Under review as a conference paper at ICLR 2026

DREAM-MPC: GRADIENT-BASED MODEL PREDIC-
TIVE CONTROL WITH LATENT IMAGINATION

Anonymous authors
Paper under double-blind review

ABSTRACT

State-of-the-art model-based Reinforcement Learning (RL) approaches either use
gradient-free, population-based methods for planning, learned policy networks, or
a combination of policy networks and planning. Hybrid approaches that combine
Model Predictive Control (MPC) with a learned model and a policy prior to ef-
ficiently leverage the benefits of both paradigms have shown promising results.
However, these hybrid approaches typically rely on gradient-free optimization
methods, which can be computationally expensive for high-dimensional control
tasks. While gradient-based methods are a promising approach, recent works have
empirically shown that gradient-based methods often perform worse than their
gradient-free counterparts due to the fact that gradient-based methods can con-
verge to suboptimal local optima and are prone to exploding or vanishing gradi-
ents. We propose Dream-MPC, a novel approach that generates few candidate tra-
jectories from a rolled-out policy and optimizes each trajectory by gradient ascent
using a learned world model. We incorporate uncertainty regularization directly
into the optimization objective and amortize optimization iterations over time by
reusing previously optimized actions. We evaluate our method on multiple contin-
uous control tasks from the DeepMind Control Suite, Meta-World and Humanoid-
Bench and show that gradient-based MPC can significantly improve the perfor-
mance of the underlying policy and can outperform gradient-free MPC and state-
of-the-art baselines. To facilitate further research on gradient-based MPC, we will
open source our code and more at https://dream-mpc.github.io.

1 INTRODUCTION

Reinforcement Learning has achieved promising results in recent years and demonstrated its appli-
cation to robotics (Wu et al.| 2023} |[Lancaster et al., [2024; Seo et al., [2025). However, model-free
methods often struggle with sample efficiency and generalization, especially in complex and high-
dimensional environments (Byravan et al.,[2022). Model-based RL, on the other hand, can be more
sample-efficient and can generalize better, but requires an accurate model of the environment (Xiao
et al.,2019). There has been growing interest in world models that are learned from data and can
be used for decision-making (Sutton, |1991;|Ha & Schmidhuber, 2018). Many recent works (Hafner,
et al., 2019; [Hansen et al., 2022; |2024; [Srinivas et al., [2018)) use a learned world model for plan-
ning through imaginary rollouts with Model Predictive Control (MPC) (Richalet et al.| [1978; |Cutler
& Ramaker, [1979) and rely on gradient-free, sampling-based methods such as the Cross Entropy
Method (CEM) (Rubinstein, |1997)) or Model Predictive Path Integral (MPPI) (Williams et al., 2015;
2017) for trajectory optimization. Although sampling-based MPC methods can be parallelized using
Graphics Processing Units (GPUs), their implementation on embedded systems can be challenging
due to the limited computational resources. In addition, planning with sampling-based methods is
highly inefficient or even intractable in high-dimensional spaces, which might limit their applicabil-
ity to real-world robotics tasks (Xie et al.,[2021]).

In contrast, fully amortized methods such as Dreamer (Hafner et al.| [2020) learn a purely reactive
policy via imaginary rollouts. Inference for the learned policy is computationally less expensive than
the search procedure using CEM. However, amortized policies often lack generalization (Byravan
et al.| [2022). Since the learned world models are usually differentiable, it is quite natural to propose
gradient-based methods for trajectory optimization because they can be more efficient than gradient-
free, sampling-based methods. Instead of sampling many action sequences and evaluating them as

https://dream-mpc.github.io

Under review as a conference paper at ICLR 2026

Dream-MPC

._. SR > co | Zym —

Observation
St

@

/ Reward r, k = argmax{J™}N
Environment Action aik)
— Forward propagation ---> Backward propagation

Figure 1: Overview of the proposed approach. Dream-MPC optimizes action sequences rolled
out from a policy network 7 in latent space z with gradient-based MPC. N candidate trajectories
are sampled from the policy prior and optimized for [iterations using gradient ascent to maximize
the objective J. The first action with the highest predicted return is applied, and the procedure is
repeated for the next time step. The policy network and world model are shared across candidates
and time steps.

done by CEM, gradients backpropagated through the model can be used to guide the optimization
procedure (Bharadhwaj et al., 2020). When the action dimension increases, there is an exponential
growth in search space for CEM, while there is only a small increase in computational load for
gradient descent, i.e., an additional gradient dimension (Bharadhwaj et al.,[2020). While few works
propose to combine gradient-based optimization with world models, the empirical results observed
were worse than for their gradient-free counterparts (Bharadhwaj et all,[2020; (S V et al}, 2023}, [Zhou

et all, 2025).

