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Abstract

Geocoding is the task of converting location001
mentions in text into structured geospatial data.002
We propose a new prompt-based paradigm for003
geocoding, where the machine learning algo-004
rithm encodes only the location mention and005
its context. We design a transformer network006
for predicting the country, state, and feature007
class of a location mention, and a determinis-008
tic algorithm that leverages the country, state,009
and feature class predictions as constraints in010
a search for compatible entries in the ontol-011
ogy. Our proposed architecture, GeoPLACE,012
achieves new state-of-the-art performance on013
multiple datasets. Code and models are avail-014
able at https://<anonymized>.015

1 Introduction016

Geocoding is the task of matching locations in017

text to geospatial coordinates or entries in a ge-018

ographical database. Geocoding systems support019

document categorization and retrieval (Bhargava020

et al., 2017), historical event analysis (Tateosian021

et al., 2017), monitoring the spread of infectious022

diseases (Hay et al., 2013), and disaster response023

mechanisms (Ashktorab et al., 2014; de Bruijn024

et al., 2018). Geocoding is challenging because025

identical place names may refer to different geo-026

graphical locations (e.g., San Jose in Costa Rica vs.027

San Jose in California, USA), while distinct names028

can represent the same geographical location (e.g.,029

Leeuwarden and Ljouwert in the Netherlands).030

The traditional paradigm for geocoding systems031

is to train machine learning algorithms that encode032

both the location mention and the geographical on-033

tology entries when predicting a label for the men-034

tion. For example, CamCoder’s (Gritta et al., 2018)035

convolutional network encodes the location men-036

tion, the nearby context, and a population vector de-037

rived from the ontology entries, while GeoNorm’s038

(Zhang and Bethard, 2023) transformer network039

encodes the location mention, the document level040

context, and the alternative names, location hierar- 041

chy, and population from the ontology. 042

We propose an alternative prompt-based ap- 043

proach to geocoding, where the machine learning 044

algorithm at prediction time needs to encode only 045

the location mention and its context, not the on- 046

tology. Rather than directly predicting ontology 047

entries, our machine learning algorithm predicts 048

attributes of ontology entries, such as the enclos- 049

ing country and state. For example, our approach 050

would predict that Paris in a document about Texas 051

would have the attributes “a Populated Place lo- 052

cated in Texas in the United States.” The con- 053

straints implied by these predictions are used to 054

deterministically filter the ontology entries. Our 055

novel architecture, GEOgraphical normalization by 056

Predicting Location Attributes to Constrain ontol- 057

ogy Entries (GeoPLACE) is illustrated in Figure 1. 058

Our work makes the following contributions: 059

• We introduce a new paradigm for geocoding, 060

where the machine learning algorithm encodes 061

only the location mention and context. 062

• We design a transformer network for predicting 063

the country, state, and feature class of a location 064

mention, based on a masked language model- 065

ing objective and a novel prompt including all 066

location mentions in the document. 067

• We introduce a novel deterministic algorithm 068

that leverages the country, state, and feature class 069

predictions as constraints in a search for compat- 070

ible entries in the ontology. 071

• Our proposed approach achieves new state-of- 072

the-art performance on multiple datasets. 073

2 Related Work 074

Prior work in geocoding included models based 075

on hand-crafted rules and heuristics (Grover et al., 076

2010; Tobin et al., 2010; Lieberman et al., 2010; 077

Lieberman and Samet, 2011; Berico Technolo- 078

gies, 2012; Karimzadeh et al., 2013), and tradi- 079
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Figure 1: The architecture of our model: GEOgraphical normalization by Predicting Attributes to Constrain
Ontology Entries (GeoPLACE). The figure shows how GeoPLACE normalizes a mention of Paris.

