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ABSTRACT

Deep Neural Networks (DNNs) rely on activation functions to introduce non-
linearity, which significantly impacts performance across various tasks. To en-
hance neural network expressivity, we propose Attention-based Dynamic ReLU
(ADReLU)—a novel activation function that replaces ReLU’s fixed zero thresh-
old with a dynamic, input-dependent threshold computed via an attention mech-
anism. To balance expressivity and computational efficiency, ADReLU em-
ploys grouped convolution and depth-wise projection for image data, reduce
the computational cost typically associated with attention. Extensive experi-
ments on CIFAR-10, CIFAR-100, SVHN, and ImageNet datasets demonstrate
that ADReLU consistently outperforms both predefined activation functions (such
as ReLU, LReLU) and trainable (such as PReLU, GCLU, GELU, Maxout, and
Dynamic ReLU) in terms of accuracy. Furthermore, we empirically analyze
ADReLU’s attention subspace dimension, sparsity patterns, and computational
complexity, highlighting its balanced efficacy in feature representation and re-
source efficiency.

1 INTRODUCTION

Deep Neural Networks (DNNs) have demonstrated substantial success across various real-world
tasks, including image classification He et al. (2024), natural language modeling Zhang et al. (2025),
and computer vision Zhou et al. (2024). A fundamental component of DNNs is the activation func-
tion, which introduces non-linearity and enables the network to learn complex patterns. Hence, the
choice of activation function plays a crucial role in the performance of DNNs, as it directly influ-
ences the network’s capacity to model intricate relationships in the data Zhao et al. (2024). Here, we
explore the potential of enhancing neural network expressivity via a novel activation function.

Activation functions, integral to neural networks, are broadly classified into predefined and trainable
categories. Predefined activation functions, such as the Rectified Linear Unit (ReLU) Nair & Hinton
(2010), Leaky ReLU (LReLU) Maas et al. (2013), rely on fixed parameters. In contrast, the train-
able activation functions incorporate learnable parameters to increase the expressivity and flexibility.
Trainable activation functions can be further divided into input-independent functions, such as Para-
metric ReLU (PReLU) He et al. (2015), which learn a static slope per neuron, and input-dependent
functions, such as Dynamic ReLU (Dy-ReLU) Chen et al. (2020), which adjust parameters based
on input data during both training and inference.

Among the proposed trainable activation functions in previous studies, there are some limitations.
For example, input-independent functions like PReLU remain fixed during inference, restricting
their ability to adapt to diverse input distributions. Input-dependent functions, such as Funnel ReLU
(FReLU) Qiu et al. (2018) and Dynamic ReLU (Dy-ReLU) Chen et al. (2020), offer greater adapt-
ability but typically compute a single parameter applied uniformly across channels or spatial loca-
tions. This uniform parameterization limits their capacity to capture fine-grained, channel-specific,
or spatially varying features that are critical for complex data distributions in image classification
tasks.

To address these limitations, we propose a novel activation function called Attention-based Dy-
namic ReLU (ADReLU). The core idea behind ADReLU is to replace ReLU’s static zero threshold
with a dynamic, input-dependent threshold, computed via an attention mechanism. Unlike existing
trainable activation functions, ADReLU computes a unique, input-dependent threshold τ for each
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element via a QKV-inspired attention mechanism Vaswani et al. (2017), enabling the network to
capture global channel-wise and local spatial interactions within the data. To reduce the computa-
tional cost of attention operations, the implementation of ADReLU integrates grouped convolution
and depthwise projections, while maintaining accuracy.

In summary, the main contributions are as follows:

1. To enhance the expressivity of neural network models, we propose ADReLU, an input-
dependent activation function that leverages an attention mechanism to replace ReLU’s
fixed zero threshold with dynamically computed thresholds.

2. To reduce the overhead of computing our ADReLU, we present an efficient implementation
of ADReLU via using grouped convolution and depth-wise projection.

We have conducted a comprehensive empirical evaluation of our ADReLU, demonstrating its ef-
fectiveness across lightweight and deep architectures on diverse datasets, while analyzing sparsity
patterns to optimize feature representation.

2 RELATED WORK

Activation functions are commonly non-linear, essential for enabling deep neural networks (DNNs)
to model complex patterns, and broadly categorized as predefined and trainable.

