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Abstract

Recent advancements in biological research
leverage the integration of molecules, proteins,
and natural language to enhance drug discovery.
However, current models exhibit several limita-
tions, such as the generation of invalid molec-
ular SMILES, underutilization of contextual
information, and equal treatment of structured
and unstructured knowledge. To address these
issues, we propose BioT5, a comprehensive pre-
training framework that enriches cross-modal
integration in biology with chemical knowl-
edge and natural language associations. BioT5
utilizes SELFIES for 100% robust molecular
representations and extracts knowledge from
the surrounding context of bio-entities in un-
structured biological literature. Furthermore,
BioT5 distinguishes between structured and un-
structured knowledge, leading to more effective
utilization of information. After fine-tuning,
BioT5 shows superior performance across a
wide range of tasks, demonstrating its strong
capability of capturing underlying relations and
properties of bio-entities. Our code is available
at https://github.com/QizhiPei/BioT5.

1 Introduction

Molecules and proteins are two essential bio-
entities in drug discovery (Dara et al., 2022). Small
molecule drugs have been the cornerstone of the
pharmaceutical industry for nearly a century, owing
to their unique advantages such as oral availability,
diverse modes of action, etc (AstraZeneca, 2023).
Proteins serve as the foundation of life science,
functioning as drug targets or crucial elements in
disease pathways. As illustrated in Figure 1, both
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Name: Aspirin

SMILES: CC(=O)OC1=CC=CC=C1C(=O)O

SELFIES: [C][C][=Branch1][C][=O][O][C][=C][C]

[=C][C][=C][Ring1][=Branch1][C][=Branch1][C][

=O][O]

Structure:

Name: Hemoglobin subunit beta

Gene: HBB

FASTA: MVHLTPEEKSAVTALWGKVN…

Structure:

Figure 1: Representations of molecule and protein.
Molecule can be represented by its name, bio-sequence
(SMILES and SELFIES), and 2D graph structure. Pro-
tein can be represented by its name, corresponding gene
name, bio-sequence (FASTA), and 3D structure.

molecules and proteins can be represented using se-
quences. A molecule can be depicted by a SMILES
sequence (Weininger, 1988; Weininger et al., 1989),
which is derived by traversing the molecular graph
through depth-first search and applying specific
branching rules. A protein can be represented by
a FASTA sequence (Lipman and Pearson, 1985;
Pearson and Lipman, 1988), which outlines the
amino acids in a protein. The sequential formats of
molecules and proteins facilitate the application of
Transformer models (Vaswani et al., 2017) and pre-
training techniques (Liu et al., 2019; Radford et al.,
2019) from natural language processing (NLP) to
the biomedical field. Chemberta (Chithrananda
et al., 2020) and ESM (Rives et al., 2021; Lin et al.,
2022) apply masked language modeling to molecu-
lar SMILES and protein FASTA respectively, while
MolGPT (Bagal et al., 2022) and ProtGPT2 (Ferruz
et al., 2022) leverage GPT-style models for molec-
ular and protein generation.

Scientific literature (Beltagy et al., 2019; Canese
and Weis, 2013) and biological databases (Kim
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et al., 2023; Boutet et al., 2007) serve as knowledge
repositories of molecules and proteins. These re-
sources detail properties, experimental results, and
interactions between various bio-entities, which
cannot be explicitly inferred from molecular or
protein sequences alone. Consequently, a recent
trend involves jointly modeling text along with
molecules and proteins, allowing the textual de-
scriptions to enhance molecular and protein repre-
sentations. MolT5 (Edwards et al., 2022) adopts
the T5 (Raffel et al., 2020) framework to molecular
SMILES and biomedical literature. MolXPT (Liu
et al., 2023b) and Galactica (Taylor et al., 2022)
are GPT models trained on text and bio-entities,
such as SMILES and FASTA sequences. Deep-
EIK (Luo et al., 2023) fuses the encoded features
from multi-modal inputs using attention (Vaswani
et al., 2017) mechanism. Despite their success,
there is still significant room for improvement: (i)
Prior work often relies on SMILES to represent
molecules. However, addressing the issue of gen-
erating invalid SMILES remains a challenge to
overcome (Edwards et al., 2022; Li et al., 2023).
(ii) The contextual information surrounding molec-
ular or protein names could offer valuable insights
for understanding the interactions and properties of
bio-entities. Developing effective methods to lever-
age this information merits further attention. (iii)
Existing research tends to treat structured data (e.g.,
molecule-text pairs from databases) and unstruc-
tured data (e.g., text sequences in literature) equally.
However, structured data could be utilized more
effectively to further enhance overall performance.

To address the above challenges, in this paper,
we introduce BioT5, a comprehensive pre-training
framework encompassing text, molecules, and pro-
teins. BioT5 leverages SELFIES (Krenn et al.,
2020) to represent small molecules since its advan-
tage over SMILES is that SELFIES offers a more
robust and error-tolerant molecular representation,
eliminating issues of illegitimate structures often
encountered with SMILES. There are mainly two
steps for BioT5 pre-training:

(1) Data collection & processing: We gather
text, molecule, and protein data, as well as existing
databases containing molecule-text parallel data
and protein-text parallel data. For the text data
(PubMed) from the biological domain, we employ
named entity recognition and entity linking to ex-
tract molecular and protein mentions, replacing
them with the corresponding SELFIES or FASTA

sequences. Following Liu et al. (2023b), we re-
fer to such data as “wrapped” text. Text tokens,
FASTA sequences, and SELFIES are tokenized
independently (see Section 3.2 for more details).

(2) Model training: BioT5 utilizes a shared en-
coder and a shared decoder to process various
modalities. The standard T5 employs the “recover
masked spans” objective, wherein each masked
span and its corresponding part share the same sen-
tinel token. We refer to the aforementioned train-
ing objective function as the “T5 objective” for
simplicity. There are three types of pre-training
tasks: (i) Applying the standard T5 objective to
molecule SELFIES, protein FASTA, and general
text independently, ensuring that the model pos-
sesses capabilities in each modality. (ii) Applying
the T5 objective to wrapped text from the biologi-
cal domain, where all text, FASTA, and SELFIES
tokens can be masked and recovered. (iii) For the
structured molecule-text data, we introduce a trans-
lation objective. Specifically, BioT5 is trained to
translate molecule SELFIES to the corresponding
description and vice versa. Likewise, the transla-
tion objective is applied to protein-text data.

After pre-training, we fine-tune the obtained
BioT5 on 15 tasks covering molecule and pro-
tein property prediction, drug-target interaction
prediction, protein-protein interaction prediction,
molecule captioning, and text-based molecule gen-
eration. BioT5 achieves state-of-the-art perfor-
mances on 10 tasks and exhibits results comparable
to domain-specific large models on 5 tasks, demon-
strating the superior ability of our proposed method.
BioT5 model establishes a promising avenue for
the integration of chemical knowledge and natu-
ral language associations to augment the current
understanding of biological systems.

2 Related Work

In this section, we briefly review related work about
cross-modal models in biology and representations
of molecule and protein.

2.1 Cross-modal Models in Biology

Language models in the biology field have
gained considerable attention. Among these,
BioBERT (Lee et al., 2020) and BioGPT (Luo
et al., 2022), which are pre-trained on scientific
corpora, have been particularly successful in effec-
tively understanding scientific texts. More recently,
cross-modal models focusing on jointly modeling



text with bio-sequences have emerged. They can
be categorized into the following three groups.
Cross Text-molecule Modalities MolT5 (Ed-
wards et al., 2022) is a T5 (Raffel et al., 2020)-
based model, which is jointly trained on molecule
SMILES and general text corpus. MoSu (Su
et al., 2022) is trained on molecular graphs and
related textual data using contrastive learning.
MolXPT (Liu et al., 2023b) is a GPT (Radford
et al., 2018)-based model pre-trained on molecule
SMILES, biomedical text, and wrapped text. Dif-
ferent from BioT5, these models all use SMILES to
represent molecules, which leads to validity issues
when generating molecules.
Cross Text-protein Modalities ProteinDT (Liu
et al., 2023a) is a multi-modal framework that
uses semantically-related text for protein design.
BioTranslator (Xu et al., 2023a) is a cross-modal
translation system specifically designed for anno-
tating biological instances, such as gene expression
vectors, protein networks, and protein sequences,
based on user-written text.
Cross Three or More Biology Modalities Galac-
tica (Taylor et al., 2022) is a general GPT-based
large language model trained on various scien-
tific domains, including scientific paper corpus,
knowledge bases (e.g., PubChem (Kim et al., 2023)
molecules, UniProt (uni, 2023) protein), codes, and
other sources. DeepEIK (Luo et al., 2023) fuses the
feature from multi-modal inputs (drugs, proteins,
and text). Then attention (Vaswani et al., 2017)
mechanism is adopted to do textual information
denoising and heterogeneous features integration.

Our work differs from previous studies in sev-
eral ways: (1) we primarily focus on two biological
modalities—molecule, protein-with text serving
as a knowledge base and bridge to enrich the un-
derlying relations and properties in the molecule
and protein domains; (2) we use multi-task pre-
training to model the connections between these
three modalities in a more comprehensive manner.
(3) we use SELFIES instead of SMILES to repre-
sent molecules, which is more robust and resolves
the validity issue in molecule generation tasks.