tional machine learning models such as support080

vector machines (Martins et al., 2010; Freire et al.,081

2011; Lieberman and Samet, 2012; Speriosu and082

Baldridge, 2013; Zhang and Gelernter, 2014; De-083

Lozier et al., 2015; Kamalloo and Rafiei, 2018;084

Wang et al., 2019). However, most recent ap-085

proaches to geocoding use neural networks.086

Neural network based models have approached087

geocoding both as a ranking problem, trying to sort088

ontology entries by their appropriateness as a la-089

bel for a location mention (Hosseini et al., 2020;090

Ardanuy et al., 2020; Ayoola et al., 2022; Zhang091

and Bethard, 2023) and as a classification problem,092

trying to map a location mention directly to one of093

an N ×N grid of tiles covering the Earth’s surface094

(Gritta et al., 2018; Cardoso et al., 2019; Kulka-095

rni et al., 2021). The most successful approaches096

encode not just the mention and ontology entry097

names, but also context around the mention and098

information from the ontology such as population099

(Gritta et al., 2018; Ayoola et al., 2022; Zhang and100

Bethard, 2023). Many neural architectures have101

been considered, including convolutional (Gritta102

et al., 2018; Kulkarni et al., 2021), recurrent (Car-103

doso et al., 2019), and transformer networks (Ay-104

oola et al., 2022; Zhang and Bethard, 2023).105

In contrast to these approaches, we predict geo-106

graphical attributes (e.g., enclosing state) and use107

those to deterministically select an ontology entry.108

3 Proposed Methods109

The problem of geocoding can be formalized as110

defining a function f(m|T,M,E) = ê where T111

is the text of a document, M is the set of location 112

mentions in the document, E is the set of geograph- 113

ical database entries, m ∈M is the mention under 114

consideration, and ê ∈ E is the entry predicted 115

by f for m. In our paradigm for geocoding, we 116

formulate f to first predict the country, state, and 117

feature of m, next query the ontology with m to 118

find candidate entries, then select the entry that vio- 119

lates the fewest constraints implied by the predicted 120

attributes as the prediction ê. Formally: 121

Ĉm, Ŝm, F̂m = ATTRIBUTEPREDICTOR(m,M) 122

Ê = CANDIDATEGENERATOR(m,E) 123

f(m|T,M,E) = CONSTRAINER(Ê, Ĉm, Ŝm, F̂m) 124

where Cm, Sm, Fm are the lists of predicted coun- 125

tries, states, and feature classes for m, and AT- 126

TRIBUTEPREDICTOR, CANDIDATEGENERATOR, and CON- 127

STRAINER are defined in the following sections. 128

We leverage the best CANDIDATEGENERATOR from 129

prior work, and implement new solutions for 130

the newly introduced elements of our geocoding 131

paradigm, ATTRIBUTEPREDICTOR and CONSTRAINER. 132

3.1 Attribute Predictor 133

This function predicts the country, state, and feature 134

class of m using a model that combines prompting 135

and a masked language modeling objective. The 136

prediction targets are defined as: 137

Feature Class is one of the nine types defined 138

by GeoNames: A, Administrative boundaries 139

(e.g., countries, states, provinces); P , Populated 140
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places (e.g., cities, towns, villages); U , Undersea141

