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ABSTRACT

Bayesian Neural Networks (BNNs) with high-dimensional parameters pose a chal-
lenge for posterior inference due to the multi-modality of the posterior distribu-
tions. Stochastic Gradient Markov Chain Monte Carlo (SGMCMC) with cyclical
learning rate scheduling is a promising solution, but it requires a large number
of sampling steps to explore high-dimensional multi-modal posteriors, making it
computationally expensive. In this paper, we propose a meta-learning strategy to
build SGMCMC which can efficiently explore the multi-modal target distributions.
Our algorithm allows the learned SGMCMC to quickly explore the high-density
region of the posterior landscape. Also, we show that this exploration property
is transferrable to various tasks, even for the ones unseen during a meta-training
stage. Using popular image classification benchmarks and a variety of down-
stream tasks, we demonstrate that our method significantly improves the sampling
efficiency, achieving better performance than vanilla SGMCMC without incurring
significant computational overhead.

1 INTRODUCTION

Bayesian methods have received a lot of attention as powerful tools for improving the reliability of
machine learning models. Bayesian methods are gaining prominence due to their ability to offer
probability distributions over model parameters, thereby enabling the quantification of uncertainty
in predictions. They find primary utility in safety-critical domains like autonomous driving, medical
diagnosis, and finance, where the accurate modeling of prediction uncertainty often takes prece-
dence over the predictions themselves. The integration of Bayesian modeling with (deep) neural
networks, often referred to as Bayesian Neural Networks (BNNs), introduces exciting prospects for
the development of secure and trustworthy decision-making systems.

However, there are significant problems for the successful application of BNNs in real-world scenar-
ios. Bayesian inference in high-dimensional parameter space, especially for deep and large models
employed for the applications mentioned above, is notoriously computationally expensive and often
intractable due to the complexity of the posterior distribution. Moreover, posterior landscapes of
BNNs frequently display multi-modality, where multiple high density regions exist, posing a sig-
nificant challenge to efficient exploration and sampling. Due to this difficulty, the methods that
are reported to work well for relatively small models, for instance, variational inference (Blei &
McAuliffe, 2017) or Hamiltonian Monte Carlo (HMC) (Neal et al., 2011), can severly fail for deep
neural networks trained with large amount of data, when applied without care.

Recently, Stochastic Gradient Markov Chain Monte Carlo (SGMCMC) methods (Welling & Teh,
2011; Chen et al., 2014; Ma et al., 2015) have emerged as powerful tools for enhancing the scalabil-
ity of approximate Bayesian inference. This advancement has opened up the possibilities of applying
Bayesian methods to large-scale machine learning tasks. SGMCMC offers a versatile array of meth-
ods for constructing Markov chains that converge towards the target posterior distributions. The
simulation of these chains primarily relies on stochastic gradients, making them particularly suit-
able for BNNs trained on large-scale datasets. However, despite the notable successes of SGMCMC
in some BNN applications (Welling & Teh, 2011; Chen et al., 2014; Ma et al., 2015; Zhang et al.,
2020), there remains a notable challenge. Achieving optimal performance often demands extensive
engineering efforts and hyperparameter tuning. This fine-tuning process typically involves human
trial and error or resource-intensive cross-validation procedures. Furthermore, it’s worth noting that
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Figure 1: Meta-learning procedure of Learning to Explore
(L2E).

Figure 2: Ensemble accuracy for
different number of samples on
Tiny-ImageNet.

even with the use of SGMCMC methods, there remains room for improvement in efficiently explor-
ing multi-modal posterior distributions. As a result, in practical applications, a trade-off between
precision and computational resources often becomes necessary.

To address these challenges, we introduce a novel meta-learning framework tailored to enhance the
efficiency of SGMCMC algorithms. Traditional SGMCMC methods often rely on handcrafted design
choices inspired by mathematical or physics principles, such as the formulation of kinetic energy
terms, curl, and diffusion matrices. Recognizing the pivotal role these design components play in
shaping the trade-off between exploration and exploitation within SGMCMC chains, we argue in
favor of learning them directly from data rather than manually specifying them. To achieve this, we
construct neural networks to serve as meta-models responsible for approximating the gradients of
kinetic energy terms. These meta-models are trained using a diverse set of BNNs inference tasks,
encompassing various datasets and architectural configurations. Our proposed approach, termed
L2E, exhibits several advantageous properties, including better mixing rates, improved prediction
performance, and a reduced need for laborious hyperparameter tuning. We point out that ours is
not the first meta learning algorithm for SGMCMC, as Gong et al. (2018) already explored a similar
concept. However, they did not achieve to learn appropriate exploration-exploitation balance in
simulating multi-modal BNNs posterior, and their algorithm was not demonstrated to scale for large-
scale BNNs with robust architecture and dataset transfer, limiting the practicality.

Our contributions can be summarized as follows:

• We introduce L2E, a novel meta-learning framework enhancing SGMCMC methods. In con-
trast to conventional hand-designed approaches and meta-learning approach (Gong et al.,
2018), L2E learns the kinetic energy term directly, offering a more data-driven and adapt-
able solution.

• We present a multitask training pipeline equipped with a scalable gradient estimator for
L2E. This framework allows the meta-learned SGMCMC techniques to generalize effec-
tively across a wide range of tasks, extending their applicability beyond the scope of tasks
encountered during meta-training.

• Using real-world image classification benchmarks, we demonstrate the remarkable perfor-
mance of BNNs inferred using the SGMCMC algorithm discovered by L2E, both in terms of
prediction accuracy and sampling efficiency.

2 BACKGROUNDS

2.1 SGMCMC FOR BAYESIAN NEURAL NETWORKS

Settings. In this paper, we focus on supervised learning problems with a training dataset D =
{(xi, yi)

n
i=1 with xi being observation and yi being label. Given a neural network with a parameter

θ ∈ Rd, a likelihood p(y |x, θ) and a prior p(θ) are set up, together defining an energy function
U(θ) = −∑n

i=1 log p(yi |xi, θ)− log p(θ). The goal is to infer the posterior distribution p(θ | D) ∝
exp(−U(θ)). When the size of the dataset n is large, evaluating the energy function U(θ) or its
gradient ∇θU(θ) may be undesirably costly as they require a pass through the entire dataset D. For
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such scenarios, SGMCMC (Welling & Teh, 2011; Chen et al., 2014; Ma et al., 2015) is a standard
choice, where the gradients of the energy function ∇θU(θ) are approximated by a stochastic gradient
computed from mini-batches. That is, given a mini-batch B ⊂ {1, . . . , n} where |B| ≪ n, an
unbiased estimator of the full gradient ∇θU(θ) with B can be computed as

∇θŨ(θ) = − n

|B|
∑
i∈B

∇θ log p(yi |xi, θ)−∇θ log p(θ). (1)

A complete recipe. There may be several ways to build a Markov chain leading to the target
posterior distribution. Ma et al. (2015) presented a generic recipe that includes all the convergent
SGMCMC algorithms as special cases, constituting a complete framework. In this recipe, a parameter
θ of interest is augmented with an auxiliary momentum variable r, and an Stochastic Differential
Equation (SDE) of the following form is defined for a joint variable z = (θ, r) ∈ R2d as follows.

H(z) := U(θ) + g(θ, r), Γi(z) :=

2d∑
j=1

∂

∂zj
(Dij(z) +Qij(z)),

dz = [−(D(z) +Q(z))∇zH(z) + Γ(z)] dt+
√
2D(z)dwt,

(2)

where g(θ, r) is the conditional energy function of the momentum r such that p(z) ∝ exp(−H(z))
and wt is 2d-dimensional Brownian motion. Here, D(z) ∈ R2d×2d and Q(z) ∈ R2d×2d are re-
stricted to be positive semi-definite and skew-symmetric, respectively. Given this SDE, one can
obtain a SGMCMC algorithm by first substituting the full gradient ∇zH(z) with a mini-batch gra-
dient ∇zH̃(z) = ∇z(Ũ(θ) + g(θ, r)) and then discretizing it via a numerical solver such as sym-
pletic Euler method. A notable example would be Stochastic Gradient Hamiltonian Monte Carlo

(SGHMC) (Chen et al., 2014), where g(θ, r) = 1
2r

⊤M−1r, D(z) =

[
0 0
0 C

]
, and Q(z) =

[
0 −I
I 0

]
for some positive semi-definite matrices M and C, leading to an algorithm when discretized with
symplectic Euler method as follows.

rt+1 = rt − ϵt∇Ũ(θt)− ϵtCM−1rt + ξt, ξt ∼ N (0, 2Cϵt)

θt+1 = θt + ϵtM
−1rt+1,

(3)

where ϵt is a step-size.