2.2 Representations of Molecule and Protein

Molecule Representation The representation and
modeling of molecules have long been a challenge
in bioinformatics. There are many methods to
represent a molecule: name, fingerprint (Rogers
and Hahn, 2010a), SMILES (Weininger, 1988;

Weininger et al., 1989), InChl (Heller et al., 2013),
DeepSMILES (O’Boyle and Dalke, 2018), SELF-
IES (Krenn et al., 2020), 2D molecular graph,
etc. SMILES (Simplified Molecular-Input Line-
Entry System), a compact and textual representa-
tion of the molecular structure, is the most common
method. It employs a sequence of characters to en-
code atoms, bonds, and other molecular features.
However, SMILES has several drawbacks (Krenn
et al., 2022), such as the lack of syntactic and se-
mantic robustness, which significantly affects the
validity of molecules generated by deep learning
models (Edwards et al., 2022). To address this is-
sue, SELFIES (Self-referencing Embedded Strings)
is introduced as a 100% robust molecular string rep-
resentation (Krenn et al., 2020). Every permutation
of symbols within the SELFIES alphabet invariably
generates a chemically valid molecular structure,
ensuring that each SELFIES corresponds to a valid
molecule. Unlike existing works introduced in Sec-
tion 2.1 that use SMILES for molecule representa-
tion, we employ SELFIES with separate encoding
in BioT5 to achieve 100% validity in downstream
molecule generation tasks.
Protein Representation Protein can also be repre-
sented in various ways, such as by its name, cor-
responding gene name, FASTA format, or 3D ge-
ometric structure. The FASTA format is a com-
mon choice for encoding protein sequences, which
uses single-letter codes to represent the 20 different
amino acids. In BioT5, we also employ FASTA
format for protein representation.

Unlike Edwards et al. (2022) and Taylor et al.
(2022) that share the dictionary between bio-
sequence tokens and nature language tokens, BioT5
uses a separate dictionary and biology-specific tok-
enization to explicitly distinguish biological modal-
ities. We give further analysis of this in Section 3.2.

3 BioT5

The overview of the BioT5 pre-training is illus-
trated in Figure 2. We combine data from different
modalities to perform multi-task pre-training.

3.1 Pre-training Corpus

As shown in Figure 2, the pre-training corpus of
BioT5 is categorized into three classes: (1) Single-
modal data, including molecule SELFIES, protein
FASTA, and general text. For small molecules,
we use the ZINC20 (Irwin et al., 2020) dataset
and convert SMILES to SELFIES. For protein



BioT5

Effect of <bom>[C][C]<M1>[Ring1]
[C]…<eom> on cultured fibroblasts: 

<M2> (the related amino acid sequence 
is <bop><p>M<M3><p>L<p>G…<eop>

and inhibition of their uptake.

<bom>[C][=C][C]<M1>[C][=C][Ring1][=Br
anch1][Cl]<eom>

In addition, a variety of <M1> are 
involved in the <M2> folding pathway.

<bom>[Cl][C][Branch1][C][Cl][Cl]<eom>
MOLECULE NAME: Chloroform. 
DESCRIPTION: Chloroform is a colorless 
liquid with a pleasant, nonirritating odor 
and a slightly sweet taste…

<bop><p>M<p>K<p>R<p>R<p>Q<p>K<p
>R<p>K<p>H<p>L<p>E<p>N<p>E…<eop>

PROTEIN NAME: Protein FAM170A…
FUNCTION: Acts as a nuclear 
transcription factor... Binds to heat 
shock promoter elements (HSE). 
SUBCELLULAR LOCATION: Nucleus. 
PROTEIN FAMILIES: FAM170 family

<M1>[=C][Branch1][Branch1]

<bop><p>M<p>Y<p>Q<M1><p>C…<eop> <M1><p>A<p>I<p>N<p>P

<M1>co-chaperones, immunophilins, 
and other proteins <M2>Hsp90-

mediated protein

<M1>[N][Branch1] <M2> release of 
lysosomal hydrolases 

<M3><p>K<p>M<p>R<p>F

Task ID

#1

#2

#3

#4

#5

#6

Modality

Molecule

SELFIES

Protein FASTA

General Text

Wrapped

Sentences

Molecule-text

Pair

Protein-text

Pair

Figure 2: Overview of BioT5 pre-training. The solid line refers to the “T5 objective”, which aims to reconstruct the
original unmasked input. Each consecutive span of masked tokens is replaced with a sentinel token, depicted as
<M1>, <M2>, and <M3>. We apply this objective to molecule SELFIES (task #1), protein FASTA (task #2), general text
(task #3), and wrapped text (task #4). The dashed line represents the bidirectional translation between bio-sequences
and structured text description (task #5 and #6).

FASTA, we randomly sample proteins from the
Uniref50 (Suzek et al., 2007) dataset, filtering
out proteins exceeding a specified length, result-
ing in a collection of 27M proteins For general
text, we use the “Colossal Clean Crawled Corpus”
(C4) dataset (Raffel et al., 2020). (2) Wrapped
text, where molecule names are replaced with their
corresponding SELFIES and gene names are ap-
pended with related protein FASTA. We use 33M
PubMed articles (Canese and Weis, 2013) and ap-
ply BERN2 (Sung et al., 2022) for named entity
recognition. The scientific sentences which are
not replaced or appended by bio-sequences are
remained as a supplement to general text. The
detailed process is depicted in Figure 4 and dis-
cussed in Appendix B. (3) Molecule-description
pairs and protein-description pairs. For molecule-
text data, we collect 339K molecule SELFIES
along with their corresponding names and descrip-
tions from PubChem (Kim et al., 2019), excluding
all molecules present in the downstream ChEBI-
20 dataset (Edwards et al., 2022) to avoid poten-
tial data leakage. For protein-text data, we obtain
569K protein FASTA-description pairs from Swiss-
Prot (Boutet et al., 2007), which contains high-
quality annotations of various protein properties.
Details are left in Appendix E.1.

3.2 Separate Tokenization and Embedding

In most previous works, the representation of
molecules and proteins has not been modeled with

SMILES:
[Br-].[Li+]

SELFIES:
[Br-1].[Li+1]

Structure:

Input MolT5 Ours Ground Truth

The molecule is 
a metal 

tetraborate, a 
metal ion and a 

monovalent 
inorganic anion. 
It is a conjugate 

acid of a 
dibromolithium.

The molecule is 
a metal bromide
salt with a Li(+)
counterion. It 
has a role as a 

fertilizer. It is an 
inorganic 

bromide salt 
and a lithium

salt.

The molecule is a 
lithium salt in 

which the 
counterion is 
bromide. The 

anhydrous salt 
forms cubic 

crystals similar to 
common salt. It is 
a bromide salt and 

a lithium salt.

Figure 3: Case for tokenization. MolT5 processes
“Br”(bromine atom) as “B” (boron atom) and “r”, re-
sulting in incorrect descriptions including tetraborate
(related to “B”). BioT5 retains the chemically meaning-
ful group “[Br-1]” as a complete token, thereby produc-
ing the correct output.

sufficient attention to detail. MolT5 (Edwards et al.,
2022) employs the same dictionary as the original
T5, as it starts pre-training from the original T5
checkpoint. The original T5 dictionary is derived
from nature language using SentencePiece (Kudo
and Richardson, 2018). However, directly utilizing
this dictionary for molecule SMILES is subopti-
mal, as some chemically meaningful tokens, such
as functional groups or complete atoms, will be to-
kenized inaccurately. For example, in the molecule
depicted in Figure 3, the bromine atom, symbolized
as “Br” in SMILES, is tokenized as “B” (a boron
atom) and “r” by MolT5. Consequently, MolT5
incorrectly characterizes this molecule as both di-
bromolit (related to “Br”) and tetraborate (related
to “B”). The character-based tokenization of Galac-



tica (Taylor et al., 2022) suffers the same issue.
In addition to the tokenization method, shar-

ing token embeddings for different modalities (Ed-
wards et al., 2022; Taylor et al., 2022) is also ques-
tionable. In multilingual tasks, shared embeddings
allow models to accurately represent the mean-
ings of borrowed words and cognates, which retain
their original meanings across languages. How-
ever, molecules, proteins, and text represent en-
tirely distinct languages. The same token within
these three different modalities carries different
semantic meanings. For example, the token “C”
signifies character C in nature language, the car-
bon atom in molecules, and cysteine (one of the 20
amino acids) in proteins. Studies by Beltagy et al.
(2019) and Gu et al. (2021) further emphasize the
significance of domain-specific vocabulary.

To address the issues mentioned above, we
employ separate vocabularies for molecule, pro-
tein, and text. In BioT5, molecule is repre-
sented by SELFIES string, where each chemi-
cal meaningful atom group is enclosed within
brackets and tokenized as a SELFIES token. For
example, [C][=C][Br]→[C],[=C],[Br]. For
protein, to differentiate amino acids with capi-
tal letters in text, we introduce a special pre-
fix <p> for each amino acid. For example,
<p>M<p>K<p>R→<p>M,<p>K,<p>R. For text, we
use the same dictionary as the original T5. Through
this, we explicitly distinguish the semantic space of
different modalities, which maintains the inherent
integrity of each unique modality and prevents the
model from conflating meanings across modalities.