features (e.g., oceanic ridges, trenches), etc.142

State is the canonical name of one of the 3871143

first-order administrative divisions in GeoNames,144

such as states, provinces, or regions.145

Country is the canonical name of one of the 252146

countries in GeoNames.147

We implement prediction of these targets as:148

Z = TRANSFORMER(TOINPUT(m,M))149

Ĉm = softmax(ZcWc)150

Ŝm = softmax(ZsWs)151

F̂m = softmax(ZfWf )152

where TOINPUT produces text of the form [CLS]153

This document discusses these location154

mentions: m1, m2, ..., m|M| in which155

m is [MASK] located in [MASK] of [MASK]156

[SEP], f , s, c, are the indexes of the three157

[MASK] tokens, Wc,Ws,Wf ∈ RN×H are the158

learnable parameters of the three classification159

heads, N is the size of the transformer tokenizer’s160

vocabulary, and H is the size of the transformer’s161

contextualized representations. We add new tokens162

to the transformer’s tokenizer to ensure every163

country, state, and feature class is a single token,164

e.g., United States.165

The model is trained with the classification loss:166

L = Cmlog(Ĉm) + Smlog(Ŝm) + Fmlog(F̂m)167

where Cm, Sm, and Fm are one-hot vectors of168

size N representing the true country, state, and169

feature class for mention m. At prediction time, we170

constrain the outputs of the softmax to the subset171

of the vocabulary appropriate for each prediction172

type. For example, when the model predicts the173

word for the country <mask>, only the 252 country174

names are allowed to be non-zero.175

We train this model on the labeled data in the176

toponym datasets. Optionally, we also pre-train177

(before the fine-tuning) on additional data that we178

synthesize directly from the GeoNames ontology179

following the prompt format of TOINPUT. See ap-180

pendix A.2 for details.181

3.2 Candidate Generator182

We adopt the candidate generator of Zhang and183

Bethard (2023), which outperformed prior candi-184

date generators and some end-to-end systems. It185

uses Lucene to index GeoNames entries by their186

canonical and alternative names, selects entries for187

Algorithm 1: Constrained Entry Selection
Input: a list of candidate entries, Êm

top 3 predicted countries, Ĉm

top 3 predicted states, Ŝm

top 3 predicted feature classes, F̂m

Output: selected candidate entry ê

1 Def SCORE(x, L):
2 if x = L0 then return 2
3 else return x ∈ L
4 Def ENTRYKEY(e):
5 c← COUNTRY(e)
6 s← STATE(e)
7 f ← FEATURE(e)

8 key1 ← SCORE(c, Ĉm) · SCORE(s, Ŝm)

9 key2 ← (c ∈ Ĉm) · (s ∈ Ŝm) · SCORE(f, F̂m)
10 return (key1, key2)

11 return MAX(Êm, KEY = ENTRYKEY)

a mention by applying a series of searches includ- 188

ing exact string matching and character 3-gram 189

matching, and sorts the resulting entries by their 190

population in GeoNames to place most populous 191

countries at the top of the list. 192

3.3 Constrainer 193

Algorithm 1 defines our process for sorting the 194

output of the candidate generator (entries) using the 195

output of the attribute predictor (countries, states, 196

and feature classes). We define the SCORE of a 197

prediction as 2 if it was the top ranked prediction, 1 198

if it was the second or third ranked prediction, and 199

0 otherwise. Entries are then sorted by the product 200

of the country and state SCOREs, with the SCORE 201

of the feature class used to break ties. Intuitively, if 202

the attribute predictor predicts C and S as the most 203

probable country and state, then the constrainer 204

will rank entries from GeoNames that are within 205

country C and state S higher than other entries. We 206

use a stable sort, so candidates that are assigned the 207

same score retain their population-based sorting 208

from the candidate generator. 209

See appendix A.3 for an illustration of the algo- 210

rithm and evaluation of several variants. 211

4 Experiments 212

We conduct primary experiments on three toponym 213

resolution datasets: Local Global Lexicon (LGL; 214

Lieberman et al., 2010), a collection 588 news arti- 215

cles from local and small U.S. news sources; Ge- 216

oWebNews (Gritta et al., 2019) a collection of 200 217

articles from 200 globally distributed news sites; 218

and TR-News (Kamalloo and Rafiei, 2018) a col- 219

lection 118 articles from various global and local 220
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LGL (test) GeoWebNews (test) TR-News (test)