The complete recipe includes interesting special cases that introduce adaptive preconditioners to
improve the mixing of SGMCMC (Girolami & Calderhead, 2011; Li et al., 2016; Wenzel et al.,
2020). For instance, Li et al. (2016) proposed Preconditioned Stochastic Gradient Langevin Dy-
namics (pSGLD), which includes RMSprop (Tieleman & Hinton, 2012)-like preconditioning matrix
in the updates:

θt+1 = θt − ϵt[G(θt)∇θŨ(θ) + Γ(θt)] + ξt, ξt ∼ N (0, 2G(θt)ϵt)

V (θt+1) = αV (θt) + (1− α)
∇θŨ(θt)

n
⊙ ∇θŨ(θt)

n

G(θt+1) = diag(1⊘ (λ1+
√

V (θt+1)),

(4)

where ⊘,⊙ denotes elementwise division and multiplication, respectively. pSGLD exploits re-
cent gradient information to adaptively adjust the scale of energy gradients and noise. How-
ever, this heuristical adjustment is still insufficient to efficiently explore the complex posteriors of
BNNs (Zhang et al., 2020). Also, introducing preconditioner dependent to θ harms the computational
efficiency of sampler since it requires to include additional correction term in the discretization step
for correct simulation (Wenzel et al., 2020).

Recently, Zhang et al. (2020) introduced cyclic learning rate schedule for efficient exploration of
multi-modal distribution. The key idea is using the spike of learning rate induced by cyclic learning
rate to escape from a single mode and move to other modes. However, in our experiment, we find
that SGMCMC with cyclical learning rate does not necessarily capture multi-modality and it also
requires a large amount of update steps to move to other modes in practice.
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Prediction via Bayesian model averaging. After inferring the posterior p(θ | D), for a test input
x∗, the posterior predictive is computed as

p(y∗ |x∗,D) =

∫
Rd

p(y∗ |x∗, θ)p(θ | D)dθ, (5)

which is also referred to as Bayesian Model Averaging (BMA). In our setting, having collected from
the posterior samples θ1, . . . , θK from a convergent chain simulated from SGMCMC procedure, the
predictive distribution is approximated with a Monte-Carlo estimater,

p(y∗ |x∗,D) ≈ 1

K

K∑
k=1

p(y∗ |x∗, θk). (6)

As one can easily guess, the quality of this approximation depends heavily on the quality of the
samples drawn from Markov Chain Monte Carlo (MCMC) procedure. For over-parameterzied deep
neural networks that we are interested in, the target posterior p(θ | D) is typically highly multi-
modal, so simple SGMCMC methods suffer from poor mixing; that is, the posterior samples collected
from those methods are not widely spread throughout the parameter space, so it takes exponentially
many samples to achieve desired level of accuracy for the approximation. Hence, a good SGMCMC
algorithm should be equipped with the ability to efficiently explore the parameter space, while still
be able to stay sufficiently long in high-density regions. That is, it should have a right balance
between exploration-exploitation.

Meta Learning Meta-learning, or learning to learn, refers to the algorithm that learns the useful
general knowledge from source tasks that can transfer to the unseen tasks. Most meta-learning algo-
rithms involves two levels of learning: an inner-loop and outer-loop (Metz et al., 2018). Inner-loop
usually contains the training procedure of particular task. In our work, inner-loop for our meta-
training is iteratively update the model parameter θ by running SGMCMC with learnable transition
kernel. Outer-loop refers to the training procedure of meta-parameter ϕ, which is done by minimiz-
ing meta-objective L(ϕ).

As a subfield of meta-learning, learning an optimizer is emerging field which aims to learn the learn-
able optimizer well applied to some set of target tasks. In general, training learned optimizer includes
the backpropagation through the computational graph of long inner-loop iteration. Truncated back-
propagtion through time (Werbos, 1990) can be one solution, but this introduces truncation bias
to the gradient estimator. Recent studies (Metz et al., 2019; 2022b) revealed that replacing back-
propagation with non-analytic gradient estimation method like Evolution Strategy (ES) (Salimans
et al., 2017) can improve meta-optimization. In this paper, for estimating ∇ϕL(ϕ), we do not retain
computational graph to backpropagate through inner-loop.

3 MAIN CONTRIBUTION: LEARNING TO EXPLORE

3.1 META-LEARNING FRAMEWORK FOR SGMCMC

Instead of using a hand-designed recipe for SGMCMC, we aim to learn the proper SGMCMC up-
date steps through meta learning. The existing works, both the methods using hand-designed
choices or meta-learning (Gong et al., 2018), try to determine the forms of the matrices D(z)
and Q(z) while keeping the kinetic energy g(θ, r) as simple Gaussian energy function, that is,
g(θ, r) = r⊤M−1r/2. This choice indeed is theoretically grounded, which can be shown to be
optimal when the target distribution is Gaussian (Betancourt, 2017), but may not be optimal for the
complex multi-modal posteriors of BNNs. We instead choose to learn g(θ, r) while keeping D(z)
and Q(z) as simple as possible. We argue that the meta-learning approach based on this alterna-
tive parameterization is more effective in learning versatile SGMCMC procedure that scales to large
BNNs.

More specifically, we parameterize the gradients of the kinetic energy function ∇θg(θ, r) and
∇rg(θ, r) with neural networks αϕ(θ, r) and βϕ(θ, r) respectively, and set D(z) and Q(z) as in
SGHMC. The update step of SGMCMC, when discretized with symplectic Euler method is,

rt+1 = rt − ϵt[∇θŨ(θt) + αϕ(θt, rt) + Cβϕ(θt, rt)] + ξt, ξt ∼ N (0, 2Cϵt)

θt+1 = θt + ϵtβϕ(θt, rt+1).
(7)
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The neural networks αϕ and βϕ are parameterized as two-layer Multi-Layer Perceptrons (MLPs) with
32 hidden units. Specifically, αϕ and βϕ are applied to each dimension of parameter and momentum
independently, similar to the commonly used learned optimizers (Andrychowicz et al., 2016; Metz
et al., 2019). Again, following the common literature in learned optimizers (Metz et al., 2019),
for each dimension of the parameter and momentum, we feed the corresponding parameter and
momentum values, the stochastic gradients of energy functions for that element, and running average
of the gradient at various time scales, as they are reported to encode the sufficient information
about the loss surface geometry. See Appendix E for implementation details of αϕ and βϕ. By
leveraging these information, we expect our meta-learned SGMCMC procedure to capture the multi-
modal structures of the target posteriors of BNNs, and thus yielding a better mixing method.

3.2 META-OBJECTIVE AND OPTIMIZATION

Objective functions for meta-learning. Meta-objective should reflect the meta-knowledge one
wants to learn. We design the meta-objective based on the hope that samples collected through
SGMCMC should be good at approximating the posterior predictive p(y∗|x∗,D). In order to achieve
this goal, we propose the meta-objective called BMA meta-loss. After the sufficient number of inner-
updates, we collect K parameter samples with some interval between them (thinning). Let θk(ϕ) be
the kth collected parameter, and we compute the Monte-Carlo estimator of the predictive distribution
and use it as a meta-objective function (note the dependency of θk on the meta-parameter ϕ, as it is
a consequence of learning SGMCMC with the meta-parameter ϕ).

L(ϕ) = − log
1

K

K∑
k=1

p(y∗ |x∗, θk(ϕ)), (8)

where (x∗, y∗) is a validation data point.

Algorithm 1: Meta training procedure

Input : task distribution P (T ), inner iterations
Ninner, outer interations Nouter, step size
ϵ, noise scale σ2, initial
meta-parameter ϕ0.

