Robust Trajectory Prediction
against Adversarial Attacks

Yulong Cao*!2, Danfei Xu>?, Xinshuo Weng?, Z. Morley Mao', Anima Anandkumar>*,
Chaowei Xiao??, and Marco Pavone2©

!University of Michigan
’NVIDIA
3Georgia Institute of Technology
“California Institute of Technology
3 Arizona State University
6Stanford University

Abstract: Trajectory prediction using deep neural networks (DNNs) is an essen-
tial component of autonomous driving (AD) systems. However, these methods
are vulnerable to adversarial attacks, leading to serious consequences such as col-
lisions. In this work, we identify two key ingredients to defend trajectory predic-
tion models against adversarial attacks including (1) designing effective adversar-
ial training methods and (2) adding domain-specific data augmentation to mitigate
the performance degradation on clean data. We demonstrate that our method is
able to improve the performance by 46% on adversarial data and at the cost of
only 3% performance degradation on clean data, compared to the model trained
with clean data. Additionally, compared to existing robust methods, our method
can improve performance by 21% on adversarial examples and 9% on clean data.
Our robust model is evaluated with a planner to study its downstream impacts. We
demonstrate that our model can significantly reduce the severe accident rates (e.g.,
collisions and off-road driving)'.

1 Introduction

Trajectory prediction is a critical component of modern autonomous driving (AD) systems. It allows
an AD system to anticipate the future behaviors of other nearby road participants and plan its ac-
tions accordingly. Recent trajectory prediction models built on Deep Neural Networks (DNN) have
demonstrated state-of-the-art performance on large-scale benchmarks [1-7], showing a promising
path towards learning-based trajectory prediction for AD systems. As trajectory prediction plays an
important role in AD systems, accurate predictions are required for making safe driving decisions.
It is crucial to understand how unknown scenarios will affect trajectory predictions and then bolster
the robustness of such trajectory predictions in return.

To achieve this goal, adversarial attacks [8§—10] are often used as a proxy to measure the worst-case
performance of the model when facing unseen scenarios. Similarly, we use a standard adversarial
attack setup [11] for trajectory predictions. As illustrated in Fig. 1, an adversarial agent (red vehicle)
aims to cause a traffic accident. It drives along a carefully designed trajectory (i.e., adv history) to
influence the trajectory prediction model of the Autonomous Vehicle (green vehicle). Such an ad-
versary can critically compromise the predicted trajectories of all other agents by altering its route in
inconspicuous ways. By fooling the trajectory prediction models, it can further affect downstream
planning of the AV systems and cause serious consequences. Using the adversarial attack as the
proxy, this work aims to develop effective techniques to bolster the robustness of trajectory predic-
tion models against adversarial attacks and improve the AD’s safety under uncertain scenarios.
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Figure 1: Overview of RobustTraj preventing Autonomous Vehicle (AV) from collisions when its
trajectory prediction model is under adversarial attacks. When the trajectory prediction model is
under attack, the AV predicts the wrong future trajectory of the other agent turning right (yellow
vehicle). This results in AV speeding up instead of slowing down, and eventually colliding into the
other vehicle.

At the same time, adversarial robustness for machine learning is a widely-studied area, but most
works focus on classification tasks [12-23]. Among the proposed techniques, adversarial training [8]
remains the most effective and widely used method to defend classifiers against adversarial attacks.
The general strategy of adversarial training is to solve a min-max game by generating adversarial
examples for a model at each training step and then optimizing the model to make correct predictions
for these samples. However, directly applying adversarial training to trajectory prediction presents
a number of critical technical challenges.

First, most trajectory prediction methods employ probabilistic generative models to cope with the
uncertainty in motion forecasting [2—7]. As we will show in this paper, the stochastic components of
these models (e.g., posterior sampling in VAEs) can obfuscate the gradients that guide the adversar-
ial generation, making naive adversarial training methods ineffective. Second, adversarial training
on trajectory prediction task aims to model joint data distribution of future trajectories and adver-
sarial past trajectories. However, the co-evolution of the adversarial sample distribution and the
prediction model during the training process makes the joint distribution hard to model and often
destabilizes the adversarial training. Finally, prior work [23] shows that adversarial training often
leads to degraded performance on clean (unperturbed) data, while retaining good performance in
benign cases is crucial due to the critical role of trajectory prediction for AVs. Hence, an effective
adversarial training method must carefully balance the benign and the adversarial performance of a
model.