Predefined Activation Function. To introduce non-linearity, predefined activation functions use
fixed parameters. For instance, the Rectified Linear Unit (ReLU), defined as ReLU(x) = max(x, 0),
is widely adopted due to its simplicity, computational efficiency, and ability to mitigate vanishing
gradient issues Nair & Hinton (2010). However, ReLU’s fixed zero threshold can lead to the ”dying
ReLU” problem Maas et al. (2013), where neurons become inactive for negative inputs, reducing
the model’s expressiveness. Variants like LReLU Maas et al. (2013) address this by introducing a
small constant slope α for negative inputs, defined as LReLU(x) = max(x, αx), allowing non-zero
gradients for negative inputs. Despite this improvement, LReLU’s constant slope requires manual
tuning, which may be suboptimal across diverse tasks or datasets.

Trainable Activation Function. The trainable activation functions incorporate learnable parame-
ters to enhance flexibility and can be further divided into input-independent and input-dependent
approaches. Input-independent trainable activation functions learn static parameters that remain
fixed during inference. Such as PReLU He et al. (2015), generalizes LReLU by learning a slope
α for each neuron. Flexible ReLU Qiu et al. (2018) introduces a learnable bias term b to adjust
the activation’s shape. Maxout Goodfellow et al. (2013) generalizes ReLU by dividing the input
into groups and outputting the maximum value. And GCLU Xu et al. (2025) leverages Gaussian
distributions to calibrate input responses. Although these methods outperform predefined activation
functions upon their reported results, their static parameters limit their adaptability to varying input
distributions during inference.

In contrast, input-dependent activation functions dynamically adjust their parameters based on input
data samples. For example, Funnel ReLU (FReLU) (Ma et al., 2020) computes piecewise linear
parameters using a spatial condition. While the Dy-ReLU Chen et al. (2020) employs a hyper-
function to generate parameters for a piecewise linear function, and achieves significant perfor-
mance improvements but introduces complexity due to the use of two fully connected layers as
a hyper-function to process input features. These methods improve model performance by tailor-
ing activation behavior to input data. However, they typically apply a single parameter uniformly
across channels or spatial locations, lacking mechanisms to capture fine-grained, channel-specific,
or spatially varying patterns.

3 ATTENTION-BASED DYNAMIC RELU

The Attention-based Dynamic ReLU (ADReLU) is a novel input-dependent activation function, as
illustrated by Fig. 1 (a), the core principle of ADReLU is an element-wise maximum operation that
chooses between the input x and a dynamic, input-dependent threshold τ . Unlike ReLU, which ap-
plies a fixed threshold of zero, ADReLU adapts its threshold τ based on the input features, enabling
more flexible and context-aware non-linear transformations.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 1: Attention-based Dynamic ReLU (ADReLU); (a) the core principle of ADReLU; (b) the
implementation of an ADReLU for the image classification task.

Formally, given an input tensor x, ADReLU produces the output tensor y of identical dimension
through an element-wise operation, shown by Eq.(1):

y = max{x, τ}, (1)
where τ = f(x; Θ) is a dynamic threshold tensor of identical dimensions generated by the func-
tion f parameterized by Θ, and the function f exploits the attention mechanism to enable input-
dependent adaptation.

Implementation of ADReLU or the image classification task. For different tasks, we implement
ADReLU based on an attention mechanism inspired by the QKV framework in 2 steps, shown by
Fig. 1 (b).

Firstly, the input tensor x is converted into the attention scores A by Eq. (2),

(Q,K, V ) = QKV (g)
conv(x), Q =

Q

∥Q∥2 + ϵ
, K =

K

∥K∥2 + ϵ
, A = σ(

dk∑
i=1

Qi ·Ki)V, (2)

where the input tensor x is projected into Query (Q), Key (K), and Value (V ) tensors using a
grouped 1 × 1 convolution, denoted as QKV

