DREAM-MPC: GRADIENT-BASED MODEL PREDICTIVE CONTROL WITH LATENT IMAGINATION

Anonymous authors

000

001

002003004

010 011

012

013

014

015

016

017

018

019

021

024

025

026

027

028

029

031

032

035

037

040

041

042

043

044

046

047

048

051

052

Paper under double-blind review

ABSTRACT

State-of-the-art model-based Reinforcement Learning (RL) approaches either use gradient-free, population-based methods for planning, learned policy networks, or a combination of policy networks and planning. Hybrid approaches that combine Model Predictive Control (MPC) with a learned model and a policy prior to efficiently leverage the benefits of both paradigms have shown promising results. However, these hybrid approaches typically rely on gradient-free optimization methods, which can be computationally expensive for high-dimensional control tasks. While gradient-based methods are a promising approach, recent works have empirically shown that gradient-based methods often perform worse than their gradient-free counterparts due to the fact that gradient-based methods can converge to suboptimal local optima and are prone to exploding or vanishing gradients. We propose Dream-MPC, a novel approach that generates few candidate trajectories from a rolled-out policy and optimizes each trajectory by gradient ascent using a learned world model. We incorporate uncertainty regularization directly into the optimization objective and amortize optimization iterations over time by reusing previously optimized actions. We evaluate our method on multiple continuous control tasks from the DeepMind Control Suite, Meta-World and Humanoid-Bench and show that gradient-based MPC can significantly improve the performance of the underlying policy and can outperform gradient-free MPC and stateof-the-art baselines. To facilitate further research on gradient-based MPC, we will open source our code and more at https://dream-mpc.github.io.

1 Introduction

Reinforcement Learning has achieved promising results in recent years and demonstrated its application to robotics (Wu et al., 2023; Lancaster et al., 2024; Seo et al., 2025). However, model-free methods often struggle with sample efficiency and generalization, especially in complex and highdimensional environments (Byravan et al., 2022). Model-based RL, on the other hand, can be more sample-efficient and can generalize better, but requires an accurate model of the environment (Xiao et al., 2019). There has been growing interest in world models that are learned from data and can be used for decision-making (Sutton, 1991; Ha & Schmidhuber, 2018). Many recent works (Hafner et al., 2019; Hansen et al., 2022; 2024; Srinivas et al., 2018) use a learned world model for planning through imaginary rollouts with Model Predictive Control (MPC) (Richalet et al., 1978; Cutler & Ramaker, 1979) and rely on gradient-free, sampling-based methods such as the Cross Entropy Method (CEM) (Rubinstein, 1997) or Model Predictive Path Integral (MPPI) (Williams et al., 2015; 2017) for trajectory optimization. Although sampling-based MPC methods can be parallelized using Graphics Processing Units (GPUs), their implementation on embedded systems can be challenging due to the limited computational resources. In addition, planning with sampling-based methods is highly inefficient or even intractable in high-dimensional spaces, which might limit their applicability to real-world robotics tasks (Xie et al., 2021).

In contrast, fully amortized methods such as Dreamer (Hafner et al., 2020) learn a purely reactive policy via imaginary rollouts. Inference for the learned policy is computationally less expensive than the search procedure using CEM. However, amortized policies often lack generalization (Byravan et al., 2022). Since the learned world models are usually differentiable, it is quite natural to propose gradient-based methods for trajectory optimization because they can be more efficient than gradient-free, sampling-based methods. Instead of sampling many action sequences and evaluating them as

→ Forward propagation ··· Backward propagation

Figure 1: Overview of the proposed approach. Dream-MPC optimizes action sequences rolled out from a policy network π in latent space z with gradient-based MPC. N candidate trajectories are sampled from the policy prior and optimized for I iterations using gradient ascent to maximize the objective J. The first action with the highest predicted return is applied, and the procedure is repeated for the next time step. The policy network and world model are shared across candidates and time steps.

done by CEM, gradients backpropagated through the model can be used to guide the optimization procedure (Bharadhwaj et al., 2020). When the action dimension increases, there is an exponential growth in search space for CEM, while there is only a small increase in computational load for gradient descent, i.e., an additional gradient dimension (Bharadhwaj et al., 2020). While few works propose to combine gradient-based optimization with world models, the empirical results observed were worse than for their gradient-free counterparts (Bharadhwaj et al., 2020; S V et al., 2023; Zhou et al., 2025).

We propose Dream-MPC, a novel method which combines gradient-based MPC with a learned policy network and world model. Our method incorporates uncertainty directly into the optimization objective and amortizes optimization iterations over time to further improve performance and computational efficiency. We evaluate our method empirically on various tasks from different domains, including high-dimensional tasks and tasks with visual observations, as well as for different model-based RL algorithms with distinct types of world models and when using gradient-based MPC during training. The results show that our method can significantly improve the performance of the policy and even outperform its gradient-free equivalent and state-of-the-art methods.

2 Related Work

Model-based RL. Model-based RL tries to learn a model of the environment that can be used to predict the outcome of actions and plan accordingly (Sutton, 1991). World models are considered a central component of human thinking and decision-making processes (Sutton, 1991; Ha & Schmidhuber, 2018; LeCun, 2022). While some approaches to world modelling show promising results and are able to generalize to different domains, they are mostly focused on representation learning and not or only partially cover the planning aspect. The combination of elements of planning and search (especially Monte Carlo Tree Search) with deep reinforcement learning has shown remarkable successes in game domains (Silver et al., 2016; 2017a). Most recent model-based RL approaches use the learned world model for planning through imaginary rollouts (Srinivas et al., 2018; Micheli et al., 2023; Hansen et al., 2024; Hafner et al., 2025; Mosbach et al., 2025). However, the performance of these approaches depends heavily on the quality of the learned world model (Talvitie, 2014) and often suffers from the compounding error problem (Asadi et al., 2019).

MPC and **RL**. State-of-the-art approaches such as those from the Dreamer family (Hafner et al., 2020; 2021; 2025) use a policy network to predict the actions directly. While policy networks have

shown remarkable success for robotics applications, the world model and value function are typically only utilized during training, and the policy is then frozen during inference. This procedure leads to a reactive policy, which can be considered as offline planning and limits the generalization capabilities (Byravan et al., 2022). To address this limitation, recent works such as TD-MPC (Hansen et al., 2022; 2024), POLO (Lowrey et al., 2019) or PlaNet (Hafner et al., 2019) combine model-based RL with online planning through MPC to leverage the benefits of both paradigms. Typically, MPC is performed using gradient-free, sampling-based methods such as CEM or MPPI. Although, the results obtained empirically are often good, for each time step, hundreds or thousands of different action alternatives are sampled and evaluated, which increases the computational effort and renders these approaches only partly suitable for real-time applications.

Gradient-based Planning. The idea of gradient-based planning has been around for decades (Kelley, 1960) and typically refers to backpropagating gradients of a cost or reward function with respect to actions to iteratively optimize a sequence of actions by gradient descent. While early works relied on known analytic forms of environment dynamics, more recent works revisited the idea with learned approximate models of the environment (Srinivas et al., 2018; Silver et al., 2017b; Henaff et al., 2018). However, there are only a few works that have been able to successfully perform gradient-based planning and these approaches are usually limited since they either require expert demonstrations (Srinivas et al., 2018) or cannot scale to more challenging robotics tasks (Henaff et al., 2018). Works such as (Bharadhwaj et al., 2020) and (S V et al., 2023) use a Gaussian as a proposal distribution for gradient-based optimization. Typically, a more informative proposal is used for MPC to warm-start the optimization procedure, for example a policy network. Prior works which combine policy models and MPC mostly use the policy model to generate a trajectory which is then optimized using gradient-free methods (Byravan et al., 2022; Mansard et al., 2018; Hamrick et al., 2021; Argenson & Dulac-Arnold, 2021; Morgan et al., 2021). Since the learned world models are usually differentiable, also gradient-based methods have been proposed for optimizing the trajectory proposal from a policy model (S V et al., 2023). However, gradient-based optimization methods perform worse in their experiments compared to their gradient-free counterparts. The reasons are attributed to problems with the gradients, but are not analyzed in detail.

3 Preliminaries

Reinforcement Learning can be formulated as an infinite-horizon Markov Decision Process (MDP) with continuous action and state spaces, which can be defined as a tuple $\langle \mathcal{S}, \mathcal{A}, \mathcal{T}, \mathcal{R}, \gamma \rangle$, where \mathcal{S} and \mathcal{A} are the state and action spaces, $\mathcal{T}: \mathcal{S} \times \mathcal{A} \to \mathcal{S}$ is the transition or dynamics function, $\mathcal{R}: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$ is the reward function and γ is a discount factor. The goal is to obtain a policy $\pi: \mathcal{S} \to \mathcal{A}$, which maximizes the expected discounted sum of rewards, i.e., the return $\mathbb{E}_{\pi}[\sum_{t=0}^{\infty} \gamma^{t} r_{t}]$, where $r_{t} = \mathcal{R}(s_{t}, \pi(s_{t}))$. Model-based RL learns a model of the environment, often referred to as world model, which is then used for selecting actions and deriving a policy by planning with the learned model.

Model Predictive Control is a well-known method for trajectory optimization, which minimizes a cost function over a finite horizon while taking the system dynamics and constraints into account. The optimization problem is solved at each time step, using the current state as initial condition and the predicted future states. The solution provides the optimal action sequence for the next few time steps with respect to the predicted costs. Thus, MPC generates a locally optimal sequence of actions up to the prediction horizon H by solving the following optimization problem:

$$\pi(s_t) = \underset{a_{t:t+H}}{\arg\max} \mathbb{E}\left[\sum_{i=0}^{H} \gamma^{t+i} \mathcal{R}(s_{t+i}, a_{t+i})\right]. \tag{1}$$

The learned model is used to estimate the return of a candidate trajectory (Negenborn et al., 2005). Since solving Eq. (1) leads to a locally optimal solution and is not guaranteed to solve the general RL problem outlined before, most state-of-the-art methods learn value functions to bootstrap return estimates beyond the horizon H.