Our approach. We propose an adversarial training framework for trajectory predictions named Ro-
bustTraj, by addressing the aforementioned challenges. First, to address the issue of an obfuscated
gradient in adversarial generation due to stochastic components, we devise a deterministic attack that
creates a deterministic gradient path within a probabilistic model to generate adversarial samples.
Second, to address the challenge of an unstable training process due to shift in adversarial distri-
butions, we introduce a hybrid objective that interleaves the adversarial training and learning from
clean data to anchor the model output on stable clean data distribution. Finally, to achieve balanced
performances on both adversarial and clean data, we introduce a domain-specific data augmentation
technique for trajectory prediction via a dynamic model. This data augmentation technique generates
diverse, realistic, and dynamically-feasible samples for training and achieves a better performance
trade-off on clean and adversarial data.

We empirically show that RobustTraj can effectively defend two different types of probabilistic tra-
jectory prediction models [4, 7] against adversarial attacks, while incurring minimal performance
degradation on clean data. For instance, RobustTraj can increase the adversarial performance of
AgentFormer [4], a state-of-the-art trajectory prediction model, by 46% at the cost of 3% perfor-
mance drop on clean data. To further show impacts of our method on the AD stack, we plug our
robust trajectory prediction model into a planner and demonstrate that our model reduces serious ac-
cidents rates (e.g., collisions and off-road driving) under attacks by 100%, compared to the standard
non-robust model trained using only clean data.



2 Related Work

Adversarial attacks and defenses on trajectory prediction. A recent work began to study the
adversarial robustness of trajectory prediction models [11]. Zhang et al. [11] demonstrated that
perturbing agents’ observed trajectory can adversarially impact the prediction accuracy of a DNN-
based trajectory forecasting model. To mitigate the issue, Zhang et al. [11] proposed several defense
methods such as data augmentation and trajectory smoothing. However, these methods are less
effective when facing adaptive attacks [24]. In our work, we propose to use adversarial training
which provides the general adversarial robustness that can resist adaptive attacks.

Adversarial scenario generation. A few recent studies work on generating adversarial traffic sce-
narios such that the autonomous driving systems fail to make safe driving decisions [25, 26]. How-
ever, generating realistic traffic scenarios is challenging and the generated adversarial scenarios
can be unrealistic and violate traffic rules by directly optimizing the latent vectors of the traffic
model Rempe et al. [26]. In this work, we consider defending against realistic adversarial scenarios
grounded on the scenarios from a dataset. Wang et al. [25] perturb the raw input data to mislead the
full stack AV system. However, in this work, our primary goal is to study and improve the robust-
ness of trajectory prediction models. To obtain salient and unambiguous insights, we minimize the
conflating factors in our analysis without considering the perception model.

Adversarial training. A variety of adversarial training methods have been proposed to defend
DNN-based models against adversarial attacks [8, 19, 12-23]. The most common strategy is to de-
sign a min-max game with the inner maximization process and outer minimization process. The
inner maximization process generates adversarial examples that maximize an adversarial objective
(e.g., make wrong prediction). The outer minimization process then updates the model parameters to
minimize the error on the adversarial examples. Several recent works also propose to mix clean data
and adversarial examples for improving robustness [27, 28] and performance on clean data [18]. Al-
though there exists a large body of literature in studying adversarial robustness for machine learning,
most focus on the problem of discriminative model (e.g., object recognition), leaving other problem
domains (e.g., conditional generative models) largely unexplored. In this work, we develop a novel
adversarial training method for trajectory prediction models, where most state-of-the-art trajectory
prediction models are generative and probabilistic, by addressing a number of critical technical chal-
lenges.