3.3 Model and Training

Model architecture BioT5 employs the same ar-
chitecture as T5 models (Raffel et al., 2020). We
follow the configuration used in T5-v1.1-base1.
The vocabulary size of BioT5 is 35, 073, differing
from the default configuration as we incorporate
separate vocabulary for molecule SELFIES and
protein amino acids. In total, the BioT5 model
comprises 252M parameters.
Pre-training During the pre-training phase, the
model is trained in a multi-task way on six tasks
that can be classified into three types: (1) Apply-
ing T5 objective to each single modality including
molecule SELFIES (task #1), protein FASTA (task
#2), and general text (task #3) independently. (2)

1https://huggingface.co/docs/transformers/
model_doc/t5v1.1

Applying T5 objective to wrapped text from scien-
tific corpus (task #4). (3) Bidirectional translation
for the molecule SELFIES-text pairs (task #5) and
protein FASTA-text pairs (task #6). By effectively
learning the underlying connections and properties
of bio-entities from textual information through
these pre-training tasks, BioT5 allows for a holistic
understanding of the biological domain, thereby fa-
cilitating enhanced prediction and generation abili-
ties in various biological tasks.
Fine-tuning BioT5 can be fine-tuned on various
downstream tasks involving molecules, proteins,
and text. To unify different downstream tasks
and reduce the gap between pre-training and fine-
tuning (Brown et al., 2020) stage, we adopt the
prompt-based fine-tuning (Gao et al., 2021) ap-
proach, which facilitates various task formats into
a sequence generation format.

4 Experiments and Results

We evaluate BioT5 on 15 well-established down-
stream tasks, which can be categorized into three
types: single-instance prediction, multi-instance
prediction, and cross-modal generation. We in-
clude details regarding fine-tuning datasets, base-
lines, and prompts in Appendix F.

For the downstream binary classification tasks
presented in Section 4.1 and 4.2, the calculation of
evaluation metrics such as AUROC and AUPRC ne-
cessitates the soft probability of the predicted label.
As we use the prompt-based fine-tuning method,
the output is either Yes for the positive label or No
for the negative label. To obtain an appropriate
label distribution, following Liu et al. (2023b), we
first extract the probabilities of Yes and No tokens
(denoted as ppos and pneg respectively) and nor-
malize them. The resulting probability for positive
label is ppos

ppos+pneg
and negative label is pneg

ppos+pneg
.

4.1 Single-instance Prediction

4.1.1 Molecule Property Prediction
Molecule property prediction aims to determine
whether a given molecule exhibits specific prop-
erties. MoleculeNet (Wu et al., 2018) is a widely
used benchmark for molecule property prediction,
encompassing diverse datasets that cover numer-
ous molecular aspects, such as quantum mechanics,
physical chemistry, biophysics, etc. In line with Liu
et al. (2023b), we conduct experiments on six bi-
nary classification tasks, including BBBP, Tox21,
ClinTox, HIV, BACE, and SIDER. Following (Fang
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Dataset BBBP Tox21 ClinTox HIV BACE SIDER Avg
#Molecules 2039 7831 1478 41127 1513 1427 -
#Tasks 1 12 2 1 1 27 -

G-Contextual 70.3±1.6 75.2±0.3 59.9±8.2 75.9±0.9 79.2±0.3 58.4±0.6 69.8
G-Motif 66.4±3.4 73.2±0.8 77.8±2.0 73.8±1.4 73.4±4.0 60.6±1.1 70.9
GROVERbase 70.0±0.1 74.3±0.1 81.2±3.0 62.5±0.9 82.6±0.7 64.8±0.6 72.6
GROVERlarge 69.5±0.1 73.5±0.1 76.2±3.7 68.2±1.1 81.0±1.4 65.4±0.1 72.3
GraphMVP 72.4±1.6 75.9±0.5 79.1±2.8 77.0±1.2 81.2±0.9 63.9±1.2 74.9
MGSSL 70.5±1.1 76.5±0.3 80.7±2.1 79.5±1.1 79.7±0.8 61.8±0.8 74.8
MolCLR 72.2±2.1 75.0±0.2 91.2±3.5 78.1±0.5 82.4±0.9 58.9±1.4 76.3
GEM 72.4±0.4 78.1±0.1 90.1±1.3 80.6 ± 0.9 85.6±1.1 67.2±0.4 79.0

KV-PLM 74.6±0.9 72.7±0.6 – 74.0±1.2 – 61.5±1.5 –
Galactica 66.1 68.9 82.6 74.5 61.7 63.2 69.5
MoMu 70.5±2.0 75.6±0.3 79.9±4.1 76.2±0.9 77.1±1.4 60.5±0.9 73.3
MolXPT 80.0 ± 0.5 77.1±0.2 95.3 ± 0.2 78.1±0.4 88.4 ± 1.0 71.7 ± 0.2 81.9

BioT5 77.7±0.6 77.9±0.2 95.4±0.5 81.0±0.1 89.4±0.3 73.2±0.2 82.4

Table 1: Performance comparison on MoleculeNet (Best, Second Best). The evaluation metric is AUROC. The
baseline results are mainly sourced from MolXPT (Liu et al., 2023b).

Model #Params. Solubility Localization

DDE 205.3K 59.77 ± 1.21 77.43 ± 0.42
Moran 123.4K 57.73 ± 1.33 55.63 ± 0.85

LSTM 26.7M 70.18 ± 0.63 88.11 ± 0.14
Transformer 21.3M 70.12 ± 0.31 75.74 ± 0.74

CNN 5.4M 64.43 ± 0.25 82.67 ± 0.32
ResNet 11.0M 67.33 ± 1.46 78.99 ± 4.41

ProtBert 419.9M 68.15 ± 0.92 91.32 ± 0.89
ProtBert* 419.9M 59.17 ± 0.21 81.54 ± 0.09
ESM-1b 652.4M 70.23 ± 0.75 92.40 ± 0.35
ESM-1b* 652.4M 67.02 ± 0.40 91.61 ± 0.10

BioT5 252.1M 74.65 ± 0.49 91.69 ± 0.05

Table 2: Performance comparison of different methods
on solubility and localization prediction tasks (Best,
Second Best). The evaluation metric is accuracy. *
represents only tuning the prediction head. The baseline
results are sourced from PEER (Xu et al., 2022).

et al., 2022), we adopt the scaffold splitting, which
is more challenging compared to random splitting.

Baselines We compare BioT5 with two types of
baselines: (1) pre-trained Graph Neural Network
(GNN) using molecular graph as input, which are
G-Contextual (Rong et al., 2020), G-Motif (Rong
et al., 2020), GROVERbase (Rong et al., 2020),
GROVERlarge (Rong et al., 2020), GraphMVP (Liu
et al., 2022), MGSSL (Zhang et al., 2021) Mol-
CLR (Wang et al., 2022) and GEM (Fang et al.,
2022); (2) pre-trained language model baselines,
which are KV-PLM (Zeng et al., 2022), Galac-
tica (Taylor et al., 2022), MoMu (Su et al., 2022)
and MolXPT (Liu et al., 2023b).

Results The results are presented in Table 1 with
all statistics derived from three random runs. From

these results, we can see that BioT5 surpasses base-
lines on most downstream tasks in MoleculeNet.
BioT5 exhibits superior performance compared
to GNN baselines that are pre-trained on 2D/3D
molecular data, underscoring the effectiveness of
knowledge in text. Furthermore, BioT5 outper-
forms other language model baselines, which may
be attributed to the presence of molecule property
descriptions in scientific contextual text or existing
biological database entries.

4.1.2 Protein Property Prediction

Protein property prediction is crucial as it provides
critical insights into the behavior and functions of
proteins. We concentrate on two protein property
prediction tasks on PEER benchmark (Xu et al.,
2022): protein solubility prediction, which aims to
predict whether the given protein is soluble, and
protein localization prediction, which is to classify
proteins as either “membrane-bound” or “soluble”.
Baselines We compare BioT5 with three types of
baselines provided in PEER benchmark: (1) feature
engineers, including two protein sequence feature
descriptors: Dipeptide Deviation from Expected
Mean (DDE) (Saravanan and Gautham, 2015)
and Moran correlation (Moran) (Feng and Zhang,
2000); (2) protein sequence encoders, including
LSTM (Hochreiter and Schmidhuber, 1997), Trans-
formers (Vaswani et al., 2017), CNN (O’Shea and
Nash, 2015) and ResNet (He et al., 2016); (3)
pre-trained protein language models, which are
pre-trained using extensive collections of protein
FASTA sequences, including ProtBert (Elnaggar
et al., 2021) and ESM-1b (Rives et al., 2021). Both



BioSNAP Human BindingDB

Method AUROC AUPRC Accuracy AUROC AUPRC AUROC AUPRC Accuracy

SVM 0.862±0.007 0.864±0.004 0.777±0.011 0.940±0.006 0.920±0.009 0.939±0.001 0.928±0.002 0.825±0.004
RF 0.860±0.005 0.886±0.005 0.804±0.005 0.952±0.011 0.953±0.010 0.942±0.011 0.921±0.016 0.880±0.012

DeepConv-DTI 0.886±0.006 0.890±0.006 0.805±0.009 0.980±0.002 0.981±0.002 0.945±0.002 0.925±0.005 0.882±0.007
GraphDTA 0.887±0.008 0.890±0.007 0.800±0.007 0.981±0.001 0.982±0.002 0.951±0.002 0.934±0.002 0.888±0.005
MolTrans 0.895±0.004 0.897±0.005 0.825±0.010 0.980±0.002 0.978±0.003 0.952±0.002 0.936±0.001 0.887±0.006
DrugBAN 0.903±0.005 0.902±0.004 0.834±0.008 0.982±0.002 0.980±0.003 0.960±0.001 0.948±0.002 0.904±0.004

BioT5 0.937±0.001 0.937±0.004 0.874±0.001 0.989±0.001 0.985±0.002 0.963±0.001 0.952±0.001 0.907±0.003

Table 3: Performance comparison on the BindingDB, Human and BioSNAP datasets. (Best, Second Best). The
baseline results derive from DrugBAN (Bai et al., 2023).