Model Acc A161 Err AUC Acc A161 Err AUC Acc A161 Err AUC

ReFinED (Ayoola et al., 2022) .576 - - - .658 - - - .720 - - -
ReFinED (fine-tuned by Zhang and Bethard, 2023) .786 - - - .782 - - - .858 - - -
Candidate Generator (Zhang and Bethard, 2023) .606 .685 119 .263 .694 .774 92 .194 .716 .812 95 .169
GeoNorm (Zhang and Bethard, 2023) .807 .824 46 .135 .828 .862 55 .114 .918 .933 34 .057
GeoPLACE (ours) .863 .894 21 .084 .822 .878 57 .112 .947 .957 18 .038

GeoPLACE (-synthesized pre-training) .851 .886 24 .093 .809 .864 63 .123 .904 .922 20 .062
GeoPLACE (-masking, +generative fine-tuned BART) .633 .696 111 .250 .704 .776 92 .191 .727 .812 95 .167
GeoPLACE (-masking, +generative zero-shot GPT-3) .733 .795 80 .176 .719 .811 85 .171 .830 .869 63 .115

Table 1: Performance on the test sets. Higher is better for accuracy (Acc) and accuracy@161km (A161). Lower
is better for mean error (Err) and area under the error distances curve (AUC). We do not report distance-based
metrics for ReFinED as this extraction+disambiguation system does not make predictions for all mentions. The best
performance on each dataset+metric is in bold.

news sources. All datasets use as their ontology221

GeoNames, a crowdsourced database of almost222

7 million entries that contains geographic coordi-223

nates (latitude and longitude), alternative names,224

feature class (country, city, river, mountain, etc.),225

population, elevation, and positions within a polit-226

ical geographic hierarchy. See appendix A.1 for227

statistics of the datasets.228

We adopt the train, development, and test splits229

and evaluation metrics of prior work (Zhang and230

Bethard, 2023). We refer the reader to that paper for231

details, but briefly, accuracy measures how often232

the correct database entry was predicted, while233

accuracy@161km, mean error distance, and area234

under the curve all give some partial credit for235

predicting entries that are wrong but geographically236

close to the correct entry.237

We compare to the state-of-the-art geocoders:238

ReFinED In Ayoola et al. (2022), transformer-239

generated embeddings for tokens in the text240

are matched to embeddings of ontology entries241

by by comparing their dot products. ReFinED242

is an end-to-end model originally trained on243

Wikipedia, but Zhang and Bethard (2023) lever-244

aged the existing links to GeoNames IDs to fine-245

tune it for just the toponym resolution.246

GeoNorm Zhang and Bethard (2023) uses Lucene247

to index and generate candidate entries from the248

ontology, applies a transformer network jointly249

over the mention and each candidate entry to250

predict a single entry, and applies a two-stage251

process to first resolve countries and states and252

use them as context to resolve other mentions.253

Before evaluating on the test sets, we performed254

model selection on the development sets as de-255

scribed in appendix A.3.256

5 Results 257

The top of table 1 compares our model to the ex- 258

isting state-of-the-art on LGL, GeoWebNews, and 259

TR-News. (See appendices A.4 to A.6 for com- 260

parisons against other models and results on other 261

datasets.) GeoPLACE outperforms prior work by 262

large margins (more than 30% error reduction) on 263

LGL and TR-News, while achieving similar perfor- 264

mance on GeoWebNews. See appendix A.7 for a 265

qualitative analysis of GeoPLACE prior work. 266

The bottom of table 1 shows an ablation of our 267

model. Pre-training on synthesized data provides 268

small but consistent gains across all datasets. We 269

also try replacing our masked language modeling 270

objective with a sequence-to-sequence style gen- 271

erative objective, asking the model to directly pro- 272

duce is <feature-type> located in <state> 273

of <country>. (See appendix A.2 for prompt- 274

ing details.) This approach yields worse perfor- 275

mance than our masked language modeling ap- 276

proach both when fine-tuning BART-large and 277

when using GPT3 in zero-shot mode. 278

We release our model for English geocoding 279

under the Apache License v2.0, for off-the-shelf 280

use at https://<anonymized>. 281

6 Conclusion 282

We introduced a new paradigm for geocoding 283

where instead of trying to map directly from text 284

to an ontology entry, we predict geographical at- 285

tributes and use those to deterministically constrain 286

the set of valid ontology entries. Our approach 287

leads to large error reduction over the current state- 288

of-the-art on the LGL and TR-News datasets. 289
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7 Limitations290