3 Preliminaries and Formulation

Trajectory prediction. The goal is to predict future trajectory distribution Py(Y|X) of N agents

conditioned on their H history time states X = (X~ "' ... /X?), and other environment context
such as maps ? to predict 7' time-step future trajectories Y = (Yl7 e 7YT) . For observed time
steps ¢ < 0, we denote the agent states as X' = (zf,... 2%, ... z%), where 2! is the state of agent

i at the time step ¢. Similarly, Y = (y¢,..., y') denotes the states of N agents at a future time step

t (t > 0). We denote the ground truth and the predicted future trajectories as Y and Y, respectively.
We denote the history information encoded by a function f as the decision context C = f(X).

Probabilistic trajectory prediction models. In this work, we focus on defending generative, prob-
abilistic trajectory prediction models, as they have demonstrated superior performance in model-
ing uncertainty in predicting future motions [2-7]. We consider the two most popular types of
generative models: conditional variational encoders (CVAEs) and conditional GANs (cGANSs),
both can be viewed as latent variable models. We define latent variables Z = {z1, ..., z;, ..., 2N }
where z; represents the latent variable of the agent :. CVAE formulates the generative problem
as: po(Y|X) = [po(Y|X,Z) - po(Z|X)dZ, where py(Z|X) is a conditional Gaussian prior
WN(py (Z|X), p§(Z|X))) with mean pj(Z|X) and standard deviation p§(Z|X); pe(Y|X,Z) is a
conditional likelihood model. The model is usually trained through optimizing a negative evidence
lower objective [4]:

»Clotal = »Celbo + »Cdiversily

. S 1
= By, czrv 0 [ogpo( Y|Z,X)] + KL(45(Z|Y. X) || po( Z|X)) +min | ¥ v 2,

2For simplicity, we ignore contextual information.



where ¢4 (Z]Y, X) is an approximate posterior parameterized by ¢, ps(Z|X) is a conditional Gaus-
sian prior parameterized by 6, and py(Y|Z, X) is a conditional likelihood modeling future trajectory
Y via the latent codes Z and past trajectory X. Additionally, Lgiversity = miny || Y®R —y | is a
diversity loss, which encourages the network to produce diverse samples. Given each past trajectory
X, the model generates K sets of latent codes {Z(l), AL ,Z(K)} from the conditional
Gaussian prior N'(ply (Z|X), pg(Z|X)), where Z(*) = {2F,--- 2k} , resulting in K future trajec-
tories Y(*).

Similarly, in a conditional Generative Adversarial Net (cGAN)-based model (e.g., Social-GAN [1]),
it uses a loss function as follows:

£total = Acgan + £diversity

. & 2
= Ex~pu[108 Do (Y[X)] + By, [108(1 — Do(Go(YIX, )] 4 min | Y9~y |, ¥

where G represents the generator and D represents the discriminator. Y*) = G(Y|X,Z™*) is one

of the predicted trajectories in which Z(*) is randomly sampled from A (0,1). During the training,
Lgan is maximized to train D and Lo is minimized to train G.

Threat model. We follow the setup in prior work [11] and adopt an idealized threat model, where
the adversary alters its observed history X by adding a perturbation § bounded by the adversarial
set S = {d] || § [|,< €}, where € is the perturbation bound. The perturbation aims to mislead the

prediction Y. A naive adversarial attack is to find the perturbation through an adversarial objective
§ = argmaxseg{mingei,... xy || po(Y[X +6,Z") — Y ||2}, where po(Y|X + 6, Z*) is the
predicted trajectory conditioned on the random variable Z(*) and adversarial history trajectory X +4.

Naive adversarial training. Adversarial training formulates a min-max game with an inner maxi-
mization process that optimizes the perturbation J to generate adversarial examples for misleading
the model at each training iteration, and an outer minimization process that optimizes the model pa-
rameters to make correct predictions for these examples. We follow the standard adversarial training
formulation [8]:

i X +4.Y).
min max Lioa (X +6,Y) 3)

4 RobustTraj: Robust Trajectory Prediction

As stated earlier, applying adversarial training for trajectory prediction presents three critical chal-
lenges: (1) gradient obfuscation due to model stochasticity, (2) unstable learning due to changing
adversarial distribution, and (3) performance loss in the benign situation. In this section, we describe
each challenge in more detail and present the corresponding solutions in our RobustTraj method.

