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Abstract

Foundation models excel across diverse tasks, but adapting them to specialized applications
often requires fine-tuning, an approach that is memory and compute-intensive. Parameter-
efficient fine-tuning (PEFT) methods mitigate this by updating only a small subset of weights.
In this paper, we introduce HYPERADAPT, a parameter-efficient fine-tuning method that
significantly reduces the number of trainable parameters compared to state-of-the-art methods
like LoRA. Specifically, HYPERADAPT adapts a pre-trained weight matrix by applying row-
and column-wise scaling through diagonal matrices, thereby inducing a high-rank update
while requiring only n 4+ m trainable parameters for an n x m matrix. Theoretically, we
establish an upper bound on the rank of HYPERADAPT’s updates, and empirically, we confirm
that it consistently induces high-rank transformations across model layers. Experiments on
GLUE, arithmetic reasoning, and commonsense reasoning benchmarks with models up to
14B parameters demonstrate that HYPERADAPT matches or nearly matches the performance
of full fine-tuning and state-of-the-art PEFT methods while using orders of magnitude fewer
trainable parameters.

1 Introduction

Large-scale foundation models have demonstrated remarkable capabilities across diverse tasks, including
natural language understanding (Devlin et al., [2019; |Radford et al., 2019; |Brown et al., [2020]), mathematical
reasoning (Cobbe et al., |2021), and multi-modal learning (Abdin et al., [2024; |Qwen et al. 2025)). Despite
their broad capabilities, real-world applications often necessitate fine-tuning pre-trained models to better
align with domain-specific tasks, constraints, or specialized output formats. Full-model fine-tuning, however,
is computationally and memory-intensive given the large number of parameters in state-of-the-art models.
Parameter-efficient fine-tuning (PEFT) methods address this challenge by updating only a small subset of
parameters. A prominent approach, (Low-Rank Adaptation) LoRA (Hu et al.l [2022)), reduces the number of
trainable parameters by constraining the update to be low-rank. However, its effectiveness depends on the
rank of the update; increasing the rank of the low-rank matrices improves performance but increases the
number of trainable parameters.

In this work, we take an alternative approach to fine-tuning by observing that pre-trained weight matrices
already encode many useful directions. Instead of learning a new low-rank subspace, we can fine-tune a model
by reweighting the existing directions. We propose HYPERADAPT, a novel parameter-efficient fine-tuning
method that applies row- and column-wise diagonal scaling to a pre-trained weight matrix Wy, yielding
a fine-tuned matrix W = AWyB with just n + m trainable parameters for an n x m weight matrix. The
resulting constrained high-rank transformation adjusts the model’s sensitivity to different input features and
its emphasis on certain output representations, achieving performance comparable to full fine-tuning and
state-of-the-art PEFT methods (see Fig. .

Our design has three practical benefits. First, it decouples update expressivity from parameter count; by
utilizing the model’s existing basis, HYPERADAPT achieves effectively high-rank updates without learning
new low-rank factors. Second, it is parameter-efficient, yielding up to 34 times fewer parameters than LoRA
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Figure 1: Overview of HyperAdapt: (Left) Our proposed method, HYPERADAPT, fine-tunes a model by
learning row-wise and column-wise diagonal matrices. Unlike full fine-tuning, which requires n x m trainable
parameters, our method yields comparable performance yet only requires n + m trainable parameters.
Grayscale values represent frozen parameters, while colored values represent trainable parameters. (Right)
Our method achieves similar performance to LoRA across common benchmarks while using up to significantly
fewer trainable parameters.

in our experiments, as simple diagonal scalings suffice to exploit existing pre-trained representations. Third,
it adds no additional inference latency, as the scaled weights can be precomputed. Our contributions are:

e Improved parameter efficiency: By training diagonal matrices that apply row-wise and column-
wise scaling, we significantly reduce the number of trainable parameters compared to prior methods.

o Competitive performance: HYPERADAPT achieves model performance comparable to existing
PEFT methods such as LoRA, particularly in ultra-low parameter regimes, across widely-used NLP
benchmarks.

« High-Rank adaptation: We provide a theoretical upper bound on HYPERADAPT’s update rank
(Lemma 1) and validate it empirically (Sec. 6]).

2 Preliminaries

Problem Statement:

Let fy denote a pre-trained model with parameters 6, mapping an input x to an output y. Fine-tuning aims
to adapt the model to a downstream task by updating its parameters, producing a new model fyr where

0 =0+ A0

Here A6 is the learned task-specific update. For large models, updating all parameters (6) is computationally
prohibitive. Existing work has demonstrated that fine-tuning large models does not require modifying
all parameters. Instead, fine-tuning a small subset of parameters is often sufficient to achieve significant
performance improvements on downstream tasks.

The intrinsic dimension hypothesis (Li et al |2018} [Aghajanyan et al., [2020) states that solving a specific
task to a desired accuracy generally requires adjusting only a minimal subset of parameters within a low-
dimensional subspace of the full parameter space. Building on this principle, LoRA extends
the intrinsic dimension hypothesis from the global parameter space to individual weight matrices, showing
that low-rank update at this granularity can be sufficient to adapt a pre-trained model. Formally, for a
pre-trained weight matrix W € R™*™_ the goal of PEFT is to efficiently parameterize an update matrix
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AW such that the adapted weight matrix becomes:
W =Wq + AW. (1)

For LoRA, the update is defined as the product of two low-rank matrices: AW = BA where B € R"*" and
A € R™™ for a small rank » < min(n, m). However, the number of trainable parameters scales linearly
with the chosen rank r, and empirical evidence shows higher ranks generally yield better performance. Thus,
achieving stronger adaptation typically involves increasing r, which requires more trainable parameters.