(g)
conv , g is the group size which indicates all channels

are split into g groups, each processing as an attention subspace of dimension dk; the ∥ · ∥2 is L2
normalization, denoted by Qnorm,Knorm in Figure 1 (b), ϵ is a small constant value to promote numer-
ical stability and prevent exploding gradients; the attention scores A are computed via element-wise
multiplication and summation along the dk dimension, followed by a sigmoid function σ(·).
Secondly, the dynamic threshold τ is generated by processing the attention scores A through a
depthwise separable projection, as shown by Eq. (3-6),

Zdw = DW(g)
conv(A), (3)

Ẑdw = GNorm(gdw)(Zdw), (4)

T = conv
(g)
1×1(Ẑdw), (5)

τ = GNorm(g)(T), (6)

where DW(g)
conv denotes a depthwise convolution with a kernel size of 3× 3 to capture local spatial

patterns, followed by group normalization GNorm(gdw) for stability across groups. A final conv(g)1×1

projects the features, and another group normalization GNorm(g) is applied to produce τ .

This depthwise projection allows τ to adapt not only to the global input content but also to lo-
cal spatial and channel-specific patterns, significantly enhancing the network’s expressivity while
maintaining efficiency.
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Remarks. Here, we present more detailed implementations based on CNNs and Vision Transformers
by example, respectively. To reduce the time cost of computing the standard self-attention mech-
anism, which is quadratic computational complexity O((HW )2C) with respect to spatial dimen-
sions, we explain our implementations with linear complexity O(CHW ).

In case of CNNs, the input tensors x ∈ RB×C×H×W . ADReLU first uses a conv
(g)
1×1 to project

the input into separate Q,K, V tensors. The subsequent attention mechanism, which operates
on these Q,K, V projections, captures both local spatial and global channel-wise feature interac-
tions, overcoming the limitations of static activations. The complexity of these operations scales as
O(CHW ) for conv(g)1×1, and the depthwise convolutions DW(dk)

conv scaling as O(dkCHW ). And the
final element-wise maximum has a complexity of O(CHW ), making ADReLU significantly more
efficient than traditional convolutions, which have a complexity O(C2HW ).

For Vision Transformers (ViT-Base), the input is represented as a sequence of patches x ∈
RB×N×C , where N denotes the number of patches and C is the dimensionality of each patch.
The ViT inherently treats these patches as spatial units, analogous to pixels in a CNN feature map.
ADReLU operates directly on this structure by considering the patch dimension N as its spatial axis.
The computational complexity of ADReLU in this context is O(dkCN), where N = (H ·W )/P 2

for an original image size H ×W and patch size P . As in CNNs, the cost is dominated by the pro-
jection and depthwise operations, scaling with the sequence length N rather than spatial dimensions
H and W directly. This design preserves computational efficiency, dynamic threshold adaptation,
and activation sparsity, making ADReLU suitable for vision transformers.

4 EXPERIMENTAL STUDIES

To validate the effectiveness of our ADReLU, we replace the activation functions in the SOTA and
popular neural networks, such as VGG, ResNet, SENet, MobileNet, ViT, Swin, and CaiT, with our
ADReLU, and evaluate on image classification datasets CIFAR-10, CIFAR-100, SVHN, and Ima-
geNet by comparison studies. Additionally, we assess the computational complexity of ADReLU
relative to baseline activation functions as ReLU and Dy-ReLU, across ResNet variants. Further-
more, to investigate the underlying mechanisms of ADReLU, we examine the efficacy of ADReLU
in lightweight fully connected architectures through case studies and analyze sparsity patterns that
effectively balance expressivity and regularization.

4.1 SETTINGS

Datasets. We evaluate the performance of the proposed Attention-based Dynamic ReLU (ADReLU)
through comprehensive experiments on four benchmark image classification datasets: CIFAR-10,
CIFAR-100 Krizhevsky et al. (2009), Street View House Numbers (SVHN) Netzer et al. (2011), and
ImageNet Deng et al. (2009); Russakovsky et al. (2015). CIFAR-10 and CIFAR-100 each consist
60,000 RGB images of size (32 × 32), with 50,000 images for training and 10,000 for testing.
CIFAR-10 contains 10 distinct classes, whereas CIFAR-100 includes 100 classes, making it more
challenging. The SVHN dataset consists of real-world digit images from Google Street View with
630,420 RGB images 32× 32 pixels of digits from 0 to 9, split into 73,257 training images, 26,032
test images, and an additional 531,131 images available for extended training. ImageNet Deng
et al. (2009); Russakovsky et al. (2015), specifically the ILSVRC 2012 subset, includes 1,281,167
training images and 50,000 validation images distributed across 1,000 distinct classes.