We propose Dream-MPC, a novel method which combines gradient-based MPC with a learned pol-
icy network and world model. Our method incorporates uncertainty directly into the optimization
objective and amortizes optimization iterations over time to further improve performance and com-
putational efficiency. We evaluate our method empirically on various tasks from different domains,
including high-dimensional tasks and tasks with visual observations, as well as for different model-
based RL algorithms with distinct types of world models and when using gradient-based MPC dur-
ing training. The results show that our method can significantly improve the performance of the
policy and even outperform its gradient-free equivalent and state-of-the-art methods.

2 RELATED WORK

Model-based RL. Model-based RL tries to learn a model of the environment that can be used to
predict the outcome of actions and plan accordingly [1991). World models are considered a
central component of human thinking and decision-making processes (Sutton, [1991; /Ha & Schmid-|
[huber, 2018}, [LeCun|, [2022). While some approaches to world modelling show promising results and
are able to generalize to different domains, they are mostly focused on representation learning and
not or only partially cover the planning aspect. The combination of elements of planning and search
(especially Monte Carlo Tree Search) with deep reinforcement learning has shown remarkable suc-
cesses in game domains (Silver et al.} 2016}, [2017a). Most recent model-based RL approaches use
the learned world model for planning through imaginary rollouts (Srinivas et al., 2018;[Micheli et al.}
[2023}, Hansen et all, 2024 [Hafner et all, 2025} Mosbach et all, [2025). However, the performance
of these approaches depends heavily on the quality of the learned world model and

often suffers from the compounding error problem (Asadi et al., 2019).

MPC and RL. State-of-the-art approaches such as those from the Dreamer family (Hafner et al.|
2020; [2021} 2025)) use a policy network to predict the actions directly. While policy networks have

Under review as a conference paper at ICLR 2026

shown remarkable success for robotics applications, the world model and value function are typically
only utilized during training, and the policy is then frozen during inference. This procedure leads to a
reactive policy, which can be considered as offline planning and limits the generalization capabilities

(Byravan et al., [2022). To address this limitation, recent works such as TD-MPC (Hansen et al.

2022; [2024), POLO (Lowrey et al., 2019) or PlaNet (Hafner et al., 2019) combine model-based
RL with online planning through MPC to leverage the benefits of both paradigms. Typically, MPC

is performed using gradient-free, sampling-based methods such as CEM or MPPI. Although, the
results obtained empirically are often good, for each time step, hundreds or thousands of different
action alternatives are sampled and evaluated, which increases the computational effort and renders
these approaches only partly suitable for real-time applications.

Gradient-based Planning. The idea of gradient-based planning has been around for decades
and typically refers to backpropagating gradients of a cost or reward function with respect
to actions to iteratively optimize a sequence of actions by gradient descent. While early works re-
lied on known analytic forms of environment dynamics, more recent works revisited the idea with
learned approximate models of the environment (Srinivas et al.| 2018}, [Silver et al., [2017b} [Henaff
2018). However, there are only a few works that have been able to successfully perform
gradient-based planning and these approaches are usually limited since they either require expert

demonstrations (Srinivas et al., 2018) or cannot scale to more challenging robotics tasks
2018). Works such as (Bharadhwaj et all [2020) and (S V et al), 2023) use a Gaussian as

a proposal distribution for gradient-based optimization. Typically, a more informative proposal is
used for MPC to warm-start the optimization procedure, for example a policy network. Prior works
which combine policy models and MPC mostly use the policy model to generate a trajectory which
is then optimized using gradient-free methods (Byravan et al 2022} Mansard et al., 2018} [Ham-
rick et al, 2021}, [Argenson & Dulac-Arnold, 2021; Morgan et al., 2021). Since the learned world
models are usually differentiable, also gradient-based methods have been proposed for optimizing
the trajectory proposal from a policy model 2023). However, gradient-based optimiza-
tion methods perform worse in their experiments compared to their gradient-free counterparts. The
reasons are attributed to problems with the gradients, but are not analyzed in detail.

