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ABSTRACT

A central theme in federated learning (FL) is the fact that client data distributions
are often not independent and identically distributed (IID), which has strong impli-
cations on the training process. While most existing FL algorithms focus on the
conventional non-IID setting of class imbalance or missing classes across clients,
in practice, the distribution differences could be more complex, e.g., changes in
class conditional (domain) distributions. In this paper, we consider this complex
case in FL wherein each client has access to only one domain distribution. For
tasks such as domain generalization, most existing learning algorithms require
access to data from multiple clients (i.e., from multiple domains) during training,
which is prohibitive in FL. To address this challenge, we propose a federated
domain translation method that generates pseudodata for each client which could
be useful for multiple downstream learning tasks. We empirically demonstrate that
our translation model is more resource-efficient (in terms of both communication
and computation) and easier to train in an FL setting than standard domain trans-
lation methods. Furthermore, we demonstrate that the learned translation model
enables use of state-of-the-art domain generalization methods in a federated setting,
which enhances accuracy and robustness to increases in the synchronization period
compared to existing methodology.

1 INTRODUCTION

Distribution shift across clients is a well-known challenge in the Federated Learning (FL) community
(Huang et al., 2021). Most existing works have considered this from the perspective of class
imbalance or missing classes (i.e., a shift in marginal distribution of classes) across clients, a form of
non independent and identically distributed (IID) datasets (Zhao et al., 2018). In particular, these
works typically assume implicitly that the class conditional distribution of data is the same. In
practice, however, the conditional distributions across different clients could be very different, e.g.,
in computer vision, there is a shift in the data distribution (specifically, illumination) of images
captured during the day versus night irrespective of the class label (Lengyel et al., 2021). This can
lead to significant model generalization errors even if we solve the issue of class shifts. Translating
between datasets is one promising strategy for mitigating the more general shift across distributions
of different clients. Moreover, it could solve the problem of Domain Generalization (DG) which
requires a model to generalize to unseen domains (Nguyen et al., 2021).

A domain translation model is one that can translate data from different distributions, typically
attempting to align the conditional shift across distributions. In centralized settings, many translation
methods have been proposed, such as StarGAN (Choi et al., 2018). However, in FL, domain
translation models can be difficult to train because most existing methods require access to data across
all domains. Prior literature does not consider this natural setting of federated domain translation
where domain datasets are distributed across clients.

In this paper, we empirically demonstrate that a naive implementation of state-of-the-art (SOTA)
translation models in the FL context indeed performs poorly given communication limitations between
the server and clients that often exist in practice (Azam et al., 2022a). Then, we propose leveraging an
iterative translation model, Iterative Naive Barycenter (INB) (Zhou et al., 2022), which is much more
amenable to FL training in terms of communication efficiency and data privacy considerations. We
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empirically demonstrate that this modification obtains far superior performance to standard translation
methods in the FL setting, and that it can aid in solving the challenge of DG in FL settings.

Our main contributions are summarized as follows:

• We develop a federated domain translation methodology based on the recent iterative
approach INB, which is more amenable to the FL setting than standard translation methods.
We analytically show the equivalence between our federated algorithm and original INB
which is important for enabling usage of INB in the federated setting.

• We further propose several FL-motivated improvements to INB, including the use of variable-
bin-width histograms, which significantly reduce communication costs.

• We empirically demonstrate that our FedINB approach performs significantly better than
standard translation models under the practical limited communication setting.

• As one application, we demonstrate the feasibility of leveraging our federated translation
model to aid in federated domain generalization. We also show that our federated DG
method provides substantial improvements in robustness to an increasing synchronization
period, allowing reductions in communication overhead.

1.1 BACKGROUND: UNPAIRED TRANSLATION METHODS

Unpaired domain translation is the task of learning to translate between every pair of domains using
only unpaired samples from each domain (Zhu et al., 2017). Formally, let M be the number of
domains and pm(x) denote the true m-th domain distribution. Let Xm = {x(i)

m ∼ pm}nm
i=1 denote the

training dataset from the m-th domain distribution, where x
(i)
m ∈ Rd, n is the number of samples per

domain, and d is the number of dimensions. Also, let fm→m′ denote the translation model from the
m-th domain to the m′-th domain. Given this notation, the translation problem is usually formulated
as minimizing a distribution divergence D (e.g., Jensen-Shannon Distance (JSD) for adversarial
learning) between the translated and true distributions with some regularization term R:

min
{fm→m′}m̸=m′

M∑
m=1

∑
m′ ̸=m

D(p̂fm→m′ , pm′) + λR(fm→m′) (1)

where p̂fm→m′ is the distribution of the samples translated from the m-th domain to the m′-th domain,
i.e., the distribution of fm→m′(xm) where xm ∼ pm.

Standard GAN-based Translation Methods Zhu et al. (2017) proposes CycleGAN, which esti-
mates unpaired translation models between two domains, using adversarial loss to approximate the
divergence term and cycle consistency loss for the regularization term. StarGAN (Choi et al., 2018)
extends CycleGAN by proposing a unified model for domain translation between multiple domains
using a single translation model that takes the source and target domain labels as input. A key issue
with most existing translation models is that the computation of their objective requires access to
data from all domains in the training, which is prohibited in an FL setting. For example, in StarGAN,
to compute the domain classification loss for fake data, we need a discriminator trained on other
domains. While the issue could be mitigated by federated algorithms such as FedAvg (McMahan
et al., 2017), this requires frequent global synchronization across domains and can be hard to train as
we show in Section 4. While more advanced unified translation models exist (e.g., StarGANv2 (Choi
et al., 2020)), they are trained in similar ways to StarGAN and will suffer from the same drawbacks.
Besides, many existing translation models learn pairwise translation (Zhu et al., 2017; Park et al.,
2020) which would require an excessive computation and communication effort as the number of
clients in an FL setting increases. Thus, we focus on StarGAN in our experiments as an archetype
model of standard translation methods.

Iterative Naive Barycenter (INB) In contrast to standard translation approaches, the Iterative Naive
Barycenter (INB) method (Zhou et al., 2022) builds up a deep translation model by solving a sequence
of much simpler problems that are highly amenable to the FL setting (as will be described in the next
section). INB learns deep invertible transformations Tm = t

(L)
m ◦ · · · ◦ t(1)m (where L is the number

of layers) that map each domain distribution to a shared latent distribution. Given these invertible
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Figure 1: High-level visualization of our Fed-multi-max-K-SW methodology with VW histograms.
At each iteration, there are 4 transmissions: (1) histograms of data from each domain, (2) histograms
of the empirical barycenter, (3) gradients gm, and (4) updated projection θ. These transmissions are
the main sources of communication cost of FedINB which we minimize in this paper.

transformations, a domain translation model can then be expressed as fm→m′ ≜ T−1
m′ ◦ Tm, i.e.,

translate to the shared latent distribution and then inverse translate to any other domain. Importantly,
each invertible layer t(ℓ) is fit greedily by solving two simple problems: (1) finding the projection
matrix that maximizes the multi-distribution K-sliced Wasserstein divergence (Zhou et al., 2022),
and (2) solving 1D Wasserstein barycenter problems along the projection directions. Because 1D
Wasserstein barycenter problems are known to have closed-form solutions in terms of the domain 1D
CDFs, the key computational challenge is solving (1), which is formally defined as:

max
θ:θT θ=IK

1

MKn

M∑
m=1

K∑
k=1

n∑
i=1

|(θT
k xm)[i] − y[i],k|2, (2)

where xm ∈ Rd×n is the sample data matrix for the m-th domain, θ = [θ1, . . . ,θK ], (θT
k xm)[i]

signify the samples from the m-th domain distribution projected along the direction θk sorted in
ascending order, y[i],k ≜ 1

M

∑M
m=1(θ

T
k xm)[i] is the empirical barycenter along direction θk, d

is the dimension of the data, K ≤ d is the number of projection directions, IK ∈ RK×K is the
identity matrix, i is a vector index. and [i] is the sorted index. The corresponding algorithm is called
multi-max-K-SW (Zhou et al., 2022, Algorithm 3). More details of INB can be found in Appendix C.

2 FEDERATED INB

2.1 PROBLEM STATEMENT: FEDERATED TRANSLATION WITH CLASS-CONDITIONAL SHIFTS

We will make a natural assumption that there is a one-to-one mapping between clients and domains,
i.e., each client only has access to data from its own domain. We will also extend the unpaired
translation task to consider both a data instance x and its corresponding class label y, where pm(x, y)
will denote the joint distribution of x and y for the m-th domain. For this extension, we seek a class-
conditional translation model fm→m′(x|y) which aims to translate from pm(x|y) to pm′(x|y) given
a class label y. Ultimately, our goal is to learn domain translation models across all clients such that
they can be applied for other downstream federated tasks. Most existing non-IID FL works assume
that the client distributions only exhibit class imbalance, i.e., the marginal class distributions are
different (pm(y) ̸= pm′(y)), but the class-conditional distributions are equal (pm(x|y) = pm′(x|y)).
In contrast, we focus on the case where the class-conditional distributions differ across clients.