4 DREAM-MPC: GRADIENT-BASED MODEL PREDICTIVE CONTROL

We propose Dream-MPC, which uses gradient ascent to optimize action sequences sampled from a policy network in an MPC-like manner. The idea is shown in Fig. 1. Since gradient ascent is prone to getting stuck at local optima, we propose to generate few candidate trajectories by sampling from a stochastic policy network. Instead of sampling thousands of trajectories from a Gaussian distribution like CEM, we only consider few trajectories based on the policy. Namely, for each time step t, the algorithm creates N initial action sequences by performing an imaginary rollout of a stochastic policy π_{θ} in latent space z using a learned latent dynamics model d:

$$\hat{a}_{\tau}^{(n)} \sim \pi_{\theta}(\cdot|z_{\tau}^{(n)}), \quad z_{\tau+1}^{(n)} = d(z_{\tau}^{(n)}, \hat{a}_{\tau}^{(n)}), \quad \text{with} \quad \tau = t, ..., t+H, \quad n = 1, ..., N. \tag{2}$$

In case of a deterministic policy we add small perturbations to the initial action sequence sampled from the policy to generate N candidate trajectories. The learned world model predicts the following latent states as well as the rewards \hat{r} for each state and the terminal values \hat{q} . Each trajectory is then refined using gradient ascent with step size α to maximize the expected return, which is estimated using the predictions from the world model. The first action of the candidate trajectory with the highest expected return is applied, and the planning procedure is repeated in the next time step. Sampling from a policy provides a warm-start through proposing a decent initial solution for the optimization, which has been shown to be essential for the performance of gradient-free (Hansen et al., 2022) and gradient-based optimization methods (Parmas et al., 2018). Our method allows for combining the benefits of both, fully amortized methods using reactive policies and fully online planning, namely improved generalization while reducing computational costs. In contrast to naively sampling random action sequences, which do not leverage any knowledge of the optimization problem, our approach uses gradients backpropagated through the learned world model to efficiently guide the optimization.

Since we optimize actions over a receding horizon, but only apply the first action at each time step, we propose to amortize optimization iterations over time by reusing corresponding optimized actions from previous time steps to initialize actions as a mixture of previously optimized action \tilde{a} and policy actions \hat{a} :

$$a_{\tau}^{(n)} = \rho \cdot \tilde{a}_{\tau-1}^{(n)} + (1-\rho) \cdot \hat{a}_{\tau}^{(n)}, \quad n = 1, ..., N,$$
 (3)

where ρ is the reuse coefficient, which controls the influence of the previously optimized actions. For the action at time step t+H, there is no previously planned action. Thus, we initialize the planned action by the same value as the planned action of the time step before.

For our experiments, we integrate our method into TD-MPC2 (Hansen et al., 2024), a model-based RL algorithm, which performs local trajectory optimization using MPPI in the latent space of a learned world model. Instead of learning a dynamics model using a reconstruction objective, TD-MPC2 implicitly learns a control-centric world model from environment interactions using a combination of joint-embedding prediction, reward prediction, and TD-learning without decoding observations.

The TD-MPC2 architecture consists of following five learned components:

```
 \begin{array}{lll} \text{Encoder} & z_t = h(s_t) & \text{(maps observations to latent representations)}, \\ \text{Latent dynamics} & z_{t+1} = d(z_t, a_t) & \text{(predicts latent forward dynamics)}, \\ \text{Reward} & \hat{r}_t = R(z_t, a_t) & \text{(predicts reward $r$ of a transition)}, \\ \text{Terminal value} & \hat{q}_t = Q(z_t, a_t) & \text{(predicts discounted sum of rewards, i.e., return)}, \\ \text{Policy prior} & \hat{a}_t \sim \pi_\theta(z_t) & \text{(predicts action $a^*$ that maximizes $Q$)}, \\ \end{array}
```

where s and a are the states and actions, and z is the latent representation. Since we only consider single-task experiments in this work, we omit the learnable task embedding used for multi-task world models.

The policy prior π_{θ} serves to guide the sampling-based MPPI trajectory optimizer in TD-MPC2 as well as our gradient-based method. TD-MPC2 maintains a replay buffer \mathcal{B} during online interaction, which is used to iteratively update the world model and collect new environment data by planning with the learned model. Please refer to Appendix B for details on the model training, architecture and MPPI planning procedure. We replace the MPPI planner by our gradient-based MPC method. Our gradient-based MPC algorithm is summarized in Alg. 1. The MPC procedure requires $N \times I \times H$ evaluations of the world model at each time step, which equals $512 \times 6 \times 3 = 9216$ for MPPI while

Algorithm 1: Dream-MPC

 Input: Encoder h(s), dynamics model d(z,a), reward model R(z,a), value function model Q(z,a), policy prior $\pi_{\theta}(z)$, current state s_t , planning horizon H, optimization iterations I, candidates per iteration N, action optimization rate α

Encode state into latent representation $z_t \leftarrow h(s_t)$.

Sample N action sequences by rolling out the policy π_{θ} with the latent dynamics model d.

Initialize candidate action sequences $a_{t:t+H}$ via Eq. (3).

for optimization iteration i = 1, 2, ... I **do**

Output: First optimized action $a_t^{(k)}$ with $k = \arg\max_n \{J^{(n)}\}_{n=1}^N$.

our method uses significantly less model evaluations, i.e., only $5 \times 1 \times 3 = 15$. Note that while we use TD-MPC2 for our experiments, our method can also be integrated into other model-based reinforcement learning approaches such as Dreamer (Hafner et al., 2020) or DINO-WM (Zhou et al., 2025). We include results and implementation details on integrating our method into Dreamer in Appendix D.

We further integrate our method into BMPC (Wang et al., 2025), which builds on TD-MPC2 and learns a policy π_{θ} by imitating an MPC expert π_{MPC} and at the same time uses the policy to guide the MPC optimization process. Thus, the policy is learned using the following objective:

$$\mathcal{L}_{\pi}(\theta) \doteq \underset{(\mathbf{s}, \mathbf{a})_{0:H} \sim \mathcal{B}}{\mathbb{E}} \left[\sum_{t=0}^{H} \lambda^{t} \left[\text{KL}(\pi_{\text{MPC}}(\cdot | h(\mathbf{s}_{t}), \pi_{\theta}), \pi_{\theta}(\cdot | \mathbf{z}_{t})) / \text{max}(1, S) - \beta \mathcal{H}(\pi_{\theta}(\cdot | \mathbf{z}_{t})) \right] \right],$$

$$\mathbf{z}_{0} = h(\mathbf{s}_{0}), \ \mathbf{z}_{t+1} = d(\mathbf{z}_{t}, \mathbf{a}_{t}),$$

$$S \doteq \text{EMA}(\text{Per}(\text{KL}(\pi_{\text{MPC}}, \pi_{\theta}), 95) - \text{Per}(\text{KL}(\pi_{\text{MPC}}, \pi_{\theta}), 5), 0.99),$$

$$(4)$$

where \mathcal{H} is the entropy, KL is the Kullback-Leibler divergence, $\mathbf{z}_{0:H}$ are latent vectors rolled out using the models h and d, and β and λ are hyperparameters for loss balancing and temporal weighting, respectively. The KL loss is normalized using moving percentiles S, which are commonly used to stabilize training. The results of Wang et al. (2025) show that this bootstrapping approach can improve sample efficiency and asymptotic performance, especially for high-dimensional tasks. We use BMPC since it provides an already quite good policy compared to TD-MPC2, where the performance gap between the policy network and the MPC procedure is quite large as shown in Appendix C.3. For more details on BMPC, please refer to Appendix B.2.

We further propose to regularize the planning procedure by penalizing trajectories with a large uncertainty because our method may benefit from conservative value estimations given that the estimates are directly used for optimizing the actions. Therefore, we estimate the (epistemic) uncertainty of a trajectory as proposed by Hansen et al. (2024) for offline RL and multi-task world models:

$$u_t = \text{avg}([\hat{q}_1, \hat{q}_2, \dots, \hat{q}_M]) \cdot \text{std}([\hat{q}_1, \hat{q}_2, \dots, \hat{q}_M]),$$
 (5)

where \hat{q}_m is the predicted value from Q-function m from an ensemble of M Q-functions. The regularization strength at each time step is scaled based on the magnitude of the mean value predictions for a given latent state to account for different tasks without requiring task-specific coefficients. The planning objective is then redefined as:

$$J = \sum_{h=t}^{H-1} \left(\gamma^h \cdot R(z_h, a_h) - \lambda_{\text{unc}} \cdot u_h \right) + \gamma^H \cdot Q(z_{t+H}, a_{t+H}) - \lambda_{\text{unc}} \cdot u_{t+H}, \tag{6}$$

where $\lambda_{\rm unc}$ is a task-agnostic coefficient that balances return maximization and uncertainty minimization. While this requires to specify a coefficient that weighs both aspects, we found it sufficient in our experiments to set $\lambda_{\rm unc}=0.01$. We also conduct experiments in which we use this uncertainty regularization for TD-MPC2 and BMPC and include the results in Appendix C.3.

5 EXPERIMENTS

We evaluate our method on a set of 24 diverse continuous control tasks from the DeepMind Control Suite (Tassa et al., 2020), HumanoidBench (Sferrazza et al., 2024) and Meta-World (Yu et al., 2019) covering a wide range of task difficulties including high-dimensional state and action spaces, sparse rewards, complex locomotion, and manipulation. Additionally, we also include results for six DM-Control tasks with visual observations. For details on the environments, please refer to Appendix A.

5.1 Comparison to Baselines

We compare our method to following state-of-the-art baselines commonly used for continuous control tasks:

- Soft-Actor-Critic (SAC) (Haarnoja et al., 2018), a model-free RL method which uses a maximum entropy objective for policy learning,
- Dreamer-v3 (Hafner et al., 2025), a model-based RL method which learns a policy network using rollouts from a generative world model,
- TD-MPC2 (Hansen et al., 2024), a model-based RL method which uses policy-guided MPPI for action selection, and
- BMPC (Wang et al., 2025), an extension of TD-MPC2 which uses imitation learning of the MPC planner for policy learning.

We first evaluate the performance of Dream-MPC using (pre-)trained TD-MPC2 and BMPC models, respectively, when replacing the MPPI planner by our proposed gradient-based MPC planner at test time. For TD-MPC2, we use the models provided by Hansen et al. (2024) for the DeepMind Control Suite and Meta-World, except for Cartpole Swingup Sparse, Dog Run, Dog Walk, Humanoid Run and Humanoid Walk because some checkpoints cannot be loaded after code restructuring¹. Thus, we trained new models for these tasks as well as for HumanoidBench. We further train BMPC, Dreamer-v3 and SAC models for all tasks. For more details on the baselines refer to Appendix B.