Ouput: Meta parameter ϕ.
for j = 1, . . . , Nouter do

Sample task Ti ∼ P (T )
Initialize model parameter θ0 for Ti

sample η ∼ N (0, σ2I)
L(ϕ+η)← InnerLoop(θ0, ϕ+η, ϵ,Ninner)
L(ϕ−η)← InnerLoop(θ0, ϕ−η, ϵ,Ninner)
∇ϕL← 1

2σ2 η (L(ϕ+ η)− L(ϕ− η))
ϕ← ϕ− γ∇ϕL(ϕ)

end

Algorithm 2: InnerLoop

Input : Meta parameter ϕ, inner interations Ninner,
initial parameter θ0, step size ε, burn-in
steps B, thinning interval T .

Ouput: Loss L(ϕ)
Initialize Θ = ∅ and r0 ∼ N (0, Id).
for i = 1, . . . , Ninner do

rt+1 = rt − ϵt(∇Ũ(θt) + αϕ + cβϕ) + ξt
where ξt ∼ N (0, 2c).

θt+1 = θt + ϵtβϕ

if i > B & mod (i, T ) = 0 then
Θ← Θ ∪ {θi}

end
end
L(ϕ)← − log 1

|Θ|
∑

θ∈Θ p(y∗|x∗, θ)

Gradient estimation for meta-objective. Estimating the meta-gradient ∇ϕL(ϕ) is highly non-
trivial (Metz et al., 2018; 2019), especially when the number of inner update steps is large. For
instance, a naïve method such as backpropagation through time would require memory grows lin-
early with the number of inner-steps, so become easily infeasible for even moderate sized models.
One might consider using the truncation approximation, but that would result in a biased gradient
estimator. Instead, we adapt ES (Salimans et al., 2017) with antithetic sampling scheme, which has
been widely used in recent literature of training learned optimizer. Metz et al. (2019) showed that
unrolled optimization with many inner-steps can lead to chaotic meta-loss surface and ES is capable
of relieving this pathology by employing smoothed loss,

L(ϕ) = Eϕ̃∼N (ϕ,σ2I)

[
L(ϕ̃)

]
(9)

where σ2 determines the degree of smoothing. Also, antithetic sampling is usually applied to reduce
the estimation variance of ∇ϕL(ϕ). Through log-derivative trick, we can get unbiased estimator of
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(9),

ĝ =
1

N

N∑
i=1

L(ϕ+ ηi)
ηi
2σ2

where ηi
i.i.d∼ N (0, σ2I), i ∈ {1 . . . N} (10)

. In addition, we can get another unbiased estimator ĝ−1 = − 1
N

∑N
i=1 L(ϕ − ηi)

ηi

2σ2 by reusing
the negative of ηi. By taking the average of two estimators, we can obtain the following gradient
estimator.

ˆ∇ϕL(ϕ) =
1

N

N∑
i=1

[
L(ϕ+ ηi)− L(ϕ− ηi)

2σ2

]
ηi (11)

The estimator is also amenable to parallelization, improving the efficiency of gradient computation.

3.3 META TRAINING PROCEDURE

Generic pipeline. General process of meta-training is as follows. First, for each inner-loop, we
sample a task from the pre-determined task distribution. An inner-loop starts from an randomly
initialized parameter and iteratively apply update step (7) to run a single chain of SGMCMC. In
the initial stage of meta-training, the chains from these inner loops show poor convergence, but the
performance improves as training progresses. Similar to general Bayesian inference, we consider
the early part of the inner loop as a burn-in period and collect samples from the end of the inner-loop
at regular intervals when evaluating the meta-objective. This training process naturally integrates the
meta-learning and Bayesian inference in that mimicking the actual inference procedure of Bayesian
methods in realistic supervised learning tasks. In Figure 2 we show that L2E achieve desired level
of accuracy for the approximation of posterior predictive with relatively small number of samples.
This result indicates that L2E has successfully acquired the desired properties through meta-training.

Multitask training for better generalization. In meta-learning, it is commonly known that diver-
sifying the task distribution helps to improve generalization performance. We include various neural
network architectures and datasets in the task distribution to ensure that L2E has sufficient general-
ization capacity. Also, we evaluate how the diversity of the task distribution affects the performance
of L2E in Table 12.

4 EXPERIMENTS

In this section, we will evaluate the performance of L2E in various aspects. Through extensive
experiments, we would like to demonstrate followings:

• L2E shows remarkable performance both on real-world image classification task and Out-
of-Distribution (OOD) detection task comparing to other competitive baseline methods.

• L2E can effectively sample from BNNs posterior distribution, collecting diverse set of pa-
rameters both in weight space and function space.

Experimental details For image classification experiments, we compare L2E with Deep Ensem-
bles (DE), Cyclical Stochastic Gradient MCMC (CSGMCMC) and Preconditioned Cyclic Stochastic
Gradient MCMC (P-CSGMCMC). We use 1 layer convolution neural network on fashion-MNIST
(Xiao et al., 2017), ResNet20 on CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009) and ResNet56
on Tiny-ImageNet (Le & Yang, 2015). We set total training epochs for all methods to a similar
level. Please refer to Appendix G.1 for experimental setup and hyperparameter settings. We report
Accuracy (ACC), Negative Log-Likelihood (NLL), Expected Calibration Error (ECE) (Naeini et al.,
2015) and pairwise Kullback–Leibler divergence (KLD) between probabilistic outputs from different
parameters on test dataset. Throughout experiments, we do not use data augmentation since it pro-
duces significant modifications to the likelihood function so that we cannot interpret this as a valid
likelihood function(Wenzel et al., 2020). We report the mean and standard deviation of results over
three different trials.
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Table 1: Image classification results.

Dataset Method ACC ↑ NLL ↓ ECE ↓ KLD ↑

Fashion
-MNIST

DE 0.915±0.001 0.243±0.000 0.009±0.001 0.110±0.004

CSGMCMC 0.911±0.002 0.277±0.008 0.021±0.002 0.080±0.004

P-CSGMCMC 0.912±0.001 0.254±0.003 0.005±0.000 0.062±0.004

L2E 0.917±0.002 0.245±0.002 0.008±0.001 0.247±0.000

CIFAR-10

DE 0.893±0.002 0.327±0.002 0.032±0.001 0.497±0.002

CSGMCMC 0.884±0.002 0.374±0.004 0.065±0.004 0.490±0.004

P-CSGMCMC 0.875±0.001 0.393±0.005 0.049±0.001 0.726±0.012

L2E 0.904±0.001 0.307±0.004 0.053±0.001 0.648±0.002

CIFAR-100

DE 0.679±0.003 1.231±0.004 0.144±0.003 1.638±0.006

CSGMCMC 0.675±0.002 1.234±0.006 0.132±0.005 1.413±0.003

P-CSGMCMC 0.580±0.005 1.526±0.016 0.079±0.006 0.948±0.045

L2E 0.697±0.001 1.135±0.002 0.130±0.004 1.466±0.002

Tiny-
ImageNet

DE 0.583±0.003 1.783±0.015 0.109±0.003 1.936±0.005

CSGMCMC 0.562±0.002 1.811±0.004 0.096±0.002 0.776±0.009

P-CSGMCMC 0.457±0.009 2.273±0.007 0.038±0.002 1.178±0.003

L2E 0.585±0.003 1.740±0.001 0.111±0.001 1.075±0.003

Table 2: CIFAR-10-C results.

Method
Level 1 2 3 4 5

DE 0.869 0.853 0.839 0.822 0.794
CSGMCMC 0.855 0.837 0.823 0.803 0.774
L2E 0.874 0.854 0.839 0.817 0.784

Table 3: OOD detection AUROC.
In-dist OOD DE CSGMCMC L2E

CIFAR-10
CIFAR-100 0.836±0.001 0.828±0.003 0.851±0.001

SVHN 0.919±0.001 0.906±0.010 0.931±0.003

Tiny-ImageNet 0.844±0.001 0.833±0.003 0.853±0.001

CIFAR-100
CIFAR-10 0.793±0.001 0.791±0.005 0.792±0.002

SVHN 0.917±0.002 0.904±0.002 0.917±0.003

Tiny-ImageNet 0.780±0.001 0.775±0.001 0.782±0.003

Meta-training details We construct set of meta-training tasks using various datasets and model
architectures. Specifically, we use MNIST, Fashion-MNIST, EMNIST (Cohen et al., 2017) and
MedMNIST (Yang et al., 2021) as meta-training datasets. For model architecture, we fix the general
structure with several convolution layers followed by readout MLP layer. For each outer training
iteration, we randomly choose dataset and sample the configuration of architecture including number
of channels, depth of the convolution layers and whether to use skip connections. See Appendix E
for detailed configuration of task distribution. For evaluation, we use same meta-parameter of L2E
for all experiments to check the generalization ability of L2E.

