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Simple, Scalable Reasoning via Iterated Summarization
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Abstract
Training large language models to “think” longer
by generating chains of thought has led to break-
throughs in their reasoning capabilities. However,
their limited context length is a barrier to scaling
their thinking time even further. We investigate
iterated summarization as a practical approach to
extend thinking time: models alternate between
summarizing lengthy reasoning traces and rea-
soning about the problem given summaries of
previous attempts. There are many possible sum-
marization strategies, so a key scientific question
emerges: what types of summaries effectively
compress lengthy reasoning traces? To study this,
we investigate the design space of summariza-
tion strategies and evaluate their performance in
the context of iterated summarization. On AIME
2024 & 2025, our best iterated summarization
method, which preserves backtracking behavior,
boosts accuracy by 11% over initial reasoning at-
tempts and significantly surpasses baseline meth-
ods of extending test-time compute.

1. Introduction
Optimizing language models for reasoning via reinforce-
ment learning has led to breakthrough advances (OpenAI,
2024; DeepSeek-AI et al., 2025). These reasoning mod-
els show dramatic improvements over their non-reasoning
counterparts on tasks such as math and coding. Much of this
improvement comes from “thinking” longer, which has mo-
tivated test-time techniques to extend how long they think
(Muennighoff et al., 2025).

Although these techniques reliably improve performance,
they all increase the length of reasoning traces, leading
to a substantial compute and memory overhead. Various
approaches have been explored for reducing the computa-
tional cost of reasoning. For example, some approaches use
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supervised finetuning (Yan et al., 2025) or reinforcement
learning to teach the model to generate shorter reasoning
traces (Aggarwal & Welleck, 2025). Other approaches com-
press reasoning into special tokens (Xia et al., 2025; Cheng
& Durme, 2024). While these approaches can be effective,
they require specialized training techniques. The complex-
ity of these methods motivates a natural question: are there
simple yet effective test-time interventions that can be ap-
plied without additional training to manage continuously
expanding context windows?

Given that the growing context window is the key bottleneck
to extending reasoning, a natural approach is to periodically
summarize the reasoning trace. In this work, we investi-
gate iterated summarization (IS) as a practical framework
for scalably extending thinking, where models alternate be-
tween generating reasoning traces and summarizing these
traces to inform their future reasoning (Figure 1). IS is a
training-free, test-time intervention that leverages the strong
summarization capabilities of pretrained LLMs.

Although summarization is an intuitive approach, the spe-
cific method of summarization is clearly a critical design
choice. While properties of effective summaries are well-
established in standard domains like question answering,
the properties of effective summaries of reasoning are less
clear.

How do we compress reasoning traces through summaries
in a way that facilitates improved reasoning? What elements
are crucial to preserve—intermediate calculations, or only
the path to the final answer? To address these questions, we
systematically explore a range of summarization strategies,
from simple heuristics that extract the most recent tokens or
final answer to more sophisticated approaches using LLMs.
Our investigation reveals that the most effective method uses
an LLM to summarize reasoning traces with emphasis on
moments of backtracking during the reasoning trace. This
approach delivers an 11% average improvement over initial
reasoning attempts and outperforms baseline methods of
extending test-time compute.
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Last-k tokens

Summarization Methods

Use last k tokens from 
think section as summary

Post-think

Use the text after 
</think> as summary

k tokensreasoning post-think content

Backtracking Summary

reasoning

“focus on backtracking”

summary

problem reasoning 1

Iteration t
problem reasoning tsummary 1

Iterated Summarization

… summary t - 1

reasoner summarizer…

reasoner summarizer

summary 1

summary t

Reasoning Model Output Structure

post-think content<think> reasoning </think>

Iteration 1

Figure 1. Iterated Summarization Overview. Top: Iterated summarization alternates between summarizing lengthy reasoning traces and
using those summaries as context for a reasoning model’s next attempt at solving a problem. Left: structure of reasoning model outputs,
divided into reasoning and post-think content. Right: Illustration of three summarization methods: Last-k, Post-Think, and Backtracking
summary.