We report performance metrics across all 24 tasks using the *rliable*² package provided by Agarwal et al. (2021) to evaluate the performance of our method. Specifically, we report the optimality gap, median, interquartile median (IQM), and mean normalized scores as well as the performance profile curves with 95% confidence intervals based on the evaluation scores of trained BMPC agents in Fig. 2. Confidence intervals are estimated using the percentile bootstrap with stratified sampling as recommended by Agarwal et al. (2021). For a comparison across different score scales of all tasks, we normalize DMControl scores by diving by 1000, and HumanoidBench scores as proposed in Lee et al. (2025):

Normalized-Score
$$(x) = \frac{x - \text{random score}}{\text{target score} - \text{random score}},$$
 (7)

where we use the random and target success scores provided by the authors. Please refer to Lee et al. (2025) for more details. Meta-World scores are left as they are since the success rates are already values between zero and one. The detailed evaluation results for all environments are shown in Tabs. 8 to 10. Our gradient-based MPC can improve the performance of the policy network and outperforms MPPI when using BMPC as a basis. While for TD-MPC2 we can also bridge the gap between the policy and the MPPI planner, we cannot consistently match the performance of MPPI, highlighting the need for a good policy proposal for gradient-based MPC. We discuss this in more detail in Appendix C.2.

Additionally, we evaluate the performance of our method using image-based observations to demonstrate that our method also works well in these settings. The results are shown in Tab. 1. We find

¹cf. https://github.com/nicklashansen/tdmpc2/issues/23

²https://github.com/google-research/rliable

Figure 2: **Aggregate performance metrics.** Left: optimality gap, interquartile median (IQM), mean and median normalized scores with 95% confidence intervals. Right: score distributions across all tasks, which provides insights into the variance of the performance. Notably, Dream-MPC achieves the best results. Detailed results are included in Appendix C.2.

that our method can also improve the performance of the underlying policy and even outperforms MPPI for visual observations.

In addition to analyzing our gradient-based MPC method only during inference, we also evaluate its performance when it is already being used during training. Therefore, we use TD-MPC2 as a basis without imitation learning because we hypothesize that the bootstrapping approach of BMPC might lead to unstable training and premature convergence, especially since we have only few candidate trajectories. While combining gradient-based MPC with imitation learning is an interesting research direction, we leave this for future work. Fig. 3 shows the learning curves of BMPC, TD-MPC2 and of Dream-MPC for four different environments. Overall, our gradient-based MPC planner can match the performance of TD-MPC2's MPPI planner. While for simpler control problems Dream-MPC can even outperform TD-MPC2 and match BMPC, we find that for high-dimensional problems our method performs slightly worse. This issue may result from premature convergence due to less diversity among the few candidate trajectories compared to MPPI. We also find improvements in sample-efficiency and asymptotic performance when integrating our method into Dreamer. The results are shown in Appendix D.1.

We benchmark inference times of the different methods on a single Nvidia GeForce RTX 4090 GPU. The results in Tab. 2 show that Dream-MPC is about as fast as MPPI for lower dimensional problems, potentially enabling its usage for real-world robotics applications, which require high control frequencies. While there is an increase in inference time for high-dimensional problems, our method is still significantly faster as for example Grad-MPC (S V et al., 2023), which samples hundreds of action sequences from a Gaussian and optimizes each candidate solution for multiple iterations by using gradient ascent. The corresponding inference times are shown in Tab. 15.

Table 1: **Visual observations.** Performance comparison of different BMPC variants on tasks from the DeepMind Control Suite using image-based observations.

Environment	BMPC	BMPC (policy only)	Dream-MPC (BMPC)
Acrobot Swingup	287 ± 45	$\textbf{292} \pm \textbf{18}$	288 ± 31
Cartpole Swingup Sparse	709 ± 120	625 ± 283	725 ± 141
Cheetah Run	609 ± 23	597 ± 45	643 ± 9
Hopper Hop	253 ± 11	264 ± 6	$\textbf{275} \pm \textbf{3}$
Quadruped Walk	427 ± 78	402 ± 44	$\textbf{435} \pm \textbf{76}$
Walker Run	740 ± 15	740 ± 6	$\textbf{762} \pm \textbf{6}$

The results are the mean episode returns and standard deviations for three random seeds and ten test episodes. **Best** and <u>second best</u> results are highlighted.

Figure 3: Learning curves for four tasks from the DeepMind Control Suite. The line represents the mean episodic return and the shaded area the 95% confidence interval across 3 seeds.

5.2 ABLATION STUDY

We perform ablations to evaluate our design choices and provide insights into which components are crucial to successfully perform gradient-based MPC. We find that having a good initial solution is important to efficiently warm-start the MPC optimization process and reduce computational costs. While uncertainty regularization and amortization of optimization iterations by reuse of previous planned actions can slightly improve the performance in some cases, both can also have the opposite effect, i.e., performance decrease during test-time. However, we find that these mechanisms are important when using gradient-based MPC during training as shown in Fig. 4.

Figure 4: **Ablations.** Performance of different Dream-MPC (TD-MPC2) variants. The line represents the mean episodic return and the shaded area the 95% confidence interval across 3 seeds.

We further evaluate the performance of fully trained TD-MPC2 agents with gradient-based MPC when varying the number of candidates, the number of optimization iterations, and the planning horizon. The results for Acrobot Swingup, Humanoid Run and Slide are shown in Fig. 5. All other hyperparameters are fixed to their default value when varying one. While we use a single set of hyperparameters across all environments, algorithms, and for state-based and visual observations, we find that dynamically adjusting the planning parameters can help to further improve performance. The parameter sweep also shows that increasing the horizon and the number of optimization iterations does not necessarily always increase the performance further, but can also impair the performance for some environments. This issue may result from an inaccurate model, especially when using a longer prediction horizon than the one used for training the model.

Table 2: **Inference times of different methods for Acrobot Swingup.** Mean and standard deviation for three random seeds and ten test episodes per seed.

Method	Inference time	Method	Inference time
BMPC	$18.77 \pm 0.11 \text{ ms}$	TD-MPC2	$20.83 \pm 0.14 \text{ ms}$
Dream-MPC (BMPC)	$18.15 \pm 0.12 \text{ ms}$	Dream-MPC (TD-MPC2)	19.53 \pm 0.11 ms

Figure 5: **Parameter sweep.** Performance of trained BMPC agents with Dream-MPC at test time when varying the number of candidates, horizon and number of optimization iterations. When varying one hyperparameter, the others are fixed to their default value. We also include the performance of the learned policy π_{θ} and the default values of one iteration, a horizon of three and five candidate trajectories.

6 CONCLUSION

We propose Dream-MPC, a novel method for gradient-based planning with a learned policy network and world model, which incorporates amortization of optimization iterations over time and uncertainty to overcome the limitations of previously proposed gradient-based MPC methods, namely worse performance compared to their gradient-free equivalents and high computational costs. We evaluate our method on a broad set of diverse tasks from different domains, including visual observations, to demonstrate its effectiveness. Our empirical evaluation shows that Dream-MPC can not only outperform the baselines, but is also more robust to hyperparameters and faster compared to previously proposed gradient-based MPC methods. Overall, our results highlight that gradient-based trajectory optimization with a learned world model has the potential to significantly improve the performance of model-based RL algorithms.

Our experiments suggest that it may be beneficial to dynamically adapt the optimization parameters such as the action optimization step size and number of iterations to further improve the performance, especially for high-dimensional problems. As our current approach is applied to single-task problems, it would also be interesting to extend it to multi-task world models to evaluate its potential in this setting.

REPRODUCIBILITY STATEMENT

To ensure reproducibility of our work and encourage further research on gradient-based MPC, we have included details including hyperparameters of our proposed method as well as for the baselines in Section 4 and Appendix B. We will also release our source code and more at https://dream-mpc.github.io.

REFERENCES

- Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare. Deep reinforcement learning at the edge of the statistical precipice. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2021.
- Arthur Argenson and Gabriel Dulac-Arnold. Model-based offline planning. In 9th International Conference on Learning Representations (ICLR), 2021.
- Kavosh Asadi, Dipendra Misra, Seungchan Kim, and Michel L. Littman. Combating the compounding-error problem with a multi-step model, 2019. URL http://arxiv.org/abs/1905.13320.
 - Homanga Bharadhwaj, Kevin Xie, and Florian Shkurti. Model-predictive control via cross-entropy and gradient-based optimization. In 2nd Conference on Learning for Dynamics and Control (L4DC), 2020.
 - Arunkumar Byravan, Leonard Hasenclever, Piotr Trochim, Mehdi Mirza, Alessandro Davide Ialongo, Yuval Tassa, Jost Tobias Springenberg, Abbas Abdolmaleki, Nicolas Heess, Josh Merel, and Martin A. Riedmiller. Evaluating model-based planning and planner amortization for continuous control. In 10th International Conference on Learning Representations (ICLR), 2022.
 - Ignasi Clavera, Jonas Rothfuss, John Schulman, Yasuhiro Fujita, Tamim Asfour, and Pieter Abbeel. Model-based reinforcement learning via meta-policy optimization. In *2nd Conference on Robot Learning (CoRL)*, 2018.
 - C. R. Cutler and B.L. Ramaker. Dynamic matrix control A computer control algorithm. *IEEE Transactions on Automatic Control*, 17:72, 1979.
 - Ignat Georgiev, Varun Giridhar, Nicklas Hansen, and Animesh Garg. PWM: Policy learning with multi-task world models. In 13th International Conference on Learning Representations (ICLR), 2025
 - David Ha and Jürgen Schmidhuber. World models, 2018. URL http://arxiv.org/abs/1803.10122.
 - Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft Actor-Critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor. In *35th International Conference on Machine Learning (ICML)*, 2018.
 - Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James Davidson. Learning latent dynamics for planning from pixels. In *36th International Conference on Machine Learning (ICML)*, 2019.
 - Danijar Hafner, Timothy P. Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning behaviors by latent imagination. In 8th International Conference on Learning Representations (ICLR), 2020.
 - Danijar Hafner, Timothy P. Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering Atari with discrete world models. In 9th International Conference on Learning Representations (ICLR), 2021.
 - Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse control tasks through world models. *Nature*, 640:647–653, 2025.
 - Jessica B. Hamrick, Abram L. Friesen, Feryal M. P. Behbahani, Arthur Guez, Fabio Viola, Sims Witherspoon, Thomas Anthony, Lars Holger Buesing, Petar Velickovic, and Theophane Weber. On the role of planning in model-based deep reinforcement learning. In 9th International Conference on Learning Representations (ICLR), 2021.
 - Nicklas Hansen, Hao Su, and Xiaolong Wang. TD-MPC2: scalable, robust world models for continuous control. In 12th International Conference on Learning Representations (ICLR), 2024.