2.2 FEDERATED MAXIMUM MULTI-DISTRIBUTION K-SLICED WASSERSTEIN DIVERGENCE

In Algorithm 1, we adapt the original multi-max-K-SW algorithm to show explicitly where computa-
tion is done and when communication is needed in FL. For example, {Server}means the computation
is done on the central server and {Server → Clients} means the following data will need to be
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transmitted from the server to all clients. A major problem with implementing INB in the federated
setting is the loss of gradient informtation during transmission. In particular, the empirical barycenter
y[i],k ≜ 1

M

∑M
m=1(θ

T
k xm)[i] becomes a constant (because it is transmitted and the gradient is not

tracked) instead of a function of θ. However, we show that treating y[i],k as a constant will actually
return the same gradient value. Formally, we make the following remark (proof in Appendix B).

Remark 1. Fed-multi-max-K-SW and multi-max-K-SW compute equivalent results despite Fed-
multi-max-K-SW treating y[i],k as a constant rather than a function of θ.

Proof sketch. Each client computes a biased gradient ∇θdm = ∇true
θ dm + bm where bm is the bias

of the gradient estimate. However, for the special case where the cost function is c(x,y) = ∥x−y∥22,
these biases cancel out each other so that the sum of the biased client gradients is equal to the true
gradient, i.e.,

∑
m∇θdm =

∑
m∇true

θ dm +
∑

m bm =
∑

m∇true
θ dm because

∑
m bm = 0.

Algorithm 1 Fed-multi-max-K-SW

Input: Samples from the M class distributions (x1,x2, . . . ,xM ), number of directions K, max
number of iterations J

Output: Estimated projection matrix θ
{Server} Randomly initialize θ ∈ Rd×K satisfying θTθ = IK , θ = [θ1, . . . ,θK ]
{Server→ Clients} θ
for j = {1, 2, . . . , J} do

{Clients} Compute projections and sort samples along each 1D projection (θT
k xm)[i]

{Clients→ Server} (θT
k xm)[i]

{Server} Compute empirical barycenter y[i],k = 1
M

∑M
m=1(θ

T
k xm)[i]

{Server→ Clients} y[i],k

{Clients} Compute local objective dm = − 1
MKn

∑K
k=1

∑n
i=1|(θT

k xm)[i] − y[i],k|2
{Clients} Compute gradient gm = ∇θdm

{Clients→ Server} gm
{Server} Aggregate gradients g =

∑
m gm, u = [g,θ], v = [θ,−g]

{Server} Update with backtracking line search θ = θ − τu(I2K + τ
2v

Tu)−1vTθ
{Server→ Clients} θ
if θ converge then Stop end if

end for

2.3 FEDERATED 1D BARYCENTER

The next step of INB is to solve the 1D Wasserstein barycenter problems along each direction inde-
pendently and estimate the corresponding invertible transportation map between marginal distribution
and barycenter. The procedure can be found in Algorithm 2. We first estimate histogram densities at
each client and send those histogram bins to the server. Then we compute the inverse CDF of the
barycenter at the server and send the histogram bins of the inverse barycenter back to each client. We
summarize the full algorithm of FedINB in Algorithm 3 of Appendix C.

2.4 VARIABLE-BIN-WIDTH HISTOGRAMS FOR MAX-K-SWD

Intuitively, the sorting operation on the clients in Algorithm 1 will improve data privacy because
the samples are sorted independently for each projection direction. The joint dependencies between
samples are broken and thus joint samples cannot be reconstructed from these sorted samples. From a
distribution perspective, after sorting each direction independently, the transmitted data only contains
information about the marginals of the domain distributions along the projection directions rather
than information about the joint domain distributions. However, in practice, there may still be a
concern that real data is being transmitted, as is often prohibited in FL. Additionally, since we are
sending all data along those projection, the number of parameters being transmitted will increase
linearly with the number of samples, which could lead to a high communication cost. Hence, we
propose to use histogram density estimators to approximate the empirical slice Wasserstein distance
objective in multi-max-K-SW. Specifically, instead of sending data directly, we first fit histogram
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densities at each client and send the histogram bins to the server. To avoid high computational cost,
we use Variable-Bin-Width histograms (VW histograms) as defined next.
Definition 1 (Variable-Bin-Width histograms). Given a number of bins B, the probability of each bin
is assumed to be equal to 1/B while the bin edges bi are selected as the uniformly spaced quantiles
of the empirical distribution, i.e., b0 = F̂−1(0), bi = F̂−1(i/B) ∀i ∈ {1, . . . , B}, where F̂−1 is a
pseudo-inverse of the empirical CDF of the samples and B is the number of bin edges.

By this definition, the samples in each bin are the same (assuming the number of samples is exactly
divisible by the number of bins). While a standard histogram has uniformly spaced bin edges where
the probability of each bin depends on the data, VW histograms have uniform spaced cumulative
probabilities where the bin edges depend on the data. A benefit of using VW histograms is that the
computation of 1D barycenter histograms is merely the average of histogram bin edges because the
barycenter is based on the inverse CDF (in contrast, a mixture model is based on mixing the CDF).
After computing the barycenter histograms, we can readily employ the inverse CDF with uniformly
spaced quantiles to estimate pseudo empirical barycenter samples y′

[i],k ≜ F̂−1
k,bary(i/n):

dm = wm

K

∑K
k=1

1
nm

∑nm

i=1|(θT
k xm)[i] − y′

[i],k|
2 . (3)

The visualization of Algorithm 1 with VW histograms can be found in Figure 1. Beyond communica-
tion cost, VW histograms also provides improved data privacy as it sends a smoothed and compressed
version of the marginal distributions rather than sending the sorted real samples. From an information
theory perspective, VW histograms send less information because the histogram estimation is not a
one-to-one mapping. A more comprehensive discussion on privacy can be found in Appendix D.

As the number of bins increases, the algorithm approaches the original Fed-multi-max-K-SW (more
details in Appendix C.2). We empirically show that using limited number of bins is enough to lead to
a good optimization result and may even be preferred over a large number of bins because it may
regularize the problem. To summarize, using VW histograms in FedINB improves communication
costs and privacy while also possibly improving translation performance due to its regularizing effect.

2.5 PRACTICAL IMPROVEMENTS

We briefly introduce two practical improvements that can reduce communication costs further. The
first simplifies the line search procedure of the original multi-max-K-SW algorithm and is discussed
in Appendix C.3. The second improvement uses autoencoders to reduce dimensionality because the
computational and communication cost of the algorithm scale linearly with the data dimension d (as
detailed in Section 2.6). Also, reduced dimensionality may improve the performance of INB because
INB does not natively scale well to high-dimensional data.

Algorithm 2 Fed-1D-Barycenter

Input: Samples from the M domain distributions (z1, z2, . . . ,zM ), weight vector w
Output: Estimated invertible alignment maps (t1, t2, · · · , tM )

{Clients} Estimate the 1D CDF of Zm: Fm = HistogramDensityEstimation(zm)
{Clients→ Server} Fm

{Server} Estimate the inverse CDF of barycenter F−1
bary =

∑
m wmF−1

m

{Server→ Clients} F−1
bary

{Clients} Construct invertible alignment map tm = F−1
bary ◦ Fm

return (t1, t2, · · · , tM )

2.6 COMMUNICATION COST ANALYSIS OF FEDINB

We will now discuss the communication complexity of FedINB in terms of the number of parameters
to be transmitted from each client to the server. Let B be the number of histogram bins for the CDF
of local slices and the inverse CDF of the barycenter in Algorithm 2, and let V as the number of
histogram bins we use for VW histograms in Algorithm 1. At each iteration at each layer of INB, Fed-
multi-max-K-SW requires us to transmit slices of samples, empirical barycenter samples, projection
matrix and gradient. Thus, the number of parameters needed to be transmitted is O(K(n + d))
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per iteration of Fed-multi-max-K-SW. At each layer of INB, the total number of parameters being
transmitted for Fed-multi-max-K-SW is O(JK(n + d)), where we assume that the number of
backtracking iterations is at most a small constant more than the maximum number of iterations
J ′ = O(J). For Fed-Bary (applying Algorithm 2 to K dimensions simultaneously), we need to
communicate histogram bins between the client and the server. The number of parameters being
transmitted is O(KB). After applying VW histograms and the simplification for backtracking line
search, the total communication cost of each layer of INB reduces to O(JK(V + d)) per layer
(assuming B ≪ JV , which is true in practice). Thus, the communication is linear in terms of all the
relevant parameters, and reducing the dimensionality d with an autoencoder will immediately provide
communication benefits for high-dimensional data. More details can be found in Appendix C.