4.1 REAL-WORLD IMAGE CLASSIFICATION

Table 1 shows the results of image classifcation experiments. We confirm that L2E outperforms
other baselines in terms of predictive accuracy in general. Specifically, only DE shows compara-
ble predictive accuracy comparing to L2E in some experiments. Among datasets for evaluation,
fashion-MNIST is the only dataset included in our task distribution. Despite not having seen other
datasets during meta-training, L2E consistently outperforms other tuned baseline methods. This
clearly shows that L2E can scale and generalize well to unseen problems. In terms of functional
diversity of ensemble, L2E consistently shows competitive performance among baselines. Note that
KLD should be considered along with predictive accuracy since functional diversity usually declines
when the predictive error of individual members is reduced (Fort et al., 2019). Taking this into
account, L2E clearly outperforms similar or better level of diversity comparing to other SGMCMC
methods even though predictive accuracy of L2E is the best among baselines. In complex datasets
like CIFAR-100 and Tiny-ImageNet, we can find that functional diversity of DE, which necessarily
captures multiple modes in the loss surface, is significantly better than other methods. Also, we con-
firm that introducing preconditioner to SGMCMC does not necessarily improve general performance
of SGMCMC. P-CSGMCMC shows comparable performance with CSGMCMC in Fashion-MNIST
dataset, but it significantly underperforms in other experiments.

4.2 OUT-OF-DISTRIBUTION(OOD) DETECTION

Bayesian methods are frequently used for OOD detection task. In Table 3, we report the OOD detec-
tion performance of baseline methods and L2E. We use Maximum Softmax Probability (MSP) which
is equivalent to confidence of logit as OOD score. Difference of confidence between in-distribution
data and OOD data is measured using Area Under the ROC curve (AUROC) (Liang et al., 2017).
For Tiny-ImageNet, we resize the image to 32×32. Firstly, among models trained on CIFAR-10,
L2E shows the best performance for all OOD datasets. For models trained on CIFAR-100, L2E is
significantly better than CSGMCMC and comparable to DE. Since DE is a very strong baseline in
uncertainty estimation, we can confirm that L2E is competitive in OOD detection.

Next, we consider CIFAR-10-C (Hendrycks & Dietterich, 2019) for evaluating robustness to covari-
ate shift. We use accuracy on corrupted data for the metric. Table 2 shows that L2E is more robust to
covariate shift than CSGMCMC for all levels of corruption. However, with intensive corruption, L2E
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Figure 3: t-SNE visualization of predictions from different model parameters of DE, CSGMCMC
and L2E on CIFAR-10 test dataset. Highlighted points represent parameters which are collected for
BMA. L2E covers almost the entire space despite using a single trajectory.
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Figure 4: Loss surface of ResNet56 on Tiny-ImageNet as a function of model parameters in a
2-dimensional subspace spanned by solutions of DE, CSGMCMC, P-CSGMCMC and L2E. Colors
represent the level of test accuracy. Left and Right plots clearly display the multi-modality while
Middle plot does not.

exhibits lower accuracy than DE. This aligns with the results from Izmailov et al. (2021a) that BNN
are not robust to covariate shift in reality. Nevertheless, L2E still demonstrates better performance
than CSGMCMC, implying the advantage over CSGMCMC when using BNN under covariate shift.

4.3 L2E CAN CAPTURE MULTI-MODALITY

In Figure 3 and Figure 4, we can observe the behavior of DE, CSGMCMC, and L2E in function space.
Firstly, we save the model parameters with short intervals (5 epochs) and visualize them along with
their predictions using t-SNE (Van der Maaten & Hinton, 2008) in Figure 3. Notably, L2E exhibits a
distinctive pattern that appears to traverse a variety of areas within the space. In Figure 4, we display
the loss surface using a 2-dimensional subspace spanned by the first three collected parameters for
each method following Garipov et al. (2018). Parameters of DE clearly located on multiple distinct
modes as expected. In contrast, CSGMCMC seems to sample parameters within a single mode, while
samples from L2E appear to be in distinct modes. For deeper investigation, we plot test error along
a linear path between multiple pairs of saved parameters inspired by Goodfellow et al. (2014). If
there is a loss barrier between the two parameters, indicating that they belong to different modes,
classification error significantly increases along the linear path between two parameters. In Figure 6,
L2E shows a significant increase in predictive error along the linear path between every pair of
parameters while CSGMCMC exhibits a relatively low level of the loss barrier between samples. This
suggests that L2E is capable of the capturing multi-modality of the posterior distribution.

CSGMCMC attempts to explore multi-modality by exploiting artificial spikes induced by the learning
rate schedule. Since it inevitably deviates from high-density regions for exploration, it requires a
sufficient number of update steps to return to the high-density region. In contrast, L2E shows better
exploration-exploitation balance than CSGMCMC because it continuously explores various modes
while staying in high-density regions without using a learning rate schedule. In addition, in Fig-
ure 19, CSGMCMC shows a significant decrease in predictive accuracy and diversity as the thinning
interval gets shorter while L2E can maintain a similar level of accuracy and diversity even with a
shorter thinning interval, making it a much more computationally efficient approach in practice.
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Figure 5: Cosine similarity between weights of ResNet56 on Tiny-
ImageNet. DE and L2E collect more diverse solutions in weight
space than CSGMCMC.
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Table 4: ESS / wall clock time.

Dataset
Method

CSGMCMC P-CSGMCMC L2E

Fashion-MNIST 219.85±6.64 526.73±5.42 136.31±0.42

CIFAR-10 45.73±0.22 108.90±0.18 75.91±0.15

CIFAR-100 33.62±0.12 114.12±0.01 73.54±0.48

Tiny-ImageNet 1.93±0.12 1.70±0.01 1.71±0.00

Table 5: Proportion of samples with R̂ < 1.2.

Method Fashion-
MNIST

CIFAR-10 CIFAR-100 Tiny-
ImageNet

CSGMCMC 0.238 0.542 0.524 0.600
P-CSGMCMC 0.898 0.872 0.722 0.803
L2E 0.992 0.953 0.800 0.880

4.4 CONVERGENCE ANALYSIS

To evaluate whether L2E converge to the target distribution, we use R̂ (Gelman & Rubin, 1992).
R̂ compares the variance between multiple chains to the variance within a single chain. If it is
significantly greater than 1.0, it implies the poor mixing of chains. While the desirable level of R̂ is
problem-specific, we use the criterion proposed by Brooks & Gelman (1998), R̂ < 1.2, to evaluate
the degree of mixing. In Table 5, we report the proportion of parameters with R̂ values less than 1.2.
Overall, L2E method demonstrates good mixing, with over 95% of parameters showing R̂ < 1.2
in Fashion-MNIST and CIFAR-10 experiments.L2E consistently demonstrates descent performance
in various experiments, whereas CSGMCMC exhibits poor mixing across all experiments, indicating
that CSGMCMC fails to sample from BNNs posterior distribution. In general, applying preconditioner
seems to improve mixing, but it is evident that the predictive performance of P-CSGMCMC is still
significantly suboptimal.

Also, we measure Effective Sample Size (ESS) to quantify the quality of the samples in terms of
their independence and effectiveness in representing the underlying distribution. We report ESS nor-
malized with respect to wall clock time of each method to evaluate the sampling efficiency in fixed
computational cost. In Table 4, P-CSGMCMC achieves better normalized ESS than other methods
except for Tiny-ImageNet experiment. However, its poor predictive performance diminishes the
preference for P-CSGMCMC. Taking this into account, L2E demonstrates comparable level of ef-
ficiency among practical methods, even utilizing additional neural networks. We also report wall
clock time of each method in Table 18.

5 CONCLUSION

In this work, we introduced a novel meta-learning framework called L2E to improve SGMCMC meth-
ods. Unlike conventional SGMCMC methods that heavily rely on manually designed components
inspired by mathematical or physics principles, we aim to learn critical design components of SGM-
CMC directly from data. Through experiments, we show numerous advantages of L2E over existing
SGMCMC methods, including better mixing, improved prediction performance, and a decreased need
for tuning hyperparameters. Our learning-based approach would be a promising direction to solve
several challenges that SGMCMC methods face in BNNs.