- Nicklas A Hansen, Hao Su, and Xiaolong Wang. Temporal difference learning for model predictive control. In *39th International Conference on Machine Learning (ICML)*, 2022.
 - Mikael Henaff, William F. Whitney, and Yann LeCun. Model-based planning with discrete and continuous actions, 2018. URL http://arxiv.org/abs/1705.07177.
 - Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Mohammadamin Barekatain, Simon Schmitt, and David Silver. Learning and planning in complex action spaces. In *38th International Conference on Machine Learning (ICML)*, 2021.
 - Henry J. Kelley. Gradient theory of optimal flight paths. ARS Journal, 30(10):947–954, 1960.
 - Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd International Conference on Learning Representations (ICLR), 2015.
 - Patrick Lancaster, Nicklas Hansen, Aravind Rajeswaran, and Vikash Kumar. Modem-v2: Visuomotor world models for real-world robot manipulation. In *IEEE International Conference on Robotics and Automation (ICRA)*, 2024.
 - Yann LeCun. A path towards autonomous machine intelligence version 0.9.2, 2022-06-27, 2022. URL https://openreview.net/pdf?id=BZ5a1r-kVsf.
 - Hojoon Lee, Youngdo Lee, Takuma Seno, Donghu Kim, Peter Stone, and Jaegul Choo. Hyperspherical normalization for scalable deep reinforcement learning. In 42nd International Conference on Machine Learning (ICML), 2025.
 - Kendall Lowrey, Aravind Rajeswaran, Sham M. Kakade, Emanuel Todorov, and Igor Mordatch. Plan online, learn offline: Efficient learning and exploration via model-based control. In 7th International Conference on Learning Representations (ICLR), 2019.
 - N. Mansard, A. DelPrete, M. Geisert, S. Tonneau, and O. Stasse. Using a memory of motion to efficiently warm-start a nonlinear predictive controller. In *IEEE International Conference on Robotics and Automation (ICRA)*, 2018.
 - Vincent Micheli, Eloi Alonso, and François Fleuret. Transformers are sample-efficient world models. In 11th International Conference on Learning Representations (ICLR), 2023.
 - Andrew S. Morgan, Daljeet Nandha, Georgia Chalvatzaki, Carlo D'Eramo, Aaron M. Dollar, and Jan Peters. Model predictive actor-critic: Accelerating robot skill acquisition with deep reinforcement learning. In *IEEE International Conference on Robotics and Automation (ICRA)*, 2021.
 - Malte Mosbach, Jan Niklas Ewertz, Angel Villar-Corrales, and Sven Behnke. Sold: Slot object-centric latent dynamics models for relational manipulation learning from pixels. In 42nd International Conference on Machine Learning (ICML), 2025.
 - Rudy R. Negenborn, Bart De Schutter, Marco A. Wiering, and Hans Hellendoorn. Learning-based model predictive control for markov decision processes. In *16th IFAC World Congress*, 2005.
 - Paavo Parmas, Carl Edward Rasmussen, Jan Peters, and Kenji Doya. PIPPS: Flexible model-based policy search robust to the curse of chaos. In *35th International Conference on Machine Learning (ICML)*, 2018.
 - Paavo Parmas, Takuma Seno, and Yuma Aoki. Model-based reinforcement learning with scalable composite policy gradient estimators. In 40th International Conference on Machine Learning (ICML), 2023.
 - Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2019.
 - J. Richalet, A. Rault, J.L. Testud, and J. Papon. Model predictive heuristic control. *Automatica*, 14 (5):413–428, 1978.

- Reuven Y. Rubinstein. Optimization of computer simulation models with rare events. *European Journal of Operational Research*, 99(1):89–112, 1997.
 - Jyothir S V, Siddhartha Jalagam, Yann LeCun, and Vlad Sobal. Gradient-based planning with world models, 2023. URL http://arxiv.org/abs/2312.17227.
 - Younggyo Seo, Carmelo Sferrazza, Haoran Geng, Michal Nauman, Zhao-Heng Yin, and Pieter Abbeel. Fasttd3: Simple, fast, and capable reinforcement learning for humanoid control. 2025. URL https://arxiv.org/abs/2505.22642.
 - Carmelo Sferrazza, Dun-Ming Huang, Xingyu Lin, Youngwoon Lee, and Pieter Abbeel. HumanoidBench: Simulated humanoid benchmark for whole-body locomotion and manipulation. In *Robotics: Science and Systems Conference (RSS)*, 2024.
 - David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of Go with deep neural networks and tree search. *Nature*, 529(7587):484–489, 2016.
 - David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan Hui, Laurent Sifre, George Van Den Driessche, Thore Graepel, and Demis Hassabis. Mastering the game of Go without human knowledge. *Nature*, 550(7676):354–359, 2017a.
 - David Silver, Hado van Hasselt, Matteo Hessel, Tom Schaul, Arthur Guez, Tim Harley, Gabriel Dulac-Arnold, David Reichert, Neil Rabinowitz, Andre Barreto, and Thomas Degris. The predictron: End-to-end learning and planning. In *34th International Conference on Machine Learning (ICML)*, 2017b.
 - Aravind Srinivas, Allan Jabri, Pieter Abbeel, Sergey Levine, and Chelsea Finn. Universal planning networks: Learning generalizable representations for visuomotor control. In *35th International Conference on Machine Learning (ICML)*, 2018.
 - Hyung Ju Suh, Max Simchowitz, Kaiqing Zhang, and Russ Tedrake. Do differentiable simulators give better policy gradients? In *39th International Conference on Machine Learning (ICML)*, 2022.
 - Richard S. Sutton. Dyna, an integrated architecture for learning, planning, and reacting. *ACM SIGART Bulletin*, 2(4):160–163, 1991.
 - Erik Talvitie. Model regularization for stable sample rollouts. In 30th Conference on Uncertainty in Artificial Intelligence (UAI), 2014.
 - Yuval Tassa, Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Piotr Trochim, Siqi Liu, Steven Bohez, Josh Merel, Tom Erez, Timothy Lillicrap, and Nicolas Heess. dm_control: Software and tasks for continuous control. *Software Impacts*, 6, 2020.
 - Yuhang Wang, Hanwei Guo, Sizhe Wang, Long Qian, and Xuguang Lan. Bootstrapped model predictive control. In 13th International Conference on Learning Representations (ICLR), 2025.
 - Grady Williams, Andrew Aldrich, and Evangelos A. Theodorou. Model predictive path integral control using covariance variable importance sampling. 2015. URL http://arxiv.org/abs/1509.01149.
 - Grady Williams, Nolan Wagener, Brian Goldfain, Paul Drews, James M. Rehg, Byron Boots, and Evangelos A. Theodorou. Information theoretic MPC for model-based reinforcement learning. In *IEEE International Conference on Robotics and Automation (ICRA)*, 2017.
 - Philipp Wu, Alejandro Escontrela, Danijar Hafner, Pieter Abbeel, and Ken Goldberg. Daydreamer: World models for physical robot learning. In 6th Conference on Robot Learning (CoRL), 2023.

- Chenjun Xiao, Yifan Wu, Chen Ma, Dale Schuurmans, and Martin Müller. Learning to combat compounding-error in model-based reinforcement learning, 2019. URL https://arxiv.org/abs/1912.11206.
 - Kevin Xie, Homanga Bharadhwaj, Danijar Hafner, Animesh Garg, and Florian Shkurti. Latent skill planning for exploration and transfer. In *9th International Conference on Learning Representations (ICLR)*, 2021.
 - Denis Yarats, Amy Zhang, Ilya Kostrikov, Brandon Amos, Joelle Pineau, and Rob Fergus. Improving sample efficiency in model-free reinforcement learning from images. In *AAAI Conference on Artificial Intelligence*, 2021.
 - Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Mastering visual continuous control: Improved data-augmented reinforcement learning. In 10th International Conference on Learning Representations (ICLR), 2022.
 - Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning. In *3rd Conference on Robot Learning (CoRL)*, 2019.
 - Gaoyue Zhou, Hengkai Pan, Yann LeCun, and Lerrel Pinto. DINO-WM: World models on pretrained visual features enable zero-shot planning. In 42nd International Conference on Machine Learning (ICML), 2025.

A ENVIRONMENT DETAILS

We evaluate our method on a total of 24 continuous control tasks from three different domains: eight environments from the Deep Mind Control suite, including four high-dimensional locomotion tasks, eight environments from HumanoidBench, and eight environments from Meta-World. All three domains are infinite-horizon continuous control environments for which we use a fixed episode length, an action repeat of 2 for the DeepMind Control Suite and Meta-World and 1 for HumanoidBench, and no termination conditions. We follow the success definition of Hansen et al. (2024). This section provides an overview and details for all tasks considered, including their observation and action dimensions.

Figure 6: DeepMind Control Suite benchmarking domains (Tassa et al., 2020).

Table 3: **Overview of DeepMind Control Suite tasks.** Classification is based on Hubert et al. (2021); Yarats et al. (2022)

Task	Difficulty	Reward	$\dim(\mathcal{S})$	$\dim(\mathcal{A})$
Acrobot Swingup	hard	dense	6	1
Cartpole Swingup Sparse	easy	sparse	5	1
Dog Run	hard	dense	223	38
Dog Walk	hard	dense	223	38
Fish Swim	medium	dense	24	5
Hopper Hop	medium	dense	15	4
Humanoid Run	hard	dense	67	24
Humanoid Walk	hard	dense	67	24

We consider following eight tasks from Meta-World:

- Assembly: Pick up a nut and place it onto a peg (peg and nut positions are randomized),
- Button Press: Press a button (button positions are randomized),
- Disassemble: Remove a nut from a peg (peg and nut positions are randomized),
- Lever Pull: Pull a lever down 90 degrees (lever positions are randomized),
- Pick Place Wall: Pick a puck, bypass a wall and place the puck (puck and goal positions are randomized),
- Push Back: Push the puck to a goal (puck and goal positions are randomized),
- Shelf Place: Pick and place a puck onto a shelf (puck and shelf positions are randomized),
- Window Open: Push and open a window (window positions are randomized).

All tasks from Meta-World share the same embodiment, observation space $(\dim(S) = 39)$ and action space $(\dim(A) = 4)$. Please refer to Yu et al. (2019) for the definitions of the reward functions and success metrics used in the Meta-World tasks.

Figure 7: **Meta-World manipulation tasks.** We consider eight different tasks from the Meta-World Benchmark.