Note that while the general idea of combining policy networks with MPC itself is not new, previously
proposed methods have only been applied to few and relatively simple tasks without systematically
evaluating their performance. To the best of our knowledge, we are the first to achieve a gradient-
based MPC method with a learned world model that can outperform its gradient-free equivalent and
state-of-the-art baselines by introducing uncertainty regularization and reusing previously planned
actions. We have also evaluated the performance of gradient-based MPC for a broad variety of
environments, including state- and image-based observations and different types of world models.
We provide a summary over the main differences between Dream-MPC and hybrid Grad-MPC

et al} 2023) in[Appendix B}

3 PRELIMINARIES

Reinforcement Learning can be formulated as an infinite-horizon Markov Decision Process (MDP)
with continuous action and state spaces, which can be defined as a tuple (S, A, T, R,~), where S
and A are the state and action spaces, 7 : S x A — § is the transition or dynamics function,
R :S x A — R is the reward function and + is a discount factor. The goal is to obtain a policy 7 :
S — A, which maximizes the expected discounted sum of rewards, i.e., the return E,. [Zfio iy,
where 7, = R(sy, 7(s;)). Model-based RL learns a model of the environment, often referred to as
world model, which is then used for selecting actions and deriving a policy by planning with the
learned model.

Model Predictive Control is a well-known method for trajectory optimization, which minimizes a
cost function over a finite horizon while taking the system dynamics and constraints into account.
The optimization problem is solved at each time step, using the current state as initial condition and
the predicted future states. The solution provides the optimal action sequence for the next few time
steps with respect to the predicted costs. Thus, MPC generates a locally optimal sequence of actions
up to the prediction horizon H by solving the following optimization problem:

H .
Z YT R(st44, atﬂ-)] : (D

=0

7(sy) = argmax E
Qt:t+H

Under review as a conference paper at ICLR 2026

The learned model is used to estimate the return of a candidate trajectory (Negenborn et al., [2005).
Since solving leads to a locally optimal solution and is not guaranteed to solve the general
RL problem outlined before, most state-of-the-art methods learn value functions to bootstrap return
estimates beyond the horizon H.

4 DREAM-MPC: GRADIENT-BASED MODEL PREDICTIVE CONTROL

We propose Dream-MPC, which uses gradient ascent to optimize action sequences sampled from a
policy network in an MPC-like manner. The idea is shown in Since gradient ascent is prone
to getting stuck at local optima, we propose to generate few candidate trajectories by sampling
from a stochastic policy network. Instead of sampling thousands of trajectories from a Gaussian
distribution like CEM, we only consider few trajectories based on the policy. Namely, for each time
step t, the algorithm creates [V initial action sequences by performing an imaginary rollout of a
stochastic policy 7y in latent space z using a learned latent dynamics model d:

a™ ~ (-2, zy_flzd(zﬁn),dg”)), with 7=t,.,t+H, n=1,..,N. (2

In case of a deterministic policy we add small perturbations to the initial action sequence sampled
from the policy to generate N candidate trajectories. The learned world model predicts the following
latent states as well as the rewards 7 for each state and the terminal values . Each trajectory
is then refined using gradient ascent with step size « to maximize the respective expected return,
which is estimated using the predictions from the world model. The first action of the candidate
trajectory with the highest expected return is applied, and the planning procedure is repeated in the
next time step. Sampling from a policy provides a warm-start through proposing a decent initial
solution for the optimization, which has been shown to be essential for the performance of gradient-
free (Hansen et al., |2022)) and gradient-based optimization methods (Parmas et al.| [2018)). Our
method allows for combining the benefits of both, fully amortized methods using reactive policies
and fully online planning, namely improved generalization while reducing computational costs. In
contrast to naively sampling random action sequences, which do not leverage any knowledge of the
optimization problem, our approach uses gradients backpropagated through the learned world model
to efficiently guide the optimization.

Since we optimize actions over a receding horizon, but only apply the first action at each time
step, we propose to amortize optimization iterations over time by reusing corresponding optimized
actions from previous time steps to initialize actions as a mixture of previously optimized action a
and policy actions a:

a™ =p.a™ +(1-p)-a™, n=1,..,N, 3)

T—

where p is the reuse coefficient, which controls the influence of the previously optimized actions.
For the action at time step ¢ + H, there is no previously planned action. Thus, we initialize the
planned action by the same value as the planned action of the time step before.