In summary, our contributions are as follows:

• We introduce Iterated Summarization (IS), a simple
but effective technique that alternates between generat-
ing reasoning traces and summarizing them, enabling
language models to “think longer” without drastically
increasing the context window.

• We explore multiple summarization techniques for
compressing reasoning traces and identify behaviors
that unlock greater reasoning capabilities.

• On AIME 2024 and AIME 2025, our best IS technique
delivers an 11% performance boost.

2. Method
Our goal is to understand the characteristics of effective
summarization strategies that enable an LLM to reason
longer while keeping the context length manageable. This
way, we can benefit from longer reasoning without paying a
prohibitive computational and memory cost. This section
introduces the iterated summarization (IS) framework.

2.1. Iterated Summarization

At a high level, IS alternates between reasoning and sum-
marization, as illustrated in the top portion of Figure 1. In
iteration t, a reasoning model R attempts to solve a prob-
lem by producing a reasoning trace rt. We then pass rt to a
summarizer S that takes rt as input and produces a shorter
summary st (see 2.2 for summarization methods). We regen-
erate a solution to the problem by prompting the reasoning

model R with all prior summaries s1...st−1 included after
the question, in chronological order. We repeat this proce-
dure for T iterations. We fix T=5 in our experiments, for
a total of five reasoning iterations and four summarization
steps.

2.2. Summarization Methods

In this section, we motivate and introduce the different sum-
marizers that we compare.

Base Summary Our base summarization method simply
prompts an LLM to summarize the reasoning trace. This
method allows us to understand what the summarizer pre-
serves without more specific instructions.

Backtracking Summary Recent work on characterizing
the reasoning strategies of LLMs (Gandhi et al., 2025; Ven-
hoff et al., 2025) has highlighted backtracking–where the
reasoner changes or revises the approach–as a key “cognitive
behavior” in successful reasoning. Motivated by this, we de-
signed a backtracking summarization prompt that instructs
the summarizer to highlight moments where the reasoning
model changed its approach or revised its thinking. This
was inspired by the insight that highlighting these instances
of backtracking in summaries may encourage subsequent
reasoning iterations to adopt more effective problem solving
approaches.

Our next few approaches do not use an LLM based sum-
marizer and instead use simple functions of the reasoning

2
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Figure 2. Accuracy on AIME 2024 and 2025 problems by iteration for different methods of extending test-time compute. Shaded regions
represent ± 1 SEM.

model’s output. To understand them, it is helpful to under-
stand how open-weights reasoning models structure their
responses (shown in the bottom left of Figure 1): they typi-
cally produce a <think> tag to indicate the start of their
reasoning process, terminate their reasoning process with
a closing </think> tag, and then provide the “post-think”
answer: a clean response that describes their final answer in
some detail.

Post-Think We extract this “post-think” answer by pars-
ing the tokens after the </think> and use it as the sum-
mary. This text is often a brief solution justifying the final
answer, which is a natural summary of the final approach.

Last-k truncation Within a reasoning trace, later rea-
soning steps may supersede or invalidate initial steps. We
operationalize this insight by choosing the last k tokens
before the </think> tag, capturing the most recent steps.
To control for token length, we set k = 404 for Last-k (and
First-k, mentioned later), matching the average length of
Base summaries on the combined AIME dataset.

2.3. Baselines

Self-consistency We use self-consistency as a baseline
(Wang et al., 2023) which samples multiple solutions from
the model and takes a majority vote over the answers. For
fair comparison with IS, we sample the same number of
solutions as iterations in our IS methods (T = 5).

Budget forcing (“Wait”) Following Muennighoff et al.
(2025), we extend test-time thinking by forcing R to extend
its reasoning by replacing the closing </think> tag with
“Wait”, forcing the model to continue reasoning. Unlike IS,
budget forcing is limited by the context length since the full

reasoning trace is kept in context.

First-k truncation As a negative control, we also consider
first-k truncation and choose the first k tokens after the
opening <think> tag. These early tokens primarily contain
only problem setup rather than reasoning or critical insights.

Answer Only As an ablation, we explore the effectiveness
of only providing the final answer from previous attempts,
without any justification. We use the statement “The answer
is {final answer}” as the summary.