The possible space of prompts is large, and while291

our location-based prompt worked well with our292

masked language modeling objective, it did not293

work well for generative models like BART. It is294

possible that more intensive exploration of alterna-295

tive prompts could bring the performance of these296

generative models up to the performance of our297

masked language model. We also only explored298

zero-shot approaches for GPT-3, and though full299

fine-tuning BART did not yield acceptable perfor-300

mance, it is possible that few-shot approaches or301

fully fine-tuning GPT-3 would.302

GeoPLACE is limited by its training and evalua-303

tion data, which covers only thousands of English304

toponyms from news articles, while there are many305

millions of toponyms across the world. It is likely306

that there are regional differences in GeoPLACE’s307

accuracy that will need to be addressed by future308

research.309

GeoPLACE is currently limited to geocoding.310

To apply this approach to other entity linking prob-311

lems, one would need to identify the attributes that312

help constrain the search from the ontology, and313

then explore a few definitions of keys as we have314

in appendix A.3. This would be an interesting area315

for future research.316
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A Appendix499

A.1 Dataset details500

The number of toponyms and articles in each of the501

splits of each of the datasets is shown in table A1.502

A.2 Implementation details503

We adopt the candidate reranker of Zhang and504

Bethard (2023). We implement the attribute predic-505

tor with the PyTorch1 v1.7.0 APIs in Huggingface506

Transformers v2.11.0 (Wolf et al., 2020), using507

bert-base. We train with the AdamW optimizer,508

a learning rate of 5e-6, a maximum sequence length509

of 256 tokens, and a number of epochs of 40. When510

training, we use one NVIDIA A100 GPU with 40G511

memory and a batch size of 64. The total number of512

parameters in our model is 112M and the training513

time is about 0.15 hours.514

When synthesizing data from the geographical515

ontology for pre-training, we filtered all of cities,516

states and countries with less than 100 population517

and take the entries from some other special feature518

classes, such as H (stream, lake), L (parks, area)519

and T ( mountain, hill, rock). To construct the520

input for pre-training, we used the same prompt521

with finetuning and sampled a different number of522

locations within the same country as the document523

mentions. Most of the hyperparameters are same524

with finetuning just the batch size is 32 and training525

epochs is 10.526

When using a generative sequence-to-sequence527

objective instead of a masked language modeling528

objective, we utilize bart-large with the PyTorch529

v2.0.0 APIs in Huggingface Transformers v4.11.3530

(Wolf et al., 2020) and FAIRSEQ v0.12.2 (Ott531

et al., 2019). We train with the AdamW optimizer,532

a initial learning rate of 1e-5, a learning rate sched-533

uler type of polynomial, a maximum sequence534

length of 1024 tokens, and the steps of training535

of 40000. When training, we use one NVIDIA536

A100 GPU with 40G memory and a batch size of537

8. During evaluation, we use beam search with a538

beam size of 5. The total number of parameters539

in our model is 406M and the training time is540

about 1.3 hours. We use one model to generate541