3 RELATED WORK

Beyond the translation models introduced in Section 1.1, we discuss other related works here.

Federated learning Konevcný et al. (2016) originally proposed the FL framework for promoting
data privacy (Shokri & Shmatikov, 2015; Azam et al., 2022b) and enhancing communication efficiency
(Wang et al., 2020). Recent years have seen an increasing interest in the adaptation of FL frameworks
to settings of non-IID data with respect to the class labels. For example, Zhao et al. (2018) propose
sharing a subset of client data to create a global data pool that reduces the gradient divergence across
different clients with non-IID data. Another line of work (Lin et al., 2021) proposes to tackle client
data heterogeneity by incorporating distributed average model consensus within a semi-decentralized
architecture. However, these works do not consider the larger set of complex data heterogeneity
settings that include a shift in input data distribution (or domain distribution) across clients.

Domain generalization Domain generalization is an application of domain translation that targets
at training models that can generalize to unseen distributions. While most existing methods require
access to data from all domains in the training, there are several methods that can be used as
regularization for training at each local client. For example, Carlucci et al. (2019) regularize the
model’s training by solving solving jigsaw puzzles on each image. Zhang et al. (2020) apply deelply
stacked transformation on the source domains to simulate the possible domain shift. Another main
branch of domain generalization is to learn domain-invariant features. DIRT (Nguyen et al., 2021)
explicitly employs a pretrained domain translation model by minimizing the following objective:

1
M

∑M
m=1 Epm(x,y)[ℓ(y, g(x)) +

1
M

∑M
m′=1 dis(g(x), g(fm→m′(x)))] (4)

where g(x) is an encoder trying to find the domain-invariant feature and ℓ is the classification loss
given the representation g(x) in the encoded space. In their paper, they use StarGAN as f , and as
discussed in Section 1, we propose to use FedINB for federated domain generalization.

Federated domain generalization Understandably, there are few works that consider the problem
of domain generalization 1 in a federated setting owing to its high complexity as discussed in Section 1.
Liu et al. (2021) solve the lack of domain knowledge across clients by creating a common bank of
amplitude spectrum of data which is aggregated by accumulating the amplitude spectrums obtained by
application of Fast-Fourier Transforms (FFTs) on the client data. While this trick leads to significant
performance gains, it significantly reduces privacy because the clients are essentially sharing half of
their datasets (i.e., their amplitude spectrums) with all other clients. A more detailed discussion on
privacy can be found in Appendix D. Besides, the proposed method by Liu et al. (2021) is specifically
developed for image segmentation tasks and it is not clear how can the same be extended to a more
general task and other data modalities such as text, tabular or other modalities.

1Note that this is different from domain adaptation. Suppose we have source domains and target domains. In
DG, each source (client) has access to both data instance x and class label y, and the goal is to generalize to
target domains (new clients) where neither are observed in the training. In domain adaptation, except for x and y
in the source domain, we also observe the data instance x of the target domain in the training.
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4 EXPERIMENTS

Before presenting our experimental results, we first introduce a naming convention to describe many
different setups of FedINB. For simplicity, we will remove the "Fed" prefixes and call it INB since
all experiments are done in a federated setting. With the autoencoder, the model is called AEINB
if using a shared autoencoder for all domains, and IndAEINB if using autoencoders trained on
each domain separately. When using VW histograms to replace the transmission of real data in
Fed-multi-max-K-SW, we call them HistINB, HistAEINB, HistIndAEINB separately. The number
of layers L, number of dimensions K and max number of iterations (in Fed-multi-max-K-SW)
J are three key hypeparameters to tune when building an INB model. We will represent them
in the format L-K-J . As an example, "HistIndAEINB-L10-K10-J100" refers to an INB model
with L = 10,K = 10, J = 100, and it incorporates an autoencoder trained locally and uses VW
histograms when optimizing for θ.

Datasets Following the setup in Zhou et al. (2022), we test FedINB on Rotated MNIST and
FashionMNIST (Ghifary et al., 2015). For the federated domain translation experiment, there are 5
clients participating in the training and each has data from one of domains 0, 15, 30, 45, 60, where
the number represents the degree of counter-clockwise rotation and 0 means the original images.
For the federated domain generalization task, we use the translation model trained on domains
0, 15, 30, 45, 60. We test the classification model’s generalizing ability to domains 75 and 90.

Metrics For the federated domain translation experiment, we use the empirical Wasserstein Distance
(WD) and FID score (Heusel et al., 2017) between the original samples and translated samples as eval-
uation metric. Wasserstein Distance is computed as WD = 1

M2

∑
m

∑
m′ ŴD(xm, fm′→m(xm))

where each ŴD is computed with the Sinkhorn algorithm (Cuturi, 2013). The FID score is com-
puted as FID = 1

M2

∑
m

∑
m′ FID(xm, fm′→m(xm)). The WD and FID metrics reported are the

average of 10 classes of digits since we are conducting class-wise translation. All FID score results
can be found in Appendix F. To compare communication cost, we consider the number of parameters
needed to be transmitted between one client and the server. We also measure the performance of our
federated translation models by using it for downstream federated DG tasks.

4.1 PRACTICAL IMPROVEMENT OF FEDINB

Due to space limitations, we only show one figure for each investigation with Rotated MNIST. More
figures with different setups of INB can be found in Appendices F.1 and F.2. Figures with Rotated
FashionMNIST, qualitative results and investigation of the FedINB optimization can be found in
Appendices F.3, F.4 and F.6 respectively.

Autoencoder. We investigate how adding autoencoders as part of the translation model can help with
translation performance and communication cost. As can be seen in Figure 2a, both AEINB and
IndAEINB achieve lower WD and lower communication cost than INB while other parameters are
kept the same. Additionally, we show that by using an independent autoencoder for each domain
separately, we can obtain lower WD for the same communication cost while simultaneously reducing
the work of training a federated shared autoencoder.

Insensitivity to J . In the original INB paper, the authors set J = 200 for MNIST (LeCun & Cortes,
2010) and FahsionMNSIT (Xiao et al., 2017). This could lead to a high communication cost due to
frequent transmission of data (even if the data size is small). We empirically show that even when the
optimization algorithm does not converge and we stop early, it will not affect the final performance
much. One explanation for this is that the projection matrix found suffers less from overfitting. As
shown in Figure 2b, after 10 layers of INB, the model with J = 50, 100, 200 converge to a similar
point. Even the model with J = 30 almost begins to converge at the same point; only when J is
decreased to a quite small value like 10 will the convergence of INB require more layers.

VW histograms. As shown in Figures 2c, 2d and 2e, when using VW histograms and decreasing
V , the communication cost is significantly reduced. In comparison to the number of samples
being transmitted by INB and IndAEINB (n = 10000), V = 500 can tolerate the transmission of
substantially less samples while achieving similar performance.

7



Published as a conference paper at ICLR 2023

(a) Different autoencoders (b) Numer of iterations (c) VW histograms

(d) Influence of V (e) Influence of V (f) Convergence of FedStarGAN

Figure 2: Wasserstein Distance (lower is better) as communication cost increases for Rotated MNIST.
(a) Different autoencoders used for INB. (b) Different number of inner iterations used for IndAEINB.
(c) Using Variable-Bin-Width (VW) histograms for INB. (d) HistINB: different number of histogram
bins used for VW histograms. (e) HistIndAEINB: different number of histogram bins used for VW
histograms. (f) Failure of FedStarGAN. The INB used here is HistIndAEINB-L10-K10-J100 with
V = 500. The starting points of HistAEINB and FedStarGAN differ because we begin tracking the
WD after applying autoencoders to INB (details can be found in Appendix E).

4.2 COMMUNICATION-EFFICIENT DOMAIN TRANSLATION

We compare with FedStarGAN2 to demonstrate that our translation model is much more efficient
in terms of both communication and computational cost. We empirically show that the training
of StarGAN fails in the federated setting. We adapt StarGAN to the federated setting by training
individual StarGAN models on each client (using the local data, i.e., single domain) and synchronizing
the client generator and discriminator after a certain number of mini-batches (controlled using the
sync_step hyperparameter) using FedAvg. We try various sync_step sizes to fairly evaluate the
federated extension of StarGAN (FedStarGAN). As a note, FedStarGAN-128 means using FedAvg
to train StarGAN and synchronizing after each 128 mini-batches (sync_step=128).

