodo.org/records/
10256836.

Ge, S., Zhang, Y., Liu, L., Zhang, M., Han, J., and Gao,
J. Model tells you what to discard: Adaptive kv cache
compression for llms. arXiv preprint arXiv:2310.01801,
2023.

Gu, A. and Dao, T. Mamba: Linear-time sequence
modeling with selective state spaces. arXiv preprint
arXiv:2312.00752, 2023.

Han, C., Wang, Q., Xiong, W., Chen, Y., Ji, H., and Wang, S.
Lm-infinite: Simple on-the-fly length generalization for
large language models. arXiv preprint arXiv:2308.16137,
2023.

Hermann, K. M., Kociský, T., Grefenstette, E., Espeholt,
L., Kay, W., Suleyman, M., and Blunsom, P. Teaching
machines to read and comprehend. In NIPS, pp. 1693–
1701, 2015.

Jiang, A. Q., Sablayrolles, A., Roux, A., Mensch, A., Savary,
B., Bamford, C., Chaplot, D. S., de las Casas, D., Hanna,
E. B., Bressand, F., Lengyel, G., Bour, G., Lample, G.,
Lavaud, L. R., Saulnier, L., Lachaux, M.-A., Stock, P.,
Subramanian, S., Yang, S., Antoniak, S., Scao, T. L.,
Gervet, T., Lavril, T., Wang, T., Lacroix, T., and Sayed,
W. E. Mixtral of experts, 2024.

Kasai, J., Peng, H., Zhang, Y., Yogatama, D., Ilharco, G.,
Pappas, N., Mao, Y., Chen, W., and Smith, N. A. Fine-
tuning pretrained transformers into rnns. arXiv preprint
arXiv:2103.13076, 2021.

Katharopoulos, A., Vyas, A., Pappas, N., and Fleuret, F.
Transformers are rnns: Fast autoregressive transformers
with linear attention. In International conference on ma-
chine learning, pp. 5156–5165. PMLR, 2020.

Khan, S., Naseer, M., Hayat, M., Zamir, S. W., Khan, F. S.,
and Shah, M. Transformers in vision: A survey. ACM
computing surveys (CSUR), 54(10s):1–41, 2022.

Khandelwal, U., He, H., Qi, P., and Jurafsky, D. Sharp
nearby, fuzzy far away: How neural language models use
context. arXiv preprint arXiv:1805.04623, 2018.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Li, Y., Yu, Y., Zhang, Q., Liang, C., He, P., Chen, W.,
and Zhao, T. Losparse: Structured compression of large
language models based on low-rank and sparse approxi-
mation. arXiv preprint arXiv:2306.11222, 2023.

Lin, C.-Y. ROUGE: A package for automatic evalua-
tion of summaries. In Text Summarization Branches
Out, pp. 74–81, Barcelona, Spain, July 2004. Asso-
ciation for Computational Linguistics. URL https:
//www.aclweb.org/anthology/W04-1013.

Lin, T., Wang, Y., Liu, X., and Qiu, X. A survey of trans-
formers. AI Open, 2022.

Liu, Y., Li, H., Du, K., Yao, J., Cheng, Y., Huang, Y., Lu, S.,
Maire, M., Hoffmann, H., Holtzman, A., et al. Cachegen:
Fast context loading for language model applications.
arXiv preprint arXiv:2310.07240, 2023a.

Liu, Z., Desai, A., Liao, F., Wang, W., Xie, V., Xu, Z.,
Kyrillidis, A., and Shrivastava, A. Scissorhands: Ex-
ploiting the persistence of importance hypothesis for
llm kv cache compression at test time. arXiv preprint
arXiv:2305.17118, 2023b.

Merity, S., Xiong, C., Bradbury, J., and Socher, R. Pointer
sentinel mixture models, 2016.

Narayan, S., Cohen, S. B., and Lapata, M. Don’t give me the
details, just the summary! topic-aware convolutional neu-
ral networks for extreme summarization. arXiv preprint
arXiv:1808.08745, 2018.

Nawrot, P., Łańcucki, A., Chochowski, M., Tarjan, D.,
and Ponti, E. M. Dynamic memory compression:
Retrofitting llms for accelerated inference. arXiv preprint
arXiv:2403.09636, 2024.

Nerella, S., Bandyopadhyay, S., Zhang, J., Contreras, M.,
Siegel, S., Bumin, A., Silva, B., Sena, J., Shickel, B.,
Bihorac, A., et al. Transformers in healthcare: A survey.
arXiv preprint arXiv:2307.00067, 2023.

Nikdan, M., Tabesh, S., and Alistarh, D. Rosa: Accu-
rate parameter-efficient fine-tuning via robust adaptation.
arXiv preprint arXiv:2401.04679, 2024.

OpenAI. Gpt-4 technical report, 2023.

Oren, M., Hassid, M., Adi, Y., and Schwartz, R. Transform-
ers are multi-state rnns. arXiv preprint arXiv:2401.06104,
2024.