Improve adversarial generation with Deterministic Attack. Since trajectory prediction is inher-
ently uncertain and there is no single correct answer, probabilistic generative models are usually
used to cope with the stochastic nature of the trajectory prediction task. Such stochasticity will
obfuscate the gradients that are used to generate effective adversarial examples in the inner maxi-
mization process of adversarial training. The naive attack mentioned in section 3 is a straightfor-
ward way to achieve this goal. However, this optimization involves a stochastic sampling process
Z*) ~ N (p}(Z|X), p§(Z|X)). Such a stochastic process will obfuscate the gradients for finding
the optimal adversarial perturbation §, making the outer minimization (robust training) less effective.
In order to sidestep such stochasticity, we propose the deterministic attack that creates a determin-
istic gradient path within the model to generate the adversarial perturbation. Z. Specifically, we
use a deterministic latent code by replacing the sampling process Z*) ~ N (p} (Z|X), pg(Z|X)),

with the maximum-likelihood sample (here, i.e 7 = P, (Z]X)). The objective for generating the
adversarial perturbation is thus:

§ = argmax Lo (X+0,Y) = argmax || pg(Y|Z, X + 6)=Y ||, where Z = ph (Z|X+4). (4)
s5es ses

We empirically show that gradients from this deterministic gradient path can effectively guide the
generation of adversarial examples. We name our attack as Deterministic Attack.
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Figure 2: Visualizations of the CVAE models trained with clean (a) data, Salt and pepper noise
(b), and adversarial perturbations (c); Quantitative results of the correlation between the label of the
generated images and conditioned images at different noise levels (d).

Stabilize adversarial training with bounded noise and hybrid objective. During the adversarial
training process, the distribution of the perturbed input X + § coevolves with the training process as
0 is calculated via an inner maximization process at each training iteration. Although ¢ is bounded
by the adversarial set S, the resulting latent condition variable C = f(X + §) can be arbitrarily
noisy since the Lipschitz constant of neural network layers (f) is not bounded during training (See
Lemma 1. in Appendix A). Since C = f(X + §) is noisy, it is a less informative signal compared
to the deterministic signal X. Thus, modeling py (Y |X + ¢, Z) becomes substantially harder. In an
extreme case that C = f(X + §) is super noisy and contains no information, the training process
can degenerate to model py (Y |Z), resulting in the undesirable worse performance on the clean data.

To further validate the above hypothesis that it is hard to model py(Y|X + 0, Z) with a changing
data distribution of X + ¢, we conduct an additional experiment. For simplicity, we use MNIST [29]
as the dataset. As shown in Fig. 2, we divide each digit image into four quadrants. We take the
top-left quadrant as the condition X and the remaining quadrants as the output Y. We train a CVAE
(po(Y|X + 0, 7)) to model Y by using clean data (X) or noisy data (X + J), where § represents
salt and pepper noise [30] or adversarial noise [8], resulting in Fig. 2 (a), (b), (c) respectively. The
top-left region of each image in the first row is the conditional variables X. The rest of rows are the
generated images with different Z. Each column in the same row uses the same Z. We observe that
the model trained on clean data successfully captures the conditional distribution (i.e., the generated
image highly depends on X)) while the model trained with adversarial noise degenerates and ignores
the condition (i.e., each row generates images of the same digit). This result shows that the condi-
tional generative model fails to learn from X. To provide a quantitative analysis, we measure the
correlation between the label of the generated images and the label of their conditioned image quad-
rants, resulting in Fig 2 (d). More details on how to calculate the correlation are in the Appendix
A. We observe that the correlation drops as the noise level increases for both adversarial nose and
salt and pepper noise. Adversarial noise is more effective to degenerate the conditional generative
model. Therefore, we conclude that (1) the noises in the conditional data lead to degenerated con-
ditional generative model (i.e., from CVAE to VAE); (2) the level of degeneration depends on the
noise levels.