Ethics and Reproducibility statement Please refer to Appendix G for full experimental detail in-
cluding datasets, models, and evaluation metrics. We have read and adhered to the ethical guideline
of International Conference on Learning Representations in the course of conducting this research.
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A COMPARISON WITH GONG ET AL. (2018)

In Table 6, we demonstrate the difference between Meta-SGMCMC (Gong et al., 2018) and L2E.
Meta-SGMCMC aims to build a sampler through meta-learning that rapidly converges to the target
distribution and performs accurate simulation. This goal aligns with the objectives of all SGMCMC
methods. However, our approach is specifically designed with the more concrete purpose of effec-
tively simulating multi-modal DNN posterior distribution and also generalizing to unseen problems.
We compare L2E to Meta-SGMCMC in various aspects in the following subsections.

A.1 DIFFERENCE IN PARAMETERIZATION OF META MODELS

To achieve our goal, we did not follow the design of the diffusion matrix and curl matrix as done
by Meta-SGMCMC. We firstly state the update rule for a joint variable z = (θ, r) ∈ R2d presented
in Gong et al. (2018).

rt+1 = (1− ϵtDf (zt))rt − ϵtQf (zt)∇θŨ(θt) + ϵtΓr(zt) + ξt

θt+1 = θt + ϵtQf (zt)rt + ϵtΓθ(zt)

ξt ∼ N (0, 2ϵtDf (zt)), Γi(z) :=

2d∑
j=1

∂

∂zj
(Dij(z) +Qij(z))

(12)

They aimed to learn Df and Qf to build SGMCMC that can fastly converge to target distribution
with small bias. This design has two limitations to achieve our goal, efficient exploration of multi-
modal large scale BNNs posterior distribution. Firstly, learning Df and Qf to be dependent on
z harms scalability of algorithm since it introduces a new correction term Γi(z) which forces to
compute the gradient of Df and Qf with respect to z. This makes significant computational burden
as the dimension of z increases, and requires an additional approximation. While Meta-SGMCMC
attempted to address this issue of computational cost through finite difference, but it still introduces
additional computation with time complexity O(HD) where H is number of hidden units of neural
network in meta-sampler and D is dimension of θ. Also, it is important to note that adding such
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Table 7: Experiments on CIFAR-10 following experiments in Gong et al. (2018)
.

Methods NT ACC NT+AF ACC NT+Data ACC NT NLL/100 NT+AF NLL/100 NT+Data NLL/100

Meta-SGMCMC 78.12±0.035 74.41±0.11 89.97±0.04 68.88±0.15 79.55±0.057 15.66±0.28

L2E 79.21±0.203 75.91±0.200 92.49±0.234 63.23±0.46 72.11±0.22 11.82±0.81

Table 8: Experiments on MNIST following experiments in Gong et al. (2018)
.

Methods NT ACC NT+AF ACC NT+Data ACC NT NLL/100 NT+AF NLL/100 NT+Data NLL/100

Meta-SGMCMC 98.36±0.02 97.72±0.02 98.62±0.02 640±6.25 875±3.19 230±3.23

L2E 98.39±0.05 98.07±0.08 - 558±3.19 679±6.65 -

approximation can negatively impact the convergence of the sampler. On the other hand, as we keep
the diffusion and curl matrices independent of z and learns the kinetic energy, we can avoid this
pathology without sacrificing the flexibility of the sampler.

Additionally, since Df and Qf mainly function as multipliers for gradient and momentum, learning
them may not be as effective as it should be for effective exploration in low energy regions. In low
energy regions where the norm of gradient and momentum are extremely small, it is difficult to make
reasonable amount of update of θ for exploration by multiplying Qf to momentum and gradient. By
contrast, In the update rule of L2E (7), αϕ, βϕ are added to the gradient, which is more suitable
for controlling the magnitude and direction of update in low energy regions. Also, ablation study
in Table 12 shows the inferior performance of learning Df and Qf in terms of classification accuracy
and predictive diversity in our setting. Therefore, we argue that learning kinetic energy gradient is
better than learning Df and Qf , as it avoids additional computation and allows the sampler to mix
better especially around the low energy region.

A.2 DIFFERENCE IN META-TRAINING PROCEDURE

There are significant differences between two methods in meta-training pipeline. Firstly, the most
notable distinction is that Meta-SGMCMC learns with only one task, requiring the training of a new
learner for each problem. This poses an issue as a single learner may not generally apply well to
various problems. In contrast, our approach involves sampling from a task set composed of diverse
datasets and architectures for training. Another crucial difference is the choice of estimator for the
meta-objective gradients. Gong et al. (2018) employs Truncated BackPropagation Through Time
(TBPTT) which truncates computational graphs of a long inner-loop to estimate the meta gradient.
While this approach can save computational cost by avoiding backpropagation through long com-
putational graph, it results in a biased estimator of meta-gradient. To address these issues, we utilize
ES to compute unbiased estimator of meta-gradient efficiently.

A.3 DIFFERENCE IN META-TRAINING OBJECTIVES

Previous studies have proposed various meta-objectives to achieve goals similar to ours. Gong et al.
(2018) minimizes the KL(qt|π), where π is target distribution and qt is the marginal distribution
of θ at time t for good mixing. On the other hand, Levy et al. (2017) employs meta-objective
maximizing the jump distances between samples in weight space and simultaneously minimizing the
energy in order to make sampler rapidly explore between modes. However, explicitly maximizing
the jump distances in weight space can be easily cheated, as the distances between weights does not
necessarily lead to the difference in the functions, resulting in trivial sampler with which achieving
the balance between convergence and exploration is hard. Also, minimizing the divergence with
target distribution seems sensible, but due to intractable qt, computing the gradient of qt should
resort to gradient estimator. Gong et al. (2018) used stein-gradient estimator, which requires multiple
independent chains so it harms scalability. Also, this objective does not lead the learned sampler
to explore multi-modal distribution. Gong et al. (2018, Figure 3) shows that the learned sampler
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Figure 7: 1-D synthetic regression of L2E, DE, HMC. See § 5 for details and discussion.

quickly converges to low energy region, but learned friction term Df restricts the amount of update
in low energy region, limiting the exploration behaviour. Among choices, we find out that BMA
meta-loss is a simple yet effective meta-objective that naturally encodes exploration-exploitation
balance without numerical instability and exhaustive hyperparameter tuning.

A.4 EXPERIMENTAL RESULTS

In order to compare L2E with Meta-SGMCMC, we exactly replicate the experimental setup of MNIST
and CIFAR-10 experiments in Gong et al. (2018) and evaluate performance of L2E. These exper-
iments evaluate how well each method generalizes to unseen Neural Network architecture (NT),
activation function (AF) and dataset (Data) which were unseen during the meta-learning process.
For the experimental details, please refer to the experiments section of Gong et al. (2018). We use
same scale of metrics in Gong et al. (2018) for conveniently comparing two methods. We report
ACC and NLL on test dataset. Since L2E used MNIST dataset during meta-train, we do not evalu-
ate Dataset generalization experiments on MNIST. Meta-SGMCMC used 20 parallel chains with 100
epochs for MNIST and 200 epochs for CIFAR-10. We use single chain with 100 burn-in epochs for
both experiments, and use 10 thinning epochs for collecting 20 samples.