For our experiments, we integrate our method into TD-MPC2 (Hansen et al., [2024)), a model-based
RL algorithm, which performs local trajectory optimization using MPPI in the latent space of a
learned world model. Instead of learning a dynamics model using a reconstruction objective, TD-
MPC2 implicitly learns a control-centric world model from environment interactions using a com-
bination of joint-embedding prediction, reward prediction, and TD-learning without decoding ob-
servations.

The TD-MPC2 architecture consists of following five learned components:

Encoder 2zt = h(sy) (maps observations to latent representations),
Latent dynamics z¢11 = d(z¢,a;) (predicts latent forward dynamics),

Reward 7+ = R(zt,a¢) (predicts reward r of a transition),

Terminal value §; = Q(z¢,a;) (predicts discounted sum of rewards, i.e., return),
Policy prior ay ~ mp(zt) (predicts action a* that maximizes @),

where s and a are the states and actions, and z is the latent representation. Since we only consider
single-task experiments in this work, we omit the learnable task embedding used for multi-task
world models.

Under review as a conference paper at ICLR 2026

The policy prior 7y serves to guide the sampling-based MPPI trajectory optimizer in TD-MPC2 as
well as our gradient-based method. TD-MPC2 maintains a replay buffer B during online interaction,
which is used to iteratively update the world model and collect new environment data by planning
with the learned model. Please refer to for details on the model training, architecture
and MPPI planning procedure. We replace the MPPI planner by our gradient-based MPC method.

Algorithm 1: Dream-MPC

Input: Encoder h(s), dynamics model d(z, a), reward model R(z, a), value function model Q(z, a),
policy prior g (2), current state s¢, planning horizon H, optimization iterations I, candidates per
iteration [V, action optimization rate o

Encode state into latent representation z; <— h(s¢).
Sample N action sequences by rolling out the policy 7y with the latent dynamics model d.
Initialize candidate action sequences as.++x vialEqQ. (3)
for optimization iterationi = 1,2,...1 do
for candidate action sequencen = 1,2,... N do
for rollout step v =t...t+ H — 1 do
Predict reward 7" = R(z,a).
Predict uncertainty u\™ via[Eq. (5)
Predict next latent state zﬁr)l — d(zr,ar).

Predict terminal value (jii)H = Q(2t+H,at4+H).
Compute optimization objective J () using 7, g and u via|Eq. (6)

Optimize action sequence via aiZLH apprr +aVeJ ™,

Output: First optimized action a§k> with k = arg max, {J™}0_;.

Our gradient-based MPC algorithm is summarized in[Alg. T| The MPC procedure requires N x I x H
evaluations of the world model at each time step, which equals 512 x 6 x 3 = 9216 for MPPI while
our method uses significantly less model evaluations, i.e., only 5 X 1 x 3 = 15. Note that while
we use TD-MPC2 for our experiments, our method can also be integrated into other model-based
reinforcement learning approaches such as Dreamer (Hafner et al., 2020) or DINO-WM (Zhou et al.,
2025). We include results and implementation details on integrating our method into Dreamer in

Append

We further integrate our method into BMPC (Wang et al.| [2025)), which builds on TD-MPC2 and
learns a policy my by imitating an MPC expert mypc and at the same time uses the policy to guide
the MPC optimization process. Thus, the policy is learned using the following objective:

(s,a)o.u~B

H
Lo0)= B 1> AN [KL(mwrc(-|h(st), 7o), 7o (|20)) /max(1, S) — BH(ma(-|2))] | ,
=0 “)
Zy = h(SQ), Zt+1 = d(zt,at),
S = EMA(PQI(KL(?TMpc, 7T9), 95) — PGY(KL(TFMPC7 7'(9)7 5), 0.99),

where H is the entropy, KL is the Kullback-Leibler divergence, zg.; are latent vectors rolled out
using the models A and d, and 5 and)\ are hyperparameters for loss balancing and temporal weight-
ing, respectively. The KL loss is normalized using moving percentiles S, which are commonly used
to stabilize training. The results of [Wang et al.| (2025) show that this bootstrapping approach can
improve sample efficiency and asymptotic performance, especially for high-dimensional tasks. We
use BMPC since it provides a higher quality policy compared to TD-MPC2, where the performance
gap between the policy network and the MPC procedure is quite large as shown in