Based on the analysis result, to better learn a robust trajectory prediction model, we need to bound
|f(X +0) — f(X)] to reduce the noise level. Hence, we propose the following regularization loss

reg.
ﬁreg = d(f(X + 5)7 f(X))’ (5
where d is a distance function (e.g., we use Ly norm as the distance metric).

In addition, because the clean data has a fixed distribution, simultaneously learning from the clean
data during the adversarial training process anchors the conditional distribution on a stable clean
data distribution. Specifically, we propose the following hybrid objective:

Lclean (X, Y) = Emtal (X, Y)7 (6)
where L could be the loss in Eq. 1 for CVAE-based model or Eq. 2 for cGAN-based model.

Protect benign performance using data augmentation. Adversarial training often leads to per-
formance degradation on clean data [23]. However, trajectory prediction is a critical component for
safety-critical AD systems and its performance degradation can result in severe consequences (e.g.,
collisions). Thus, it is important to balance the model performance on the clean and adversarial data
when designing adversarial training algorithms.

To further improve the performance on clean and adversarial data, we need to address the overfit-
ting problem of the min-max adversarial training [31]. Data augmentation is shown to be effective



in addressing the problem in the image classification domain [32]. However, data augmentation in
trajectory prediction is rarely studied and non-trivial. To design an effective augmentation algo-
rithm, Rebuffi et al. [32] argues that the most important criterion is that the augmented data should
be realistic and diverse. Thus, we design a dynamic-model based data augmentation strategy A
shown in the Appendix A. By using the augmentation, we can generate diverse, realistic multi-agent
trajectories for each scene and construct D,.

RobustTraj. In summary, our adversarial training strategy for trajectory prediction models is formu-
lated as follows:

d =argmax Lygy(X +6,Y), where{X, Y} € DUD,,
ses

. 7
9, ¢ =argmin £t0tal(X + 57 Y) + ﬁclean(Xa Y) + 6 : £reg( X7 X + o )’ ( )
0,¢
where D, D, are the training data and augmented data; L,q, is adversarial loss to generate effective
adversarial examples in Eq. 4; L is the loss in Eq. 1 or Eq. 2 to train a robust model against
adversarial examples; Ly, and Lican are loss shown in Eq. 5 and Eq. 6 to provide a stable signal for
training. (3 is a hyper-parameter for adjusting the regularization.

5 Experiments and Results

5.1 Experimental setup

Dataset and models. We follow the setting in prior work [4, 3] and use the nuScenes dataset [33] for
evaluation. For the trajectory prediction models, we select the representative conditional generative
models based on CVAE (AgentFormer [4]) and cGAN (Social-GAN [1]). AgentFormer is a state-
of-the-art model based on CVAE and Social-GAN is a classic model based on cGAN. We report
the final results for all three models: AgentFormer (AF), mini-AgentFormer (mini-AF) and Social-
GAN. More details are shown in the Appendix B.

Training details and hyperparameter choices. For the adversarial training, we choose a 2-step
Projected Gradient Descent (PGD) attack for the inner maximization and choose 8 = 0.1. We train
50 epochs and 100 epochs for AgentFormer and Social-GAN respectively. For other hyperparame-
ters during training, we follow the original settings for AgentFormer and Social-GAN. The details
for choosing these hyperparameters can be found in the Appendix B. All experiments are done on
the NVIDIA V100 GPU [34]. We consider various baselines, including naive adversarial training
(naive AT) and four defenses proposed by Zhang et al. [11]: data augmentation with adversarial ex-
amples (DA), train-time smoothing, test-time smoothing, DA + train-time smoothing and detection
+ test-time smoothing.