3 High-Rank Parameter-Efficient Fine-Tuning
Constrained High-Rank Update

It is a well-known phenomenon that over-parameterization of neural net-
works facilitates easier optimization (Du et al., [2019). Empirical scaling
laws(Kaplan et al., |2020; Hoffmann et al., 2022) show that increasing
parameters reliably decreases loss, suggesting that larger parameter spaces
provide models with more flexibility during training. At the matrix level,
allowing updates to affect many orthogonal directions can make adaptation Rank = 4
more expressive than constraining updates to a small subspace. Low-rank
approaches tailor a handful of directions, whereas high-rank adaptation
leverages more directions and can lead to better learning, but is typically
memory and compute-intensive.

Low-Rank Update

Pre-trained weight matrices are typically full-rank and already encode
many useful directions from the pre-training stage. If we can efficiently
reweigh those existing directions, rather than introduce new ones, we can Rank = 2
induce high-rank updates with a small parameter budget (see [Figure 2J).
This perspective motivates three principles underlying our approach: (i)
exploit directions already present in the pre-trained weight matrix; (ii) Figure 2: HYPERADAPT adjusts
combine them efficiently to obtain expressive updates; and (iii) use fewer 5 large number of directions
trainable parameters to reweigh existing directions than learn new ones via scaling, bootstrapping from

OTrainable [JFrozen

from scratch. pre-trained orthogonal directions
(knowledge), achieving a high-
rank update. In contrast, low-
rank methods modify a limited
subset of vectors without any con-
straint.

To efficiently adapt a pre-trained matrix, we propose a constrained high-
rank update. Rather than introducing new low-rank factors, we scale the
rows and columns of the pre-trained weights to reweigh and recombine its
existing directions, yielding a high-rank update with only n + m trainable
parameters for an n X m matrix. This preserves parameter efficiency while
exposing many update directions already encoded in the model, improving
adaptability without the cost of dense updates. Empirically, our updates
realize high normalized rank across most transformer modules (near 1.0 in many layers, see , consistent
with the idea that HYPERADAPT exposes many descent directions with a small number of parameters.

3.1 HYPERADAPT

In this work, we introduce HYPERADAPT, a parameter-efficient fine-tuning method that achieves high-rank
transformations by constraining the form of the update rather than its rank. Given a pre-trained weight
matrix Wy € R™™ we define the fine-tuned update AW to be:

AW = AW,B — W, (2)
where A € R"*™ and B € R"™*™ are diagonal matrices. Substituting AW into yields:

W = Wo + AW,
=Wy + AWB — Wy,
= AW(B.
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The resulting fine-tuned weight matrix W’ is then the product of the original weight matrix Wy with two
diagonal scaling matrices, A and B. Intuitively, A and B matrices scale the row and column of the matrix,
selectively stretching or shrinking the latent channels that matter most for the downstream task. This
multiplicative reweighting adapts existing representations rather than inventing new structure. Both A and
B are initialized to be identity matrices, to ensure that the first forward pass of the model is identical to the
original model, so as not to introduce any noise during initialization.

Representing W’ using diagonal matrices has two primary benefits: Only n + m trainable parameters are
required, and diagonal matrix multiplication can be calculated using element-wise multiplications rather than
full matrix multiplications, which is faster. HYPERADAPT is effective despite using only a minimal number of
trainable parameters because it produces high-rank updates without explicitly constraining the rank. This
enables HYPERADAPT to efficiently adapt pre-trained models to downstream tasks. The rank of AW in
equation [2| is upper-bounded by min{2 - rank(Wg),n, m}

Lemma 1. Let Wy € R™™ ™ and let A € R"*™, B € R™*™ be diagonal matrices. Define AW :=
AWyB —Wj. Then rank(AW) < min{2 - rank(Wy), n, m }.

Proof. Let r be the rank(Wjy). We know that for any conformable matrix X and Y, rank(X+7Y) <
rank(X) 4 rank(Y). Therefore:

rank(AWoB — Wy) < rank(AW,B) + rank(—W)
Since we define AW to be AWyB — Wy, we substitute this definition:

rank(AW) < rank(AWyB) + rank(—W)

Here, rank(AW(B) < rank(Wy) = r because rank(XY) < min(rank X, rank Y). Therefore, rank(AWB) <
rank(WoB) < rank(Wj), and similarly rank(AW(B) < rank(AW;) < rank(Wy).

rank(AW) < r + rank(—Wp)
Additionally, rank(—Wg) = rank(Wy) = r:
rank(AW) <r+r=2r

Furthermore, for any matrix, its rank is always upper-bounded by its dimensions, so the rank(AW) <
min{2 - rank(Wy), n, m }. O

This means that the update matrix induced by HYPERADAPT can achieve a high-rank and is upper-bounded
only by the rank of Wy. While this transformation cannot increase the rank of Wy, as it involves multiplication
with diagonal matrices, it nonetheless utilizes the full rank potential of Wy to adapt to the downstream
objective. Empirically, we observe this high-rank behavior by examining the singular values of the update
produced by HYPERADAPT. In we report both the rank of the update across all layers of a fine-tuned
Qwen-2.5-7B and the spectra of selected fine-tuned weight matrices. Furthermore, similar to prior works, our
method introduces no additional test-time latency as the modified weights can be precomputed before
deployment.