In Table 7 and Table 8, we confirm that L2E significantly outperforms Meta-SGMCMC for all gen-
eralization types in terms of ACC and NLL. Notably, in CIFAR-10 experiment, despite L2E was
not trained on the CIFAR-10 during meta-learning, L2E significantly outperforms Meta-SGMCMC
with a wide margin indicating that our approach better generalizes to unseen datasets compared to
Meta-SGMCMC

B ANALYSIS OF EXPLORATION PROPERTY

In this section, we analyze how L2E can collect diverse samples in terms of weight space and func-
tion space with a single MCMC chain. We plot l2 norm of ∆θ = θt+1 − θt at time t, and training
cross-entropy loss (NLL) for 200 epochs and comparing it with DE and CSGMCMC. For L2E, this
is equivalent to track the norm of parameterized gradient βϕ in (7) since ||βϕ||2 = ||∆θ||2

ϵ2 . In Fig-
ure 8, we find that L2E updates θ with a larger magnitude in local minima than in the early stages of
training. This tendency is different from other gradient-based optimizer or MCMC methods where
the amount of update is relatively small at local minima. Additionally, we notice that L2E actively
updates θ at minima while maintaining loss as nearly constant. This trend is consistently observed
in both CIFAR-10 and CIFAR-100, implying that L2E learns some common knowledge of posterior
information across tasks for efficient exploration in low loss regions. Various experimental results
(e.g., see Figures 3 to 6) support that L2E is good at capturing multi-modalities of BNNs posterior
with a single trajectory. Since L2E produces significant amount of updates at local minima without
increasing the loss, we can say that our parameterized gradients learned the general knowledge to
explore high density regions among different modalities.
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Figure 8: Plots of ||∆θ||2 and train NLL during training of L2E, DE, CSGMCMC. Top: CIFAR-10,
Below: CIFAR-100. L2E updates θ with a larger magnitude in local minima than in the early stages
of training while other methods only make very small updates of θ at local minima.

C ADDITIONAL EXPERIMENTS

C.1 1-D SYNTHETIC REGRESSION

We conduct 1-D synthetic regression task to visually check whether L2E can capture the epistemic
uncertainty. For the training data, we generate 1000 data points from underlying true function
y = sin(x), within the interval [−5, 1] and [1, 4]. We use DE and HMC as baselines. We collect
50 parameters for each methods and plot the mean prediction and 95% confidence interval of the
prediction. For L2E, we do not fine-tune the learned sampler used in the main experiments. We use
thinning interval of 50 training steps and 1000 burn-in steps for L2E, 300 training steps for each
single solution of DE and 1000 burn-in steps and 100 leap-frog steps for HMC. We use 2 layers MLP
with 100 hidden units and ReLU activation to estimate the function.

Effective method for capturing epistemic uncertainty should make confident predictions for the train-
ing data and should be uncertain on OOD data points. Figure 7 shows that L2E better captures ’in-
between’ uncertainty than DE. L2E generally produces diverse predictions for out-of-distribution
data points, especially for the input space between two clusters of training data while DE shows
relatively confident prediction in that region. HMC is known for the golden standard for posterior
inference in Bayesian method. Our experimental result aligns with this common knowledge since
HMC is the best in terms of capturing epistemic uncertainty among three methods especially in areas
out of the range of training points. While our approach falls short of HMC, it demonstrates better
uncertainty estimation than that of DE and shows similar predictive uncertainty with HMC between
two training points cluster. These experimental results align with the OOD detection experiments
and convergence diagnostics presented in our main text, indicating L2E performs effective posterior
inference. It is important to note that even without meta-training on the regression datasets, L2E can
adapt well to the regression problem.

C.2 IMAGE CLASSIFICATION WITH DATA AUGMENTATION

Since applying data augmentation violates Independently and Identically Distributed(IID) assump-
tion of the dataset which is commonly assumed by Bayesian methods, this can lead to model mis-
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specification (Wenzel et al., 2020; Kapoor et al., 2022). Therefore, prior work such as Izmailov et al.
(2021b) argued the incompatibility between Bayesian methods and data augmentation. However,
data augmentation is an indispensable technique in modern machine learning so it is also interesting
to see how L2E performs with data augmentation. We run the image classification experiments on
CIFAR-10 and CIFAR-100 with random crop and horizontal flip for the data augmentation. Since
using data augmentation introduces Cold Posterior Effect (Wenzel et al., 2020) for Bayesian meth-
ods such as CSGMCMC and L2E, we additionally tune the temperature hyperparameter for these
methods. We use T = 0.01 for CSGMCMC and T = 0.001 for L2E in both experiments. Please refer
to Wenzel et al. (2020) for detailed analysis of Cold Posterior Effect. We collect 10 samples for all
methods for these experiments.

In Table 9, in terms of predictive accuracy, DE outperforms other baselines on CIFAR-10 and L2E
beats other baselines on CIFAR-100. With data augmentation, it is not very surprising that DE
outperforms other Bayesian methods like L2E and CSGMCMC in terms of predictive accuracy and
calibration since they suffer from model misspecification and temperature tuning can partially handle
this problem (Kapoor et al., 2022). This can explain why L2E shows worst NLL in CIFAR-10
experiment. When it comes to predictive diversity, L2E significantly outperforms baselines on both
experiments. Although applying data augmentation introduces significant variations to the posterior
landscape, we confirm that L2E still maintains the exploration property. To sum up, we argue that
L2E is still practical method even with data augmentation since it shows competitive predictive
performance and efficiently explores the posterior landscape.

C.3 ADDITIONAL ABLATION STUDIES

In this section, we conduct additional ablation studies to check how length of inner-loops affect
the convergence of the learned sampler, and whether diversity of meta-train datasets affect OOD
detection performance. We use two variants of L2E for each experiment.

• Short L2E: meta-trained with 1000 inner-loop steps. L2E originally uses 3000 inner-loop
steps for meta-training.

• Small L2E: meta-trained only on Fasion-MNIST dataset.

Table 11 shows that model meta-trained with short inner-loop length(Short-L2E) makes significant
drop of predictive accuracy and functional diversity. This implies that length of inner-loop is crucial
for learning to explore and converge. When inner loop is too short, the sampler may not sufficiently
learn information about the loss surface in low-loss regions during meta-training. Then, the sampler
will fail to learn desirable properties such as exploration in minima or fast convergence.

In Table 10, we confirm that seeing more datasets during meta-training stage do not necessarily lead
to better OOD detection performance. Small L2E shows almost similar OOD detection performance
with L2E or even better performance for some datasets.

D RELATED WORKS

There are three lines of literature related to our work.

Scalable MCMC Since the scale of modern machine learning tasks get bigger in terms of model
size and dataset size, Welling & Teh (2011) presented scalable MCMC algorithm and this becomes
popular for posterior inference in BNNs. However, in real world application, these algorithms suffer
from slow convergence and have difficulty with sampling from multi-modal posterior distribution
since they requires small stepsizes to converge to target distribution. To improve sampling efficiency
of SGMCMC, several variants have been proposed. Chen et al. (2014) introduced additional momen-
tum variable to promote fast traversing, Ma et al. (2015) and Li et al. (2016) introduced precondi-
tioner to exploit the local geometry of target distribution. Recently, Zhang et al. (2020) proposed
CSGMCMC, integrating SGMCMC and cyclic learning rate for exploring diverse modes of posterior
distribution. This algorithm shows competitive performance in terms of predictive accuracy, but still
insufficient for capturing multi-mode in BNNs (Fort et al., 2019).
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Table 9: Results of image classification with data augmen-
tation.

Dataset Method ACC ↑ NLL ↓ ECE ↓ KLD ↑

CIFAR-10
DE 0.927±0.001 0.218±0.002 0.021±0.001 0.238±0.001

CSGMCMC 0.923±0.001 0.239±0.003 0.014±0.001 0.125±0.001

L2E 0.924±0.003 0.249±0.001 0.042±0.002 0.332±0.003

CIFAR-100
DE 0.707±0.001 1.053±0.002 0.096±0.005 0.515±0.002

CSGMCMC 0.697±0.001 1.066±0.007 0.064±0.001 0.373±0.005

L2E 0.710±0.001 1.053±0.005 0.053±0.001 0.911±0.007

Table 10: Ablation study on OOD de-
tection

In-dist OOD small L2E L2E

CIFAR-10
CIFAR-100 0.855±0.001 0.851±0.001

SVHN 0.929±0.001 0.931±0.003

Tiny-ImageNet 0.855±0.001 0.853±0.001

CIFAR-100
CIFAR-10 0.789±0.003 0.792±0.002

SVHN 0.912±0.004 0.917±0.003

Tiny-ImageNet 0.777±0.001 0.782±0.003

Table 11: Results of ablation study for inner-loop length

Dataset L2E ACC ↑ NLL ↓ ECE ↓ KLD ↑

CIFAR-10 Short L2E 0.8726 0.4021 0.0640 0.3661
L2E 0.8952 0.3310 0.0413 0.6296

CIFAR-100 Short L2E 0.6257 1.3811 0.1186 0.9404
L2E 0.6737 1.2205 0.0962 1.5836

Learned optimization Recently, there have been several studies replacing hand-designed optimiz-
ers such as Adam and SGD by learnable function parameterized by Neural Networks. Andrychowicz
et al. (2016) firstly demonstrated that meta-learning the update functions can outperform hand-
designed optimizers in modern machine learning tasks. Recently, Metz et al. (2022b) released
general purpose learned optimizer, which is meta-trained on set of small scale machine learning
problems and can generalize to many unseen large scale machine learning tasks.