As shown in Figure 3, at a fixed communication cost, even though FedStarGAN can generate images
with good quality, it fails to translate it to the target domain, i.e., it can only reconstruct the input
but not translate to a rotated version of the image. This is in line with our observation during
training that while FedStarGAN can optimize for reconstruction loss, it does not converge over the
domain adversarial loss. Moreover, in Figure 2f, we observe that FedStarGAN-128 (which converges
fastest) converges to its starting point, justifying our argument that it can only reconstruct images.
Additionally, it is important to note that INB takes around 5 minutes to finish training on a single
RTX A5000 GPU while FedStarGAN takes around 2.5 hours to generate good samples on a single
Tesla P100 GPU (notice it can only reconstruct samples rather than translate samples).

4.3 FEDERATED DOMAIN GENERALIZATION VIA PSUEDO TRANSLATED DOMAIN DATA

Once the translation models have been trained in a federated way, clients can exchange their models
so that each can translate to every other domain. This enables the training of DIRT (Nguyen et al.,
2021) for DG using these translation models (that were also learned via FL). Specifically, we combine
FedAvg and DIRT – named FedDIRT – where each client m minimizes the following local objective:

Epm(x,y)[ℓ(y, g(x)) +
1
M

∑M
m′=1 dis(g(x), g(fm→m′(x)))] , (5)

2StarGAN is trained with the standard FedAvg algorithm (McMahan et al., 2017). To improve performance,
we synchronize quite frequently – after certain mini-batches rather than certain epochs.
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(a) INB (b) FedStarGAN-16 (c) FedStarGAN-128

Figure 3: Qualitative results for federated domain translation using INB and FedStarGAN when
around 2× 108 parameters are transmitted. The first two rows are original samples from domain 0
and the last two rows are samples translated to domain 60. (a) Our HistIndAEINB-L10-K10-J100
algorithm: It translates the digits to the expected domain. (b) FedStarGAN after 160 iterations and
Fedavg every 16 steps: It fails to generate legible digits. (c) FedStarGAN after 1280 iterations and
FedAvg every 128 steps: The generated samples are well reconstructed but are not translated.

Table 1: Classification accuracy on unseen domains for Rotated MNIST. For each target domain, we
consider aggregating the model after each 1 mini-batch and 100 mini-batches. The mean and standard
deviation are taken over 4 runs. For FedDIRT, we use HistIndAEINB with J = 100 and V = 500.

Model 75 (1-batch) 75 (10-batch) 75 (100-batch) 90 (1-batch) 90 (10-batch) 90 (100-batch)
FedDIRT(L20-K10) 92.2 ± 0.3 89.3 ± 4.2 91.9 ± 0.9 69.8 ± 0.7 70.4 ± 2.2 69.9 ± 0.3
FedDIRT(L20-K20) 92.2 ± 1.3 90.8 ± 1.2 91.4 ± 0.6 69.4 ± 0.8 71.1 ± 1.3 69.8 ± 1.5
FedAvg 85.2 ± 0.7 85.1 ± 0.5 80.1 ± 2.3 63.8 ± 2.1 63.6 ± 0.8 55.6 ± 2.0

Table 2: Classification accuracy on unseen domains for Rotated FashionMNIST.

Model 75 (1-batch) 75 (10-batch) 75 (100-batch) 90 (1-batch) 90 (10-batch) 90 (100-batch)
FedDIRT(L20-K10) 65.8 ± 1.3 63.6 ± 0.9 63.0 ± 1.0 18.2 ± 0.9 18.1 ± 0.4 18.8 ± 0.6
FedDIRT(L20-K20) 65.5 ± 1.8 64.5 ± 1.5 63.5 ± 1.3 19.0 ± 0.3 18.5 ± 1.0 18.9 ± 0.4
FedAvg 51.9 ± 2.9 50.4 ± 1.2 40.4 ± 4.1 13.7 ± 1.6 14.6 ± 1.8 13.1 ± 0.9

and the server aggregates the model after certain mini-batches. Note that this local objective only
uses data from the m-th client but leverages the shared FedINB translation models for the DIRT
regularization. We run FedAvg without any domain translation regularization loss term as our baseline.
For fairness, we use the same CNN structure for both models. Table 1 and Table 2 give the results for
training the domain translation model on domains 0,15,30,45,60 and using it to train a model that can
generalize to unseen domains 75 and 90. More results can be found in Appendix F. We can observe
that regularization from domain translation model significantly improves the model’s ability to
generalize to unseen domains. Additionally, we notice that as we increase the synchronization period
(i.e., decrease the FL aggregation frequency), which is an important objective in communication-
constrained FL systems (Lin et al., 2021), FedDIRT achieves a similar performance as before while
the performance of FedAvg drops significantly. The regularization helps make the federated training
more stable. This can also be justified by the higher standard deviation of most FedAvg runs.

5 DISCUSSION AND CONCLUSION

Despite the theoretical and empirical advantages of FedINB, some limitations should be noted
for future work. For example, it is difficult for FedINB to translate high dimensional images: a
possible solution is to further reduce the dimension via a (pretrained) deep neural network in the
federated domain generalization task. Also, we have not provided a theoretical privacy guarantee
for FedINB, which could possibly be accomplished by utilizing DP-SGD (Abadi et al., 2016) for
Fed-multi-max-K-SW. More discussion on these points can be found in Appendix C.5.

In this paper, we proposed a federated domain translation approach (FedINB) that can mitigate
non-IID issues in federated learning tasks. Our model can handle the harder task of conditional shift
in comparison to most existing FL methods. We then proposed several improvements to FedINB that
decrease communication costs for practical resource-constrained FL systems. We empirically showed
that our translation model performs substantially better than FL versions of standard translation
models (StarGAN). Finally, as an application, we demonstrated that combining FedINB with SOTA
domain generalization methods leads to strong performance in federated domain generalization.
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A OVERVIEW

We have organized our appendix as follows:

• Appendix B includes the proof of Remark 1.

• Appendix C includes more details about the INB algorithm, its implementation, limitations
and future works.

• Appendix D includes more discussion on privacy.

• Appendix E includes experiment and implementation details.

• Appendix F includes more experiment results.

B PROOF OF REMARK 1

Before starting the proof of Remark 1, let us first introduce the following definition and lemma to
deal with the sorting operation in the objective.

Definition 2. The sorting permutation matrix PZ ∈ Rn×n associated with a vector Z ∈ R1×n is
defined as ZPZ = sorted(Z) such that (ZPZ)i ≤ (ZPZ)i+1, i = 0, . . . , n− 1.

Lemma 1. Let A ∈ R1×d, X ∈ Rd×n, and denote the sorting permutation matrix of AX as PAX .
We have:

∂(AXPAX)

∂A
= (XPAX)T

Proof. Note that AXPAX = sort(AX) where sort is the sorting function. With this, we first note
that the Jacobian of sort with respect it’s inputs is equal to the permutation matrix that sorts that input.

Jsort(z) =
∂sort(z)

∂z
= PT

z

where v = Pzz is sorted, i.e., vi ≤ vi+1,∀i < n (Blondel et al., 2020).3 Now we want the following:

∂sort(AX)

∂A
=

∂sort(AX)

∂(AX)

∂AX

∂A
= PTXT = (XP )T .

Now we prove Remark 1.

Proof of Remark 1. This remark in essence states that when we compute the gradient of sum of
the loss among all clients with respect to the projection matrix, the empirical barycenter could be
regarded as a constant (zero gradient). Intuitively, the proof relies on the fact that we are using
squared distance, and the empirical barycenter can be seen as a mean value over domains.

Let A ∈ R1×d, Xi ∈ Rd×n, i = 1, . . .M and define the loss term L as

L ≜
M∑
i=1

∥∥∥∥∥∥AXiPAXi
− 1

M

M∑
j=1

(AXjPAXj
)

∥∥∥∥∥∥
2

.