4 Related Work

Parameter-efficient fine-tuning is an effective strategy for adapting large pre-trained models to downstream
tasks by adjusting only a small subset of model parameters. Early approaches leveraged adapters (Houlsby
et al., [2019), lightweight trainable modules which are inserted between transformer layers to enable efficient
task-specific adaptation. Other approaches, such as prompt tuning (Lester et al 2021) and prefix tuning (Li
and Liang), |2021)), optimize small continuous embeddings at the input or hidden layers to steer model behavior.
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In contrast, BitFit (Ben Zaken et al., 2022) directly optimizes a small subset of the original model parameters,
specifically the bias terms, which results in effective sparse fine-tuning.

Low-Rank Adaptation and Variants: Low-Rank Adaptation (LoRA) (2022)), discussed in
Sec. 2] is one of the most widely adopted methods for fine-tuning large pre-trained models, owing to both
its simplicity and flexibility. Many variants have been proposed to further improve performance, including
improved initialization strategies (Hayou et al.l[2024a; Wang et al.|2024) and asymmetric learning rates (Hayou!

2024b). A recent extension, DoRA (Liu et al., 2024)), decomposes the pre-trained weight matrix into

separate magnitude and direction components, which are then fine-tuned separately.

High-Rank Adaptation: In contrast, recent meth- class LincarHyperAdapt (nn.Module):

ods such as Singular Vector-guided Fine-Tuning def __init__(self, in_features, out_features, bias=
(SVFT) (]Lingam et alL |2024D and Vector-based Ran- None, pretrained_weights=None, train_bias=
dom Matrix Adaptation (vera) (Kopiczko et al.| [2024)) False):
aim to induce high-rank updates using a small num- super () .__init__0Q)
. g p . _g o self.weight = nn.Parameter(torch.empty(
ber of trainable parameters, similar in spirit to Hy- out_features, in_features), requires_grad=
PERADAPT. SVFT achieves high-rank adaptation False)
by applying singular value decomposition to the pre- self.diag_A = nn.Parameter(torch.ones(
. . . . out_features, 1))
trained weight matrix W and fine-tuning only the self.diag B = nn.Parameter (torch.ones(1
singular values I, while freezing the singular vectors in_features))
U and V. However, even though the singular vec- if bias is not None:

self.bias = nn.Parameter(torch.zeros(
out_features), requires_grad=False)
self.bias.data.copy_(bias)

tors are not updated, they must still be stored in
memory which introduces a non-trivial memory over-

head. For a weight matrix W € R™*"™ SVFT must if pretrained_weights is not None:
store both U € R"*"™ and V € R™"*" as additional self.weight.data.copy_(pretrained_weights)
non-trainable parameters, effectively doubling the
X K def forward(self, x):
memory footprint compared to storing W alone. W = self.weight * self.diag A * self.diag B
. . =x@UW.T
Similarly, VeRA introduces two large fixed random Zf s:1 £ bias:
matrices to project and reconstruct updates, lead- y = y + self.bias
ing to substantial memory consumption. While both return y

SVFT and VeRA achieve high-rank adaptation, their
reliance on large auxiliary matrices makes them mem-
ory inefficient. HYPERADAPT avoids such overheads
as it does not introduce any additional non-trainable
parameters.

An alternative approach, Butterfly Orthogonal Fine-Tuning (BoFT)(Liu et al) [2023), introduces a parameter-
efficient fine-tuning scheme based on butterfly factorization. This structure allows for the representation of a
dense orthogonal matrix as a product of several sparse matrices. However, BoFT trades parameter efficiency
for computational efficiency, replacing a single dense matrix operation with a sequence of expensive sparse
matrix multiplications in each layer. IA® (Liu et al.L 2022)) applies a one-sided diagonal reweighting of the
base weight matrix, and scale-and-shift (Lian et all [2023) can be viewed as IA® augmented with a trainable
bias. For both of these methods, the rank of the update is upper-bounded by rank(AW) < rank(W), whereas
HyperAdapt’s two-sided reweighting yields rank(AW) < 2 - rank(W). In we also explore the effect of

such one-sided transformation.

Listing 1: Torch-style pseudocode of HYPERADAPT
linear layer

5 Empirical Experiments

To evaluate the effectiveness of our method, we aim to answer two research questions: 1) How does the
downstream task performance of models fine-tuned with our method compare to full fine-tuning and existing
PEFT methods? 2) How does the number of trainable parameters required by our method compare to those
of these other methods?

To answer these questions, we fine-tune four LLMs of varying sizes: RoBERTa-Large (355M) (Liu et al.|
2019), Llama-3-8B 2024), Qwen-2.5-7B (Qwen et al}, [2025), and Phi-4 (14B) (Abdin et all R024). The
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fine-tuned models are evaluated on a wide range of NLP tasks spanning four benchmarks: GLUE
, Commonsense Reasoning Benchmark, Arithmetic Reasoning Benchmark and Math Benchmark.
Throughout, HYPERADAPT tunes only n + m parameters per n X m matrix, introducing no inference-time
latency because the scaled weights can be precomputed. In our experiments, this yields up to ~ 34x fewer
trainable parameters than LoRA while remaining competitive in accuracy. All experiments were conducted
using pre-trained models from the HuggingFace Transformers library (Wolf et al.), [2020).

We compare HYPERADAPT against four baselines: four low-rank methods/variants and one high-rank method.
The low-rank baselines are: LoRA ; LoRA,_, a rank-1 variant configured such that the
number of trainable parameters is the same as in our method; DoRA (weight-decomposed LoRA) (Liu et al.
and DoRA,_; as rank-1 variant for DoRA. For the high-rank baselines, we use VeRA (Vector-based
Random Matrix Adaptation).