Meta-Learning and MCMC There exists line of work that parameterize the transition kernel of
MCMC with trainable function for various purposes. Levy et al. (2017) and Song et al. (2017) used
learnable invertible operator to automatically design the transition kernel of HMC for good mixing.
For SGMCMC, Gong et al. (2018) parameterized the curl matrix and acceleration matrix using neural
networks under the framework of Ma et al. (2015). Gong et al. (2018) is the closest work for our
method. We demonstrate the difference with this work and other discussions in § 5.

E DETAILS FOR META-TRAINING

For meta-training, we construct our experiment code based on JAX learned-optimization pack-
age (Metz et al., 2022a). Also, we build our own meta-loss and L2E with specific input features
and design choice. Therefore, we construct our own meta-learning task distribution that L2E can
efficiently learn knowledge for better generalization for large-scale image classification task.

E.1 INPUT FEATURES

We use the following input features for L2E:

• raw gradient values
• raw parameter values
• raw momentum values
• running average of gradient values

Running average feature is expanded for multiple time scale in that we use multiple momentum-
decay values for averaging. We use 0.1, 0.5, 0.9, 0.99, 0.999 and 0.9999 for momentum decay so
that running average feature is expanded into 6-dimensions. Therefore, we have total 9-dimensional
input features for each dimension of parameter and momentum. Input features are normalized so
that l2 norm with respect to input features of different dimensions become 1. αϕ and βϕ share
weights of neural network except for the last layer of MLP, so that we can get two quantities with
single forward pass. This weight sharing method is employed in Levy et al. (2017) or other recent
literature in learned optimization like in Metz et al. (2022b) and Metz et al. (2019).
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Table 12: Results of ablation studies

Dataset L2E ACC ↑ NLL ↓ ECE ↓ KLD ↑

Fashion-MNIST
Small L2E 0.9107 0.2813 0.0217 0.1211

Precond L2E 0.9032 0.2922 0.0153 0.1322
L2E 0.9169 0.2451 0.0079 0.2465

CIFAR-10
Small L2E 0.9062 0.2984 0.0486 0.6768

Precond L2E 0.8702 0.4082 0.0651 0.5189
L2E 0.9039 0.3074 0.0527 0.6481

CIFAR-100
Small L2E 0.6866 1.1962 0.1498 1.4812

Precond L2E 0.5888 1.6447 0.2051 1.3674
L2E 0.6972 1.1346 0.1302 1.4659

Tiny-ImageNet
Small L2E 0.5360 2.0197 0.0795 2.4556

Precond L2E 0.3342 2.9357 0.1519 0.8814
L2E 0.5847 1.7339 0.1107 1.0747

E.2 TASK DISTRIBUTION

Dataset We use MNIST, Fashion-MNIST, EMNIST and MedMNIST for meta training. We do
not use resized version of dataset for meta training. For MedMNIST, we use the BloodMNIST in
the official website.

Neural network architecture At each outer iteration, we randomly sample one configuration of
neural network architecture which is constructed by the possible choice below. We use the following
options for neural network architecture variation:

• Size of the convolution output channel : {4, 8, 16}
• Number of convolution layers: {1, 2, 3, 4, 5}
• Presence of the residual connection: boolean

E.3 META-TRAINING PROCEDURE

General hyperparameter For meta-training, we fix the length of the inner loop for all tasks at
3000 iterations. We determine this by monitoring the meta-objective during training and set suffi-
cient length of inner loop for L2E to enter to high-density region regardless of tasks. This setting
can vary when task distribution is changed. To compute the meta-objective, we collect 10 inner-
parameters with a thinning interval of 50 during the last 500 iterations of the inner-loop. We find
out that this thinning interval and the number of collected inner parameters do not have a signif-
icant impact on the model performance. Also, we use 1000 iterations of outer-loop for training
meta-parameter since meta-loss converges after 1000 outer iterations.

Outer optimization For training meta-parameter, we use Adam with learning rate 0.01 and β1 =
0.9, β2 = 0.99. We apply gradient clipping to the gradient of meta-objective to prevent unstable
training due to the different gradient scale among tasks.

F ABLATION STUDIES

In Table 12, we demonstrate the results from our ablations studies. We evaluate how the size of
task set can affect the generalization performance of L2E and the parameterization choice can make
impact on the performance. We use following two variants of L2E

• Small L2E: meta-trained on only one dataset, using small architectures. In detail, this
model only use Fashion-MNIST dataset and channel sizes of 4 and depths of 1 and 2 are
possible choices of random configuration.

• Precond L2E: Parameterization of L2E changes from designing kinetic energy gradient to
preconditioner.
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Table 13: Hyperparameters for DE.

Method fashion-MNIST CIFAR-10 CIFAR-100 Tiny-ImageNet

Optimizer SGDM SGDM SGDM SGDM
Num models 100 100 100 10
Total epochs 5000 5000 5000 500
Initial learning rate 0.1 0.1 0.1 0.1
Learning rate schedule Cosine decay Cosine decay Cosine decay Cosine decay
momentum decay 0.5 0.1 0.1 0.1
Weight decay 5× 10−4 5× 10−4 1× 10−3 5× 10−4

Batch size 128 128 128 128

Table 14: Hyperparameters for CSGMCMC .

Method fashion-MNIST CIFAR-10 CIFAR-100 Tiny-ImageNet

Num burn in epochs 100 100 100 100
Num models 100 100 100 10
Total epochs 5100 5100 5100 600
Thinning interval 50 50 50 50
exploration ratio 0.8 0.8 0.94 0.8
Step size 2× 10−6 2× 10−6 2× 10−6 1× 10−6

Step size schedule Cosine Cosine Cosine Cosine
Momentum decay 0.5 0.5 0.1 0.1
Weight decay 5× 10−4 5× 10−4 1× 10−4 5× 10−4

Batch size 128 128 128 128

Firstly, we confirm that L2E trained with larger task distribution shows better generalization per-
formance. Although small L2E shows decent performance on Fashion-MNIST and CIFAR-10, it
shows significant drop of performance in Tiny-ImageNet and CIFAR-100. This implies that further
scaling of task distribution can lead L2E to show better performance in diverse unseen tasks. Also,
we compare the method parameterizing D(z), Q(z) with neural networks as in Gong et al. (2018).
This shows that our parameterization is significantly better than designing preconditioner. Since
preconditioner matrix can only work as multiplier of learning rate or noise scale, it has limitation
for its expressivity which shows limitation in BNNs.

G EXPERIMENTAL DETAILS

We used JAX library in our experiments.In order to facilitate reproducibility of our results, we
provide not only the code and configurations. We use as an NVIDIA RTX-3090 GPU with 24GB
VRAM and NVIDIA RTX A6000 with 48GB.

G.1 REAL-WORLD IMAGE CLASSIFICATION

Dataset We use tensorflow dataset for fashion-MNIST, CIFAR-10 and CIFAR-100. We utilize
Tiny-ImageNet with image size of 64x64.

Hyperparameter We report hyperparameters for each methods in Table 13, Table 14 and Table 16.
We tune the hyperparameters of methods using BMA NLL as criterion with number of 10 samples.
For all methods including L2E, we tune learning rate(step size), weight decay(prior variance) and
momentum decay term. We use zero-mean gaussian as prior distribution for SGMCMC methods,
so that prior variance is equal to half of the inverse of weight decay. For momentum decay, we
grid search over α ∈ {0.1, 0.3, 0.5}. For weight decay, we also search over λ ∈ {1e − 04, 5e −
04, 1e − 03} to find best configuration. For step size, except for P-CSGMCMC, we search over
ϵ ∈ {1e − 06, 2e − 06, 1e − 05, 2e − 05, 4e − 05}. For P-CSGMCMC, due to preconditioning, we
additionaly search over bigger step size including 1e − 04, 1e − 03. In Table 17, we report the
results for different values of hyperparameter of L2E. L2E shows robust performance with varying
step size. Moreover, the performance of default value which is 0.5 shows satisfactory performance.
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Table 15: Hyperparameters for P-CSGMCMC .