Note that L is equivalent to
∑n

k=1

∑M
i=1 |(AXi)[k] − 1

M

∑
j(AXj)[k]|2. Then define the loss LC as

LC ≜
M∑
i=1

∥AXiPAXi − C∥2

3Blondel, Mathieu, et al. "Fast differentiable sorting and ranking." International Conference on Machine
Learning. PMLR, 2020.
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where C ≜ 1
M

∑M
j=1 AXjPAXj

but will be regarded as a constant when computing the gradient of
LC . And for simplicity, we denote X ′

i ≜ XiPAXi
. We have:

∂L

∂A
= 2

∑
i

(AXiPAXi −
1

M

M∑
j=1

AXjPAXj )
∂

∂A
(AXiPAXi −

1

M

∑
j

AXjPAXj )
T

(1)
= 2

∑
i

(AX ′
i −

1

M

M∑
j=1

AX ′
j)(X

′
i −

1

M

M∑
j=1

X ′
j)

T

= 2
∑
i

AX ′
iX

′T
i −

4

M

∑
i

∑
j

AX ′
iX

′T
j +

2

M

∑
i

∑
j

AX ′
iX

′T
j

= 2
∑
i

AX ′
iX

′T
i −

2

M

∑
i

∑
j

AX ′
iX

′T
j

where (1) uses Lemma 1. Additionally,

∂LC

∂A
= 2

∑
i

(AXiPAXi − C)
∂

∂A
(AXiPAXi)

= 2
∑
i

(AXiPAXi
− C)X ′T

i

= 2
∑
i

(AX ′
i −

1

M

M∑
j=1

AX ′
j)X

′T
i

= 2
∑
i

AX ′
iX

′T
i −

2

M

∑
i

∑
j

AX ′
iX

′T
j

=
∂L

∂A

C MORE DISCUSSION OF THE FEDINB ALGORITHM

C.1 ORIGINAL INB AND FEDINB

Zhou et al. (2022) propose the Iterative Naïve Barycenter (INB) algorithm to align high dimensional
distributions via decomposing the problem into simpler 1D alignment problems with closed-form
solutions. Specifically, they first reduce the dimension via a orthogonal projection matrix found by
minimizing maximum K-sliced Wasserstein divergence as shown in Equation (2). Informally, this
objective finds orthogonal directions where the empirical Wasserstein-2 distance to the empirical
Wasserstein barycenter is maximized—where both the empirical Wasserstein-2 distance and barycen-
ter can be solved in closed-form only using 1D sorting. They adopt the optimization approach of
(Dai & Seljak, 2021) to optimize over the Stiefel manifold of orthonormal matrices via projected
gradient descent with backtracking line search. Then, along each dimension, they solve the 1D
Wasserstein Barycenter and find the corresponding mapping to the Barycenter. By iteratively finding
the projection matrix and 1D mapping to the Barycenter, they construct a deep translation model
between distributions. More details about INB can be found in (Zhou et al., 2022).

In our paper, we propose adapting INB for federated domain translation. The main FedINB algorithm
employing Algorithms 1&2 is given in Algorithm 3.

C.2 VW HISTOGRAMS

One key improvement made for FedINB is to use VW histograms to approximate the empirical slice
Wasserstein distance objective in Algorithm 1. It is noteworthy that if the number of histogram bins
is the same as number of samples, the FedINB with VW histograms becomes equivalent to INB. In
this case, the quantiles sent would just be the samples and each of them has uniform density. As we
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Algorithm 3 Federated Iterative Naïve Barycenter

Input: Samples from M clients x1,x2, . . . ,xM , number of directions K, number of itera-
tions/layers L

Output: Estimated domain translation models (T1, T2, . . . , TM )

{Client} T
(0)
m ← id, ∀m = {1, . . . ,M}

for ℓ = {1, 2, . . . , L} do
{Client} ∀m, zm ← Tm(xm)
{Server, Client} θ ← Fed-multi-max-K-SW ((z1, . . . ,zM ),K) {Algorithm 1}
for k = {1, . . . ,K} do

{Client} ∀m, z′
m = θT

k zm
{Server, Client} t1,k, . . . , tM,k = 1D-Barycenter(z′

1, . . . ,z
′
M ) {Algorithm 2}

end for
{Client} ∀m, tm ← [tm,1, . . . , tm,K ]
{Client} ∀m,Tm(x)← θtm(θTTm(x))

end for
return (T1, T2, · · · , TM )

show empirically in Section 4 and Appendix F, even if the number of bins is smaller than the number
of samples, this approximation will not hurt the final performance and can reduce the communication
cost.

C.3 COMMUNICATION SIMPLIFICATION FOR BACKTRACKING LINE SEARCH

When optimizing the projection matrix θ, the original multi-max-K-SW algorithm does backtracking
line search which requires recomputing the loss with an updated θ where only the learning rate is
changed. Thus, given a fixed maximum number of iterations J , we may need to run extra iterations
J ′. At each backtracking iteration, we need to compute slices and the empirical barycenter with
updated θ to recompute the loss so that we can determine whether to accept this update. We propose
to locally record the change of θ so that if backtracking line search determines a reduction in the
learning rate, we can reverse-engineer the new updated θ without explicit synchronization of the new
θ.

C.4 COMPUTATIONAL COMPLEXITY AND COMMUNICATION COST

Computational complexity. The complexity of the maximization (Algorithm 1) is O((J +
J ′)(nMK(d + log n) + K2d + K3)), where J, J ′,M, n, d,K are the number of iterations for
Fed-multi-max-K-SW , extra iterations for backtracking line search, domains, samples per domain,
dimensions, and latent dimensions, respectively. If we use VW histograms, the complexity reduces
to O((J + J ′)(VMK(d+ log V ) +K2d+K3)). The complexity of the minimization (applying
Algorithm 2 for each latent dimension independently) is O(nMK).

Communication cost. We gave an approximated communication cost in the main paper. Here, we
provide a more exact estimation. At each iteration of INB, for each client, the communication cost of
the maximization (Algorithm 1) is O((J + J ′)K(n+ d)) and O((J + J ′)K(V + d)) for FedINB
and FedINB with VW histograms respectively. The communication cost of minimization (applying
Algorithm 2 to K dimensions simultaneously) is O(K(B1 +B2)) where B1 and B2 are the number
of histogram bins for the CDF of local slices and inverse CDF of the Barycenter.

C.5 LIMITATION AND FUTURE WORKS

Similar to the original INB, a limitation of FedINB is that it does not perform well for high dimensional
image datasets. One of the reasons could be that FedINB is a greedy algortihm. On one hand, this
leads to benefits in computation and communication. On the other hand, this does not guarantee we
find the global optimum of the alignment problem. From a theoretical perspective, as pointed out
in Zhou et al. (2022), the best we can guarantee is that at each iteration, given the current θ, the
local alignment map tm is optimal. Thus, in optimizing θ, especially considering the addition of VW
histogram and reducing the maximum number of iterations J due to communication concerns, the
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empirical maximization of multi-max-K-SW may not find the true maximum. But, as we empirically
show in the experiment section, neither leads to drop in performance unless J or the maximum number
of histogram bins V is really small. To further improve this fundamentally, we could investigate more
on the optimization on the manifold of orthonormal matrices.

To overcome this, we provide practical improvements such as using autoencoders to improve the
performance. Also, FedINB could employ some specific tricks for images such as patch-based
hierarchical structure in SINF (Dai & Seljak, 2021) (though we do not leverage these image-specific
tricks in this paper). Instead, we focus on a more general domain-agnostic method that does not
assume any image-based structure in the model design. Since we focus on the more general case,
Wasserstein Distance is a more reasonable metric as it is domain-agnostic and not specific to images.
Furthermore, for the application of federated DG on high dimensional image datasets, we could share
a pretrained deep neural networks, which is known to be good at extracting meaningful features. Then
we train the federated translation model in the intermediate representation. In this case, we don’t
need this preliminiary transformation to be invertible since we don’t need to get the exact translated
images.

Another limitation of FedINB is that we need to transmit the translation model if we want to use it for
other downstream tasks such as federated domain generalization. While this is more desirable than
directly transmitting data in comparison to models such as ELCFS (Liu et al., 2021), we propose a
possible method to mitigate this issue altogether. For federated domain generalization, we can utilize
the shared space learned by FedINB for applying FedDIRT. Specifically, each client m will minimize
the following local objective:

Epm(x,y)[ℓ(y, g(x)) + dis(g(x), g(Tm(x)))] . (6)

The key difference is that the local objective on the m-th client would only need its own translation
model to the shared space Tm rather than needing Tm→m′ , which would require the translation
models from other clients. The intuition is that even though the shared space learned by FedINB is
not the actual Wasserstein Barycenter, it may still keep the geometric structure of each domain and it
may share the same invariant representation as the distribution of each domain. Hence, the second
term may still serve as a good regularizer for DIRT. This has the potential to further improve privacy
preservation (because the client-specific translation models would not be shared) and communication
cost (because the translation models would not have to be transmitted). However, we leave a formal
investigation of FedDIRT with the shared space of FedINB for future work.

Regarding privacy, we discussed about why sorting and VW histograms could improve privacy. More
detailed discussion and limitation are in the next section.

D DISCUSSION ON PRIVACY

In this section, we will discuss how our FedINB with VW histograms is better than ELCFS (Liu et al.,
2021) and original FedINB in terms of privacy. However, we want to clarify upfront that we do not
claim our model satisfies any strict privacy metric from the machine learning and federated learning
areas such as differential privacy (DP) (Dwork, 2006). 4 Rather, we only seek to demonstrate better
privacy in comparison to prior and naïve approaches. Regarding DP, we provide a discussion at the
end of this section and will leave more formal analysis and careful investigation for future works.