Parmar, N., Vaswani, A., Uszkoreit, J., Kaiser, L., Shazeer,
N., Ku, A., and Tran, D. Image transformer. In Interna-
tional conference on machine learning, pp. 4055–4064.
PMLR, 2018.

Peng, B., Alcaide, E., Anthony, Q., Albalak, A., Arcadinho,
S., Cao, H., Cheng, X., Chung, M., Grella, M., GV, K. K.,
et al. Rwkv: Reinventing rnns for the transformer era.
arXiv preprint arXiv:2305.13048, 2023.

11

https://zenodo.org/records/10256836
https://zenodo.org/records/10256836
https://www.aclweb.org/anthology/W04-1013
https://www.aclweb.org/anthology/W04-1013

Get More with LESS

Peng, H., Pappas, N., Yogatama, D., Schwartz, R., Smith,
N. A., and Kong, L. Random feature attention. arXiv
preprint arXiv:2103.02143, 2021.

Poli, M., Massaroli, S., Nguyen, E., Fu, D. Y., Dao, T.,
Baccus, S., Bengio, Y., Ermon, S., and Ré, C. Hyena
hierarchy: Towards larger convolutional language models.
arXiv preprint arXiv:2302.10866, 2023.

Pope, R., Douglas, S., Chowdhery, A., Devlin, J., Bradbury,
J., Heek, J., Xiao, K., Agrawal, S., and Dean, J. Efficiently
scaling transformer inference. Proceedings of Machine
Learning and Systems, 5, 2023.

Rae, J. W., Potapenko, A., Jayakumar, S. M., Hillier, C.,
and Lillicrap, T. P. Compressive transformers for long-
range sequence modelling. arXiv preprint, 2019. URL
https://arxiv.org/abs/1911.05507.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. arXiv e-prints, 2019.

Rahimi, A. and Recht, B. Random features for large-scale
kernel machines. Advances in neural information pro-
cessing systems, 20, 2007.

Renggli, C., Pinto, A. S., Houlsby, N., Mustafa, B.,
Puigcerver, J., and Riquelme, C. Learning to
merge tokens in vision transformers. arXiv preprint
arXiv:2202.12015, 2022.

Scao, T. L., Fan, A., Akiki, C., Pavlick, E., Ilić, S., Hesslow,
D., Castagné, R., Luccioni, A. S., Yvon, F., Gallé, M.,
et al. Bloom: A 176b-parameter open-access multilingual
language model. arXiv preprint arXiv:2211.05100, 2022.

See, A., Liu, P. J., and Manning, C. D. Get to the point:
Summarization with pointer-generator networks. In Pro-
ceedings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers),
pp. 1073–1083, Vancouver, Canada, July 2017. Asso-
ciation for Computational Linguistics. doi: 10.18653/
v1/P17-1099. URL https://www.aclweb.org/
anthology/P17-1099.

Shazeer, N. Fast transformer decoding: One write-head is
all you need. arXiv preprint arXiv:1911.02150, 2019.

Sheng, Y., Zheng, L., Yuan, B., Li, Z., Ryabinin,
M., Fu, D. Y., Xie, Z., Chen, B., Barrett,
C. W., Gonzalez, J., Liang, P., Ré, C., Stoica, I.,
and Zhang, C. High-throughput generative infer-
ence of large language models with a single gpu.
In International Conference on Machine Learning,
2023. URL https://api.semanticscholar.
org/CorpusID:257495837.

Sun, Y., Dong, L., Huang, S., Ma, S., Xia, Y., Xue, J.,
Wang, J., and Wei, F. Retentive network: A successor to
transformer for large language models. arXiv preprint
arXiv:2307.08621, 2023.

Tay, Y., Dehghani, M., Bahri, D., and Metzler, D. Efficient
transformers: A survey, 2022.

Team, G., Anil, R., Borgeaud, S., Wu, Y., Alayrac, J.-B., Yu,
J., Soricut, R., Schalkwyk, J., Dai, A. M., Hauth, A., et al.
Gemini: a family of highly capable multimodal models.
arXiv preprint arXiv:2312.11805, 2023.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023.

Tsai, Y.-H. H., Bai, S., Yamada, M., Morency, L.-P., and
Salakhutdinov, R. Transformer dissection: a unified un-
derstanding of transformer’s attention via the lens of ker-
nel. arXiv preprint arXiv:1908.11775, 2019.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Xiao, G., Tian, Y., Chen, B., Han, S., and Lewis, M. Ef-
ficient streaming language models with attention sinks.
arXiv preprint arXiv:2309.17453, 2023.

Zhang, S., Roller, S., Goyal, N., Artetxe, M., Chen, M.,
Chen, S., Dewan, C., Diab, M., Li, X., Lin, X. V., Mi-
haylov, T., Ott, M., Shleifer, S., Shuster, K., Simig, D.,
Koura, P. S., Sridhar, A., Wang, T., and Zettlemoyer,
L. Opt: Open pre-trained transformer language models,
2022.