For more details on BMPC, please refer to

We further propose to regularize the planning procedure by penalizing trajectories with a large uncer-
tainty because our method may benefit from conservative value estimations given that the estimates
are directly used for optimizing the actions. Therefore, we estimate the (epistemic) uncertainty of a
trajectory as proposed by Hansen et al.|(2024) for offline RL and multi-task world models:

Uy = an([qu,QQ, e anMD : Std([quan27 e 7@]”])7 (5)

where ¢y, is the predicted value from Q-function m from an ensemble of M Q-functions. The regu-
larization strength at each time step is scaled based on the magnitude of the mean value predictions

Under review as a conference paper at ICLR 2026

for a given latent state to account for different tasks without requiring task-specific coefficients. The
planning objective is then redefined as:

H-1

h H
J = Z (7 - R(zn, an) — Aune - Uh) +97 - Q24 H, Gt H) — Aune Ut H, (6)

h=t
where Ay, is a task-agnostic coefficient that balances return maximization and uncertainty mini-
mization. While this requires to specify a coefficient that weighs both aspects, we found it sufficient
in our experiments to set Ay = 0.01. All hyperparameters specific to Dream-MPC are listed in
We also conduct experiments in which we use this uncertainty regularization for TD-MPC2
and BMPC and include the results in

Table 1: Dream-MPC Hyperparameters. We use the same hyperparameters for all tasks. All other
hyperparameters are the default TD-MPC2 and BMPC values respectively.

Hyperparameter Value
Planning

Iterations 1 1
Policy prior samples N 5
Optimization step size o 0.1
Action reuse coefficient p 0.1

Uncertainty regularization coefficient Ay, 0.01

5 EXPERIMENTS

We evaluate our method on a set of 24 diverse continuous control tasks from the DeepMind Control
Suite (Tassa et al., [2020), HumanoidBench (Sferrazza et al., 2024} and Meta-World (Yu et al., 2019)
covering a wide range of task difficulties including high-dimensional state and action spaces, sparse
rewards, complex locomotion, and manipulation. Additionally, we also include results for six DM-
Control tasks with visual observations. For details on the environments, please refer to[Appendix Al

5.1 COMPARISON TO BASELINES

We compare our method to following state-of-the-art baselines commonly used for continuous con-
trol tasks:

* Soft-Actor-Critic (SAC) (Haarnoja et al., 2018)), a model-free RL method which uses a
maximum entropy objective for policy learning,

* Dreamer-v3 (Hafner et al.}|[2025), a model-based RL method which learns a policy network
using rollouts from a generative world model,

e TD-MPC2 (Hansen et al., [2024), a model-based RL method which uses policy-guided
MPPI for action selection, and

* BMPC (Wang et al., 2025)), an extension of TD-MPC2 which uses imitation learning of the
MPC planner for policy learning.

We first evaluate the performance of Dream-MPC using (pre-)trained TD-MPC2 and BMPC models,
respectively, when replacing the MPPI planner by our proposed gradient-based MPC planner at test
time. For TD-MPC?2, we use the models provided by Hansen et al.| (2024) for the DeepMind Control
Suite and Meta-World, except for Cartpole Swingup Sparse, Dog Run, Dog Walk, Humanoid Run
and Humanoid Walk because some checkpoints cannot be loaded after code restructurin Thus,
we trained new models for these tasks as well as for HumanoidBench. We further train BMPC,
Dreamer-v3 and SAC models for all tasks. For more details on the baselines refer to

We report performance metrics across all 24 tasks using the rliableﬂ package provided by |Agarwal
et al. (2021) to evaluate the performance of our method. Specifically, we report the optimality gap,

lef. https://github.com/nicklashansen/tdmpc2/issues/23
https://github.com/google-research/rliable

https://github.com/nicklashansen/tdmpc2/issues/23
https://github.com/google-research/rliable