Attack and evaluation metrics. For the adversarial attack, we choose a 20-step PGD attack (an
ablation study on step convergence can be found in the Appendix B). Without loss of generality, we
use Lo, as the attack threat model so that S = {d| || ¢ ||coc< €}. We select € = {0.5, 1.0}-meter,
where the 1-meter deviation is the maximum change for a standard car without shifting to another
lane [11]. We use four standard evaluation metrics for the nuscenes prediction challenge [33]: aver-
age displacement error (ADE), final displacement error (FDE), off road rates (ORR), and miss rate
(MR). We evaluate the model’s performance on both clean and adversarial data. For convenience,
we use ADE, FDE, ORR, MR to represent the performance on the clean data and Robust ADE, Ro-
bust FDE, Robust ORR, Robust MR to represent the performance under attacks. We compute these
metrics with the best of five predicted trajectory samples, i.e., K = 5.

5.2 Main results

Here, we present our main results of RobustTraj. We compare it with the baselines including model
trained with clean data (Clean) and naive adversarial training (Naive AT), and existing defense
methods for trajectory prediction [11]. The results have been shown in Table 1.

We observe that our method achieves the best robustness and maintains good clean performance for
most cases. For instance, with e = 0.5 attack on AgentFormer model, our method is able to reduce
46% prediction errors (2:22-2-73) under the attack at a cost of 2.6% (3:-21=1-8%) clean performance
degradation on ADE, compared to the model trained with clean data at ¢ = 0.5. Compared to the



Table 1: ADE and Robust ADE on different defense methods and models. The 1-st and 2-nd lowest
errors are colored.

Model | mini-AF | AF | SGAN
Method ADE Robust ADE ADE Robust ADE ADE Robust ADE
etho 05 10]05 10 |05 10|05 10 |05 10| 05 1.0
Clean | 205 20568 1153 | 1.86 1.86 | 5.09 857 | 480 4.80 | 10.52 20.15
Naive AT [8] 275 278 | 544 920 | 252 256 | 381 681 | 643 655 | 834 14.63
DA[11] 231 232|554 932 | 210 208|435 722 | 541 540 | 885 17.25
Train-time Smoothing [11] 314 307 | 567 931 | 211 213 | 419 679 | 550 547 | 874 1651
Test-time Smoothing [11] 297 307 | 496 850 | 240 241 | 443 744 | 616 6.17 | 9.05 17.42
DA + Train-time Smoothing [11] | 241 239 | 548 9.00 | 2.17 2.13 | 414 6.62 | 563 561 | 8.60 16.14
Detection + Test Smoothing [11] | 2.31 228 | 591 9.85 | 2.08 2.03 | 445 7.59 | 535 537 | 928 17.39
RobustTraj 214 211 | 3.69 382 | 191 195|273 286 | 495 507 | 520 694

(a) Benign case (b) Adv Attack (c) w/ defense [11] (d) w/ defense (ours)

Figure 3: Impacts to a MPC-basd downstream planner. (a) is under the benign case while (b), (c)
and (d) are under the adversarial attacks. The blue car and the red car represent the AV and the
adversarial agent respectively.

existing methods, our method also significantly outperforms in terms of the robustness. For instance,
with ¢ = 1.0 attack on AgentFormer model, our method achieves 45% better robustness with 9%
better clean performance on ADE compared to the best results from existing methods [11].

Impacts to downstream planners. To further study the downstream impact of our robust trajectory
model in the AD stack, we plug it into a planner. We select a MPC-based planner and evaluate the
collision rates under the attack. To perform the attack on a closed-loop planner, we conduct attacks
on a sequence of frames with the expectation over transformation (EOT) [35] method. We follow
the setting from Zhang et al. [11] and choose ¢ = 1. We choose AgentFormer model since it has
the most competitive performance. As a result, we observe that, while AgentFormer model trained
on clean data leads to 10 collision cases under attack, the robust trained model with the proposed
RobustTraj is able to avoid all the collisions. As shown in Fig. 3, we demonstrate that the proposed
RobustTraj is able to avoid the collisions (Fig. 3 (d)) while the DA + Train-time Smoothing method
proposed by Zhang et al. [11] is not (Fig. 3 (¢)).

5.3 Component analysis

In this section, we analyze the effectiveness of the

three components. We use the mini-AgentFormer 6.0
model since it has competitive performance and is
lightweight for a fast adversarial training process.