Model #Params. Yeast Human

DDE 205.3K 55.83 ± 3.13 62.77 ± 2.30
Moran 123.4K 53.00 ± 0.50 54.67 ± 4.43

LSTM 26.7M 53.62 ± 2.72 63.75 ± 5.12
Transformer 21.3M 54.12 ± 1.27 59.58 ± 2.09

CNN 5.4M 55.07 ± 0.02 62.60 ± 1.67
ResNet 11.0M 48.91 ± 1.78 68.61 ± 3.78

ProtBert 419.9M 63.72 ± 2.80 77.32 ± 1.10
ProtBert* 419.9M 53.87 ± 0.38 83.61 ± 1.34
ESM-1b 652.4M 57.00 ± 6.38 78.17 ± 2.91
ESM-1b* 652.4M 66.07 ± 0.58 88.06 ± 0.24

BioT5 252.1M 64.89 ± 0.43 86.22 ± 0.53

Table 4: Performance comparison on Yeast and Human
datasets (Best, Second Best). The evaluation metric is
accuracy. * represents only tuning the prediction head.
The baseline results derive from PEER (Xu et al., 2022).

ProtBert and ESM-1b are studied with two settings
(i) freezing the protein language model parame-
ters and only training the prediction head; (ii) fine-
tuning all model parameters.
Results The results are displayed in Table 2, with
all statistics derived from three random runs. In
the protein solubility prediction task, BioT5 out-
performs all baselines in PEER (Xu et al., 2022)
benchmark. In the protein localization prediction
task, BioT5 is the second best among all methods.
Notably, ProtBert and ESM-1b are both pre-trained
on a large corpus of protein sequences, which is
comparable to or even larger than ours. Moreover,
these models are two to three times larger than
BioT5. These demonstrate the potential of BioT5
for enhanced predictive capabilities in protein prop-
erty prediction by integrating textual information.

4.2 Multi-instance Prediction

4.2.1 Drug-target Interaction Prediction

Drug-target interaction (DTI) prediction plays a
crucial role in drug discovery, as it aims to pre-
dict whether a given drug (molecule) and target

(protein) can interact with each other. We se-
lect three widely-used DTI datasets with a binary
classification setting, which are BioSNAP (Zitnik
et al., 2018), BindingDB (Liu et al., 2007) and
Human (Liu et al., 2015; Chen et al., 2020).
Baselines We compare BioT5 with two types of
baselines: (1) traditional machine learning meth-
ods including SVM (Cortes and Vapnik, 1995)
and Random Forest (RF) (Ho, 1995); (2) deep
learning methods including DeepConv-DTI (Lee
et al., 2019), GraphDTA (Nguyen et al., 2021),
MolTrans (Huang et al., 2021) and DrugBAN (Bai
et al., 2023), in which drug and target feature are
firstly extracted by well-design drug encoder and
protein encoder then fused for prediction.
Results The results on BioSNAP, Human, and
BindingDB datasets are presented in Table 3. All
statistics are obtained from five random runs. On
BioSNAP and BindingDB datasets, BioT5 consis-
tently outperforms other methods in various perfor-
mance metrics, including AUROC, AUPRC, and
accuracy. For the Human dataset, although deep
learning-based models generally exhibit strong per-
formance, the BioT5 model demonstrates a slight
advantage over the baseline models. It is worth
noting that, in contrast to most deep learning-based
baselines, our BioT5 does not rely on a specific de-
sign tailored for molecules or proteins. A possible
explanation for the superior performance of BioT5
is that the SELFIES and FASTA representations ef-
fectively capture the intricate structure and function
of molecules and proteins, and the interaction in-
formation between them may be well-described in
the contextual scientific literature or corresponding
text entries in databases.

4.2.2 Protein-protein Interaction Prediction

Protein-protein interaction (PPI) prediction plays
a vital role in understanding protein functions and
structures, as it aims to determine the potential



Model #Params. BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR Text2Mol

RNN 56M 0.251 0.176 0.450 0.278 0.394 0.363 0.426
Transformer 76M 0.061 0.027 0.204 0.087 0.186 0.114 0.057

T5-small 77M 0.501 0.415 0.602 0.446 0.545 0.532 0.526
T5-base 248M 0.511 0.423 0.607 0.451 0.550 0.539 0.523
T5-large 783M 0.558 0.467 0.630 0.478 0.569 0.586 0.563

T5-small 77M 0.501 0.415 0.602 0.446 0.545 0.532 0.526
MolT5-small 77M 0.519 0.436 0.620 0.469 0.563 0.551 0.540

T5-base 248M 0.511 0.423 0.607 0.451 0.550 0.539 0.523
MolT5-base 248M 0.540 0.457 0.634 0.485 0.578 0.569 0.547

T5-large 783M 0.558 0.467 0.630 0.478 0.569 0.586 0.563
MolT5-large 783M 0.594 0.508 0.654 0.510 0.594 0.614 0.582

GPT-3.5-turbo (zero-shot) >175B 0.103 0.050 0.261 0.088 0.204 0.161 0.352
GPT-3.5-turbo (10-shot MolReGPT) >175B 0.565 0.482 0.623 0.450 0.543 0.585 0.560

MolXPT 350M 0.594 0.505 0.660 0.511 0.597 0.626 0.594

BioT5 252M 0.635 0.556 0.692 0.559 0.633 0.656 0.603

Table 5: Performance comparison on molecule captioning task (Best, Second Best). Rouge scores are F1 values.
The Text2Mol score between ground truth molecule and corresponding text description is 0.609. The baseline
results derive from MolT5 (Edwards et al., 2022), MolXPT (Liu et al., 2023b), and MolReGPT (Li et al., 2023).

Model #Params. BLEU↑ Exact↑ Levenshtein↓ MACCS FTS↑ RDK FTS↑ Morgan FTS↑ FCD↓ Text2Mol↑ Validity↑

RNN 56M 0.652 0.005 38.09 0.591 0.400 0.362 4.55 0.409 0.542
Transformer 76M 0.499 0.000 57.66 0.480 0.320 0.217 11.32 0.277 0.906

T5-small 77M 0.741 0.064 27.703 0.704 0.578 0.525 2.89 0.479 0.608
T5-base 248M 0.762 0.069 24.950 0.731 0.605 0.545 2.48 0.499 0.660
T5-large 783M 0.854 0.279 16.721 0.823 0.731 0.670 1.22 0.552 0.902

T5-small 77M 0.741 0.064 27.703 0.704 0.578 0.525 2.89 0.479 0.608
MolT5-small 77M 0.755 0.079 25.988 0.703 0.568 0.517 2.49 0.482 0.721

T5-base 248M 0.762 0.069 24.950 0.731 0.605 0.545 2.48 0.499 0.660
MolT5-base 248M 0.769 0.081 24.458 0.721 0.588 0.529 2.18 0.496 0.772

T5-large 783M 0.854 0.279 16.721 0.823 0.731 0.670 1.22 0.552 0.902
MolT5-large 783M 0.854 0.311 16.071 0.834 0.746 0.684 1.20 0.554 0.905

GPT-3.5-turbo (zero-shot) >175B 0.489 0.019 52.13 0.705 0.462 0.367 2.05 0.479 0.802
GPT-3.5-turbo (10-shot MolReGPT) >175B 0.790 0.139 24.91 0.847 0.708 0.624 0.57 0.571 0.887

MolXPT 350M - 0.215 - 0.859 0.757 0.667 0.45 0.578 0.983

BioT5 252M 0.867 0.413 15.097 0.886 0.801 0.734 0.43 0.576 1.000

Table 6: Performance comparison on text-based molecule generation task (Best, Second Best). Following Edwards
et al. (2022), BLEU, Exact, Levenshtein, and Validity are computed on all generated molecues while other metrics
are computed only on syntactically valid molecules. The Text2Mol score for ground truth is 0.609. The baseline
results derive from MolT5 (Edwards et al., 2022), MolXPT (Liu et al., 2023b), and MolReGPT (Li et al., 2023).

interactions between pairs of proteins. Following
PEER (Xu et al., 2022) benchmark, we perform
fine-tuning on two PPI datasets: Yeast (Guo et al.,
2008) and Human (Pan et al., 2010).