5.1 GLUE Benchmark

We first evaluate our proposed method on the General Language Understanding Evaluation (GLUE) benchmark
(Wang et al. |2018) using RoBERTa-Large. The GLUE benchmark (Wang et al., |2018) is a collection of
various natural language processing (NLP) tasks designed to evaluate the generalization capabilities of
language models. It includes single-sentence classification, sentence-pair classification, and similarity tasks.
We primarily use six of its sub-tasks: CoLLA (Corpus of Linguistic Acceptability) determines whether a given
sentence is grammatically acceptable (Warstadt et al., [2019). SST-2 (Stanford Sentiment Treebank) classifies
movie reviews as positive or negative (Socher et al., |2013). MRPC (Microsoft Research Paraphrase Corpus)
identifies whether two sentences are semantically equivalent (Dolan and Brockett| [2005). STS-B (Semantic
Textual Similarity Benchmark) measures the similarity of two sentences (Cer et al., 2017). QNLI (Question
Natural Language Inference) evaluates whether a given passage contains the answer to a question (Rajpurkar
et al,[2016). RTE (Recognizing Textual Entailment) is a binary classification task for textual entailment
(Dagan et al| [2012). For GLUE, we fine-tune only the Query and Value attention matrices and keep the
classifier head frozen, similar to the setup. To ensure a fair comparison, we use a sequence
length of 128 and the same number of training epochs for each task. Full details regarding hyperparameters
used can be found in [Sec. A1l

We report our results in [Table 1] The results for full fine-tuning and LoRA are taken from (2022)).
For all methods, we report the average and standard deviation from 5 different seed runs. As shown in[Table 1]

HYPERADAPT achieves performance comparable to LoRA while using 8 times fewer trainable parameters.
Moreover, it matches the performance of full fine-tuning despite requiring over 1700 times fewer parameters.
Similarly, VeRA also demonstrates strong performance with minimal trainable parameters; however, it
introduces 0.5M additional non-trainable parameters during fine-tuning. In contrast, HYPERADAPT achieves
86.0 average with 0.1M trainable parameters without additional non-trainable matrices, while achieving
performance comparable to both LoRA and Full fine-tuning.

Table 1: GLUE task performance results for RoOBERTa-Large. We report Matthew’s correlation for CoLA,
Pearson correlation for STS-B, and accuracy for other tasks; higher is better. The values for Full FT and
LoRA are taken from prior work 2022). For VeRA, we also report additional non-trainable
parameters with red text.

Method ‘ # Params ‘ SST-2 MRPC CoLA QNLI RTE STS-B QQP MNLI ‘ Avg.
Full FT 355.0M ‘ 96.4 90.9 68.0 94.7 86.6 92.4 92.2 90.2 88.9
LoRA 0.8M 96.0£0.3 89.5+£0.2 655+08 947+£03 839+£1.6 90.7+04 91.5+0.1 90.4+£0.1 | 878
LoRA,—; 0.1M 96.0+0.2 85.6+£51 620£1.0 941£01 779+£23 841416 902401 89.84+0.2 | 85.0
DoRA 0.8M 96.0+0.2 89.3+0.6 658+0.3 946+01 835+£11 91.0£04 91.6£01 904£0.1 | 878
VeRA 0.06M | 0.5M | 95.8+0.3 89.4+05 653+15 941+02 793+34 89.5+0.8 89.4+0.2 892+02 | 86.5
Hyper (Ours) | 0.1M 96.24+0.2 89.84+0.3 64.9+0.7 93.8+0.1 80.8+13 902+03 903+£01 89.3+0.1]| 86.9
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5.2 Arithmetic Reasoning Benchmark

To evaluate the impact of HYPERADAPT on arithmetic reasoning, we follow the experimental setup from [Hu
et al.| (2023). We fine-tune each model on the Math10K dataset(Hu et al.l |2023]), which comprises training
examples from GSMS8K(Cobbe et al., |2021)) and AQuA (Ling et al., [2017). Models are then evaluated on six
downstream arithmetic reasoning tasks. AddSub (Hosseini et all 2014) tests simple addition and subtraction
word problems. SingleEq (Koncel-Kedziorski et al., [2015]) involves solving word problems that translate to a
single algebraic equation. GSM8K (Cobbe et al.l |2021)) features multi-step grade school problems. AQuA
(Ling et al.l 2017) focuses on multiple-choice algebra questions, MultiArith(Roy and Rothl [2016|) requires
sequential arithmetic steps, and SVAMP (Patel et al., |2021]) evaluates robustness through perturbed math
problems. Because Math10K includes only two of these sub-tasks, this benchmark also assesses generalization
to out-of-distribution arithmetic problems.

Table 2: Arithmetic Reasoning results. We report accuracy for all tasks. For all tasks, higher value is better.
For VeRA, we also report additional non-trainable parameters with red text.