3. Results & Analysis
3.1. Experimental Setup

Models that achieve near ceiling performance
have less room to benefit from increasing think-
ing time. Therefore, in all experiments, we use the
DeepSeek-R1-Distill-Qwen-14B model as our reasoner
R and the Qwen2.5-14B-Instruct model as our summa-
rizer S; the DeepSeek-R1-Distill-Qwen-14B model was
trained by finetuning the Qwen2.5-14B-Instruct model
on Deepseek-R1 reasoning traces. We also experimented
with using DeepSeek-R1-Distill-Qwen-14B itself as the
summarizer but found that it would often attempt to solve
the problem instead of summarizing.

We evaluate on AIME 2024 and AIME 2025, consisting
of 60 high-school mathematics competition problems in En-
glish (Mathematical Association of America, 2024; 2025).
Each solution was generated with temperature 0.6 and top-p
0.95, matching the sampling parameters used in the origi-
nal DeepSeek R1 paper (DeepSeek-AI et al., 2025), with a
maximum generation length of 32,768 tokens. Experiments

3



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Submission and Formatting Instructions for LCFM 2025

Method AIME 2024 AIME 2025 Combined

Pass@1 0.733 ± 0.019 0.525 ± 0.050 0.629 ± 0.026
Self-Consistency 0.753 ± 0.056 0.630 ± 0.059 0.692 ± 0.055
“Wait” 0.733 ± 0.024 0.533 ± 0.043 0.633 ± 0.018
Answer Only 0.808 ± 0.021 0.558 ± 0.042 0.683 ± 0.029
Post-Think 0.792 ± 0.028 0.658 ± 0.042 0.725 ± 0.020
First-k 0.658 ± 0.021 0.450 ± 0.029 0.554 ± 0.022
Last-k 0.783 ± 0.017 0.608 ± 0.021 0.696 ± 0.014
Base Summary 0.775 ± 0.016 0.642 ± 0.037 0.708 ± 0.020
Backtracking Summary 0.817 ± 0.017 0.667 ± 0.043 0.742 ± 0.025

Table 1. Accuracy (± 1 SEM) across methods for AIME 2024,
AIME 2025, and combined datasets. The best method is bold and
the second-best is underlined.

were run on an A100-80GB node hosted by Fireworks AI.
Full prompts, hyperparameters, and experiment details are
provided in the Appendix. To account for decoding stochas-
ticity, we run every experimental condition four independent
times. We report the mean accuracy and the standard error
of the mean (± SEM) across the runs.

3.2. Iterated Summarization Boosts Reasoning

Table 1 shows that all of our IS methods (excluding our neg-
ative control, First-k) outperform Pass@1 on both AIME
2024 & 2025. We bold the best method and underline the
second-best. Our best method, Backtracking Summary, de-
livers significant accuracy gains of +8.4% on AIME 2024,
+14.2% on AIME 2025, and +11.3% overall compared to
Pass@1. Comparing to Self-Consistency, our Backtracking
Summary method maintains an advantage with improve-
ments of +6.4% on AIME 2024, +3.7% on AIME 2025, and
+5.0% on the combined dataset. Figure 2 plots accuracy
per iteration, with Backtracking Summary and Post-Think
increasing nearly monotonically on average.

The “Wait” baseline improves over Pass@1 by a small
+0.4% margin on the combined dataset; our Backtracking
method has a +10.9% improvement over “Wait”. Each rea-
soning continuation after the “Wait” token averages only
1,345 tokens, whereas each new reasoning attempt for Back-
tracking summarization generates 9,018 tokens on average
(see Appendix Figure 7 for full token count distributions).
This highlights a fundamental difference between how these
approaches extend test-time thinking: budget forcing only
extends previous reasoning where it left off, while IS allows
the model to re-attempt full solutions. Interestingly, even
the Answer Only method (67.1% accuracy) outperforms
the “Wait” baseline, demonstrating that even minimal infor-
mation from prior attempts can be valuable for subsequent
reasoning attempts.