Baselines. Our experiments assess ADReLU effectiveness, computational efficiency, and adaptabil-
ity compared to baseline activation functions, including predefined functions (ReLU, LeakyReLU)
and trainable functions (PReLU, GELU, GCLU, Maxout, Dy-ReLU ). For different datasets, the
SOTA models are different, we use a diverse set of neural network architectures, including VGG-16
Simonyan & Zisserman (2014), ResNet He et al. (2016), SENet-32 Hu et al. (2018), MobileNetV2
(MNetv2)Sandler et al. (2018); Howard et al. (2017), Vision Transformer (ViT) Dosovitskiy et al.
(2020), Swin Transformer Liu et al. (2021), and Cait Touvron et al. (2021).

Parameters. By replacing their standard activation functions with our ADRelu, all models are
trained using stochastic gradient descent (SGD) with a momentum of 0.9. Training spans 200 epochs
with a batch size of 128 across CIFAR-10, CIFAR-100, and SVHN datasets, incorporating a 5-epoch
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warm-up period to stabilize initial training. For CNN-based models, the initial learning rate is set to
0.1 for CIFAR-10, CIFAR-100, and SVHN, while ViT-Base uses 0.001 on CIFAR-10 and CIFAR-
100 to suit its convergence properties. A cosine annealing learning rate scheduler Loshchilov &
Hutter (2016) dynamically adjusts the learning rate. For MobileNetV2 (MNetv2) on ImageNet, the
initial learning rate is 0.05, reduced to zero over a single cosine cycle, with training extended to
300 epochs, label smoothing of 0.1, weight decay of 2e-5, and dropout of 0.1 for width ×0.35. For
width ×0.5, weight decay increases to 3e-5 and dropout to 0.2. Random cropping, flipping, and
color jittering are applied for all width multipliers. For ResNet on ImageNet, the initial learning rate
is 0.1, reduced by a factor of 10 at epochs 30 and 60, with a weight decay of 1e-4 and training for
90 epochs. A dropout rate of 0.1 is applied before the final layer, with label smoothing for ResNet-
18, ResNet-34, and ResNet-50. For ADReLU, the group size is set to g = 4, and the attention
subspace dimension is dk = 8, optimized through preliminary experiments for performance and
computational efficiency. All models are implemented in PyTorch.

4.2 COMPARISON STUDIES

To present comprehensive empirical comparisons of ADReLU against predefined and trainable ac-
tivation functions, we compare their top-1 accuracies on the typical image classification tasks via
integrating our ADReLU into the popular and SOTA neural networks, which are grouped into two
types: the models trained from scratch and the pretrained models.

ADReLU evaluations on the models trained from scratch

Firstly, we evaluate the performance of ADReLU on four image classification benchmarks: CIFAR-
10, CIFAR-100, SVHN, and ImageNet, using state-of-the-art (SOTA) models trained from scratch.
To ensure fair and consistent comparisons, we report previously published accuracy scores for cer-
tain baseline activation functions. Values marked with an asterisk (*) in Tables 1, 2, and 3 are taken
from Xu et al. (2025). Similarly, the ImageNet baseline results for ReLU and Dy-ReLU in Table
4 are sourced from Xu et al. (2025) and Chen et al. (2020), with the same training setups as ours,
respectively. All other accuracy values (those without an asterisk) are obtained from our own ex-
periments, where we reimplemented the activation functions to ensure consistency. The backbone
model implementations were taken from widely used open-source repositories, which we provide
at https://github.com/tcmyxc/CV-Tutorial. We trained these models using the same
training pipeline as our ADReLU variants to maintain fairness.

The tables are organized with rows representing the SOTA models and columns representing the
activation functions. Each cell contains the top-1 test accuracy (%) for the corresponding architec-
ture–activation function pair, with the bolded values indicating the best performance.

SVHN Dataset. The main objective of this experiment is to evaluate ADReLU’s adaptability to
natural noise, varying lighting, diverse backgrounds that introduce variability and distribution shifts
characteristic of the SVHN dataset.