Model ‘ Method ‘ # Params (%) ‘ AddSub SingleEq GSMS8K AQuA MultiArith SVAMP ‘ Avg
LoRA,— 0.03 70.1 87.6 55.3 374 86.5 58.9 66.0
LoRA 1.03 89.6 95.9 64.4 40.9 94.2 74.9 76.7
Llama-3-8B DoRA, - 0.05 71.9 85.4 54.3 36.6 86.2 59.2 65.6
DoRA 1.05 90.1 95.9 64.3 41.3 93.2 774 77.0
VeRA 0.02 ] 0.37 73.7 85.6 55.0 41.3 85.0 59.5 66.7
Hyper (Ours) | 0.03 86.3 96.7 61.9 4.1 94.2 69.8 75.5
LoRA, - 0.03 93.4 98.4 82.6 63.4 97.5 86.5 87.0
LoRA 1.05 92.7 98.2 79.8 70.1 98.2 83.6 87.1
Qwen-2.5-7TB | DoRA,_; 0.05 91.9 98.0 82.6 63.4 98.8 86.0 86.8
DoRA 1.07 90.9 98.6 79.7 67.7 98.7 83.4 86.5
VeRA 0.02 | 0.51 94.2 98.6 82.3 66.9 98.7 88.1 88.1
Hyper (Ours) | 0.03 92.7 98.6 79.9 68.1 98.8 83.4 86.9
LoRA, - 0.02 93.7 98.0 86.8 68.5 98.3 87.7 88.8
LoRA 0.75 95.2 99.0 87.5 69.3 98.7 89.9 89.9
Phi-4-14B DoRA,—; 0.04 92.9 97.8 86.8 72.0 98.7 87.7 89.3
DoRA 0.77 95.2 99.2 87.0 69.7 98.5 89.9 89.9
VeRA 0.02 ] 0.75 93.4 96.6 84.7 73.2 95.8 87.9 88.6
Hyper (Ours) | 0.02 93.9 99.0 86.5 66.9 98.3 89.4 89.0

The results are shown in HYPERADAPT demonstrates strong performance relative to existing PEFT
methods across all model sizes. Considerably, when compared against LoRA and DoRA, HYPERADAPT
shows comparable performance with 34 times fewer parameters for Qwen-2.5-7B and Llama-3-8B and 37
times fewer parameters for Phi-4. LoRA,—; consistently underperforms standard LoRA across all model
sizes, highlighting the limitations of aggressive rank reduction. Additionally, LoRA,—; also performs worse
than our proposed method, which suggests that HYPERADAPT is able to use the same number of trainable
parameters more effectively during fine-tuning.

HYPERADAPT achieves comparable performance with most methods while using fewer parameters. Among
the models compared, performance with Llama-3-8B (et al, 2024) stands out. Llama-3-8B is also one of the
models released earlier compared to Qwen-2.5-7B (Qwen et al.| 2025) and Phi-4 (Abdin et al.| [2024)), showing
that HYPERADAPT is more robust across different models.

For VeRA, we report both additional non-trainable parameters and trainable parameters. Both baseline
high-rank methods (vera and BoFT) exhibit a significant reduction in trainable parameters compared to
low-rank methods. However, HYPERADAPT stands out as more robust than these methods, as demonstrated
by the performance in Llama-3-8B, where HYPERADAPT consistently shows +9% improvement among these
methods.

5.3 Commonsense Reasoning Benchmark

For commonsense reasoning benchmarks, we first fine-tuned the models on the Commonsensel 70K dataset (Hu
et al.l [2023), an aggregated dataset consisting of eight sub-tasks. Unlike Math10K (10K examples), Common-
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sensel 70K offers 170K training instances, allowing us to stress-test HYPERADAPT at a substantially larger
data scale and assess its effectiveness. These sub-tasks evaluate a model’s ability to reason about everyday
scenarios and implicit world knowledge that may not be directly stated in the text. Arc-challenge and Arc-easy
(Clark et al., [2018) consist of science exam questions drawn from a variety of sources, Winogrande(Sakaguchi
et al., |2019) evaluates pronoun resolution in challenging contexts, SociallnteractionQA (SIQA) (Sap et al.l
2019) assesses social and situational reasoning, OpenBookQA (OBQA)(Mihaylov et all 2018)) focuses on
science-related multiple-choice questions, BoolQ(Clark et al., 2019) contains yes/no questions from real-world
queries, PhysicallnteractionQA (PIQA) (Bisk et al.,[2019)) tests physical commonsense, and HellaSwag (Zellers
et al.l |2019)) challenges models with grounded commonsense questions.

Table 3: Commonsense Reasoning results. We report accuracy for all tasks. For all tasks, higher value is
better. For VeRA, we also report additional non-trainable parameters with red text.

Model | Method | # Params (%) [ ARC-c ARC-e WinoGrande SIQA OBQA BoolQ PIQA HellaSwag | Avg
LoRA,—; 0.03 76.5 89.7 774 75.2 78.8 60.8 84.9 89.9 79.1
LoRA 1.03 79.4 90.3 83.0 79.8 86.0 72.5 87.9 95.5 84.3
Llama-3-8B DoRA 1.05 79.6 90.8 83.8 80.1 84.2 73.2 87.9 95.5 84.4
VeRA 0.02 | 0.37 74.4 89.0 74.0 73.3 78.8 61.6 84.0 84.5 77.5
Hyper (Ours) | 0.03 78.2 89.3 79.4 76.4 80.6 67.9 86.3 924 81.3
LoRA, =1 0.03 88.1 95.8 76.0 78.9 87.4 70.1 88.0 92.8 84.6
LoRA 1.05 88.6 95.8 83.5 80.2 89.2 72.7 89.8 94.9 86.8
Qwen-2.5-7TB | DoRA 1.07 88.5 95.9 82.4 79.8 89.6 72.8 89.6 94.6 86.7
VeRA 0.02 ] 0.51 88.0 95.4 74.8 78.6 87.8 69.2 88.4 92.6 84.3
Hyper (Ours) | 0.03 88.3 95.3 80.1 78.8 90.4 68.6 88.7 93.7 85.5
LoRA,—; 0.02 92.8 97.9 83.5 79.6 91.6 73.4 90.5 94.0 87.9
LoRA 0.75 93.5 98.0 87.5 81.9 93.8 74.6 92.6 95.1 89.6
Phi-4-14B DoRA 0.77 93.9 98.2 87.3 82.0 94.8 75.1 92.4 89.9 89.2
VeRA 0.02 ] 0.75 92.6 97.8 58.4 79.3 90.8 69.9 83.6 93.6 83.2
Hyper (Ours) | 0.02 93.3 97.7 83.1 81.0 91.2 69.7 92.6 94.5 87.9