We examined reasoning traces and their summaries to gain
insights into the properties of Iterated Summarization. Un-
like methods like self-consistency that generate independent
solutions, IS enables the model to retain relevant portions of
the previous attempts and focus effort on trying something
new. This progressive improvement is evident when early

Method Improved (%) Regressed (%)
wrongt=1 → correctt=5 correctt=1 → wrongt=5

“Wait” 2.00 ± 2.00 0.60 ± 0.60
Answer-Only 30.26 ± 6.76 8.86 ± 3.55
Post-Think 30.11 ± 4.00 2.57 ± 1.86
First-k 21.85 ± 3.64 24.99 ± 3.70
Last-k 23.19 ± 2.71 3.23 ± 2.50
Base Summary 27.88 ± 2.90 4.03 ± 0.85
Backtracking Summary 31.81 ± 3.49 0.66 ± 0.66

Table 2. Stability of methods for extending test-time compute (± 1
SEM) The best method is bold and the second-best is underlined.

iterations establish correct foundations (such as setting up
equations or coordinate systems) but make errors in later
steps. Subsequent iterations often preserve these founda-
tions, spending compute on exploring new approaches. In
contrast to other summarization methods, backtracking sum-
maries often describe abandoned approaches, allowing the
model to learn from these attempts.

3.3. Stability of Iterated Summarization

We also evaluate two additional key properties: whether
summarization enables us to solve problems in later iter-
ations that were unsolved in the initial reasoning attempt
(improvement), while minimizing cases where solved prob-
lems become incorrect later (regression).

We consider two sets of problems: ones that the model
gets correct at iteration 0 and ones that the model gets in-
correct at iteration 0. We then revisit these same prob-
lems after applying our IS method, and characterize how
many problems improve (wrongt=1 → correctt=5) vs.
regress (correctt=1 → wrongt=5). Empirically, our best
IS method (backtracking) yields the highest Improvement-
to-Regression ratio. On problems that an initial reasoning
attempt does not solve, IS with backtracking summaries
solves 31.81% of these problems after iteration 5. On prob-
lems that an initial reasoning attempt gets right, only 0.66%
of these problems deteriorate to an incorrect answer after
iteration 5. This suggests that IS is a stable method of
increasing inference-time compute.

Conclusion
Iterated Summarization is a framework that alternates be-
tween reasoning and summarization of reasoning traces to
extend a model’s thinking time while managing the chal-
lenges that come with longer reasoning. On the AIME 2024
& 2025 benchmarks, our best variant, Backtracking Sum-
mary, boosts accuracy by over 11% compared to Pass@1,
while also outperforming self-consistency and “Wait” base-
lines. Crucially, these gains are stable: later iterations cor-
rect 31.81% of previously unsolved problems while regress-
ing on only 0.66% of solved ones.
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Impact Statement
This paper presents IS, a lightweight, model-agnostic frame-
work that empirically extends the reasoning capabilities of
LLMs at inference-time. This method can be used in a
variety of applications that require a boost in performance
without additional post-training or compute requirements.
While it is possible that powerful reasoning models could
present certain risks when applied to sensitive domains, our
proposed framework is unlikely to introduce or magnify
these risks. IS enhances model reasoning through efficient
context management and iterative thinking, allowing models
to operate within existing safety frameworks and constraints.
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A. Appendix
A.1. Artifact License Details

• Model weights. We rely on two open-weight LLMs: DeepSeek-R1-Distill-Qwen-14B1 and
Qwen2.5-14B-Instruct2, both released under the MIT license.

• Benchmark data. The AIME 2024 & 2025 problem sets are in the public domain (problems reproduced from the Art of
Problem Solving archive).

• Code and prompts. Our implementation, prompts, and evaluation scripts will be released on GitHub under the
permissive MIT license.

A.2. Hyperparameter & Experiment Details

Both DeepSeek-R1-Distill-Qwen-14B and Qwen-2.5-14B-Instruct have 14.7 billion parameters each. Running the main
experiments (4 seeds × 60 problems × 5 iterations) consumed approximately 45 GPU-hours on a single NVIDIA A100-80GB.

We use Hugging Face models and tokenizers for running models and tokenization (Wolf et al., 2020).