Zhang, Z., Sheng, Y., Zhou, T., Chen, T., Zheng, L., Cai,
R., Song, Z., Tian, Y., Ré, C., Barrett, C., et al. H 2 o:
Heavy-hitter oracle for efficient generative inference of
large language models. arXiv preprint arXiv:2306.14048,
2023.

12

https://arxiv.org/abs/1911.05507
https://www.aclweb.org/anthology/P17-1099
https://www.aclweb.org/anthology/P17-1099
https://api.semanticscholar.org/CorpusID:257495837
https://api.semanticscholar.org/CorpusID:257495837

Get More with LESS

A. Attention Matrix Visualizations
This section provides some qualitative results on attention matrix approximations by sparse policies and LESS. While
low-rank caches LESS cannot perfectly recover all the missing information, it visually is able to reconstruct a patterns that
are completely ignored by sparse policies. We can also see the idiosyncrasies of the sparse policies and LESS, such as
H2O’s bias towards keeping early tokens, as shown in Figures 9 and 10, and Λ-masking’s tendency to miss influential tokens
which are captured by LESS, as show in Figure 11.

Figure 9. Example attention probability matrices from passing a single input into Falcon 7B. From top to bottom, the rows consist of
attention maps from the original model, 10% H2O (204 tokens), and LESS (10% H2O). Darker pixels indicate larger probability weights.
Only the first 1024 tokens are displayed.

Figure 10. Example attention probability matrices from passing a single input into Llama 2 7B. From top to bottom, the rows consist of
attention maps from the original model, 5% H2O (204 tokens), and LESS (5% H2O). Darker pixels indicate larger probability weights.
Only the first 1024 tokens are displayed.

13

Get More with LESS

Figure 11. Example attention probability matrices from passing a single input into Llama 2 7B. From top to bottom, the rows consist of
attention maps from the original model, 5% Λ-masking (204 tokens), and LESS (5% Λ). Darker pixels indicate larger probability weights.
Only the first 1024 tokens are displayed.

B. Language Modeling Comparison
In Table 7, we compare language modeling using LESS with H2O, Λ-masking, and TOVA. We see that LESS makes a
greater improvement on word perplexity than simply caching the equivalent number of extra tokens, though none of the
methods can fully recover the original model’s performance.

Table 7. Llama 2 7B performance (word PPL) on WikiText and PG-19 at 5% token sparsity using different sparse policies. Lower is better.

METHOD H2O Λ TOVA

WikiText
FULL CACHE 8.79 8.79 8.79
BASELINE 9.86 10.66 9.97
BASELINE+ 9.84 10.64 9.95
LESS (5%) 9.66 10.12 9.72

PG-19
FULL CACHE 23.79 23.79 23.79
BASELINE 27.94 22K 27.88
BASELINE+ 27.83 22K 27.79
LESS (5%) 27.09 3.9K 27.34

C. Latency Breakdown
Here, we show that maintaining and using the low-rank state in LESS has little overhead by determining the latencies of
different operations in LESS. Shown in Table 8, the total latency of LESS is much smaller than the full cache but slightly
higher than Baseline+ due to the additional operations associated with the low-rank state. This overhead represents about
15% of the decoding time, meaning it does not significantly impact the overall efficiency.

14

Get More with LESS

Table 8. Latency breakdown for Llama 2 7B on an A100 GPU, with a batch size of 64, prompt length of 512, and generation length of
512 with 5% H2O as the underlying sparse policy. “Eviction” refers to H2O’s KV eviction algorithm, “Kernels” refers to (1) and (2),
“Attention Synthesis” refers to (3), and “Low-rank Cache Update” refers to (4) and (5).

DECODING EVICTION KERNELS ATTENTION SYNTHESIS LOW-RANK CACHE UPDATE TOTAL

FULL CACHE 50.71 N/A N/A N/A N/A 50.71
BASELINE+ 23.53 4.52 N/A N/A N/A 28.05
LESS (5%) 23.61 4.39 0.87 1.35 1.51 32.96

D. Generation Outputs
We include a couple examples of generation outputs in Figure 12 and Figure 13. In both cases, the full cache, LESS, and
Baseline+ models attempt to summarize news articles. We see in Figure 12 that LESS is able to produce the same concise
summary as the full cache while Baseline+ produces rambling text. In Figure 13, we observe that LESS completely
changes the meaning of the summary from H2O alone–Baseline+ is factually incorrect based on the article.

Figure 12. Example 5-shot (not shown) CNN/DailyMail summary generation results produced by variations of Llama 2 7B with an
underlying sparse policy of 2% H2O. For brevity, only the start and end of the article are shown with the middle omitted with an ellipsis.
LESS produces the same concise summary as the full cache while Baseline+ produces rambling text, exceeding the 3 sentence
requirement by the prompt. The original article is from Brumfield (2015).

15

Get More with LESS

Figure 13. Example 3-shot (not shown) XSum summary generation results produced by variations of Falcon 7B. Models were evaluated
with 20% H2O. The summary by Baseline+ is factually incorrect based on the article, while LESS preserves the meaning better. The
original article is from BBC (2015).

16