The results are shown in HYPERADAPT remains competitive across all three model families while
using dramatically fewer trainable parameters than low-rank baselines. On Llama-3-8B, HYPERADAPT
attains an average of 81.3 while training just 0.03% of parameters and also surpasses the high-rank VeRA
baseline by +3.8 points on average (81.3 vs. 77.5). We observe the same pattern on Qwen-2.5-7B and
Phi-4: HYPERADAPT delivers stronger accuracy to VeRA while maintaining a similar minimal trainable
parameter. Relative to LoRA and DoRA, HYPERADAPT is typically within =~ 2%, these trends mirror
arithmetic reasoning: HYPERADAPT trades at most a modest accuracy delta for an order-of-magnitude
reduction in trained weights.

Notably, HYPERADAPT either matches or exceeds LoRA,_; at the same parameter budget on all three models
(Llama-3-8B: 42.2; Qwen-2.5-7B: +0.9; Phi-4-14B: on par), suggesting that our constrained high-rank scaling
makes more effective use of the available trainable parameters.

5.4 Fine-Tuning With Reasoning Traces

To further evaluate the performance of HYPERADAPT in  Table 4: Performance of fine-tuned reasoning mod-
low-data and long-context settings, we fine-tune Qwen-2.5-  ¢]s over math benchmarks. We report accuracy
7B on the S1 dataset (Muennighoff et al., [2025), which  for all tasks (higher is better). For VeRA, we also

contains 1,000 high-quality reasoning traces and solutions report additional non-trainable parameters with
collected from Gemini’s “thinking” model (Google| [2024). 1od text.

Following Muennighoff et al.| (2025)) setup, we train only
on the reasoning traces and solutions, but not the ques-  Method | # Params (%) | GSM8K MATHS500

tion itself, using the Transformer Reinforcement Learning "7 px— " .03 757 62.6
(TRL) library (von Werra et al., [2020). We set the cut-off — LoRA 1.05 88.8 63.6
length for a given sequence to 16K tokens to assess robust- ~ DoRA.—; | 0.05 74.6 61.4

DoRA 1.07 88.9 65.0

ness across longer sequences. The fine-tuned models are
evaluated on GSM8K (Cobbe et al., [2021)) and MATH500
(Lightman et al., |2023)).

VeRA 0.02 | 0.51 80.3 60.6
Hyper 0.03 89.0 64.0
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Figure 3: Normalized update rank across all layers of Qwen-2.5-7TB after fine-tuning on Commonsensel70K.
HYPERADAPT produces high-rank updates across most modules effectively utilizing a large fraction of
available orthogonal directions.

As shown in HYPERADAPT attains 89.0 on

GSMS8K and 64.0 on MATH500, effectively matching low-rank baselines with an order of magnitude fewer
parameters. Additionally, with the same number of trainable parameters set as HYPERADAPT, LoRA,—_1,
it substantially underperforms compared to HYPERADAPT, showing that naively shrinking rank is not an
adequate substitute for properly fine-tuning models in such constrained trainable parameter settings.

6 Rank Analysis and Ablation

To quantify how many orthogonal directions are utilized during fine-tuning, we analyze the empirical rank of
the weight update AW. Specifically, given a pre-trained weight Wy and the fine-tuned counterpart W', we
compute the difference AW = W’ — Wq which is the update to the matrix, and examine the singular values
of AW. This complements our theoretical upper bound rank(AW) < min{2 - rank(Wy), n, m} (Lemma (1
by quantifying how much of that potential is realized in practice. For each adapted module, we compute the
singular value decomposition (SVD) of AW and count the number of non-trivial singular values. Taking
numerical precision into account, we only consider {O‘i ex | o; > 1 x 1072 } to be non-trivial. The empirical
rank is then normalized by rank(Wj), yielding a value in [0, 1] that is comparable across layers of different
shapes. Formally,

_#{O’i62|0121><1072} 3
B rank(Wy) 3)

=)

Normalizing by rank(Wj) accounts for layer size and also takes into account the rank of the pre-trained
matrix, so 7 reflects how much of the available subspace the update actually uses.

We report results on Qwen-2.5-7B fine-tuned on Commonsensel70K (Hu et al., [2023)). empirically
supports our theoretical claim that HYPERADAPT induces high-rank updates. Across layers, HYPERADAPT
consistently produces updates with large normalized rank, indicating that most modules exploit a substantial
fraction of the available directions. The majority of modules achieve a normalized rank near one, with the
exceptions being the Query and Output projection matrices.

For comparison, we also plot the normalized rank for LoRA. Because the pre-trained matrices already have
high rank, the normalized rank of LoRA updates collapses toward zero after normalization. This contrast
highlights how impactful just 7 + m trainable parameters can be under HYPERADAPT, yielding updates that
are effectively high-rank at the scale of the base matrix.