Table 1: Top-1 accuracy (%) on the SVHN dataset for various activation functions across multiple
network models

Networks ReLU LReLU PReLU GELU GCLU Maxout Dy-ReLU ADReLU
VGG-16 95.94 95.83 95.64 95.59 95.62 96.32 95.81 96.78
ResNet-8 93.97 93.67 93.59 93.50 94.39 94.79 95.01 95.55
ResNet-32 95.82 96.47 96.48 96.61 96.68 96.48 96.45 96.99
ResNet-50 96.29* 96.03 96.84 96.22 96.62 95.96 96.45 96.98
SENet-32 95.77* 95.43 96.12 96.32 96.13 96.39 96.31 96.83
MNetv2 95.76 95.68 95.65 95.83 95.54 95.92 95.56 96.31
ViT-Tiny 92.81 92.16 91.76 91.94 92.86 91.41 92.02 94.89
Swin-Tiny 90.61 89.70 90.29 89.88 90.35 88.79 89.27 91.51
Cait-XXS 91.50 89.87 90.05 91.36 89.87 89.64 90.27 94.18

As shown in Table 1, VGG-16 attains an accuracy of 96.78%, outperforming Maxout, which scored
96.32%, by 0.46%. On ResNet-8, ADReLU reaches 95.55%, surpassing Dy-ReLU’s 95.01% by
a margin of 0.54%. The trend continues with deeper architectures: ResNet-32 achieves 96.99%,
exceeding GCLU’s result of 96.68% by 0.31%. Similarly, ResNet-50 and SENet-32 with ADReLU
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achieve 96.98% and 96.83%, outperforming Dy-ReLU by 0.53% and 0.52%, respectively. Further-
more, MobileNetV2 with a scale of 0.35, referred to in table MNetv2, has 96.31%, a 0.48% gain
over GELU. Most notably, it delivers substantial improvements for vision transformers, boosting
ViT-Tiny to 94.89% (+2.03%), Swin-Tiny to 91.51% (+1.16%), and CaiT-XXS to 94.18% (+2.82%)
over their best respective baselines.

These results indicate that ADReLU adapts on an element-wise basis to capture channel and spatial-
specific interactions within noisy data, thereby enabling reliable digit recognition in unstructured,
real-world environments.

CIFAR-10 and CIFAR-100. The experiments on CIFAR-10 (coarse-grained) and CIFAR-100 (fine-
grained) evaluate ADReLU’s ability to enhance feature learning across different class granularities
and architectures.

Table 2: Top-1 accuracy (%) on the CIFAR-10 dataset for various activation functions across multi-
ple network models.

Networks ReLU LReLU PReLU GELU GCLU Maxout Dy-ReLU ADReLU
VGG-16 93.86* 93.80 93.06 93.69* 94.15* 92.59 93.96 94.78
ResNet-8 88.14* 87.26 88.71 88.37* 88.38* 89.54 90.12 91.63
ResNet-32 93.72* 93.71 93.75 93.73* 93.24* 92.20 93.80 94.11
ResNet-50 95.81* 95.92 95.70 95.44 95.79 91.90 96.18 97.24
SENet-32 93.73 94.86 94.82 95.09 95.04 94.71 95.48 95.80
MNetv2 90.94 91.56 91.25 91.04 90.71 91.39 91.80 92.97
ViT-Tiny 82.37* 81.43 80.52 83.12* 82.61* 80.68 81.16 86.42
Swin-Tiny 85.93* 85.61 85.06 84.76* 85.71* 85.01 84.98 85.56
Cait-XXS 84.28* 83.82 82.81 84.14* 84.46* 83.22 82.66 88.13

Table 3: Top-1 accuracy (%) on the CIFAR-100 dataset for various activation functions across dif-
ferent network models