Baselines The baselines for comparison are the
same as that in Section 4.1.2.

Results The results are shown in Table 4. All
statistics are over three random runs. On two
PPI datasets, BioT5 shows superior performance
compared to almost all baseline models. Remark-
ably, BioT5 outperforms both ProtBert and ESM-
1b (with full parameters fine-tuned). This result
strongly highlights the crucial role of incorporat-
ing textual information during the pre-training of
BioT5, which effectively establishes profound con-
nections between proteins. Our model, despite
being smaller, is able to harness the unstructured

information embedded in scientific text and struc-
tured information from biological databases, encap-
sulating the comprehensive knowledge of proteins
in their varying contexts.

4.3 Cross-modal Generation
In this section, we evaluate the performance of
BioT5 on the cross-modal generation task. Specifi-
cally, we fine-tune BioT5 on molecule captioning
and text-based molecule generation tasks. These
two tasks are proposed by MolT5 (Edwards et al.,
2022) and both use the ChEBI-20 dataset (Edwards
et al., 2021). The evaluation metrics and some inter-
esting cases are introduced in Appendix D and G.

4.3.1 Molecule Captioning
For the given molecule, the goal of molecule cap-
tioning task is to provide a description of the given



molecule. As we use SELFIES sequences to repre-
sent molecules, this task can be formulated as an
exotic sequence-to-sequence translation task.
Baselines The baselines include: RNN (Medsker
and Jain, 2001), Transformer (Vaswani et al.,
2017), T5 (Raffel et al., 2020), MolT5 (Edwards
et al., 2022), GPT-3.5-turbo2 with zero-shot and
10-shot MolReGPT (Li et al., 2023) settings, and
MolXPT (Liu et al., 2023b).
Results The results are shown in Table 5. BioT5
only has nearly the same number of parameters
as MolT5-base, but outperforms all baseline mod-
els in all metrics, including those that have more
parameters. The Text2Mol score is 0.603, which
is very close to the Text2Mol score of 0.609 be-
tween the ground truth molecule and the corre-
sponding description. We can attribute this superior
performance to the unstructured contextual knowl-
edge and structured database knowledge induced in
BioT5 pre-training, which helps the model learn the
intricate relationship between text and molecules.

4.3.2 Text-Based Molecule Generation
This is a reverse task of molecule captioning. Given
the nature language description of the intended
molecule, the goal is to generate the molecule that
fits the description.
Baselines The compared baselines are the same as
baselines in Section 4.3.1.
Results The results are presented in Table 6. BioT5
only uses parameters similar to MolT5-base yet de-
livers superior performance across nearly all met-
rics. Notably, the exact match score of BioT5 sur-
passes the MolT5-Large by 32.8% while maintain-
ing a validity of 1.0. This indicates that BioT5 not
only generates more relevant molecules correspond-
ing to the given text descriptions, but also ensures
a 100% validity for the generated molecules. The
overall enhanced performance of BioT5 can be at-
tributed to the incorporation of both contextual and
database knowledge, as well as the utilization of
SELFIES for molecular representation.

5 Conclusions and Future Work

In this paper, we propose BioT5, a comprehensive
pre-training framework capable of capturing the
underlying relations and properties of bio-entities
by leveraging both structured and unstructured data
sources with 100% robust molecular representa-
tion. Our method effectively enriches cross-modal

2https://openai.com/blog/openai-api

integration in biology with chemical knowledge
and natural language associations, demonstrating
notable improvements in various tasks.

For future work, we aim to further enrich our
model by incorporating additional biological data
types, such as genomics or transcriptomics data,
to create a more holistic biological pre-training
framework. Additionally, we plan to evaluate the
interpretability of BioT5 predictions, aiming to pro-
vide more insights into the biological systems un-
der study. Thus, we foresee our work sparking
further innovation in the use of AI models in the
field of computational biology, ultimately leading
to a deeper understanding of biological systems
and facilitating more efficient drug discovery.

6 Limitations

One limitation of BioT5 is conducting full-
parameter fine-tuning on each downstream task.
This is done because we do not observe general-
ization ability among different downstream tasks
using instruction-tuning (Wei et al., 2022) method.
Another reason is that combining data from dif-
ferent tasks using instructions results in data leak-
age. For example, have noticed overlaps between
the training set of BindingDB and the test sets
of BioSNAP and Human. Additionally, we only
demonstrate the ability of BioT5 in text, molecule,
and protein modalities. Numerous other biological
modalities, such as DNA/RNA sequences and cells,
exist, and there are many other tasks within a single
modality or across multiple modalities. Moreover,
BioT5 primarily focuses on the sequence format of
bio-entities, yet other formats, such as 2D or 3D
structures, also hold significant importance. We
leave further exploration of these to future work.
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A Reproducibility

The codes for our BioT5 are available at https:
//github.com/QizhiPei/BioT5.

B NER and Entity Linking Process

We follow KV-PLM (Zeng et al., 2022) and
MolXPT (Liu et al., 2023b) to conduct Named
Entity Recognition (NER) and Entity Linking for
the bio-entity names appearing in the scientific text.
More specifically, we firstly utilize BERN2 (Sung
et al., 2022), an advanced neural Named Entity
Recognition (NER) tool in biomedical fields, to
identify all instances of molecule or protein men-
tions. Subsequently, we map them to correspond-
ing entities within publicly accessible knowledge
bases. For molecule, we use ChEBI (Hastings
et al., 2016) and MeSH (Lipscomb, 2000) database,
and for protein we use NCBI Gene (Brister et al.,
2015) database. Then we can get the correspond-
ing molecule SELFIES and protein FASTA for
the matched entities. As shown in Figure 4, for

Effect of chloroquine on cultured fibroblasts: 
release of lysosomal hydrolases and inhibition of 
their uptake.

chloroquin MESH id: D002738 → SELFIES: [C][C][N][Branch1][Ring1][C]…
lysosomal hydrolases NCBI Gene id: 3988 → FASTA: MKMRFLG…

NER & Entity Linking

Associate compound & protein
with SELFIES & FASTA

Effect of <bom>[C][C][N][Branch1][Ring1][C]…<eom> on cultured 
fibroblasts: release of lysosomal hydrolases (the related amino acid 
sequence is <bop><p>M<p>K<p>M<p>R<p>F<p>L<p>G…<eop> and 
inhibition of their uptake.

Figure 4: Wrapped text matching and mapping process.

molecule, we directly replace all the detected
names with its SELFIES string; for protein, due to
the length limitation, if a sentence consists of more
than one protein entity, we only randomly choose
one to append the protein FASTA to the name.
The motivation for appending protein FASTA in-
stead of replacing is that the genes are transcribed
and translated to generate proteins. Therefore, un-
like the molecule names directly representing the
molecule, the relation between gene names and pro-
tein FASTA is indirect. Note that the replacement
or appendage will not happen in every sentence.
Only those with detected bio-entities will be done
the above process.

C Dictionary and SELFIES Conversion

For molecule-related datasets, when only SMILES
is provided, we utilize selfies3 package to convert
SMILES into SELFIES.

D Molecule-Text Generation Metrics

We follow Edwards et al. (2022) to use the same
evaluation metrics for molecule captioning and text-
based molecule generation tasks. To ensure a fair
comparison, we convert the molecule SEIFLES to
SMILES before calculating these metrics.

D.1 Molecule Captioning Metrics

In the molecule caption task, NLP metrics like
BLEU (Papineni et al., 2002), ROUGE (Lin, 2004),
and METEOR (Banerjee and Lavie, 2005) are uti-
lized to evaluate the closeness of the generated de-
scription to the ground truth description. We also
adopt Text2Mol metric, which is proposed by Ed-
wards et al. (2021) and employ pre-trained mod-
els to measure the similarity between the descrip-
tion and ground truth molecule. Higher similar-
ity means that the given text description is more
relevant to the molecule, and the Text2Mol score
between the ground truth description and molecule
is also computed for comparison.

D.2 Text-based Molecule Generation Metrics

Since molecules can be represented in bio-
sequence structure, NLP metrics like BLEU (Pa-
pineni et al., 2002) and Exact Match scores be-
tween generated and ground truth SMILES are di-
rectly applied for evaluation. Additionally, we also
report performance on molecule-specific metrics:
three molecule fingerprints (FTS) similarity scores-
MACCS (Durant et al., 2002), RDK (Schneider
et al., 2015), and Morgan (Rogers and Hahn,
2010a); Levenshtein distance (Miller et al., 2009);
FCD score (Preuer et al., 2018), which measures
molecule similarities according to biological infor-
mation based on pre-trained “ChemNet”; validity,
which is the percentage of the valid SMILES that
can be processed by RDKit (Landrum, 2021). The
Text2Mol metric is also used to measure the simi-
larity between the molecule SMILES and ground
truth description.