Singular Value Trend. Additionally, we analyze the spectrum of the update matrices, AW, plotting the
singular values for the query (AWg) and value (AWy) matrices. shows the spectra for Qwen-2.5-7B
and Llama-3-8B fine-tuned on Commonsensel 70K and Mathl10K. HYPERADAPT exhibits a slower decay,
indicating a higher-rank update across different weight matrices, models, and datasets. In contrast, LoRA
shows a rapid drop in singular values, as expected given its low-rank update.
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Figure 4: Singular-value spectra of the update matrix AW as given by HYPERADAPT and LoRA for Qwen-
2.5-7B and Llama-3-8B. We visualize the first 50 singular values of the update matrix in log scale; values
above 1 x 102 are considered to be non-negligible and contribute to the update’s rank. The red dashed line
indicates the rank r of LoRA, showing that all values beyond this are negligible. In contrast, HYPERADAPT
exhibits a slower decay, reflecting a higher-rank update. The top row corresponds to the Query matrix AW
of the 13th layer, and the bottom row corresponds to the Value matrix AWy of the 13th layer.

6.1 Learning Rate Sensitivity

To better understand learning rate sensitivity for HYPERADAPT,
we performed a sweep over six learning rate: {3.0 x 1072, 8.0 x

1073, 3.0 x 1073, 8.0 x 1074, 3.0 x 1074, 8.0 x 107°}, trained > 841

on Math10K and evaluated on GSMSK. shows that high  ©

learning rate (> 8.0 x 1073) leads to performance degradation, while § 81 -

very low learning (< 3.0 x 10™%) also shows poor performance. We 3

recommend using learning rate in the range 8.0 x 107% to 3.0 x 1073 S 781

for the best performance. 2

75 T T T
1074 1073 1072

6.2 Isolating Effects of Individual Diagonal Matrices Learning rate

To better understand the expressiveness of an individual diagonal Figure 5: Learning rate sensitivity on
matrix for adaptation, we fine-tune Llama-3-8B on Mathl0K and GSMSK. Best performance is between
follow the same setup as For these experiments, we set 3.0 x 104 and 3.0 x 1073.

either A or B as a trainable and compare against our original results

from [Sec. 5.2] [Table 5| shows that training both diagonal matrices consistently improves performance

Table 5: Isolating Effects of individual diagonal matrices on Arithmetic Reasoning Benchmark. We report
accuracy for all tasks. For all tasks, higher value is better.

Method ‘ # Params (%) ‘ AddSub SingleEq GSMS8K AQuA MultiArith SVAMP ‘ Avg
Training B only 0.02 80.3 92.1 58.0 38.6 90.7 64.3 70.7
Training A only 0.02 83.0 93.3 59.0 38.6 90.3 65.5 71.6
Training A and B | 0.03 86.3 96.7 61.9 44.1 94.2 69.8 75.5

over training either one alone. In particular, training both A and B increases average accuracy from 71.6
(training A only) and 70.7 (training B only) to 75.5 (+3.9 and +4.8 points, respectively). Additionally, these
improvements come at nearly identical trainable parameter scales.

10
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6.3 Robustness Analysis

To assess the robustness of HYPERADAPT, we trained Roberta-Large with random initialization (scratch)
only on the downstream tasks, ensuring the model had no pre-trained knowledge. This would help us
better understand how HYPERADAPT will perform in scenarios where the pre-trained model has no relevant
pre-training related to the fine-tuning downstream task. In our experimental setup, we trained all linear
layers in both the attention and MLP modules, unlike in our fine-tuning experiment, where we only targeted
the Query and Value matrices of the attention module. Similar to our fine-tuning setup, the final projection
layers are kept frozen. For comparison, we test Full fine-tuning, LoRA, LoRA,_1, and HyperAdapt. To keep
comparisons consistent, even with full fine-tuning, only linear layers are trained, and all other layers are
frozen, similar to LoRA and HyperAdapt. For full fine-tuning, we used the same learning rate as the authors

of Roberta(Liu et al.| 2019).

Table 6: GLUE task performance results for RoOBERTa-Large trained from scratch only on downstream tasks.
We report Matthew’s correlation for CoLA, Pearson correlation for STS-B, and accuracy for other tasks;
higher is better.

Method | # Params | SST-2 MRPC  CoLA QNLI RTE STS-B | Avg.
Full 302M 78.3 70.6 0.0 50.5 52.7 18.6 45.1
LoRA 1.5M 7T7.6+£1.0 692+06 126+19 624+04 541+£1.2 16.9+14 | 488
LoRA,—; 0.4M 771+£1.2 69.7+06 59423 606+£04 534+07 98+05 | 46.1
HyperAdapt | 0.4M 75.3+£05 692+04 103+52 61.1+£02 531+03 138+0.7| 47.1

As expected, absolute performance in this scratch regime is substantially lower than in the pre-trained setting
since the model must learn linguistic features directly from the supervised task data. However,
the goal here is to compare how methods perform relative to each other under an unfavorable initialization.
Even in the regime, the diagonal matrices learn to scale the relevant rows and columns, achieving better
performance than their LoRA rank-1 counterparts. Also, in this regime, full fine-tuning is comparably worse
than the PEFT methods, which is unexpected. We reran full fine-tuning with LoRA’s learning rate, too,
and found it performs worse, averaging 37.7. This robustness analysis shows that even when the pre-trained
model has no relevant knowledge for downstream tasks, HYPERADAPT performs as well as other methods.

7 Conclusion

In this work, we introduce HYPERADAPT, a simple yet effective parameter-efficient fine-tuning method that
leverages diagonal scaling to achieve high-rank updates, requiring only n 4+ m trainable parameters for an
n X m matrix. We also derived an upper bound on the rank induced by HYPERADAPT, clarifying how the
method can express complex changes. Across our evaluations, it matched or nearly matched strong PEFT
baselines while training a tiny fraction of the parameters, making it practical when compute or memory
are constrained. These results demonstrate that high-rank adaptation can be achieved without the need
for expensive auxiliary structures or large ranks, providing a scalable and efficient alternative for adapting
foundation models.