Networks ReLU LReLU PReLU GELU GCLU Maxout Dy-ReLU ADReLU
VGG-16 73.21* 73.92 70.50 72.47* 74.13* 74.41 75.10 76.84
ResNet-8 60.73* 60.77 62.57 60.61* 60.82* 63.61 63.66 64.98
ResNet-32 71.91* 71.16 70.65 71.87* 71.75* 69.66 72.25 72.51
ResNet-50 80.79* 78.25 79.95 79.93* 81.85* 72.17 80.74 82.16
SENet-32 76.26 76.27 76.55 77.63 78.32 75.63 78.08 80.21
MNetv2 67.92 70.48 68.71 69.07 66.70 67.08 67.81 71.09
ViT-Tiny 55.59* 54.10 53.50 57.81* 56.63* 52.69 53.54 58.75
Swin-Tiny 59.54* 58.68 58.43 57.25* 58.92* 57.11 57.93 59.24
Cait-XXS 59.16* 58.85 58.97 59.77* 59.67* 58.06 58.03 65.91

As shown in Table 2, ResNet-50 to 97.24%, a 1.06% improvement over Dy-ReLU, and raising Mo-
bileNetV2 to 92.97%, 1.17% higher than with Dy-ReLU. Most notably, ADReLU drives substantial
advances in transformer-based models, elevating ViT-Tiny to 86.42% (+3.30% over GELU) and
achieving a remarkable 88.13% with CaiT-XXS, which outperforms its best baseline by 3.67%. The
results on the more complex, fine-grained CIFAR-100 in Table 3, enhance ResNet-50 to 82.16%, a
0.31% gain over GCLU, and enable SENet-32 to reach 80.21%, outperforming GCLU by 1.89%.
ViT-Tiny with ADReLU attains 58.75% accuracy, a +0.94% improvement over GELU. The most
dramatic improvement is observed with CaiT-XXS, where ADReLU achieves 65.91%, a massive
+6.14% absolute gain over the best baseline (GELU at 59.77%).

The results demonstrate that the ADReLU consistently surpasses baseline activations on both
datasets, underscoring its versatility in enhancing feature extraction across architectures and task
complexities. The only outlier is Swin-Tiny, where ADReLU remains competitive but falls short
of the lead, highlighting opportunities for refinement to better integrate with its shifted-window
attention.

ImageNet classification. The ImageNet dataset serves as a critical large-scale benchmark for eval-
uating the scalability and efficiency of novel neural network components. This experiment tests
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ADReLU’s ability to enhance performance in complex, real-world visual recognition tasks across
models of varying capacities and depths.

Table 4: Top-1 test accuracy (%) on the ImageNet dataset for ReLU, Dy-ReLU, and ADReLU across
ResNet variants (ResNet-10/18/34/50) and MobileNetV2 scales (×0.35, ×0.5).

Activation Layer ReLU DY-ReLU ADReLU
ResNet-10 63.0* 66.3* 68.3
ResNet-18 69.8* 71.8* 72.2
ResNet34 73.3* 74.4* 75.6
ResNet-50 76.2* 77.4* 79.2
MNetV2×0.5 65.4* 70.3* 72.7
MNetV2 ×0.35 60.3* 66.4* 69.3

As shown in Table 4, on MobileNetV2 with scale value ×0.35, ADReLU achieved 69.3% accuracy,
representing a remarkable +9.0% over the ReLU baseline (60.3%) and a +2.9% improvement over
Dy-ReLU (66.4%). For MobileNetV2×0.5, ADReLU reaches 72.7%, outperforming ReLU and Dy-
ReLU by +7.3% and +2.4%, respectively. The performance benefits extend consistently to deeper
ResNet architectures. ADReLU attains 79.2% accuracy on ResNet-50, a +2.8% gain over the ReLU
baseline. This trend is maintained across the entire ResNet family: ResNet-10 achieves 68.3%
(+5.3% over ReLU), ResNet-18 reaches 72.2% (+2.4%), and ResNet-34 scores 75.6% (+2.3%).

ADReLU demonstrates exceptional scalability and performance on the large-scale ImageNet bench-
mark, confirming its practical utility for real-world applications. The most dramatic improvements
on capacity-constrained models like MobileNetV2 underscore that its adaptive thresholds more ef-
fectively enhance feature learning and gradient flow.