In what follows, we will compare methods from the perspective of membership inference attacks.
Positive membership privacy is concerned about an adversary’s ability to infer that an entity partici-
pated the training as defined in (Li et al., 2013, Definition 3.1)5. As a running example for clarity, we
will assume the hospital scenario where each client is a hospital and each observation is a patient’s
data (e.g., cell images), but the following arguments could be made in other privacy scenarios as
well. In our case, we make two assumptions: 1) The adversary has the original data of one patient
(which may or may not be one of the training examples at one of the hospitals) and 2) the adversary
can view the information sent to and from the central server. The membership inference question is:
Given these assumptions, can the adversary determine whether the patient’s data was included in the
training data or not?

4Cynthia, Dwork. "Differential privacy." Automata, languages and programming (2006): 1-12.
5Li, Ninghui, et al. ”Membership privacy: a unifying framework for privacy definitions.” ACM SIGSAC

Conference on Computer & Communications Security. 2013.
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We first discuss membership attacks for ELCFS and then discuss them with respect to the privacy
improvements of FedINB. ELCFS first does a fast Fourier transform of all data in each client to get
the amplitude spectrum and phase spectrum. Then they transmit the low-frequency component of the
amplitude spectrum to the server to form a distribution bank. In the training, each client acquires those
low-frequency spectrums from other clients to create pseudodata from different domains. We believe
this operation significantly violates the positive membership privacy. An adversary can compute
the fast Fourier transform of the original data (assumption 1) and check whether its low-frequency
component of amplitude spectrum is in the distribution bank, which is shared to each client in the
training (assumption 2).6

The sorting of slices of data before sending to the server in Algorithm 1 makes membership attacks
more difficult than if the sorting was done on the server. Intuitively this is because sorting destroys
joint sample information. First, consider the case where sorting is done on the server. We argue that
an membership inference attack would be almost trivial in this case. The adversary could project
the original data (assumption 1) using the current projection matrix (assumption 2) and match this
projected data with a whole row in the projected training examples that are transmitted during training
(assumption 2). If there is not a whole-row match, then the patient is not in the training data. If
there is a whole-row match, then the patient is more likely to be in the training data, where K
determines the amount of precision—i.e., if K = d and all data instances are unique, then this proves
that the patient is in the training data, but if K = 1, there may be multiple patients that have the
same projected value. On the other hand, if sorting is applied at the clients before sending, then the
adversary must attempt to determine a match by matching on each feature independently because
the sorting indices are hidden. Thus, the adversary cannot match on whole rows anymore. The
amount of actual privacy will depend on the non-uniqueness of individual values.7 Furthermore,
sending quantiles instead of real samples improves the privacy with respect to membership attacks
because directly sending projected samples may hurt privacy. With VW histograms, most samples’
exact information would be impossible to reconstruct (as histograms are lossy compressions of data
samples) and trivial membership inference could be prevented. In some cases, such as the min and
max values, membership attacks could still be possible but they are significantly more difficult for
VW histograms than merely sending samples. Again, we do not claim DP guarantees but discuss
below how these could be added on top of our framework.

Finally, we provide several possibilities to ensure DP on top of the proposed FedINB. First, our
method could be extended to leverage DP-SGD (Abadi et al., 2016) 8 for the optimization of projection
matrix by merely clipping the gradient values and adding noise before locally updating the parameters.
Regarding transmission of VW histograms for the barycenter calculations, our method could also be
extended to compute differentially private histograms by adding noise to the histogram estimates as is
suggested in Example 3.2 of Dwork & Roth (2014) 9. Finally, we could use standard DP techniques
for composing multiple DP mechanisms (in this case DP-SGD and and DP histograms) into a joint
DP mechanism that has DP guarantees (Dwork & Roth, 2014). We leave a more careful investigation
of DP methods in this context for future work.

E EXPERIMENTAL DETAILS

E.1 FEDERATED DOMAIN TRANSLATION

Metrics As discussed in the main paper, we choose WD and FID as our two met-
rics, which gives a fair comparison against baselines. They are computed as WD =
1

M2

∑
m

∑
m′ ŴD(xm, fm′→m(xm′)) and FID = 1

M2

∑
m

∑
m′ FID(xm, fm′→m(xm′)) (fixed

6For common Deep Learning datasets such as high-dimensional images, the low-frequency component of
amplitude spectrum is very likely to be unique given the high signal-to-noise ratio of real images.

7If the feature values are discrete, then there is likely to be many overlapped values and membership attacks
will be difficult. If the feature values are continuous, then each value will be theoretically unique but adding
some small Laplace noise, as is standard in differential privacy, would ensure that values are no longer unique.

8Abadi, Martin, et al. "Deep learning with differential privacy." ACM SIGSAC Conference on Computer and
Communications Security. 2016.

9Dwork, Cynthia, and Aaron Roth. "The algorithmic foundations of differential privacy." Found. Trends
Theor. Comput. Sci. 9.3-4 (2014): 211-407.

17



Published as a conference paper at ICLR 2023

a typo in the main paper). WD is computed with the Sinkhorn algorithm with maximum iterations set
to 100 and ϵ = 0.0001. At the starting point, f is the identity function.

Dataset For training, we use 10,000 samples from the MNIST and FashionMNIST training set as
the dataset of domain 0, where each class has 1000 samples. Then we use all samples to generate
10,000 samples for all other training domains (15,30,45,60). So, the total size of training data is
50,000. For evaluation of FedINB, we also use 10,000 samples from the MNIST and FashionMNIST
test set, and create other samples in the same way. So the total size of test data is also 50,000. For
evaluation of FedStarGAN, due to high computational cost, we only use 2,000 samples to create test
dataset so the total size of test data is 10,000. We find that the difference of evaluation score caused
by different sizes of test dataset is negligible especially, for the WD score, and will not affect our
conclusion in the paper.

FedINB with autoencoders In both AEINB and IndAEINB, we use the same autoencoder
structure. For MNIST, the encoder is composed of [nn.Conv2d(1, 16, 3, padding=1),
nn.ReLU(inplace=True), nn.MaxPool2d(2), nn.Conv2d(16, 8, 3,
padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(2)] where nn represents
torch.nn in PyTorch. The decoder is composed of [nn.Conv2d(8, 8, 3, padding=1),
nn.ReLU(inplace=True), nn.UpsamplingBilinear2d(scale_factor=2),
nn.Conv2d(8, 16, 3, padding=1), nn.ReLU(inplace=True),
nn.UpsamplingBilinear2d(scale_factor=2), nn.Conv2d(16, 1, 3,
padding=1), nn.Sigmoid()] where the last Sigmoid activation is used to map the output to
the range of [0, 1]. For FashionMNIST, the encoder is composed of [nn.Conv2d(1, 8, 3,
stride=2, padding=1), nn.ReLU(True), nn.Conv2d(8, 16, 3, stride=2,
padding=1), nn.BatchNorm2d(16), nn.ReLU(True), nn.Conv2d(16, 32,
3, stride=2, padding=0), nn.ReLU(True)]. The decoder is composed
of [nn.ConvTranspose2d(32, 16, 3, stride=2, output_padding=0),
nn.BatchNorm2d(16), nn.ReLU(True), nn.ConvTranspose2d(16, 8,
3, stride=2, padding=1, output_padding=1), nn.BatchNorm2d(8),
nn.ReLU(True), nn.ConvTranspose2d(8, 1, 3, stride=2, padding=1,
output_padding=1), nn.Sigmoid()]. As pointed out in the main paper, AEINB uses a
shared autoencoder that is trained on data from all training domains. In practice, we should use some
federated algorithm to train a shared autoencoder while each client has access to data from one
domain. However, as a test, we show that even in this case, IndAEINB achieves competitive or even
better result and in the federated case, the performance of AEINB cannot be better. Hence, we only
report results of AEINB using this autoencoder.

For IndAEINB, each client has its own autoencoder that is trained on the same training dataset used
to train INB.

We want to clarify that when reporting scores of AEINB and IndAEINB, the first number (at number
of parameters sent equal to 0) is after applying autoencoders. This is why the starting point of them is
different from that of other models such as INB.

Implementation of VW histograms In Algorithm 1, when computing the objective, we use VW
histograms to approximate the empirical Wasserstein Barycenter. At each client, we find the quantiles
of sliced data (the number of quantiles is determined by V ) and send the quantiles to the server and
average them. Then we have the VW histogram density of the empirical Wasserstein Barycenter
using the averaged quantiles. Finally we create a quantile of [0, 1] and use the inverseCDF of the
histogram density estimator to create pseudodata of the empirical Wasserstein Barycenter.

Federated implementation of INB To emulate a federated version of INB, we need detach the
gradient of the empirical Wasserstein Barycenter in Algorithm 1. Other than that, there is not any
practical difference whether we physically separate the data across different clients and simulate the
transmission of data. In terms of communication cost, we compute the number of parameters being
transmitted and report them.