We further consider following eight tasks from the twelve benchmarking locomotion tasks of HumanoidBench:

- Balance Hard: Balance on the unstable board while the spherical pivot beneath the board does move,
- Balance Simple: Balance on the unstable board while the spherical pivot beneath the board does not move,
- Hurdle: Keep forward velocity close to 5 m/s while successfully overcoming hurdles,
- Maze: Reach the goal position in a maze by taking multiple turns at the intersections,
- Reach: Reach a randomly initialized 3D point with the left hand,
- Run: Run forward at a speed of 5 m/s,
- Slide: Walk over an iterating sequence of upward and downward slides at 1 m/s,
- Stair: Traverse an iterating sequence of upward and downward stairs at 1 m/s.

Visualizations of the tasks are shown in Fig. 8.

The benchmark uses the Unitree H1 with two dexterous hands. The observation and action spaces, and degrees of freedom of the robot system with the dexterous hands are summarized in Tab. 4.

Table 4: **Humanoid robot specifications with two hands.**

Parameter	Value
Observation space	151
Action space	61
DoF (body)	25
DoF (hands)	50

B IMPLEMENTATION DETAILS

TD-MPC2 implementation. We use the official implementation of TD-MPC2 available at https://github.com/nicklashansen/tdmpc2, and use the default hyperparameters suggested by the authors. A complete list of hyperparameters is provided in Tab. 5. Details on TD-MPC2 can be found in Appendix B.1.

BMPC implementation. We use the official implementation of BMPC from https://github.com/wertyuilife2/bmpc, and use the default hyperparameters suggested by the authors.

813 814

816

820 821

823

825

827

829

830

831

832 833

834

835 836

837

838

839

840 841

842

843

844 845 846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

Figure 8: HumanoidBench locomotion tasks. We consider eight tasks from the HumanoidBench locomotion benchmark that cover a wide variety of interactions and difficulties. This figure illustrates an initial state for each task.

Since the code is based on the official TD-MPC2 codebase and incorporates both algorithms, we use this implementation as a basis for our method. Details on BMPC are provided in Appendix B.2.

Dreamer-v3 baseline implementation. We use the official implementation of Dreamer-v3 available at https://github.com/danijar/dreamerv3. We follow the decision of Hansen et al. (2024) and use the authors' suggested hyperparameters for proprioceptive control (DeepMind Control Suite). Please refer to Hafner et al. (2025) and Hansen et al. (2024) for a complete list of hyperparameters and implementation details.

SAC baseline implementation. We use the SAC implementation from https://github.com/ denisyarats/pytorch_sac as in the TD-MPC (Hansen et al., 2022) paper, and use the hyperparameters suggested by the authors. Please refer to their paper for a complete list of hyperparameters.

B.1 TD-MPC2

Architectural details. All components of TD-MPC2 are implemented as multi-layer perceptrons (MLPs). The encoder h contains a variable number of layers (2-5), depending on the architecture size; all other components are 3-layer MLPs. Intermediate layers consist of a linear layer followed by LayerNorm and a Mish activation function. The latent representation is normalized as a simplicial embedding. Q-functions additionally use Dropout. We summarize the TD-MPC2 architecture for the 5M parameter base (default for online RL) model size using PyTorch-like notation:

```
Encoder parameters: 167,936
Dynamics parameters: 843,264
Reward parameters: 631,397
Policy parameters: 582,668
Q parameters: 3,156,985
Task parameters: 7,680
Total parameters: 5,389,930
Architecture: TD-MPC2 base 5M(
  (task_embedding): Embedding(T, 96, max_norm=1)
  (encoder): ModuleDict(
    (state): Sequential(
      (0): NormedLinear(in_features=S+T, out_features=256, act=Mish)
      (1): NormedLinear(in_features=256, out_features=512, act=SimNorm)
```

```
864
           (dynamics): Sequential(
865
             (0): NormedLinear(in_features=512+T+A, out_features=512, act=Mish)
             (1): NormedLinear(in_features=512, out_features=512, act=Mish)
866
             (2): NormedLinear(in_features=512, out_features=512, act=SimNorm)
867
           (reward): Sequential(
868
             (0): NormedLinear(in_features=512+T+A, out_features=512, act=Mish)
             (1): NormedLinear(in_features=512, out_features=512, act=Mish)
             (2): Linear(in features=512, out features=101,)
870
871
           (pi): Sequential(
            (0): NormedLinear(in_features=512+T, out_features=512, act=Mish)
872
             (1): NormedLinear(in_features=512, out_features=512, act=Mish)
873
            (2): Linear(in features=512, out features=2A, bias=True)
874
           (Os): Vectorized ModuleList(
875
             (0-4): 5 x Sequential(
              (0): NormedLinear(in_features=512+T+A, out_features=512, dropout=0.01, act=Mish)
876
               (1): NormedLinear(in features=512, out features=512, act=Mish)
               (2): Linear(in_features=512, out_features=101, bias=True)
878
879
```

where S is the input dimensionality, T is the number of tasks, and A is the action space. We exclude the task embedding T from single-task experiments. The exact parameter counts listed above are for S=39, T=80, and A=6. Since we only perform single-task experiments in this work, all models contain around 5M parameters for TD-MPC2.

Policy-guided MPC. TD-MPC2 uses Model Predictive Path Integral (MPPI) (Williams et al., 2015; 2017) for local trajectory optimization, which is a gradient-free, sampling-based MPC method. MPPI iteratively samples action sequences $(a_t, a_{t+1}, \ldots, a_{t+H})$ of length H from $\mathcal{N}(\mu, \sigma^2)$, evaluates their expected return by rolling out latent trajectories with the model, and updates the parameters μ, σ of a time-dependent multivariate Gaussian with diagonal covariance based on a weighted average such that the expected return is maximized. This iterative optimization procedure is repeated for a fixed number of iterations and the first action $a_t \sim \mathcal{N}(\mu_t^*, \sigma_t^*)$ is applied to the environment. TD-MPC2 augments the sampling procedure with samples from the policy prior π_θ and warm-starts the optimization procedure by initializing (μ, σ) as the solution of the previous step shifted by one to improve performance. Please refer to Hansen et al. (2022) for more details.

B.2 BMPC

Architectural Details. The main architectural difference of BMPC to TD-MPC2 is that it uses two V-functions instead of five Q-functions:

Model-based TD-learning. Since BMPC does not use a SAC-style max-Q approach for policy improvement, the authors decide to learn a state value function V_{ϕ} instead of a state-action value function Q_{ϕ} . The value network is learned by minimizing the cross-entropy loss with respect to the discretized n-step TD-target \hat{V} computed by using the latest model, policy, and target value network:

$$\mathcal{L}_{V}(\phi) \doteq \underset{(\mathbf{s}, \mathbf{a})_{0:H} \sim \mathcal{B}}{\mathbb{E}} \left[\sum_{t=0}^{H} \lambda^{t} \left[CE(V_{\phi}(\mathbf{z}_{t}), \hat{V}(h(\mathbf{s}_{t}))) \right] \right], \, \mathbf{z}_{0} = h(\mathbf{s}_{0}), \, \mathbf{z}_{t+1} = d(\mathbf{z}_{t}, \mathbf{a}_{t})$$

$$\hat{V}(\mathbf{z}'_{t}) \doteq \gamma^{N} V_{\phi^{-}}(\mathbf{z}'_{t+N}) + \sum_{k=0}^{N-1} \gamma^{k} R(\mathbf{z}'_{t+k}, \pi_{\theta}(\mathbf{z}'_{t+k})), \, \mathbf{z}'_{t+1} = d(\mathbf{z}'_{t}, \pi_{\theta}(\mathbf{z}'_{t}))$$
(8)

Table 5: **TD-MPC2 hyperparameters.** We use the same hyperparameters across all tasks. Certain hyperparameters are set automatically using heuristics.

Hyperparameter	Value
Planning	
Horizon (H)	3
Iterations	$6 (+2 \text{ if } A \ge 20)$
Population size	512
Policy prior samples	24
Number of elites	64
Minimum std.	0.05
Maximum std.	2
Temperature	0.5
Momentum	No
Policy prior	
Log std. min.	-10
Log std. max.	2
Replay buffer	1 000 000
Capacity	1,000,000
Sampling	Uniform
Architecture (5M)	
Encoder dim	256
MLP dim	512
Latent state dim	512
Task embedding dim	96
Task embedding norm	1
Activation	LayerNorm + Mish
Q-function dropout rate	1%
Number of Q-functions	5
Number of reward/value bins	101
SimNorm dim (V)	8
SimNorm temperature (τ)	1
Optimization	
Update-to-data ratio	1
Batch size	256
Joint-embedding coef.	20
Reward prediction coef.	0.1
Value prediction coef.	0.1
Temporal coef. (λ)	0.5
Q-fn. momentum coef.	0.99
Policy prior entropy coef.	1×10^{-4}
Policy prior loss norm.	Moving (5%, 95%) percentiles
Optimizer	Adam (Kingma & Ba, 2015)
Learning rate	3×10^{-4}
Encoder learning rate	1×10^{-4}
Gradient clip norm	20
Discount factor	Heuristic

where N is the TD horizon, $\mathbf{z}_{0:H}$ are latent vectors rolled out through the models h and d. \hat{V} is the TD-target computed using the model d, R and the policy π_{θ} in an on-policy manner. The authors use a fixed value of N=1 to keep compounding errors small.

 Lazy reanalyze. BMPC stores imitation targets in the replay buffer and uses lazy reanalyze to avoid costly replanning for all samples during every update to compute the policy objective. For every k-th network update, b samples are drawn from the batch and used to get new imitation targets, i.e., the mean and standard deviation of the action distribution $\pi_t = \pi_{\text{MPC}}(\cdot|h(\mathbf{s}_t),\pi_\theta)$ by replanning. These targets π_t are then placed back into the replay buffer. Since the replanning is performed independently of the training process, the replay buffer can be approximately seen as an expert dataset and used to sample state-action pairs from it for supervised learning. During replanning, additional noise is added to the policy prior to increase exploration in MPC planning. Thus, the resulting surrogate policy objective with lazy reanalyze can be defined as:

$$\mathcal{L}_{\pi}^{\text{lazy}}(\theta) \doteq \underset{(\mathbf{s}, \mathbf{a}, \pi)_{0:H} \sim B}{\mathbb{E}} \left[\sum_{t=0}^{H} \lambda^{t} \left[\text{KL}(\pi_{t}, \pi_{\theta}(\cdot | \mathbf{z}_{t})) / \text{max}(1, S) - \beta \mathcal{H}(\pi_{\theta}(\cdot | \mathbf{z}_{t})) \right] \right]$$
(9)

where π_t is the expert action distribution from the replay buffer.