3https://github.com/aspuru-guzik-group/
selfies
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E Pre-training Details

E.1 Special Tokens

In the pre-training of BioT5, we conduct translation
tasks on molecule-text pairs and protein-text pairs
extracted from PubChem (Kim et al., 2023) and
Swiss-Prot (Boutet et al., 2007) separately. We
format the text description from these database
entries using special tokens, which serve as an-
chors for embedding scientific context and struc-
ture. For molecule, we use MOLECULE NAME
and DESCRIPTION to represent its name and de-
scription including properties, functions, etc. For
protein, similar to Xu et al. (2023b), we use PRO-
TEIN NAME, FUNCTION, SUBCELLULAR LO-
CATION, and PROTEIN FAMILIES to represent
its name, functions, location and topology in the
cell, and families it belongs to. A complete text
description is created by concatenating these fields
sequentially, omitting any missing fields. Through
special tokens, we can effectively encode the intri-
cate information associated with each bio-entity.

E.2 Hyper-parameters

We use the codebase nanoT5 (Nawrot, 2023) for
BioT5 pre-training. We pre-train BioT5 for 350K
steps on eight NVIDIA 80GB A100 GPUs. The
batch size is 96 per GPU, in which a batch includes
six types of data. The “translation” directions for
molecule-text and protein-text pair are randomly
selected for each sample with a probability of 0.5.
We use AdamW (Loshchilov and Hutter, 2019)
with Root Mean Square (RMS) scaling Optimizer
for optimization. The learning rate scheduler is
cosine annealing with the base learning rate set to
1e− 2 and the minimum learning rate set to 1e− 5.
The number of warm-up steps is 10,000 and the
dropout rate is 0.0. The maximum input length
for pre-training is 512. Unlike absolute position
encodings, T5 (Raffel et al., 2020) use relative po-
sition encodings. This makes the model flexible
to inputs of different lengths, which is helpful for
downstream fine-tuning.

F Fine-tuning Details

In this section, we provide details about down-
stream tasks, including datasets, compared base-
lines, and prompts. Some statistics about down-
stream tasks are shown in Table 7 When displaying
prompts, ⟨SELFIES⟩ refers to the molecule SELF-
IES, and ⟨FASTA⟩ refers to the protein FASTA.

F.1 Single-instance Prediction

F.1.1 Molecule Property Prediction
All the datasets are split using an 8 : 1 : 1 ratio
for train, validation, and test, respectively. We use
the scaffold splitting method, in which molecules
are categorized according to the Bemis-Murcko
scaffold representation.
Datasets
(1) The BBBP (Blood-Brain Barrier Penetration) is
curated with the intention of aiding the modeling
and forecasting of barrier permeability. It com-
prises compounds that are categorized using binary
labels, indicating whether they can penetrate the
blood-brain barrier.
(2) The Tox21 ("Toxicology in the 21st Century")
initiative established a publicly accessible database
that quantifies the toxicity levels of various com-
pounds. The dataset encompasses qualitative toxic-
ity assessments (binary labels) for approximately
8,000 compounds, targeting 12 distinct biological
pathways such as nuclear receptors and stress re-
sponse mechanisms.
(3) The ClinTox dataset contrasts FDA-approved
drugs with those that have been unsuccessful in
clinical trials owing to toxicity issues. This dataset
incorporates two classification objectives for 1,491
drug compounds with established chemical struc-
tures: (i) Presence or absence of toxicity in clinical
trials; (ii) approved or unapproved by FDA.
(4) The HIV dataset assesses the inhibitory poten-
tial of over 40,000 compounds on HIV replication.
The screening outcomes were classified into three
categories: Confirmed Inactive (CI), Confirmed Ac-
tive (CA), and Confirmed Moderately Active (CM).
Subsequently, the latter two labels were combined,
transforming the task into a binary classification
between inactive (CI) and active (CA and CM) cat-
egories.
(5) The BACE dataset presents quantitative IC50
values and qualitative binary labels for a collec-
tion of inhibitors targeting human beta-secretase 1
(BACE-1).
(6) The SIDER (Side Effect Resource) is a compre-
hensive database that consists of marketed drugs
and their corresponding adverse drug reactions
(ADR). The drug side effects in SIDER are or-
ganized into 27 system organ classes, adhering to
the MedDRA classifications. This dataset encom-
passes data for 1,427 approved drugs.
Baselines
(1) GROVER (Rong et al., 2020) incorporates Mes-



Task/Dataset Task Type #Train #Validation #Test

Molecule Property Prediction

BBBP Molecule-wise Classification 1,631 204 204
Tox21 Molecule-wise Classification 6,264 783 784

ClinTox Molecule-wise Classification 1,181 148 148
HIV Molecule-wise Classification 32,901 4,113 4,113

BACE Molecule-wise Classification 1,210 151 152
SIDER Molecule-wise Classification 1,141 143 143

Protein Property Prediction

Solubility prediction Protein-wise Classification 62,478 1,999 1,999
Localization prediction Protein-wise Classification 5,184 1,749 1,749

Drug-target Interaction Prediction

BioSNAP Molecule-protein Classification 19,224 2,747 5,493
Human Molecule-protein Classification 4,197 600 1,200

BindingDB Molecule-protein Classification 50,149 5,604 5,505

Protein-protein Interaction Prediction

Yeast Protein-pair Classification 4,945 394 394
Human Molecule-pair Classification 35,669 237 237

Molecule Captioning and Text-based Molecule Generation

ChEBI-20 Molecule-text Translation 26,407 3,301 3,300

Table 7: Downstream task descriptions, including task or dataset name, type, and the size of each split.

sage Passing Networks within a Transformer-style
architecture and is pre-trained on large-scale molec-
ular dataset without any supervision. G-Contextual
and G-Motif are two variants of GROVER, which
are pre-trained on contextual property prediction
task and motif prediction task, respectively.
(2) GraphMVP (Liu et al., 2022) employs self-
supervised learning by capitalizing on the corre-
spondence and consistency between molecule 2D
topological structures and 3D geometric views.
(3) MGSSL (Zhang et al., 2021) incorporates a
novel self-supervised motif generation framework
for Graph Neural Networks.
(4) MolCLR (Wang et al., 2022) is a self-supervised
learning framework that capitalizes on substantial
unlabelled unique molecules (approximately 10
million)
(5) GEM (Fang et al., 2022) features a specially de-
signed geometry-based graph neural network archi-
tecture and several dedicated geometry-level self-
supervised learning strategies to capture molecular
geometry knowledge effectively.
(6) KV-PLM (Zeng et al., 2022) is a BERT-based
model designed for molecular representation learn-
ing, in which molecule SMILES are appended af-
ter its name during the pre-training process. This

combination of molecular names and SMILES se-
quences allows the model to capture both textual
and structural information, thereby enhancing its
performance in various downstream tasks.
(7) Galactica (Taylor et al., 2022) is a large GPT-
based language model which is pre-trained on var-
ious corpus like papers, codes, SMILES, protein
sequences, etc.
(8) MoMu (Su et al., 2022) is pre-trained using
molecular graphs and their semantically related
textual data through contrastive learning.
(9) MolXPT (Liu et al., 2023b) is a unified GPT-
based language model for text and molecules pre-
trained on “wrapped” text, where molecule names
are replaced with corresponding SMILES.
Prompts
For the six MoleculeNet datasets mentioned above,
the prompts only differ in the Task Definition.
Therefore, we will only provide the Instruction
and Output for the first dataset, and the remaining
datasets will follow the same format.
(1) BBBP
Task Definition: Definition: Molecule property
prediction task (a binary classification task) for
the BBBP dataset. The blood-brain barrier pene-
tration (BBBP) dataset is designed for the model-



ing and prediction of barrier permeability. If the
given molecule can penetrate the blood-brain bar-
rier, indicate via "Yes". Otherwise, response via
"No".
Instruction: Now complete the following example -
Input: Molecule: ⟨bom⟩⟨SELFIES⟩⟨eom⟩ Output:.
Output: Yes for inhibitor and No instead.
(2) Tox21
Task Definition: Definition: Molecule property
prediction task (a binary classification task) for the
Tox21 dataset. The Tox21 dataset contains qualita-
tive toxicity measurements for 8k compounds on 12
different targets, including nuclear receptors and
stress response pathways. If the given molecule can
activate/change/affect ⟨target⟩, indicate via "Yes".
Otherwise, response via "No". where ⟨target⟩
represents the corresponding receptor, domain, ele-
ment, gene, potential, or pathway for each subtask.
(3) ClinTox
Task Definition: Definition: Molecule property
prediction task (a binary classification task) for
the ClinTox dataset. The ClinTox dataset com-
pares drugs approved by the FDA and drugs that
have failed clinical trials for toxicity reasons. If
the given molecule is ⟨Subtask⟩, indicate via
"Yes". Otherwise, response via "No". where the
⟨Subtask⟩ is either toxic or FDA approved.
(4) HIV
Task Definition: Definition: Molecule property
prediction task (a binary classification task) for
the HIV dataset. The HIV dataset was introduced
by the Drug Therapeutics Program (DTP) AIDS
Antiviral Screen, which tested the ability to inhibit
HIV replication for over 40,000 compounds. If the
given molecule can inhibit HIV replication, indi-
cate via "Yes". Otherwise, response via "No".
(5) BACE
Task Definition: Definition: Molecule property
prediction task (a binary classification task) for
the BACE dataset. The BACE dataset provides
qualitative (binary label) binding results for a set
of inhibitors of human beta-secretase 1 (BACE-1).
If the given molecule can inhibit BACE-1, indicate
via "Yes". Otherwise, response via "No".
(6) SIDER
Task Definition: Definition: Molecule property
prediction task (a binary classification task) for the
SIDER dataset. The Side Effect Resource (SIDER)
is a dataset of marketed drugs and adverse drug re-
actions (ADR). If the given molecule can cause
the side effect of ⟨side effect⟩, indicate via

"Yes". Otherwise, response via "No". where ⟨side
effect⟩ refers to the corresponding side effects for
each subtask.