FedStarGAN In order to implement FedStarGAN we start with the centralized implementation
of StarGAN on RMNIST made available by the authors of DIRT. We next extend this to federated
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setting by defining 5 disjoint clients (1 for each domain of RMNIST) such that each client has its
own copy of generator and discriminator. The 5 source domains are distributed among the 5 clients
such that each client has data from only 1 of the 5 domains. The generator and discriminator undergo
periodic FedAvg. We control the aggregation frequency by define a tunable parameter step_size
that determines the number of local update steps that client models must undergo before FedAvg
aggregation and synchronization. For aggregation, we use the uniformly weighted FedAvg. Our
experiments show that even 10 rounds of aggregation steps (using different values of sync_step)
consumes more communication bandwidth than the HistIndAEINB model but underperforms in
terms of WD score (Fig. 2(d)).

E.2 FEDERATED DOMAIN GENERALIZATION

Dataset For training, we use 1000 samples from MNIST and FashionMNIST training set as the
dataset of domain 0 where each class has 1000 samples. Then we use all samples to generate 1000
samples for all other training domains (15,30,45,60). So, the total size of training data is 5000. We
decrease the size of the dataset to make this a harder domain generalization problem, and we retrain
INB using less data. For evaluation, we use 1000 samples from MNIST and FashionMNIST training
set to generate test data in new domains 75 and 90.

Metrics We use the accuracy of the trained classifier when employed to a new domain as the metric.
Note that the INB and autoencoders are not needed after the training of classifier. As finding the
most appropriate validation domain is another hyperparameter to tune, we choose to use the simplest
way to report accuracy - we report the test accuracy at a fixed point. For fairness, we report the
accuracy of FedDIRT and FedAvg at the same point and check that both have already converged
before recording (this could be validated by Figure 14). For Rotated MNIST and all test domains, we
run FedDIRT/FedAvg (1-batch) for 2000 iterations, FedDIRT/FedAvg (10-batch) for 2500 iterations
and FedDIRT/FedAvg (100-batch) for 3000 iterations. For Rotated FashionMNIST and all synchro-
nization steps, we run FedDIRT/FedAvg (Domain 75) for 1500 iterations and FedDIRT/FedAvg
(Domain 90) for 3000 iterations.

FedDIRT For the network structure (encoder and classifier) and training hyperparameters, we
modify based on the default setup in the repository of DIRT (Nguyen et al., 2021), which can be
found at their public repository https://github.com/atuannguyen/DIRT. The only difference is that we
change Batch Normalization to Instance Normalization. For FedINB, we choose a few IndAEINB
with VW histograms (i.e., HistIndAEINB) since they are optimal in terms of overall translation
performance and communication cost. Note in this case, autocoders and INB should be considered
together as a single translation model f . At each batch in the training, we randomly assign a target
domain for each sample which is different from the default setup of DIRT (they assign the same
target domain for a whole batch in the training). For MNIST, we use 64 as batch size and 0.001 as
learning rate. We set the regularization weight of DIRT 10 to be 2. For FashionMNIST, we use 128 as
batch size and 0.0001 as learning rate. We set the regularization weight of DIRT to be 10.

FedAvg The FedAvg model structure is the same as FedDIRT. We use the uniformly weighted
averaging of model updates similar to the original implementation McMahan et al. (2017). We
consider three different configurations of FedAvg as baselines: FedAvg with sync_steps=1,
FedAvg with sync_steps=10, and FedAvg with sync_steps=100. Learning rate and batch
size are the same as those used for corresponding FedDIRT.

F ADDITIONAL RESULTS

F.1 FID SCORE OF RESULTS IN SECTION 4

In Figure 4, we include results of FID. One observation is that for FID, the influence of the blurriness
caused by applying autoencoders is more significant than the domain shifts. This is unsurprising
because FID is based on a modern CNN and CNNs are known to focus on texture or fine-grained

10The weight before domain invariant feature term.
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(a) Different autoencoders (b) Number of iterations

(c) VW histograms (d) Convergence of FedStarGAN

Figure 4: FID (lower is better) as communication cost increases for Rotated MNIST. (a) Different
autoencoders used for INB. (b) Different J used for IndAEINB. (c) Using VW histograms for INB.
(d) Failure of FedStarGAN. The INB used here is HistIndAEINB-L10-K10-J100 with V = 500 and
HistINB-L10-K10-J100 with V = 500.

details instead of high-level semantics (Geirhos et al., 2019).11 Because we are proposing a more
general approach to federated translation that is not specific to image data, we suggest that the
domain-agnostic metric of WD is a better metric for our context rather than the image-specific FID
metric. Besides, as shown in Figure 12, AEINB and IndAEINB generate reasonable rotations of
the original samples (albeit somewhat blurry because of the AE), and keeping the semantics of
the domain translation (i.e., correct rotation) is more important than preserving the fine details for
downstream tasks like DG.

F.2 DIFFERENT SETUPS OF INB WITH ROTATED MNIST

In this section, we include results with more different setups of INB.

Autoencoder. As shown in Figure 5, with different setups of INB (different L,K, J , whether to
use VW histograms and different r), we observe that in terms of WD, IndAEINB is better than using
a shared autoconder or not using autoencoders.

Max iterations J . In Figure 6, we include more results with different INB setups to study the
influence of decreasing J . We can conclude that using a higher J does not lead to a better performance
after convergence.

Number of slices K. As shown in Figure 7, we can observe that as we increase K to 30, the
communication cost becomes 3 times higher but the overall performance is not improved. Hence, we
use lower K in following experiments to reduce communication cost.

11Geirhos, Robert, et al. “ImageNet-trained CNNs are biased towards texture; increasing shape bias improves
accuracy and robustness.” International Conference on Learning Representations. 2018.
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(a) WD: L10-K30-J200 (b) FID: L10-K30-J200

(c) WD: L10-K10-J100 (d) FID: L10-K10-J100

(e) WD: L10-K10-J100-V500 (f) FID: L10-K10-J100-V500

(g) WD: L10-K10-J100-V2000 (h) FID: L10-K10-J100-V2000

Figure 5: Influence of autoencoders with different setups of INB for Rotated MNIST.

VW histograms. As shown in Figure 8, as we decrease V , both HistINB and HistIndAEINB can
achieve good performance (note the actual number of samples at each client is 10,000).
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(a) WD: INB (b) FID: INB

(c) WD: INB (d) FID: INB

(e) WD: IndAEINB (f) FID: IndAEINB

(g) WD: IndAEINB (h) FID: IndAEINB

Figure 6: Influence of J for Rotated MNIST.

F.3 DIFFERENT SETUPS OF INB WITH ROTATED FASHIONMNIST

In this section, we include quantitative federated domain translation results with Rotated FashionM-
NIST. The experiment setup here is not exactly the same as that with Rotated MNIST. We skip some
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(a) WD: INB (b) FID: INB

(c) WD: IndAEINB (d) FID: IndAEINB

Figure 7: Influence of K for Rotated MNIST.

(a) WD: HistINB (b) FID: HistINB

(c) WD: HistIndAEINB (d) FID: HistIndAEINB

Figure 8: Influence of V for Rotated MNIST.
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(a) WD: L20-K10-V500 (b) FID: L20-K10-V500

Figure 9: Influence of J for Rotated FashionMNIST.

(a) WD: L10-J100-V500 (b) FID: L10-J100-V500

Figure 10: Influence of K for Rotated FashionMNIST.

preliminary tests such as investigation of autoencoders and we test with HistIndAEINB instead of
IndAEINB for J and K.

Max iterations J . As shown in Figure 9, we observe that HistIndAEINB with J = 200 and 100
achieve similar performance in terms of WD while J = 50 and 30 seem to perform worse. On one
hand, we send histograms instead of all samples (as that in Figure 6 with Rotated MNIST). On other
hand, it is inherently a harder task to find the best projection for Rotated FashionMNIST such that
more number of iterations is as expected.

Number of slices K. As shown in Figure 10, as we increase K to 30, the communication cost
becomes 3 times higher but the overall performance is not improved in terms of WD.

Number of histogram bins V . As shown in Figure 11, even if the total number of samples is
10000 and FashionMNIST is a much harder task, the performance of HistIndAEINB does not drop
until V is as small as 50.

F.4 MORE QUALITATIVE TRANSLATION RESULTS

In Figure 12, we include more qualitative results with MNIST. We observe that in comparison to
INB, IndAEINB and HistIndAEINB generate more smooth samples. Moreover, samples translated
by IndAEINB and HistIndAEINB are very similar to each other. In Figure 13, we include qualitative
results with FashionMNIST.
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(a) WD: L10-K10-J100 (b) FID: L10-K10-J100

(c) WD: L20-K20-J100 (d) FID: L20-K20-J100

Figure 11: Influence of V for Rotated FashionMNIST.