only one attribute, when we generate the country542

name, we use the prompt [CLS] This document543

discusses these location mentions: m1,544

m2, ..., m|M|. Which country is START545

m END located ?, the prefix prompt for output546

1https://pytorch.org/

generation is m is located in. When we 547

generate the state name, we use the prompt [CLS] 548

This document discusses these location 549

mentions: m1, m2, ..., m|M|. Which 550

state is START m END located ?, the prefix 551

prompt for output generation is m is located 552

in. When we generate the feature class, we use 553

the prompt [CLS] This document discusses 554

these location mentions: m1, m2, ..., 555

m|M|. Which feature class does START m 556

END belong to ?, the prefix prompt for output 557

generation is m belong to 558

A.3 Model selection 559

For the attribute predictor, we explored a small 560

number of learning rates (1e-6, 2e-6, 5e-6, 1e-5) 561

and number of epochs (10, 20, 30, 40). The best 562

learning rate and number of epochs was selected 563

based on accuracy on the attribute prediction task 564

(not on the full geocoding task). 565

For the constrainer, we explored three different 566

ways to define key1 and key2. 567

alg3 defines key1 and key2 as in alg. 1. 568

alg2 allows scores to range from 0 to the length of 569

the list, rather than just from 0 to 2. It defines: 570

key1 ← RINDEX(c, Ĉm) · RINDEX(s, Ŝm) 571

key2 ← (c ∈ Ĉm) · (s ∈ Ŝm) · RINDEX(f, F̂m) 572

573

Def RINDEX(x, L) : if x ̸∈ L then 0 574

else |L| − lst.index(val) 575

alg1 prioritizes matching the first country, and also 576

allows scores to range from 0 to the length of the 577

list. It defines: 578

key1 ← (c = Ĉm0) · RINDEX(s, Ŝm) 579

key2 ← (c ∈ Ĉm) · (s ∈ Ŝm) · RINDEX(f, F̂m) 580

Table A2 shows that there were not large differ- 581

ences between these algorithms in terms of accu- 582

racy, but alg3 performed slightly better. 583

For the constrainer, we also explored four dif- 584

ferent ways to define the number of predictions to 585

consider in the constrainer. 586

top3 Only the top 3 countries, states, and feature 587

classes are considered 588

top4 Only the top 4 countries, states, and feature 589

classes are considered 590

top5 Only the top 5 countries, states, and feature 591

classes are considered 592
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Dataset Train Dev. Test

Toponyms Articles Toponyms Articles Toponyms Articles

LGL 3112 411 419 58 931 119
GeoWebNews 1641 140 281 20 477 40
TR-News 925 82 68 11 282 25

Table A1: Numbers of articles and manually annotated toponyms in the train, development, and test splits of the
toponym resolution corpora.

Accuracy

Model LGL (dev) GeoWebNews (dev) TR-News (dev)

GeoPLACE (alg1 top553) .885 .811 .926
GeoPLACE (alg1 top553 synthesized pre-training) .902 .872 .912
GeoPLACE (alg2 top553) .885 .815 .926
GeoPLACE (alg2 top553 synthesized pre-training) .902 .872 .912
GeoPLACE (alg3 top553) .900 .815 .926
GeoPLACE (alg3 top553 synthesized pre-training) .902 .872 .912
GeoPLACE (alg3 top555) .900 .815 .926
GeoPLACE (alg3 top555 synthesized pre-training) .902 .872 .912
GeoPLACE (alg3 top444) .893 .815 .941
GeoPLACE (alg3 top444 synthesized pre-training) .912 .872 .912
GeoPLACE (alg3 top333) .893 .826 .941
GeoPLACE (alg3 top333 synthesized pre-training) .912 .868 .926

Table A2: Model selection on the development sets. The top performance on each dataset is in bold, the second best
performance is underlined.