We use these sampling parameters for experiments:

Parameter Reasoning Model Summarizer

max tokens 32768 32768
temperature 0.6 0.6
top p 0.95 0.95
top k 40 40
presence penalty 0 0
frequency penalty 0 0

Table 3. Sampling parameters for reasoning and summarization models.

These parameters were chosen to maintain consistency with the original DeepSeek-R1 paper (DeepSeek-AI et al., 2025).
The max tokens value was set high enough to accommodate the longest reasoning traces while avoiding truncation.

Algorithm 1 Iterated Summarization (IS)
Require: question q, reasoning model R, summarizer S, iterations T
1: Σ← [ ] ▷ list of summaries
2: for t = 1 to T do
3: rt ← R

(
q, summaries = Σ

)
4: if t < T then
5: st ← S(rt) ▷ compress trace
6: Σ.append(st)
7: end if
8: end for
9: return final answer extracted from rT

A.3. Additional Figures

Approach Iter 1 Iter 2 Iter 3 Iter 4 Average

Backtracking 2.14 2.09 2.00 1.94 2.04
Base Summarization 0.45 0.44 0.39 0.50 0.45

Table 4. Average Backtracking Behavior Counts For Summaries Across Iterations

1https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-14B
2https://huggingface.co/Qwen/Qwen2.5-14B-Instruct
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Method Iter 1 Iter 2 Iter 3 Iter 4 Iter 5 Overall

Backtracking 1.28 1.79 2.00 1.88 1.98 1.78
Base Sum 1.46 2.00 2.14 1.87 2.16 1.93

Table 5. Average Backtracking Behavior Counts For Reasoning Across Iterations

AIME Problems Prompt

Solve the following AIME problem. All answers are integers ranging from 0 to 999, inclusive. Report your answer in
\boxed{} format.

PROBLEM:
{question}

Figure 3. AIME Problem Prompt Template

Base Summarization Prompt

Summarize the following attempted solution to the problem:

PROBLEM:
{question}
ATTEMPTED SOLUTION:
{reasoning}
SUMMARY:

Figure 4. Base Summarization Prompt Template

Backtracking Summarization Prompt

Summarize the following attempted solution to the problem, emphasizing the instances where the model changed its
strategy, revised a previous decision, or explicitly backtracked from a prior line of reasoning.

PROBLEM:
{question}
ATTEMPTED SOLUTION:
{reasoning}
SUMMARY:

Figure 5. Backtracking Summarization Prompt Template
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Improve Using Summaries Prompt

Solve the following AIME problem. All answers are integers ranging from 0 to 999, inclusive. Report your answer in
\boxed{} format.

PROBLEM:
{question}
Here are summaries of your previous solution attempts:
{summaries}

Based on your previous solution attempts, evaluate whether the most recent approach and answer are correct.
If not, consider a different approach.

Figure 6. Prompt Template for later iterations to use and build from previous summaries

Figure 7. Token Count Distribution

Method Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5

Answer Only 12438.47 ± 521.66 11839.93 ± 488.61 11821.38 ± 517.14 11672.89 ± 503.48 11939.12 ± 535.31
Backtracking 12438.47 ± 521.66 10609.80 ± 509.23 9036.55 ± 424.25 8444.58 ± 425.09 7979.73 ± 438.79
Base Summary 12438.47 ± 521.66 9596.15 ± 401.03 8427.26 ± 393.72 9116.83 ± 484.48 8246.03 ± 421.15
First-$k$ 12438.47 ± 521.66 11517.05 ± 514.59 11451.91 ± 543.41 10740.58 ± 496.92 10849.08 ± 522.41
Last-$k$ 12438.47 ± 521.66 9225.58 ± 439.45 7627.92 ± 372.73 7438.36 ± 417.94 5919.89 ± 320.07
Post-Think 12438.47 ± 521.66 9759.13 ± 476.39 9240.95 ± 419.28 8854.25 ± 465.18 8341.21 ± 419.39
“Wait” 12438.47 ± 521.66 1635.50 ± 104.94 1390.48 ± 92.66 1243.05 ± 97.79 1109.97 ± 83.68

Table 6. Summary statistics (± SEM) for each method across iterations.
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