F.5 MORE RESULTS OF FEDERATED DOMAIN GENERALIZATION

In Table 3 and Table 4, we include results with more INB setups. We can observe that HistIndAEINB
achieves similar performance, and they are all better than FedAvg. In Figure 14, we plot the test
accuracy of FedDIRT and FedAvg to demonstrate that the training already converges when we record
the test accuracy.

F.6 INVESTIGATION OF THE OPTIMIZATION OF FEDINB

In this section, to further compare the optimization of FedINB and original INB, we investigate
the optimization of the multi-max-K-SW subproblem throughout the full optimization process with
respect to the AE and VW histograms improvement. Note that the convergence of the whole
algortihm has been investigated in Figure 2a, Figure 2c, Figure 5, and Figure 8, which indicates that
autoencoders lead to a better alignment and VW histograms do not hurt the performance unless V is
really small. So we focus on their impact on multi-max-K-SW here.

As a reminder, the objective of multi-max-K-SW is 1
MKn

∑M
m=1

∑K
k=1

∑n
i=1|(θT

k xm)[i] − y[i],k|2.
In Figure 15, we track the change of maximum K-sliced Wasserstein Divergence through the training
of a 10-layer (L = 10) FedINB for different digits where we constrain the maximum number of
iterations to be 100 (J = 100). We can observe that using VW histograms barely leads to any
difference in the optimization: the point they converge to and the speed they converge at are very
similar. For IndAEINB, we cannot directly compare the numbers as they are essentially computed
in difference spaces. But we can observe that IndAEINB actually converges faster especially in the
last layers, and the max-K-SW is much closer to 0 in the last few layers. This could result from that
we are running multi-max-K-SW in a space in much lower dimension and the task becomes easier.
Besides, we observe that in most cases, multi-max-K-SW keeps running till it reaches the maximum
number of iterations even if there is barely any improvement. This also explains why we could reduce
J without hurting the performance (as explored in Section 4.1). In Table 5, we also track the total
number of iterations with different setups. We can observe that INB and HistINB requires similar
iterations while AEINB takes relatively less iterations.
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Table 3: Classification accuracy at unseen domains for Rotated MNIST. For each target domain, we
try to aggregate model after each 1, 10, 100 mini-batches. The mean and standard deviation are taken
over 4 runs. For FedDIRT, we use HistIndAEINB with J = 100 and V = 500 (with different L and
K)

Model 75 (1-batch) 75 (10-batch) 75 (100-batch) 90 (1-batch) 90 (10-batch) 90 (100-batch)
FedDIRT(L10-K20) 92.4 ± 0.3 91.7 ± 1.2 90.2 ± 1.0 70.1 ± 0.3 68.5 ± 3.8 65.7 ± 2.9
FedDIRT(L20-K10) 92.2 ± 0.3 89.3 ± 4.2 91.9 ± 0.9 69.8 ± 0.7 70.4 ± 2.2 69.9 ± 0.3
FedDIRT(L10-K10) 92.4 ± 0.4 92.2 ± 0.7 90.9 ± 0.8 70.5 ± 0.5 70.8 ± 0.8 65.9 ± 4.7
FedDIRT(L20-K20) 92.2 ± 1.3 90.8 ± 1.2 91.4 ± 0.6 69.4 ± 0.8 71.1 ± 1.3 69.8 ± 1.5
FedAvg 85.2 ± 0.7 85.1 ± 0.5 80.1 ± 2.3 63.8 ± 2.1 63.6 ± 0.8 55.6 ± 2.0

Table 4: Classification accuracy at unseen domains for Rotated FashionMNIST. For each target
domain, we try to aggregate model after each 1, 10, 100 mini-batches. The mean and standard
deviation are taken over 4 runs. For FedDIRT, we use HistIndAEINB with J = 100 and V = 500
(with different L and K)

Model 75 (1-batch) 75 (10-batch) 75 (100-batch) 90 (1-batch) 90 (10-batch) 90 (100-batch)
FedDIRT(L10-K20) 65.8 ± 1.3 64.1 ± 0.9 62.9 ± 1.4 18.4 ± 0.5 18.3 ± 0.6 19.0 ± 0.4
FedDIRT(L20-K10) 65.8 ± 1.3 63.6 ± 0.9 63.0 ± 1.0 18.2 ± 0.9 18.1 ± 0.4 18.8 ± 0.6
FedDIRT(L10-K10) 65.1 ± 1.8 63.5 ± 0.6 62.6 ± 0.6 17.9 ± 0.5 18.3 ± 0.3 18.8 ± 0.6
FedDIRT(L20-K20) 65.5 ± 1.8 64.5 ± 1.5 63.5 ± 1.3 19.0 ± 0.3 18.5 ± 1.0 18.9 ± 0.4
FedAvg 51.9 ± 2.9 50.4 ± 1.2 40.4 ± 4.1 13.7 ± 1.6 14.6 ± 1.8 13.1 ± 0.9

Table 5: Number of iterations of multi-max-K-SW with L = 10,K = 10, J = 100 for RotatedM-
NIST. The numbers are averaged over 4 runs. Note that the extra steps (L× J = 10× 100 = 1000)
come from the backtracking line search as explained in Appendix C.3.

INB HistINB IndAEINB
Digit 0 1,605.25 1,605.00 1,586.50
Digit 1 1,609.00 1,612.75 1,580.50
Digit 2 1,601.75 1,603.50 1,584.75
Digit 3 1,599.50 1,600.00 1,583.25
Digit 4 1,597.75 1,594.50 1,581.25
Digit 5 1,605.00 1,605.25 1,587.75
Digit 6 1,601.00 1,601.00 1,582.75
Digit 7 1,600.75 1,601.25 1,581.25
Digit 8 1,601.50 1,600.75 1,583.25
Digit 9 1,598.75 1,599.75 1,580.00

Average 1,602.03 1,602.38 1,583.13

In Figure 16, we increase the maximum number of iterations to be 300 and observe similar results.
In Table 6, we observe that total number of iterations of HistINB is slightly larger than INB , but in
practice, we don’t actually need this many iterations.

From Figure 15, we also observe that in the last few layers, the maximum K-sliced Wasserstein Diver-
gence found by the algorithm is very small which is consistent with the observation of convergence
of FedINB in Figure 2c.
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Table 6: Number of iterations of multi-max-K-SW with L = 10,K = 10, J = 300 for RotatedM-
NIST. The numbers are averaged over 4 runs.

INB HistINB IndAEINB
Digit 0 4,767.67 4,800.67 4,756.50
Digit 1 4,780.00 4,782.67 4,756.50
Digit 2 4,778.00 4,777.67 4,756.00
Digit 3 4,779.00 4,779.33 4,753.50
Digit 4 4,778.67 4,781.67 4,754.50
Digit 5 4,778.67 4,784.33 4,758.50
Digit 6 4,743.33 4,788.00 4,753.50
Digit 7 4,776.67 4,786.00 4,754.50
Digit 8 4,779.00 4,778.67 4,754.50
Digit 9 4,781.67 4,789.00 4,754.00

Average 4,774.27 4,784.80 4,755.20
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(a) INB: L=10, K=10, J=200

(b) IndAEINB: L=10, K=10, J=200

(c) HistIndAEINB: L=10, K=10, J=200, V=500

Figure 12: More qualitative results for Rotated MNIST. The first three rows are original samples
from domain 0. The last three rows are translated samples (from domain 0 to 4).
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(a) HistIndAEINB: L=10, K=10, J=100, V=500

Figure 13: Qualitative results for Rotated FashionMNIST. The first three rows are original samples
from domain 0. The last three rows are translated samples (from domain 0 to 4).

(a) Rotated MNIST (b) Rotated FashionMNIST

Figure 14: Test accuracy in the federated domain generalization experiments.
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(a) INB and HistINB (V = 500) for digit 0. (b) INB and IndAEINB for digit 0.

(c) INB and HistINB (V = 500) for digit 1. (d) INB and IndAEINB for digit 1.

(e) INB and HistINB (V = 500) for digit 2. (f) INB and IndAEINB for digit 2.

Figure 15: Convergence of multi-max-K-SW with L = 10,K = 10, J = 100 for RotatedMNIST.
The curves describe the change of loss through 10 layers of FedINB with different setups. The sudden
change of loss is because we apply 1D-Barycenter there to align the projected distribution. We want
to note that the value of objective for INB and IndAEINB is not directly comparable because for
IndAEINB we are applying FedINB in a space in much smaller dimension.
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(a) INB and HistINB (V = 500) for digit 0. (b) INB and IndAEINB for digit 0.

(c) INB and HistINB (V = 500) for digit 1. (d) INB and IndAEINB for digit 1.

(e) INB and HistINB (V = 500) for digit 2. (f) INB and IndAEINB for digit 2.

Figure 16: Convergence of multi-max-K-SW with L = 10,K = 10, J = 300 for RotatedMNIST.
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