Effectiveness of the Deterministic Attack. To

5.5 4

5.0

B a5
demonstrate the importance of the Deterministic At- < o]
tack, we compare it with competitive alternatives, La- — deterministic
tent Attack and Context Attack, which also construct > — latent
the deterministic path. However, they only attack a 309 — context
partial model as opposed to our end-to-end full model 25 ‘ ‘ . . ‘
attack. More details about these attacks are in the ’ ’ ° eosen

Appendix A. We evaluate their attack effectiveness ) )
by attacking a normally trained trajectory prediction ~Figure 4: Peformance of different attacks in
model (without robust training). In Fig. 4, we demon-  mini-AgentFormer.



strate that Deterministic Attack is the most effective attack among all. Additionally, we embed them
into the whole adversarial training pipeline and evaluate the adversarial robustness. The results are
shown in Table 2. We observe that the model trained with the Deterministic Attack achieves the best
robustness in terms of ADE. More results with other metrics and the other € are in the Appendix B.

Effect of additional loss functions.
We evaluate the performance of the Table 2: ADE and robust ADE for different methods on

models trained with additional loss mini-AgentFormer. The lowest error is in bold.

terms: Lejean and Lreg. In Table 2, we Method ADE Robust ADE

can see that the regularization term 0.5 1.0 | 05 1.0

Lreg improves robustness of the mod- Clean 205 205 | 686 11.53

els and achieves better clean perfor-

mance. It shows that the regulariza- Latent Attack 2.55 270 | 410 471
Context Attack 247 259 | 394 478

tion of the introduced noises on con-

ditional Variables help the model to Deterministic Attack 2.61 2.55 3.88 4.35

stabilize the training procedure. By Deterministic Attack

adding the clean loss L jean, We ob- + Lreg 229 231 | 376 428
serve that both the robustness and + Letean + Lreg 223 219 | 371  3.83
clean performance are improved fur- + Lotean + Lreg + Aug | 214 2.11 | 3.69  3.82

ther, which means the benign data in-
deed anchors the model output on clean data distribution and provides a stable signal for the better
robust training for generative models.

Effect of domain-specific augmentation. To demonstrate the effectiveness of the domain-specific
augmentation, We also combine it with all of the above components to validate its effect. The results
are shown in Table 2. We observe that it achieves a better performance on clean and adversarial data.

6 Limitations

In this work, we identified the challenges of applying adversarial training on trajectory prediction
models based on probabilistic generative models since they could cope with the natural uncertainty
of motion forecasting. Though the probabilistic generative model is the main-stream architecture
for the trajectory prediction task, there are other architectures (e.g., LSTM [1, 36], flow-based
method [5, 6] and RL-based method [37]) for generating multi-modal predictions. Additionally,
we only study the adversarial set with the threat model of L, perturbation on trajectories instead of
other types of threat models (e.g., optimization on the latent space [26], perturbation on raw sensor
data [25]). Moreover, the primary goal of this paper is to study and improve the robustness of tra-
jectory prediction models. To obtain salient and unambiguous insights, we minimize the conflating
factors in our analysis without considering the perception model in our pipeline. We leave these as
future work for building robust trajectory prediction models.

7 Conclusion

In this paper, we aim to study how to train robust generative trajectory prediction models against
adversarial attacks, which is seldom explored in the literature. To achieve this goal, we first iden-
tify three key challenges in designing an adversarial training framework to train robust trajectory
prediction models. To address them, we propose an adversarial training framework with three main
components, including (1) a deterministic attack for the inner maximization process of the adversar-
ial training, (2) additional regularization terms for stable outer minimization of adversarial training,
and (3) a domain-specific augmentation strategy to achieve a better performance trade-off on clean
and adversarial data. To show the generality of our method, we apply our approach to two trajectory
prediction models, including (1) a CVAE-based model, AgentFormer, and (2) a cGAN-based model,
Social-GAN. Our extensive experiments show our method could significantly improve the robust-
ness with a slight performance degradation on the clean data, compared to the existing techniques
and dramatically reduce the severe collision rates when plugged into the AD stack with a planner.
We hope our work can shed light on developing robust trajectory prediction systems for AD.
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