top553 The top 5 countries, top 5 states, and top 3593

feature classes are considered594

Table A2 shows that there were not large differ-595

ences between these strategies in terms of accuracy,596

but top3 performed slightly better.597

For the constrainer, we also explored whether or598

not it helps to pre-train on synthesized data before599

fine-tuning on the toponym resolution datasets. Ta-600

ble A2 shows that pre-training on synthesized data601

consistently helped on LGL and GeoWebNews but602

led to small drops in performance on TR-News.603

Figure 2 shows an example about how the alg3604

top3 constrainer works.605

A.4 EUPEG results606

We also report results using the Extensible and Uni-607

fied Platform for Evaluating Geoparsers (EUPEG;608

Wang and Hu, 2019). This platform evaluates not609

geocoders, but geoparsers, where a model must610

both detect locations and match them to ontology611

entries. So we couple our geocoder with the best612

location detection model on EUPEG, the Stanford-613

NER system.614

This platform reports several metrics that are615

incomparable across systems. Accuracy, accu-616

racy@161km, mean error, and area under the error617

distances curve are all calculated only over loca-618

tions that were detected, so that a model that detects 619

only 1% of locations but matches 100% of them 620

to their correct ontology entries would get perfect 621

values for these scores, while a model that detects 622

100% of locations and matches 90% of them to 623

their correct ontology entries would score lower. 624

We nonetheless report these incomparable metrics 625

as EUPEG provides no alternative. EUPEG results 626

are shown in table A3 627

A.5 Recall of Geographical Attributes 628

Prediction 629

Table A4 shows the performance of the geographi- 630

cal attribute prediction classifiers alone, i.e., as clas- 631

sifiers rather than as components in a geocoding 632

system. We report recall@3 since the constrainer 633

considers the top 3 predictions of the attribute pre- 634

dictor. Performance across all datasets and all clas- 635

sifiers is 0.84 or higher. 636

A.6 Full table of Test Performance 637

Table A5 compares GeoPLACE to other systems 638

that, due to space limitations, we could not include 639

in table 1. 640

A.7 Qualitative Analysis 641

Table A6 presents a qualitative analysis of errors en- 642

countered by GeoNorm (Zhang and Bethard, 2023) 643
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Figure 2: Illustration of the alg3 top3 constrainer applied to Paris in the context It’s a northeast Texas thing, not just
a Paris thing. . . Dallas media stations reported the same message as a hoax as early as Wednesday night..

LGL (test) GeoWebNews (test)

Model Pre Rec F1 A161 Err AUC Pre Rec F1 A161 Err AUC

Edinburgh .776 .353 .486 .775 60 .187 .787 .520 .626 .944 33 .056
StanfordNER + Pop .762 .635 .692 .592 135 .360 .866 .648 .741 .673 86 .257
StanfordNER + GeoPLACE .762 .635 .692 .888 23 .109 .866 .648 .741 .929 30 .072

TR-News (test) GeoVirus

Model Pre Rec F1 A161 Err AUC Pre Rec F1 A161 Err AUC

Edinburgh .752 .592 .663 .844 78 .121 .860 .559 .678 .807 44 .319
StanfordNER + Pop .906 .752 .822 .651 119 .287 .927 .903 .915 .655 79 .378
StanfordNER + GeoPLACE .906 .752 .822 .967 15 .033 .927 .903 .915 .837 23 .297

WikToR GeoCorpora

Model Pre Rec F1 A161 Err AUC Pre Rec F1 A161 Err AUC

Edinburgh .230 .298 .259 .591 217 .378 .832 .505 .628 .848 96 .140
StanfordNER + Pop .209 .540 .301 .184 460 .702 .899 .526 .664 .676 106 .270
StanfordNER + GeoPLACE .209 .540 .301 .629 171 .342 .899 .526 .664 .875 48 .122

Hu2014 Ju2016

Model Pre Rec F1 A161 Err AUC Pre Rec F1 A161 Err AUC

Edinburgh .486 .656 .559 .114 86 .607 .000 .000 .000 — – —
StanfordNER + Pop .504 .788 .615 .000 228 .758 .162 .010 .019 0.0 203 .743
StanfordNER + GeoPLACE .504 .788 .615 .071 92 .632 .162 .010 .019 .046 354 .768

Table A3: Performance on the test sets. Precision (Pre), Recall (Rec), and F1 are on the location detection task,
while the other metrics are on the geocoding task Higher is better for accuracy (Acc) and accuracy@161km (A161).
Lower is better for mean error (Err) and area under the error distances curve (AUC). The best performance on each
dataset and geocoding metric is in bold.