F.1.2 Protein Property Prediction

Datasets
(1) Solubility prediction is to predict whether a pro-
tein is soluble or not. We follow the same splitting
method with DeepSol (Khurana et al., 2018).
(2) Localization prediction aims predict whether a
protein is “membrane-bound” or “soluble”, which
is a simple version of subcellular localization pre-
diction task. We follow the same splitting method
with DeepLoc (Armenteros et al., 2017).
Baselines
(1) Feature engineers. The DDE (Dipeptide Devi-
ation from Expected Mean) (Saravanan and Gau-
tham, 2015) feature descriptor, consisting of 400
dimensions, is based on the dipeptide frequency
within a protein sequence. The Moran feature
descriptor (Moran correlation) (Feng and Zhang,
2000), with 240 dimensions, characterizes the dis-
tribution of amino acid properties within a protein
sequence.
(2) Protein sequence encoders, including
LSTM (Hochreiter and Schmidhuber, 1997),
Transformers (Vaswani et al., 2017), CNN (O’Shea
and Nash, 2015) and ResNet (He et al., 2016). The
amino acid features in the last layer are aggregated
for final prediction.
(3) Pre-trained protein language models. Prot-
Bert (Elnaggar et al., 2021) and ESM-1b (Rives
et al., 2021) are both pre-trained on a massive
dataset of protein sequences using the masked lan-
guage modeling (MLM) objective. Specifically,
ProtBert is pre-trained on 2.1 billion protein se-
quences obtained from the BFD database (Steineg-
ger and Söding, 2018), while ESM-1b is pre-
trained on a smaller dataset of 24 million protein
sequences sourced from UniRef50 (Suzek et al.,
2007).
Prompts
(1) Solubility prediction
Task Definition: Protein solubility prediction task
(a binary classification task) for the solubility
dataset. If the given protein is soluble, indicate
via "Yes". Otherwise, response via "No".
Instruction Now complete the following example -
Input: Protein: ⟨bom⟩⟨FASTA⟩⟨eom⟩ Output:.
Output: Yes for soluble protein or No instead.
(2) Localization prediction



Task Definition: Protein subcellular localization
task (a binary classification task). If the given pro-
tein is membrane-bound, indicate via "Yes". Other-
wise (the protein is soluble), response via "No".
Instruction Now complete the following example -
Input: Protein: ⟨bom⟩⟨FASTA⟩⟨eom⟩ Output:.
Output: Yes for membrane-bound protein or No for
soluble protein.

F.2 Multi-instance Prediction

F.2.1 Drug-target Interaction Prediction
Datasets
(1) BioSNAP (Zitnik et al., 2018) is derived from
the DrugBank database (Wishart et al., 2018) and
was created by Huang et al. (2021) and Zitnik et al.
(2018). It consists of 4,510 drugs and 2,181 pro-
teins. This dataset is balanced, containing both
validated positive interactions and an equal number
of randomly selected negative samples from unseen
pairs.
(2) BindingDB (Liu et al., 2007) is an accessible
online database that contains experimentally val-
idated binding affinities. Its main focus is on the
interactions between small drug-like molecules and
proteins. We follow Bai et al. (2023) to use a modi-
fied version of the BindingDB dataset, which was
previously constructed by Bai et al. (2021) with
reduced bias.
(3) Human (Liu et al., 2015; Chen et al., 2020) is
constructed with the inclusion of highly credible
negative samples. Following Bai et al. (2023), we
also use a balanced version of the Human dataset,
which contains an equal number of positive and
negative samples.
Baselines
We compare the performance of BioT5 with the
following six models on DTI task.
(1) Support Vector Machine (Cortes and Vap-
nik, 1995) (SVM) on the concatenated finger-
print ECFP4 (Rogers and Hahn, 2010b) (extended
connectivity fingerprint, up to four bonds) and
PSC (Cao et al., 2013) (pseudo-amino acid compo-
sition) features.
(2) Random Forest (Ho, 1995) (RF) on the concate-
nated fingerprint ECFP4 and PSC features.
(3) DeepConv-DTI (Lee et al., 2019) uses a fully
connected neural network to encode the ECFP4
drug fingerprint and a Convolutional Neural Net-
work (CNN) along with a global max-pooling layer
to extract features from protein sequences. Then
the drug and protein features are concatenated and

fed into a fully connected neural network for final
prediction.
(4) GraphDTA (Nguyen et al., 2021) uses graph
neural networks (GNNs) for the encoding of drug
molecular graphs, and a CNN is used for the encod-
ing of protein sequences. The derived vectors of the
drug and protein representation are concatenated
for interaction prediction.
(5) MolTrans (Huang et al., 2021) uses transformer
architecture to encode drug and protein. Then a
CNN-based interaction module is used to capture
their interactions.
(6) DrugBAN (Bai et al., 2023) use Graph Convo-
lution Network (GCN) (Kipf and Welling, 2017)
and 1D CNN to encode drug and protein sequences.
Then a bilinear attention network are adopted to
learn pairwise local interactions between drug and
protein. The resulting joint representation is de-
coded by a fully connected neural network.
Prompts
Task Definition: Definition: Drug target interac-
tion prediction task (a binary classification task)
for the ⟨Dataset⟩ dataset. If the given molecule
and protein can interact with each other, indicate
via "Yes". Otherwise, response via "No". where
⟨Dataset⟩ is one of the three DTI datasets men-
tioned above.
Instruction: Now complete the following example -
Input: Molecule: ⟨bom⟩⟨SELFIES⟩⟨eom⟩ Protein:
⟨bom⟩⟨FASTA⟩⟨eom⟩ Output:.
Output: Yes for positive label or No instead.

F.2.2 Protein-protein Interaction Prediction
Datasets
(1) Yeast (Guo et al., 2008) involves determining
whether two yeast proteins interact or not. The
negative pairs are derived from distinct subcellular
locations. Following (Xu et al., 2022), the dataset is
split and removed redundancy according to protein
sequences similarity, which allows for the evalu-
ation of generalization across dissimilar protein
sequences.
(2) Human (Pan et al., 2010) involves determin-
ing whether two human proteins interact or not. It
comprises positive protein pairs sourced from the
Human Protein Reference Database (HPRD) (Peri
et al., 2003) and negative pairs derived from dif-
ferent subcellular locations. The dataset splitting
scheme is similar to that of Yeast PPI prediction
with an 8 : 1 : 1 ratio for train/validation/test.
Baselines The compared baselines are the same
as the protein property prediction task in Sec-



tion F.1.2.
Prompts
Task Definition: Protein protein interaction pre-
diction task (a binary classification task) for the
⟨Dataset⟩ dataset. If the given two yeast proteins
(Protein_A and Protein_B) can interact with each
other, indicate via "Yes". Otherwise, response via
"No". where ⟨Dataset⟩ is either yeast or human.
Instruction: Now complete the following example -
Input: Protein_A: ⟨bom⟩⟨FASTA⟩⟨eom⟩ Protein_B:
⟨bom⟩⟨FASTA⟩⟨eom⟩ Output:.
Output: Yes for positive label or No instead.

F.3 Cross-modal Generation

F.3.1 Molecule Captioning
Datasets
We use ChEBI-20 dataset created by Text2mol (Ed-
wards et al., 2021), which consists of 33, 010
molecule-text pairs and 20 means each text descrip-
tion has more than 20 words. The dataset is split
into 8 : 1 : 1 for train, validation, and test.
Baselines
(1) RNN (Medsker and Jain, 2001) with 4-layer
bidirectional encoder is trained from scratch on
ChEBI-20 dataset.
(2) Transformer (Vaswani et al., 2017) containing 6
encoder and decoder layers is trained from scratch
on ChEBI-20 dataset.
(3) T5 (Raffel et al., 2020) is directly fine-tuned
on ChEBI-20 dataset from public checkpoints 4

with three different model sizes: small, base and
large. Note that no molecule domain knowledge is
introduced in the original T5 pre-training.
(4) MolT5 (Edwards et al., 2022) is jointly trained
on molecule SMILES from ZINC-15 dataset (Ster-
ling and Irwin, 2015) and general text from C4
dataset (Raffel et al., 2020) so that MolT5 has prior
knowledge about these two domains. It also con-
tains three different sizes: small, base and large.
Then they are further fine-tuned on ChEBI-20
dataset.
(5) GPT-3.5-turbo (Li et al., 2023) is used by di-
rectly call OpenAI API without further fine-tuning.
The input includes five parts as Li et al. (2023):
role identification, task description, examples, out-
put instruction, and user input prompt. The exam-
ples are retrieved by Morgan Fingerprint (Butina,
1999) similarity for molecule captioning task and