Limitations: This work focuses exclusively on Transformer-based language models; extending HYPERADAPT
to other data domains and models (diffusion models) remains an open direction. HYPERADAPT also assumes
that the model is pre-trained, making it an effective tool for adaptation. However, when the model is not
pre-trained (random initialization), HYPERADAPT cannot bootstrap and exploit the matrix’s representation,
which leads to poor learning.
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A Experiments and Hyperparameters

A.1 GLUE Benchmark

To keep results consistent, we use the same T setup as Hu et al.| (2022) for RoBERTa Large. All of our GLUE
experiments have the same max sequence length and epochs for each task. We use the learning rate for DoRA

from Hu et al.| (2022)) since both LoRA and DoRA use similar learning rates.

Table 7: The hyperparameters used for RoOBERTa-Large on the GLUE benchmark.

Method Dataset ‘ SST-2 MRPC CoLA QNLI RTE STS-B QQP MNLI

Optimizer AdamW

Warmup Steps 10

LR Schedule Constant

Epochs 10 20 20 10 20 10 20 10

Batch Size 128

Target Layers Q,V

Max Seq. Len. 128
Hyper Learning Rate ‘ 3E-03 8E-03 6E-03 3E-03 3E-03 3E-03 4E-03 4E-03

Learning Rate | 3E-03 8E-03 6E-03 3E-03 3E-03 3E-03 4E-03 4E-03
VeRA

Rank 256

Learning Rate 4E-04 3E-04 2E-04 2E-04 4E-04 2E-04 3E-04 3E-04
LoRA Rank 8

LoRA « 16

Learning Rate 4E-04 3E-04 2E-04 2E-04 4E-04 2E-04 3E-04 3E-04
LoRA,—1 Rank 1

LoRA « 2

Learning Rate | 4E-04 3E-04 2E-04 2E-04 4E-04 2E-04 3E-04 3E-04
DoRA Rank 8

LoRA « 16

We use the following hyperparameters for fine-tuning for the Arithmetic Reasoning benchmark. The learning
rates are based on the suggestions from the original paper.

A.2 Commonsense Reasoning Benchmark

We use the following hyperparameters for fine-tuning for the Commonsense Reasoning benchmark. The
learning rates are based on the suggestions from the original paper.

A.3 Fine-Tuning With Reasoning Traces

We use the following hyperparameters for fine-tuning for the over reasoning traces. The learning rates are
based on the suggestions from the original paper.

A.4 Decoding Hyperparameters

For commonsense reasoning, we generate at most 32 new tokens. For Arithmetic reasoning, we generate at
most 512 new tokens. For math benchmark after fine-tuning on reasoning traces, we generate at most 1024
new tokens.
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Table 8: The hyperparameters used for the Arithmetic Reasoning Benchmark.

Method Models ‘ Llama-3-8b Qwen-2.5-7B  Phi-4-14B
Optimizer AdamW
Warmup Steps 100
Max Grad Norm 1.0
LR Schedule Cosine
Max Seq. Len 512
Batch Size 256
Target Layers Q, K, V, O, Gate, Up, Down
Epochs 3
HYPERADAPT  Learning Rate | 3e-3
Learning Rate 3e-3
VeRA Rank 1024 1024 2048
Learning Rate le-4
Rank 1
LoRAr=1 LoRA « 2
LoRA Dropout 0.05
Learning Rate le-4
Rank 32
LoRA LoRA « 64
LoRA Dropout 0.05
Learning Rate le-4
Rank 1
DoRA,=1 LoRA « 2
LoRA Dropout 0.05
Learning Rate le-4
Rank 32
DoRA LoRA « 64
LoRA Dropout 0.05

Table 9: The hyperparameters used for the Common Sense Reasoning Benchmark.

Method Models ‘ Llama-3-8b Qwen-2.5-7B  Phi-4-14B
Optimizer AdamW
Warmup Steps 100
Max Grad Norm 1.0
LR Schedule Cosine
Max Seq. Len 256
Batch Size 256
Target Layers Q, K, V, O, Gate, Up, Down
Epochs 2
HYPERADAPT  Learning Rate | 3e-3
Learning Rate 3e-3
VeRA Rank 1024 1024 2048
Learning Rate le-4
Rank 1
LoRAr=1 LoRA « 2
LoRA Dropout 0.05
Learning Rate le-4
Rank 32
LoRA LoRA « 64
LoRA Dropout 0.05
Learning Rate le-4
Rank 32
DoRA LoRA a 64
LoRA Dropout 0.05
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Table 10: The hyperparameters used for the Math Benchmark.

Method Models ‘ Qwen-2.5-7B
Optimizer AdamW
Warmup Steps 10
Max Grad Norm 1.0
LR Schedule Cosine
Max Seq. Len 16384
Batch Size 64
Target Layers Q, K, V, O, Gate, Up, Down
Epochs 5
HYPERADAPT  Learning Rate ‘ 3e-3
Learning Rate 3e-3
VeRA Rank 1024
Learning Rate le-4
Rank 1
LoRAr=1 LoRA « 2
LoRA Dropout 0.05
Learning Rate le-4
Rank 32
LoRA LoRA « 64
LoRA Dropout 0.05
Learning Rate le-4
Rank 1
DoRA,=1 LoRA « 2
LoRA Dropout 0.05
Learning Rate le-4
Rank 32
DoRA LoRA a 64
LoRA Dropout 0.05

Table 11: Decoding hyperparameters used for text generation.

Parameter ‘ Value

Temperature | 0.05
Top-p 0.40
Top-k 40
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