Model LGL (test) GeoWebNews (test) TR-News (test)

Country .992 .932 .891
State .929 .873 .849
Feature Class .996 .944 .996

Table A4: Geographical Attribute Prediction Performance of Recall@3 on the test sets.

9



LGL (test) GeoWebNews (test) TR-News (test)

Model Acc A161 Err AUC Acc A161 Err AUC Acc A161 Err AUC

Edinburgh (Grover et al., 2010) .611 - - - .738 - - - .750 - - -
CamCoder (Gritta et al., 2018) .580 .651 82 .288 .572 .665 155 .290 .660 .778 89 .196
Mordecai (Halterman, 2017) .322 .375 926 .594 .291 .333 1072 .633 .472 .553 6558 .427
DeezyMatch (Hosseini et al., 2020) .172 .182 654 .704 .262 .323 537 .601 .206 .220 741 .705
SAPBERT (Liu et al., 2021) .245 .260 566 .630 .428 .499 357 .446 .355 .362 595 .568
ReFinED (Ayoola et al., 2022) .576 - - - .658 - - - .720 - - -
ReFinED (fine-tuned by Zhang and Bethard, 2023) .786 - - - .782 - - - .858 - - -
Candidate Generator (Zhang and Bethard, 2023) .606 .685 119 .263 .694 .774 92 .194 .716 .812 95 .169
GeoNorm (Zhang and Bethard, 2023) .807 .824 46 .135 .828 .862 55 .114 .918 .933 34 .057
GeoPLACE (ours) .863 .894 21 .084 .822 .878 57 .112 .947 .957 18 .038

Table A5: Performance on the test sets. Higher is better for accuracy (Acc) and accuracy@161km (A161). Lower
is better for mean error (Err) and area under the error distances curve (AUC). We do not report distance-based
metrics for ReFinED as this extraction+disambiguation system does not make predictions for all mentions. The best
performance on each dataset+metric is in bold.

and our latest state-of-the-art model, GeoPLACE.644

The first row displays an example where645

GeoNorm falls short while GeoNorm excels. This646

can be attributed to GeoNorm’s superior ability to647

employ masked language models for accurately648

predicting the countries, states, and feature codes649

of toponyms in the text prior to their resolution.650

The second row portrays an instance where our651

most proficient model, GeoPLACE, experiences652

a failure. This occurs because predicting feature653

codes with the aid of a masked language model654

proves to be more challenging compared to pre-655

dicting countries and states. Thoroughly resolving656

this problem is likely to necessitate improvements657

in the prediction performance for all types of geo-658

graphical metadata.659
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Example Candidate Rank

Name Pop. Type State Country GeoNorm GeoPLACE

1 But the Mt. Pleasant
News has reviewed legal
documents......he writes,
as do my efforts to in-
sure New London is a
safe community.

New London County 274055 ADM2 Connecticut United States 1 2
New London 27179 PPL Connecticut United States 2 3
New London 7172 PPL Wisconsin United States 3 4
New London 1882 PPL Iowa United States 4 1

2 John-Paul Delaney (18),
is charged with assault,
assault causing harm and
theft of a mobile phone
at Main Street, Tipperary,
on the same date.

Tipperary 159553 ADM2 Munster Ireland 1
Tipperary 4979 PPL Munster Ireland 2
Tipperary 0 HMSD Western Australia Australia 3
Tipperary 0 HMSD New South Wales Australia 4

Table A6: Examples of predictions from GeoNorm (Zhang and Bethard, 2023) and our new SOTA model, Geo-
PLACE. Target location mentions are underlined. Human annotated ontology entries are in bold. (ADM2 represents
a county, PPL represents a city, HMSD represents a residence specific to Australia and New Zealand)
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