Table 6: **BMPC Hyperparameters.** We use the same hyperparameters for all tasks. All other hyperparameters are the default TD-MPC2 values.

Hyperparameter	Value
Planning	
Horizon	3
Replanning horizon	3
Lazy reanalyze interval (k)	10
Lazy reanalyze batch size (b)	20
Policy prior	
Log std. min.	-3
Log std. max.	1
Log std. min. (replanning)	-2
Log std. max. (replanning)	1
Architecture	
Number of V-functions	2
Optimization	
Batch size	256
TD horizon (N)	1
Policy prior entropy coef.	1×10^{-4}

B.3 DREAM-MPC

Hyperparameters. We use the same hyperparameters across all tasks. The hyperparameters specific to our method are listed in Tab. 7.

Table 7: **Dream-MPC Hyperparameters.** We use the same hyperparameters for all tasks. All other hyperparameters are the default TD-MPC2 and BMPC values respectively.

Hyperparameter	Value
Planning	
Iterations	1
Policy prior samples	5
Optimization step size	0.1
Action reuse coefficient	0.1
Uncertainty regularization coefficient	0.01

C ADDITIONAL RESULTS

In this section, we provide the learning curves for all baselines as well as detailed evaluation results for all environments.

C.1 LEARNING CURVES

Figure 9: Learning curves for the DeepMind Control Suite. The line represents the mean episodic return and the shaded area the 95% confidence interval across 3 seeds.

Figure 10: **Learning curves for Meta-World.** The line represents the mean episodic return and the shaded area the 95% confidence interval across 3 seeds.

C.2 DETAILED EVALUATION RESULTS

We find that having a good policy is important because it leads to better value estimates, which are crucial for gradient-based MPC. While Dream-MPC can improve the performance of the policy for TD-MPC2, it cannot consistently match the performance of MPPI. Since the performance of the policy is quite weak as shown in Appendix C.3, this fact favours MPPI, which has a higher diversity of the initial solutions due to the sampling procedure. While we can further improve the performance of Dream-MPC with TD-MPC2 as a basis, for example by increasing the number of optimization iterations, this also increases computational costs. This highlights the importance of a decent initial solution to warm-start the MPC optimization process, especially for high-dimensional problems.

Figure 11: **Learning curves for HumanoidBench.** The line represents the mean episodic return and the shaded area the 95% confidence interval across 3 seeds.

Table 8: DeepMind Control Suite evaluation results of different algorithms.

Task	SAC	Dreamer-v3	TD-MPC2	ВМРС	Dream-MPC (TD-MPC2)	Dream-MPC (BMPC)
Acrobot Swingup	176 ± 21	372 ± 141	595 ± 34	587 ± 25	590 ± 40	596 ± 50
Cartpole Swingup Sparse	788 ± 10	538 ± 325	848 ± 0	837 ± 14	847 ± 3	$\textbf{849} \pm \textbf{1}$
Fish Swim	657 ± 110	729 ± 98	786 ± 8	804 ± 17	764 ± 56	$\textbf{816} \pm \textbf{11}$
Hopper Hop	287 ± 15	198 ± 111	493 ± 47	404 ± 39	307 ± 38	423 ± 54
Dog Run	15 ± 6	26 ± 7	358 ± 228	678 ± 27	115 ± 72	$\overline{703 \pm 19}$
Dog Walk	42 ± 33	47 ± 20	933 ± 10	937 ± 4	389 ± 22	946 ± 7
Humanoid Run	83 ± 43	1 ± 1	344 ± 60	528 ± 29	110 ± 10	531 ± 38
Humanoid Walk	364 ± 95	2 ± 1	899 ± 10	917 ± 6	338 ± 63	$\textbf{937} \pm \textbf{4}$
Mean	302 ± 269	239 ± 261	657 ± 225	711 ± 181	433 ± 259	$\textbf{725} \pm \textbf{181}$

The results are the mean episode returns and standard deviations for three random seeds and ten test episodes. **Best** and second best results are highlighted.

Table 9: Meta-World evaluation results of different algorithms.

Task	SAC	Dreamer-v3	TD-MPC2	ВМРС	Dream-MPC (TD-MPC2)	Dream-MPC (BMPC)
Assembly	0.0 ± 0.0	0.0 ± 0.0	1.0 ± 0.0	1.0 ± 0.0	1.0 ± 0.0	1.0 ± 0.0
Button Press	0.27 ± 0.31	0.61 ± 0.02	0.33 ± 0.47	0.33 ± 0.47	$0.\overline{33 \pm 0.47}$	$\textbf{0.67} \pm \textbf{0.47}$
Disassemble	0.03 ± 0.05	0.27 ± 0.23	0.67 ± 0.47	1.0 ± 0.0	0.67 ± 0.47	1.0 ± 0.0
Lever Pull	0.03 ± 0.05	0.52 ± 0.1	0.0 ± 0.0	0.67 ± 0.47	0.0 ± 0.0	$\textbf{0.67} \pm \textbf{0.47}$
Pick Place Wall	0.0 ± 0.0	0.21 ± 0.24	$\textbf{1.0} \pm \textbf{0.0}$	0.0 ± 0.0	0.67 ± 0.47	0.67 ± 0.47
Push Back	0.67 ± 0.47	0.32 ± 0.23	0.67 ± 0.47	0.33 ± 0.47	$\textbf{0.67} \pm \textbf{0.47}$	0.33 ± 0.47
Shelf Place	0.0 ± 0.0	0.27 ± 0.21	0.67 ± 0.47	0.67 ± 0.47	1.0 ± 0.0	1.0 ± 0.0
Window Open	1.0 ± 0.0	0.48 ± 0.09	$\underline{1.0\pm0.0}$	0.67 ± 0.47	0.67 ± 0.47	$\textbf{1.0} \pm \textbf{0.0}$
Mean	0.25 ± 0.36	0.33 ± 0.18	0.67 ± 0.33	0.58 ± 0.32	0.62 ± 0.31	$\textbf{0.79} \pm \textbf{0.23}$

The results are the mean episode successes and standard deviations for three random seeds and ten test episodes. **Best** and <u>second best</u> results are highlighted.

Table 10: HumanoidBench evaluation results of different algorithms.

Task	SAC	Dreamer-v3	TD-MPC2	ВМРС	Dream-MPC (TD-MPC2)	Dream-MPC (BMPC)
Balance Hard	55 ± 3	28 ± 12	$\textbf{92} \pm \textbf{12}$	81 ± 12	45 ± 10	82 ± 12
Balance Simple	70 ± 10	39 ± 14	240 ± 37	489 ± 84	47 ± 14	$\overline{654 \pm 89}$
Hurdle	5 ± 3	13 ± 5	78 ± 24	120 ± 43	12 ± 1	249 ± 34
Maze	140 ± 7	110 ± 4	169 ± 47	349 ± 2	120 ± 8	266 ± 33
Reach	2048 ± 212	2151 ± 1038	5037 ± 1436	4125 ± 324	2751 ± 444	4348 ± 215
Run	8 ± 3	11 ± 5	136 ± 110	139 ± 81	10 ± 7	302 ± 11
Slide	11 ± 5	56 ± 29	237 ± 54	442 ± 36	16 ± 3	632 ± 114
Stair	15 ± 15	35 ± 17	100 ± 18	403 ± 145	30 ± 6	456 ± 145
Mean	294 ± 664	305 ± 698	761 ± 1617	769 ± 1277	379 ± 897	874 ± 1326

The results are the mean episode returns and standard deviations for three random seeds and ten test episodes. **Best** and <u>second best</u> results are highlighted.

C.3 DETAILED TD-MPC2 AND BMPC RESULTS

We include full results of TD-MPC2 and BMPC for all environments in Tabs. 11 to 13, including the performance of using the underlying policy network only. We also conduct experiments in which we apply the test-time regularization defined in Eq. (5) with a regularization coefficient of 0.01 to TD-MPC2 and BMPC. While the regularization can improve the performance of BMPC in some cases, it causes a significant performance decrease for TD-MPC2, especially for high-dimensional problems.

Table 11: DeepMind Control Suite evaluation results of different TD-MPC2 and BMPC variants.

Environment	TD-MPC2	TD-MPC2 (policy only)	TD-MPC2 (w/ test-time regularization)	ВМРС	BMPC (policy only)	BMPC (w/ test-time regularization)
Acrobot Swingup	595 ± 34	551 ± 21	594 ± 32	587 ± 25	564 ± 52	573 ± 11
Cartpole Swingup Sparse	848 ± 0	760 ± 114	848 ± 0	837 ± 14	$\textbf{848} \pm \textbf{1}$	845 ± 3
Fish Swim	786 ± 8	645 ± 83	783 ± 13	804 ± 17	$\textbf{804} \pm \textbf{14}$	776 ± 9
Hopper Hop	$\textbf{493} \pm \textbf{47}$	383 ± 154	465 ± 79	404 ± 39	445 ± 106	440 ± 87
Dog Run	358 ± 228	89 ± 52	376 ± 231	678 ± 27	670 ± 13	678 ± 23
Dog Walk	933 ± 10	298 ± 20	926 ± 9	937 ± 4	930 ± 5	940 ± 4
Humanoid Run	344 ± 60	65 ± 2	345 ± 55	$\overline{528 \pm 29}$	458 ± 15	514 ± 31
Humanoid Walk	899 ± 10	142 ± 36	881 ± 9	917 ± 6	930 ± 7	$\overline{931\pm3}$
Mean	657 ± 225	367 ± 247	652 ± 221	711 ± 181	706 ± 187	$\textbf{712} \pm \textbf{179}$

The results are the mean episode returns and standard deviations for three random seeds and ten test episodes. **Best** and second best results are highlighted.

Table 12: Meta-World evaluation results of different TD-MPC2 and BMPC variants.