4https://github.com/google-research/
text-to-text-transfer-transformer/blob/main/
released_checkpoints.md#t511

by BM25 (Robertson and Zaragoza, 2009) for text-
based molecule generation task.
(6) MolXPT (Liu et al., 2023b) is jointly trained
on molecule SMILES from PubChem (Kim et al.,
2023), biomedical text from PubMed (Canese and
Weis, 2013), and “wrapped” text in which molecule
names are replaced with corresponding SMILES.
Prompts
Different from the classification task in which the
ground truth output is either Yes or No, the output
for molecule captioning task is text sequence.
Task Definition: Definition: You are given a
molecule SELFIES. Your job is to generate the
molecule description in English that fits the
molecule SELFIES.
Instruction: Now complete the following example -
Input: <bom>⟨SELFIES⟩<eom> Output:.
Output: ⟨Text Description⟩

F.3.2 Text-based molecule generation
This is the reverse task of molecule captioning. The
input is the text description of the desired molecule
and the output is the corresponding molecule SELF-
IES. The datasets and compared baselines are the
same with molecule captioning in Section F.3.1 so
will only provide the prompts here.
Prompts
Task Definition: Definition: You are given a
molecule description in English. Your job is to
generate the molecule SELFIES that fits the de-
scription.
Instruction: Now complete the following example -
Input: ⟨Text Description⟩ Output:.
Output: <bom>⟨SELFIES⟩<eom>

G Case Study

In this section, we show several example outputs
from different models in molecule captioning and
text-based molecule generation tasks. Figure 5
shows the cases for the molecule captioning task.
In example (1), the description of BioT5 matches
the ground truth best, successfully localizing the
position of the substituent group and “member of
pyridines and an aryl thiol”. In example (2), MolT5
mistakenly describes that the molecule contained
boron, while BioT5’s description is more accurate.
In example (3), while MolT5 generates repetitive
output, BioT5 and T5 generate semantically coher-
ent output, and BioT5’s output matches better with
ground truth. For a complex molecule in example
(4), the output of BioT5 is more holistic and accu-
rate. Notably, only BioT5 describes this molecule

https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511
https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511
https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511


as an inhibitor of SARS coronavirus main pro-
teinase, which may come from our integration with
protein knowledge. Figure 6 shows the cases for
the text-based molecule generation task. From the
cases, we have several findings: (i) BioT5 is more
likely to generate molecules that exactly match the
ground truth. (ii) By using SELFIES, BioT5 will
not generate invalid molecules, especially for com-
plex and longer molecules shown in examples (3)
and (4). (iii) Some molecules are actually short
proteins. Example (3) shows a molecule that is a
33-membered polypeptide, which consists of 33
amino acid residues joined in sequence. Therefore,
the boundary between proteins and molecules may
not always be distinct, and leveraging information
from both can provide reciprocal benefits.



Input T5 MolT5 Ours Ground Truth

The molecule is a quaternary 
ammonium salt that is ammonia in 
which the hydrogens at the 2- and 3-
positions are replaced by methyl 
groups. It has a role as a cardiotoxic 
agent. It is a quaternary ammonium 
salt and a quaternary ammonium 
salt. It contains a 
tetramethylammonium.

The molecule is the iodo-iodo-iodo-
iodo-iodo-iodo-iodo-iodo-iodo-iodo-
iodo-iodo-iodo-iodo-iodo-iodo-iodo-
iodo-iodo-iodo-iodo-iodo-iodo-iodo-
iodo-iodo derivative of an iodo-iodo-
iodo-iodo-iodo-iodo-iodo-iodo-iodo-
iodo-iodo-iodo-iodo-
iodododododo[…]

The molecule is a quaternary 
ammonium salt that is the 
monoiodide salt of 
ethyltrimethylammonium. It is a 
quaternary ammonium salt, an 
organic iodide salt and a quaternary 
ammonium salt. It contains an 
ethyltrimethylammonium.

The molecule is a quarternary 
ammonium salt whose basic unit 
comprises an 
ethyltrimethylammonium cation and 
an iodide anion. It is a quaternary 
ammonium salt and an iodide salt.

The molecule is a thiol that is thiol 
substituted by a sulfanyl group at 
position 4. It has a role as a 
metabolite. It is a thiol and a 
member of benzenes. It derives from 
a hydride of a thiol.

The molecule is a 
monothiocarbamic ester resulting 
from the formal condensation of 
thiocyanic acid with benzene. It is a 
member of thiocarbamic acids and 
a monothiocarbamic ester.

The molecule is pyridine substituted 
at position 2 by a sulfanyl group. It 
has a role as a corrosion inhibitor 
and an allergen. It is a member of 
pyridines and an aryl thiol.

The molecule is pyridine substituted 
at C-2 by a sulfanyl group. It has a 
role as a fluorescence quencher and 
an allergen. It is a member of 
pyridines and an aryl thiol.

The molecule is a metal halide, a 
metal cation and a lithium 
molecular entity. It has a role as an 
osmolyte and a flame retardant.

The molecule is a metal tetraborate, 
a metal ion and a monovalent 
inorganic anion. It is a conjugate 
acid of a dibromolithium.

The molecule is a metal bromide 
salt with a Li(+) counterion. It has a 
role as a fertilizer. It is an inorganic 
bromide salt and a lithium salt.

The molecule is a lithium salt in 
which the counterion is bromide. 
The anhydrous salt forms cubic 
crystals similar to common salt. It is 
a bromide salt and a lithium salt.

1

2

3

4
The molecule is a tetrapeptide 
composed of L-aspartic acid, L-
phenylalanine and two L-proline 
units joined by peptide linkages. It 
has a role as a metabolite. It derives 
from a L-aspartic acid, a L-
phenylalanine and a L-proline.

The molecule is a pentapeptide 
consisting of L-codeoxylimonoyl, L-
phenylalanine and L-(2-
naphthyl)acetamide residues joined 
in sequence. It has a role as a 
metabolite. It is a polypeptide, a 
member of naphthalenes and a 
pentapeptide.

The molecule is a secondary 
carboxamide resulting from the 
formal condensation of the carboxy 
group of 1H-indole-2-carboxylic acid 
with the primary amino group of 
(2S,3R)-cyclohexyl-L-alanine. It is an 
inhibitor of SARS coronavirus main 
proteinase and inhibits SARS-CoV-2 
replication in cell culture (EC50 = 
0.72 muM). It has a role as an EC 
3.4.22.69 (SARS coronavirus main 
proteinase) inhibitor and an 
anticoronaviral agent. It is a 
secondary carboxamide, a member 
of pyrrolidin-2-ones, an oligopeptide, 
an indolecarboxamide and a L-
alanine derivative.

The molecule is a secondary 
carboxamide resulting from the 
formal condensation of the carboxy 
group of 1H-indole-2-carboxylic acid 
with the primary amino group of 3-
cyclohexyl-N-(2S)-1-oxo-3-[(3S)-2-
oxopyrrolidin-3-yl]propan-2-yl-L-
alaninamide. It is an inhibitor of 
SARS coronavirus main proteinase 
and inhibits SARS-CoV-2 replication 
in cell culture (EC50 = 0.53 muM). It 
has a role as an EC 3.4.22.69 (SARS 
coronavirus main proteinase) 
inhibitor and an anticoronaviral 
agent. It is an indolecarboxamide, a 
member of pyrrolidin-2-ones, an 
aldehyde, a secondary carboxamide 
and an oligopeptide.

Figure 5: Molecule captioning cases.

Input T5 MolT5 Ours Ground Truth

1

2

3

The molecule is an aminopyrimidine 
that is 5-methylpyrimidine-2,4-
diamine in which one of the 
hydrogens of the methyl group has 
been replaced by a 2-cyclopropyl-
7,8-dimethoxy-2H-chromen-5-yl 
group. It is an aminopyrimidine, a 
member of chromenes and a 
member of cyclopropanes.

The molecule is a 3',5'-cyclic purine 
nucleotide that is 3',5'-cyclic AMP 
bearing an additional bromo 
substituent at position 8 on the 
adenine ring. An activator of cyclic 
AMP-dependent protein kinase, but 
resistant to degradation by cyclic 
AMP phosphodiesterase. It has a 
role as a protein kinase agonist and 
an antidepressant. It is a 3',5'-cyclic 
purine nucleotide, an 
organobromine compound and an 
adenyl ribonucleotide. It derives 
from a 3',5'-cyclic AMP.

Invalid

Invalid

The molecule is a 33-membered 
polypeptide consisting of His, Gly, 
Asp, Gly, Ser, Phe, Ser, Asp, Glu, Met, 
Asn, Thr, Ile, Leu, Asp, Asn, Leu, Ala, 
Ala, Arg, Asp, Phe, Ile, Asn, Trp, Leu, 
Ile, Gln, Thr, Lys, Ile, Thr and Asp 
residues joined in sequence. A 
glucagon-like peptide-2 receptor 
agonist used for the treatment of 
short-bowel syndrome. It has a role 
as a glucagon-like peptide-2 
receptor agonist, a metabolite, an 
antioxidant and a protective agent.

4
InvalidInvalid

The molecule is a Cy5 dye and an 
organic perchlorate salt. It has a 
role as a fluorochrome. It contains a 
dilC18(5)(1+).

Figure 6: Text-based molecule generation cases.