Method fashion-MNIST CIFAR-10 CIFAR-100 Tiny-ImageNet

Num burn in epochs 100 100 100 100
Num models 100 100 100 10
Total epochs 5100 5100 5100 600
Thinning interval 50 50 50 50
exploration ratio 0.8 0.8 0.8 0.8
Step size 2× 10−6 1× 10−3 1× 10−3 1× 10−4

Step size schedule Cosine Cosine Cosine Cosine
Momentum decay 0.1 0.1 0.1 0.1
Weight decay 5× 10−4 5× 10−4 1× 10−4 5× 10−4

Batch size 128 128 128 128

Table 16: Hyperparameters for L2E .

Method fashion-MNIST CIFAR-10 CIFAR-100 Tiny-ImageNet

Num burn in epochs 100 100 100 100
Num models 100 100 100 10
Total epochs 5100 5100 5100 600
Thinning interval 50 50 50 50
Step size schedule Constant Constant Constant Constant
Momentum decay 0.5 0.5 0.1 0.1
Weight decay 5× 10−4 5× 10−4 1× 10−3 5× 10−4

Batch size 128 128 128 128
Step size 2× 10−5 2× 10−5 1× 10−4 1× 10−5

Consequently, not only L2E requires fewer hyperparameters compared to existing methods, but it
also requires less effort and cost for hyperparameter tuning.

Baselines We use the following as baseline methods

• Deep ensembles (Lakshminarayanan et al., 2017) : This method collects parameters
trained from multiple different initialization for ensembling. DE is often compared with
Bayesian methods in recent BNNs literature like in Izmailov et al. (2021b) in that DE in-
duce similar function to HMC which is golden standard in BNNs with BMA.

• Cyclical Stochastic Gradient MCMC (Zhang et al., 2020): Zhang et al. (2020) introduced
cyclic learning rate schedule to SGMCMC for improving exploration of sampler. CSGMCMC
usually shows descent predictive performance comparing to other existing SGMCMC meth-
ods in large-scale experiments.

• Preconditioned Cyclical Stochastic Gradient MCMC: We additionaly apply Rmsprop
style preconditioner to CSGMCMC. We follow the implementation of Izmailov et al.
(2021b).

Metrics Let p(y|x, θ) ∈ [0, 1]K be a predicted probabilities for a given input x with label y and θ
is model parameter. p(k) denotes the kth element of the probability vector. We have the following
common metrics on the dataset D consists of inputs x and labels y:

• Accuracy (ACC):

ACC(D) = E(x,y)∈D

[[
y = argmax

k
p(k)(x)

]]
. (13)

• Negative log-likelihood (NLL):

NLL(D) = E(x,y)∈D

[
− log p(y)(x)

]
. (14)
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Table 17: L2E with varying step size.

Dataset Step size ACC ↑ NLL ↓ ECE ↓ KLD ↑

fashion-MNIST 1e-05 0.9140 0.2607 0.0129 0.2354
2e-05 0.9169 0.2451 0.0079 0.2465

CIFAR-10
1e-05 0.8965 0.3229 0.0498 0.8032
2e-05 0.8968 0.3116 0.0520 0.6623
4e-05 0.9039 0.3074 0.0527 0.6481

CIFAR-100
1e-05 0.6824 1.1984 0.1230 2.4563
2e-05 0.6889 1.1708 0.1252 2.5051
4e-05 0.6986 1.1425 0.1277 2.1752

Tiny-ImageNet 1e-05 0.5847 1.7339 0.1107 1.0747
2e-05 0.5801 1.7588 0.1239 0.8879
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Figure 10: Ensemble accuracy as a func-
tion of number of ensemble, ResNet20 on
CIFAR-10

• Expected calibration error (ECE): Actual implementation of ECE includes dividing pre-
dicted probabilities with their confidence. We use following implementation

ECE(D, Nbin) =

Nbin∑
b=1

nb|δb|
n1 + · · ·+ nNbin

, (15)

where Nbin is the number of bins, nb is the number of examples in the bth bin, and δb is the
calibration error of the bth bin. We use Nbin = 15 for computing ECE.

• Pairwise Kullback-Leibler Divergence(KLD): Given set of ensemble members Θ =
{θi . . . θM}, we construct matrix A using pair of ensemble members which have Aij =

p(y|x, θi) log p(y|x,θi)
p(y|x,θj) for a given input x and y. We calculate the statistic as follows

DKL(D,M) = E(x,y)∈D

 1

M(M − 1)

∑
i̸=j

Aij

 . (16)

G.2 ADDITIONAL VISUALIZATION

Ensemble accuracy We report the ensemble accuracy as a function of number of ensemble in
other dataset setting in Figure 9, Figure 10 and Figure 11. They show that L2E can get the high
performance with relatively small number of samples than DE and CSGMCMC. For this, we do not
consider P-CSGMCMC as baseline since it shows significantly lower performance than other methods
in predictive accuracy for large scale experiments.

T-SNE visualization We report the T-SNE visualization at each dataset in Figure 12 and Figure 13.
Highlighted points represent parameters which are collected for BMA. L2E still shows specific
pattern and covers almost the entire space to collect the samples in the function space.
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Figure 11: Ensemble accuracy as a function of number of ensemble, ResNet20 on CIFAR-100
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Figure 12: T-SNE visualization of learning trajectory. fashion-MNIST, CNN

Loss surface We show the loss surface as a function of model parameters in a 2-dimensional
subspace spanned by solutions of DE, CSGMCMC, P-CSGMCMC and L2E of each dataset in Figure 14,
Figure 15 and Figure 16. L2E shows the most distinct modes except DE to collect the samples.

Cosine similarity Figure 17 and Figure 18 show the heatmap of cosine similarity between weights
of CNN on fashion-MNIST and ResNet20 on CIFAR-10. Still, DE and L2E collect more diverse
solutions in weight space than CSGMCMC in other dataset.

Training curve of L2E Figure 20 shows the training loss and nll of L2E in CIFAR-10 and CIFAR-
100. L2E does not incur any spike in the loss value, meaning that it consistently search over high
density region of posterior distribution.

G.3 COMPUTATIONAL COST

Table 18 shows the actual computational time for each methods. L2E does not incur significant
computational overhead. Consider L2E works well with extremely short thinning interval as in
Figure 19, L2E is practically sound even with the additional computational cost.

G.4 IMPLEMENTATION OF MCMC DIAGNOSTICS

We use Tensorflow Probability (Lao et al., 2020) library for calculating R̂ and ESS. We use default
parameter of the implementation. ESS is then normalized to the time consumed for running one
thinning interval, which is equivalent to 50 epochs. Since ESS is too big to report since dimension
of neural network parameters are huge for our experiments, we divide it by 10−5 and report for
convenience.
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Figure 13: T-SNE visualization of learning trajectory. Tiny-ImageNet, ResNet56
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Figure 14: Loss surface of DE, CSGMCMC, P-CSGMCMC and L2E on fashion-MNIST, CNN
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Figure 15: Loss surface of DE, CSGMCMC, P-CSGMCMC and L2E on CIFAR-10, ResNet20
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Figure 16: Loss surface of DE, CSGMCMC, P-CSGMCMC and L2E on CIFAR-100, ResNet20
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Figure 17: Cosine similarity between weights of CNN on fashion-MNIST.
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Figure 18: Cosine similarity between weights of ResNet20 on CIFAR-10.

Table 18: Wall clock time(sec) of SGMCMC methods per single epoch. Measured using NVIDIA
RTX A6000.

Method fashion-MNIST CIFAR-10 CIFAR-100 Tiny-ImageNet

CSGMCMC 0.20 1.79 1.81 41.12
P-CSGMCMC 0.21 1.83 1.83 42.36
L2E 0.32 2.64 2.66 48.43
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Figure 19: BMA accuracy and pairwise KLD by cycle length(thinning interval).
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Figure 20: Training loss(NLL+ l2norm of parameters) and training mean NLL of L2E.
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