Environment	TD-MPC2	TD-MPC2 (policy only)	TD-MPC2 (w/ test-time regularization)	BMPC	BMPC (policy only)	BMPC (w/ test-time regularization)
Assembly	1.0 ± 0.0	1.0 ± 0.0	0.67 ± 0.47	1.0 ± 0.0	1.0 ± 0.0	1.0 ± 0.0
Button Press	0.33 ± 0.47	0.0 ± 0.0	0.67 ± 0.47	0.33 ± 0.47	1.0 ± 0.0	0.33 ± 0.47
Disassemble	0.67 ± 0.47	0.67 ± 0.47	0.67 ± 0.47	1.0 ± 0.0	0.67 ± 0.47	$\textbf{1.0} \pm \textbf{0.0}$
Lever Pull	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.67 ± 0.47	1.0 ± 0.0	0.67 ± 0.47
Pick Place Wall	1.0 ± 0.0	0.0 ± 0.0	0.33 ± 0.47	0.0 ± 0.0	0.67 ± 0.47	$\overline{0.33 \pm 0.47}$
Push Back	0.67 ± 0.47	0.33 ± 0.47	$\textbf{0.67} \pm \textbf{0.47}$	0.33 ± 0.47	$\overline{0.33 \pm 0.47}$	0.33 ± 0.47
Shelf Place	0.67 ± 0.47	0.67 ± 0.47	1.0 ± 0.0	0.67 ± 0.47	1.0 ± 0.0	1.0 ± 0.0
Window Open	1.0 ± 0.0	0.33 ± 0.47	1.0 ± 0.0	0.67 ± 0.47	$\overline{ extbf{1.0} \pm extbf{0.0}}$	0.67 ± 0.47
Mean	0.67 ± 0.33	0.38 ± 0.35	0.62 ± 0.31	0.58 ± 0.32	$\textbf{0.83} \pm \textbf{0.24}$	0.67 ± 0.29

The results are the mean episode returns and standard deviations for three random seeds and ten test episodes. **Best** and <u>second best</u> results are highlighted.

Table 13: HumanoidBench evaluation results of different TD-MPC2 and BMPC variants.

Environment	TD-MPC2	TD-MPC2 (policy only)	TD-MPC2 (w/ test-time regularization)	ВМРС	BMPC (policy only)	BMPC (w/ test-time regularization)
Balance Hard	92 ± 12	34 ± 3	94 ± 22	81 ± 12	78 ± 8	80 ± 9
Balance Simple	240 ± 37	33 ± 16	208 ± 34	489 ± 84	414 ± 45	$\textbf{778} \pm \textbf{77}$
Hurdle	78 ± 24	14 ± 3	73 ± 27	120 ± 43	147 ± 40	175 ± 51
Maze	169 ± 47	111 ± 3	115 ± 4	$\textbf{349} \pm \textbf{2}$	121 ± 7	347 ± 4
Reach	$\textbf{5037} \pm \textbf{1436}$	1558 ± 368	399 ± 208	4125 ± 324	2117 ± 309	2279 ± 376
Run	136 ± 110	8 ± 4	99 ± 72	139 ± 81	91 ± 25	222 ± 56
Slide	237 ± 54	14 ± 2	248 ± 77	442 ± 36	250 ± 26	553 ± 100
Stair	100 ± 18	24 ± 8	91 ± 23	403 ± 145	208 ± 46	$\textbf{432} \pm \textbf{199}$
Mean	761 ± 1617	224 ± 505	166 ± 106	769 ± 1277	428 ± 646	608 ± 665

The results are the mean episode returns and standard deviations for three random seeds and ten test episodes. **Best** and <u>second best</u> results are highlighted.

D INTEGRATION INTO DREAMER

We further integrate our base method (without uncertainty regularization) into Dreamer (Hafner et al., 2020) to show that it also works with other model-based RL algorithms. Dreamer learns a latent dynamics model, often referred to as a world model, consisting of the following components:

- Representation model: $p_{\theta}(s_t|s_{t-1}, a_{t-1}, o_t)$
- Transition model: $q_{\theta}(s_t|s_{t-1}, a_{t-1})$
- Reward model: $q_{\theta}(r_t|s_t)$
- Observation model (only used as an additional learning signal): $q_{\theta}(o_t|s_t)$

All components are jointly optimized to increase the variational lower bound (ELBO), including reconstruction terms for observations and rewards as well as a KL regularizer:

$$\mathcal{L}_{\text{Rec}} = \mathbb{E}\left[\sum_{t} (\mathcal{L}_{O}^{t} + \mathcal{L}_{R}^{t} + \mathcal{L}_{D}^{t})\right] + \text{const},\tag{10}$$

where

$$\mathcal{L}_{O}^{t} = \ln q(o_{t}|s_{t}),$$

$$\mathcal{L}_{R}^{t} = \ln q(r_{t}|s_{t}),$$

$$\mathcal{L}_{D}^{t} = -\beta \text{KL}(p(s_{t}|s_{t-1}, a_{t-1}, o_{t})||q(s_{t}|s_{t-1}, a_{t-1})).$$
(11)

The expected values are calculated based on the dataset and representation model. Please refer to Hafner et al. (2020) for the derivation of the variational bound.

Following the original Dreamer implementation, we estimate state values using V_{λ} , an exponentially-weighted average of the reward estimates for a different number of steps beyond the horizon with the learned value model to balance bias and variance:

$$V_R(s_\tau) = \mathbb{E}_{q_\theta, \pi_\phi} \left[\sum_{n=\tau}^{t+H} r_n \right], \tag{12}$$

$$V_N^k(s_\tau) = \mathbb{E}_{q_\theta, \pi_\phi} \left[\sum_{n=\tau}^{h-1} \gamma^{n-\tau} r_n + \gamma^{h-\tau} v_\psi(s_h) \right] \quad \text{with } h = \min(\tau + k, t + H), \tag{13}$$

$$V_{\lambda}(s_{\tau}) = (1 - \lambda) \sum_{n=1}^{H-1} \lambda^{n-1} V_{N}^{n}(s_{\tau}) + \lambda^{H-1} V_{N}^{H}(s_{\tau}).$$
 (14)

For each time step t, Dream-MPC creates an initial sequence of actions by performing an imaginary rollout of the policy π_{ϕ} and generates N candidate trajectories adding small perturbations to the initial action sequence:

$$\{\hat{a}^{(n)}\}_{n=1}^{N} = \{\pi_{\phi}(a_{\tau-1}|s_{\tau-1}) + \epsilon_{\tau}^{(n)}|\tau = t+1, ..., t+H+1\}_{n=1}^{N}, \quad \text{where } \epsilon_{\tau}^{(n)} \sim \mathcal{N}(0, \sigma_{a}^{2}). \tag{15}$$

The imaginary rollout is done by encoding observations and actions into latent space using the representation model p_{θ} and repeatedly calling the one-step transition model q_{θ} to generate a sequence of predicted states $\{s_{\tau}\}_{\tau=t+1}^{t+H+1}$ for each candidate trajectory.

$$s_t^{(n)} \sim p_{\theta}(s_t^{(n)}|s_{t-1}^{(n)}, a_{t-1}^{(n)}, o_t), \qquad s_{t+1:t+H+1}^{(n)} \sim \prod_{\tau=t+1}^{t+H+1} q_{\theta}(s_{\tau}^{(n)}|s_{\tau-1}^{(n)}, a_{\tau-1}^{(n)})$$
(16)

We integrate our gradient-based MPC method into Dreamer as shown in Alg. 2.

Algorithm 2: Dream-MPC integration into Dreamer

Input: Representation model $p_{\theta}(s_t|s_{t-1}, a_{t-1}, o_t)$, transition model $q_{\theta}(s_t|s_{t-1}, a_{t-1})$, reward model $q_{\theta}(r_t|s_t)$, value function model $v_{\psi}(s_t)$, policy model $\pi_{\phi}(a_t|s_t)$, exploration noise $p(\epsilon)$, action repeat R, seed episodes S, collect interval C, batch size B, chunk length L, learning rate η

Initialize dataset \mathcal{D} with S random seed episodes. Initialize model parameters θ, ϕ, ψ randomly.

while not converged do

1242

1243

1244

1245 1246

1247

1248 1249

1250 1251

1252

1253

1254

1255

1256

1257

1278 1279 1280

1281

1282

1283

1284

1285

1286

1287

1291

1293

1294 1295

```
for update step s = 1..C do
                           // Dynamics model learning
1259
                           Draw sequences \{(o_t, a_t, r_t)_{t=k}^{L+k}\}_{i=1}^B \sim \mathcal{D} uniformly at random from the dataset.
                           Compute loss \mathcal{L}(\theta) from Eq. (10).
1261
                           Update model parameters \theta \leftarrow \theta - \eta \nabla_{\theta} \mathcal{L}(\theta).
1262
                           // Policy learning
                           Imagine trajectories \{(s_{\tau}, a_{\tau})\}_{\tau=t}^{t+H} from each s_t.
1263
1264
                           Predict rewards \mathbb{E}\left[q_{\theta}(r_{\tau}|s_{\tau})\right] and values v_{\psi}(s_{\tau}).
                           Compute value estimates V_{\lambda}(s_{\tau}) via Eq. (14).
1265
                           Update \phi \leftarrow \phi + \eta \nabla_{\phi} \sum_{\tau=t}^{t+H} V_{\lambda}(s_{\tau}).

Update \psi \leftarrow \psi - \eta \nabla_{\psi} \sum_{\tau=t}^{t+H} \frac{1}{2} ||v_{\psi}(s_{\tau}) - V_{\lambda}(s_{\tau})||^{2}.
1266
1267
1268
                     // Data collection
                    o_1 \leftarrow \texttt{env.reset} ()
1270
                    for time step t = 1..[\frac{T}{R}] do
                           Infer current state s_t \sim p_{\theta}(s_t|s_{t-1}, a_{t-1}, o_t) from the history.
                           a_t \leftarrow \texttt{planner}(s_t), see Alg. 3 for details.
1272
                           Add exploration noise \epsilon \sim p(\epsilon) to the action.
1273
                           for action repeat k = 1..R do
                            r_t^k, o_{t+1}^k \leftarrow \text{env.step}(a_t)
                         r_t, o_{t+1} \leftarrow \sum_{k=1}^{R} r_t^k, o_{t+1}^R
1276
                     \mathcal{D} \leftarrow \mathcal{D} \cup \{(o_t, a_t, r_t)_{t=1}^T\}
1277
```

Algorithm 3: Dream-MPC planner for Dreamer

```
Input: Representation model p_{\theta}(s_t|s_{t-1}, a_{t-1}, o_t), transition model q_{\theta}(s_t|s_{t-1}, a_{t-1}), reward model q_{\theta}(r_t|s_t), value function model v_{\psi}(s_t), policy model \pi_{\phi}(a_t|s_t), planning horizon H, optimization iterations I, candidates per iteration J, action noise \sigma_a^2, action optimization rate \alpha
```

Initialize proposal by rolling out the policy π_{ϕ} with the transition model $\hat{a}_{t:t+H} \sim \pi_{\phi}(s_{t:t+H})$. Generate N candidates by adding noise $\mathcal{N}(0, \sigma_a^2)$ to the proposal via Eq. (15). Initialize candidate action sequences $a_{t:t+H}$ via Eq. (3).

for optimization iteration i = 1, 2, ... I **do**

Output: First optimized action $a_t^{(k)}$ with $k = \arg \max_n \{V_{\lambda}^{(n)}\}_{n=1}^N$.