ADReLU evaluations on Pre-trained SOTA models

The fine-tuning procedure integrates ADReLU into the pre-trained EfficientNetV2 family (Small,
Medium, and Large), following the same parameter settings as Tan & Le (2021). We replace the
last three SiLU activation layers of EfficientNetV2 with ADReLU, allowing its attention-driven
thresholds to adaptively enhance high-level feature representations during fine-tuning. The results
demonstrate the top-1 accuracy on CIFAR-100: the Small variant’s accuracy improved slightly from
89.68% to 89.72%, the Medium from 90.87% to 91.02%, and the Large from 91.68% to 91.88%.
These gains, though modest, show that even minimal substitution in the deepest layers of Efficient-
NetV2 can provide measurable benefits. Moreover, ADReLU serves as a drop-in replacement that
boosts performance without requiring architectural modifications.

4.3 PARAMETER AND TIME COMPLEXITY ANALYSIS

To assess the practical deployment cost of ADReLU, we evaluate its parameter overhead and compu-
tational efficiency against key baseline activation functions: the static ReLU, the input-independent
trainable PReLU, and the input-dependent Dy-ReLU.

Table 5: Parameter counts and total training/testing times (mm:ss) on the CIFAR-100 across ResNet
variants with different activations, measured on an NVIDIA RTX 2080 GPU.

Networks ResNet-8 ResNet-32 ResNet-50

#Params Tr/Ts Time #Params Tr/Ts Time #Params Tr/Ts Time

ReLU 83,892 25:06 / 03:14 472,756 65:53 / 06:40 23,705,252 155:32 / 11:40
PReLU 83,899 31:14 / 03:48 472,787 81:32 / 05:58 23,705,269 219:36 / 17:20

Dy-ReLU 98,672 56:46 / 04:13 545,104 147:08 / 17:55 52,100,052 358:06 / 27:20
ADReLU 96,604 42:54 / 03:40 533,148 129:12 / 13:20 30,234,140 331:40 / 23:30

The results in Table 5 show that integrating ADReLU into the ResNet-50 model reduces the total
number of parameters by 42% compared to Dy-ReLU, highlighting its efficiency. The ADReLU
model also trains in 331 minutes, a 7% faster time than the Dy-ReLU model at 358 minutes, and
improves inference speed by 14% per epoch. For the smaller ResNet-8, ADReLU not only has fewer
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parameters but also trains 24% faster than its Dy-ReLU counterpart. As anticipated, the activation
functions like ReLU and PReLU have the fewest parameters and the fastest training times, thanks
to their simple design. In contrast, while the dynamic nature of Dy-ReLU and ADReLU adds
complexity, the ADReLU implementation improves network expressivity at a lower computational
cost, making it suitable for resource-limited applications.

4.4 ANALYSIS

We examine the mechanisms of ADReLU through targeted analyses, including a case study of its
performance in lightweight fully connected networks using CIFAR-10 and CIFAR-100 datasets.
This study shows ADReLU’s versatility beyond convolutional architectures. We also analyze spar-
sity patterns to assess activation efficiency in ResNet-8, ResNet-32, and ResNet-50 with CIFAR-10
validation samples. Additionally, we investigate the computational complexity and number of pa-
rameters of ADReLU compared to baseline activation functions like ReLU and Dy-ReLU across
various ResNet architectures. These analyses highlight how ADReLU balances expressivity and
sparsity-induced regularization, offering insights into its adaptability and advantages in diverse neu-
ral network applications.

Case study: Validation of ADReLU in Simple Fully Connected Networks

To demonstrate that ADReLU’s benefits are not limited to convolutional models, we conducted a
case study using a three-layer fully connected (FC) neural network on the CIFAR-10 and CIFAR-
100 datasets, because using the simpler network means fewer factors will affect the accuracy, and it’s
more clear to exhibit the improvements caused by our ADReLU. The experiment utilizes a three-
layer FC network, with each layer followed by an activation function. The network architecture
consists of an input layer that flattens CIFAR images (32 × 32 × 3 ) into a dimensional vector,
followed by linear layers transforming the dimensions as follows: 3072 → 512, 512 → 256, and
256 → 128, each followed by an activation ADReLU.

Table 6: Accuracy (Top-1) performance of a simple 3-layer FC network on the CIFAR-10 and
CIFAR-100 datasets.