D.1 EXPERIMENTS

We evaluate our method on four different environments from the DeepMind Control Suite and compare our method with PlaNet (Hafner et al., 2019), Dreamer (Hafner et al., 2020), SAC+AE (Yarats et al., 2021), a variant of the model-free Soft Actor Critic (SAC) (Haarnoja et al., 2018) algorithm for image-based observations and the (hybrid) Grad-MPC method proposed in (S V et al., 2023). All experiments are performed with only RGB visual observations with a resolution of 64×64 .

Note that hybrid Grad-MPC is equivalent to Dream-MPC with a single candidate trajectory and a horizon of one when using pre-trained models and only enabling planning at test time. However, we were not able to reproduce the results shown in S V et al. (2023) with the given information.

Figure 12: **Learning curves for four tasks from the DeepMind Control Suite.** The line represents the mean episodic return and the shaded area the 95% confidence interval across 3 seeds.

We evaluate the performance of our method when enabling planning already during training. The learning curves are shown in Fig. 12 and the evaluation results are presented in Tab. 14. We find that our method can not only outperform the baselines, but also that planning during training can improve the sample efficiency without leading to premature convergence. In contrast to PlaNet (CEM) and Grad-MPC, which both use $1000 \times 10 \times 12 = 120\,000$ evaluations of the world model at each time step, our method only requires $5 \times 1 \times 15 = 75$ evaluations. These results are not only promising since Dreamer uses a recurrent dynamics model and a relatively long planning horizon, but also in particular for Acrobot Swingup, which is a non-linear system with chaotic dynamics. All aspects usually affect gradient quality negatively, especially since first order gradient estimators can accumulate significant variance over long-horizon rollouts, which makes them in particular ineffective in chaotic systems (Suh et al., 2022).

Table 14: Performance comparison of different algorithms.

Method	Acrobot Swingup	Cheetah Run	Hopper Hop	Walker Run
SAC+AE	7 ± 19	495 ± 100	86 ± 75	453 ± 69
PlaNet	7 ± 18	535 ± 70	1 ± 4	228 ± 149
Dreamer	134 ± 91	751 ± 111	182 ± 43	575 ± 33
Grad-MPC	7 ± 18	438 ± 81	3 ± 5	382 ± 35
Hybrid Grad-MPC	144 ± 7	591 ± 131	158 ± 47	556 ± 33
CEM + policy	12 ± 26	674 ± 20	43 ± 42	638 ± 21
Dream-MPC (Dreamer)	$\textbf{147} \pm \textbf{101}$	$\textbf{836} \pm \textbf{49}$	$\textbf{298} \pm \textbf{86}$	632 ± 52

The results are the mean episode returns and standard deviations for three random seeds and ten test episodes. **Best** and <u>second best</u> results are highlighted.

We benchmark inference times of the different methods on a single Nvidia GeForce RTX 4090 GPU. The results in Tab. 15 show that Dream-MPC is significantly faster as Grad-MPC, which uses a much higher number of candidate trajectories. While hybrid Grad-MPC is faster than Dream-MPC due to using a horizon of one, the overall performance is worse compared to using the policy only because such a myopic optimization is most likely unsuitable for many problems. Note that at the moment a batched version of one operation in the recurrent world model is missing in PyTorch, which slows the parallelized gradient computation down. While this can potentially be further improved, it affects all gradient-based MPC methods in the same way, thus leading to a fair comparison.

Table 15: **Inference times of different methods for Acrobot Swingup.** Mean and standard deviation for three random seeds and ten test episodes per seed.

Method	Inference time
PlaNet	$31.10 \pm 0.65 \text{ ms}$
Grad-MPC	$195.75 \pm 1.33 \text{ ms}$
Hybrid Grad-MPC	$23.16 \pm 0.55 \text{ ms}$
Dream-MPC (Dreamer)	$44.86 \pm 0.60 \text{ms}$

D.2 GRADIENT ANALYSIS

We evaluate the planner gradients of Grad-MPC and of our method for the ground truth dynamics (simulator) and the learned dynamics model for different planning horizons on the Pendulum-v1 environment with state observations. As Fig. 13 shows, the magnitudes of the gradients are in reasonable orders when using the ground truth dynamics. While the variance increases for longer horizons and might also do for more complex problems, the gradients do not explode or vanish in this case. However, the variance increases significantly for longer planning horizons when using the learned dynamics model. In contrast to Grad-MPC, the variance increases much less for Dream-MPC and although relatively large remains bounded, suggesting that the performance issues of gradient-based planning should not solely be attributed to issues with the gradients caused by the architecture of the world model. Our work shows that there are more aspects that need to be considered such as the quality of the initial proposal for MPC and the learned world model, advocating that further research on gradient-based planning is needed.

Figure 13: **Planner gradients of Grad-MPC and Dream-MPC.** For different planning horizons on the Pendulum-v1 environment using the ground truth (simulator) and learned dynamics model respectively and state observations. The values are represented by their mean and standard deviation for three different random seeds. The default hyperparameters provided in Tab. 16 are used unless otherwise specified.

As pointed out in Parmas et al. (2023), simply evaluating the gradient quality based on variance alone is insufficient. Thus, we follow the proposal of the authors and analyze the gradients using their Expected Signal-to-Noise Ratio (ESNR), which is defined as

$$ESNR(\nabla R) = \mathbb{E}\left[\frac{\sum \mathbb{E}[\nabla R]^2}{\sum Var[\nabla R]}\right],\tag{17}$$

where $R = \sum_{\tau=t+1}^{t+H+1} r_{\tau}$ is the return, i.e., the undiscounted sum of rewards.

Fig. 14 shows the ESNRs of Grad-MPC and Dream-MPC using the ground truth dynamics or learned dynamics model. While the ESNR remains stable when using the ground truth dynamics, especially for longer horizons the ESNR drops when using the learned model. Recent findings (Georgiev et al.,

1406 1407

1411

1419

1420

1421

1422

1423

1424 1425 1426

1427

1428

1429

1430

1431 1432 1433

1434 1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446 1447

1448 1449

1450

1451

1452 1453

1454

1455 1456

1457

Figure 14: Expected Signal-to-Noise Ratio (ESNR) of the planner gradients of Grad-MPC and Dream-MPC. Calculated via Eq. (17) for different planning horizons on the Pendulum-v1 environment using the ground truth (simulator) and learned dynamics model respectively and state observations. The values are represented by their mean and standard deviation for three different random seeds. The default hyperparameters provided in Tab. 16 are used unless otherwise specified.

2025) suggest that learned models can improve ESNR compared to using the ground truth dynamics for some problems, indicating the possibility of further improvement. While the ESNR significantly suffers for horizons greater than ten for Grad-MPC using the learned dynamics model, the ESNR for Dream-MPC remains much more stable for increasing horizons. Together with the variance which increases but does not explode, this suggests that our method is more robust compared to Grad-MPC.

MODEL EXPLOITATION D.3

We further analyze the problem of model exploitation, a general challenge in model-based reinforcement learning, where policies tend to exploit inaccuracies in high-capacity dynamics models, potentially leading to poor real-world performance despite high predicted returns (Clavera et al., 2018). Since our method optimizes actions to maximize expected returns, we rely on accurate predictions. Fig. 15 shows the mean difference between the actual returns and the predicted returns of a trained policy on the Acrobot Swingup task in for three different seeds and ten test episodes per seed. We find that the differences are quite small, which indicates that the policy may not exploit the learned model. This is probably because the prediction horizon is sufficiently short and MPC may also help to compensate for model inaccuracies by replanning at each step. While the models for other environments might not necessarily be as accurate as for Acrobot Swingup, we empirically find that the learned model tends to estimate the reward quite accurately. Using an ensemble of models to consider uncertainty as for TD-MPC2 can further help to reduce model exploitation.

D.4 IMPLEMENTATION DETAILS

We use PyTorch (Paszke et al., 2019) implementations of SAC+AE³, PlaNet and Dreamer⁴ that are distributed under MIT license and also base the implementations of hybrid Grad-MPC and of our method on the latter. The hyperparameters are listed in Tab. 16.

We use the default hyperparameters for SAC+AE as described in Yarats et al. (2021), except for the action repeat, which we set to two for a fair comparison.

³https://github.com/denisyarats/pytorch_sac_ae

⁴https://github.com/yusukeurakami/dreamer-pytorch

(b) Actual and predicted return for five exemplary evaluation episodes.

Figure 15: Analysis of predicted returns over the number of environment steps for Acrobot Swingup.

Table 16: Hyperparameters and their values used for the experiments.

Algorithm	Hyperparameter	Value	
	Optimizer	Adam (Kingma & Ba, 2015	
	Max. episode length	1000	
	Action repeat	2	
	Experience size	1000000	
	Embedding size	1024	
	Hidden size	200	
	Belief size	200	
	State size	30	
	Exploration noise	0.3	
All	Seed episodes	5	
	Collect interval	100	
	Batch size	50	
	Overshooting distance	0	
	Overshooting KL beta	0	
	Overshooting reward scale	0	
	Global KL beta	0	
	Free nats	3	
	Bit depth	5	
Dreamer & Dream-MPC	Planning horizon	15	
	Activation function	ReLU / ELU	
		6e-4	
	Model learning rate	** .	
	Actor learning rate	8e-5	
Dreamer, Dream-MPC	Critic learning rate	8e-5	
& hybrid Grad-MPC	Adam epsilon	1e-7	
•	Grad clip norm	100	
	Discount factor	0.99	
	Horizon discount factor	0.95	
Dream-MPC	Action optimization rate	0.1	
Dicam-Wi C	Action noise	0.2	
	Action reuse coefficient	0.1	
	Candidates	5	
	Optimization iterations	1	
Hybrid Cood MDC	Action optimization rate	0.05	
Hybrid Grad-MPC	Planning horizon	1	
Hybrid Grad-MPC & PlaNet	Optimization iterations	10	
	Activation function	ReLU	
	Candidates	1000	
	Elite candidates	100	
PlaNet	Grad clip norm	1000	
	Model learning rate	1e-3	
	Adam epsilon	1e-4	
	Planning horizon	12	