CIFAR-10 CIFAR-100
ReLU 62.79 34.41
PReLU 63.19 34.98
DyReLU 61.81 31.02
AD-ReLU 63.44 35.11

However, Table 6 presents the Top-1 accuracy (%) of the FC network on CIFAR-10 and CIFAR-100,
with rows corresponding to activation functions and columns representing the datasets. ADReLU
achieves 63.44% on CIFAR-10, slightly improving over ReLU by 0.65% and PReLU by 0.25%.
On CIFAR-100, it achieves 35.11%, outperforming ReLU by 0.70% and PReLU by 0.13%. Al-
though these gains are small in absolute terms, they underscore ADReLU’s capacity to introduce
adaptive, spatially aware activations that enhance feature representation and generalization in non-
convolutional settings.

Sparsity VS. Expressivity

To investigate the internal behavior of ADReLU, we analyze the trade-off between expressivity and
sparsity in selected models, ResNet-8, ResNet-32, and ResNet-50, by conducting the comparison
experiments on CIFAR-10/100 datasets against ReLU, PReLU, and Dy-ReLU.

On the one hand, sparsity refers to the proportion of zero-valued output activations following a
non-linear transformation. Here, the sparsity with N neurons is defined as Eq. (7),

S = Ex∼D[
1

N

N∑
i=1

1(ai(x) = 0)], (7)

where x ∼ D denotes an input sampled from the dataset,ai(x) is the activation of unit i for input x,
and 1(·) is an indicator function that equals 1 if the activation is zero, and 0 otherwise. It measures
the fraction of neurons that remain inactive during a forward pass, reflecting the network’s capacity
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to suppress less informative features while emphasizing the most relevant ones. Sometimes, the
sparsity is considered to be related to the robustness of the model.

On the other hand, expressivity is the capability of a model to express complex functions. When
training is sufficient, the training accuracy reflects the expressivity of the model.

Figure 2: Sparsity vs. training/test accuracy across models and activations on CIFAR-10 and
CIFAR-100

Figure 2 illustrates the sparsity (black/white line) alongside training and test accuracies. For the
ResNet-8 model, ReLU’s high sparsity suppresses excessive features, leading to the lowest ac-
curacies and a small train–test gap. This gap, however, is not due to strong generalization but
rather reduced expressivity caused by excessive feature suppression. In contrast, low-sparsity like
PReLU and Dy-ReLU retain more features, yielding slightly higher expressivity and accuracy but
also slightly larger gaps. ADReLU achieves a moderate sparsity, balancing suppression and reten-
tion. As a result, it improves test accuracy over baselines while maintaining a small train–test gap.
As model depth increases to ResNet-32, ReLU’s high sparsity introduces some regularization but
still limits expressivity, resulting in suboptimal accuracy. PReLU and Dy-ReLU, with their low
sparsity, tend to overfit by retaining excessive noise, thereby widening the train–test gap. ADReLU,
with its input-dependent threshold, dynamically adapts sparsity and achieves higher expressivity
while keeping the gap smaller than that of ReLU and Dy-ReLU. For deep models like ResNet-50,
ReLU produces high sparsity by suppressing a large portion of activations. PReLU and Dy-ReLU
yield lower sparsity, retaining more activations. And ADReLU adapts to a moderate sparsity, strik-
ing a balance between feature suppression. While training accuracies for all methods approach
saturation—indicating strong expressivity—ADReLU shows a smaller gap between training and
test accuracy compared to ReLU, PReLU, and Dy-ReLU. This reduced gap reflects better gener-
alization, highlighting ADReLU’s ability to maintain high expressivity while leveraging moderate
sparsity.

5 CONCLUSION

In this work, we introduce ADReLU, a novel activation function that reexamines ReLU by incorpo-
rating attention mechanisms. Our key idea is that the activation threshold should be dynamic and
input-dependent, adapting to local contexts and feature interactions. By using a computationally ef-
ficient QKV attention mechanism, ADReLU allows networks to make precise activation decisions,
enhancing feature representation. Extensive experiments show that this effective approach consis-
tently outperforms existing activation functions across various datasets and architectures. Addition-
ally, our design choices—grouped and depth-wise projections—ensure that the increased expressiv-
ity does not lead to high computational costs, making ADReLU a practical drop-in replacement for
standard activations.
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