Under review as a conference paper at ICLR 2026

Median (1) 1QM (1) Score Distributions
= -— 1.00]
— |
I I N
I I A
- - “5) 0.75)
I I %
0.25 0.50 0.75 02 04 06 08 ”é
% 0.50)
Mean (1) Optimality Gap (1) =
- - °
| i S 0.25]
I 1 ;
I I =
| |
| | 0.00]
0.30 045 0.60 0.30 045 0.60 0.7 0.0 0.2] [J_-L. ,“'G 0.8 1.0
Normalized Score Normalized Score Normalized Score (7)

e SAC e Dreamer-v3 e TD-MPC2 e BN PC e Dream-MPC (TD-MPC2) e Dream-MPC (BMPC)

Figure 2: Aggregate performance metrics. Left: optimality gap, interquartile median (IQM), mean
and median normalized scores with 95% confidence intervals. Right: score distributions across all
tasks, which provides insights into the variance of the performance. Notably, Dream-MPC achieves
the best results. Detailed results are included in[Tabs. 9] to[TT}

median, interquartile median (IQM), and mean normalized scores as well as the performance profile
curves with 95% confidence intervals based on the evaluation scores of trained BMPC agents in
Confidence intervals are estimated using the percentile bootstrap with stratified sampling as
recommended by |Agarwal et al.| (2021). For a comparison across different score scales of all tasks,
we normalize DMControl scores by diving by 1000, and HumanoidBench scores as proposed in|Lee]

2025):

. 2 — random score
Normalized-Score(z) = , (7
target score — random score

where we use the random and target success scores provided by the authors. Please refer to|Lee et al.
(2025) for more details. Meta-World scores are left as they are since the success rates are already
values between zero and one. The detailed evaluation results for all environments are shown in
[Tabs. 9|to [T} Our gradient-based MPC method can improve the performance of the policy network
and outperforms MPPI when using BMPC as a basis. While Dream-MPC can also significantly
improve the performance of the underlying policy for TD-MPC?2, it cannot consistently match the
performance of MPPI because for TD-MPC2 there is a relatively large gap between the performance
of the policy only and with MPPI as shown in[Appendix C.3] This highlights the need for a good
policy proposal for gradient-based MPC, especially for high-dimensional problems. We discuss this

in more detail in[Appendix C.2]

Additionally, we evaluate the performance of our method using image-based observations to demon-
strate that our method also works well in these settings. The results are shown in We find
that our method can also improve the performance of the underlying policy and even outperforms
MPPI for visual observations.

Table 2: Visual observations. Performance comparison of different BMPC
variants on tasks from the DeepMind Control Suite using image-based ob-

servations.

Environment BMPC BMPC (policy only) Dream-MPC (BMPC)
Acrobot Swingup 287 + 45 292 + 18 288 4+ 31
Cartpole Swingup Sparse 709 4+ 120 625 + 283 725 + 141
Cheetah Run 609 + 23 597 £ 45 643 +£9
Hopper Hop 253 £ 11 264+ 6 275 +3
Quadruped Walk 427 £ 78 402 £+ 44 435 + 76
Walker Run 740 £ 15 740 + 6 762 + 6

The results are the mean episode returns and standard deviations for three random
seeds and ten test episodes. Best and second best results are highlighted.

Under review as a conference paper at ICLR 2026

Acrobot Swingup Dog Run Button Press Reach
1000 1000 12000
= = 2 1.04 =
£ 7501 £ 7501 g £ 9000
I 2 a 2
& 500 g 500 205 & 60004
2 2 2 2
A 250 A 250 2, A 30001
@ 2 g a
0 0 0.0 0
0 250K 500K 750K 1M 0 250K 500K 750K 1M 0 250K 500K 750K 1M 0 500K 1M 1.5M 2M
Environment steps Environment steps Environment steps Environment steps
—— TD-MPC2 = BMPC =—— Dream-MPC (TD-MPC2)

Figure 3: Learning curves for four tasks from the DeepMind Control Suite. The line represents
the mean episodic return and the shaded area the 95% confidence interval across 3 seeds.

In addition to analyzing our gradient-based MPC method only during inference, we also evaluate its
performance when it is already being used during training. Therefore, we use TD-MPC2 as a basis
without imitation learning because we hypothesize that the bootstrapping approach of BMPC might
lead to unstable training and premature convergence, especially since we have only few candidate
trajectories. While combining gradient-based MPC with imitation learning is an interesting research
direction, we leave this for future work. shows the learning curves of BMPC, TD-MPC2
and of Dream-MPC for four different environments. Overall, our gradient-based MPC planner can
match the performance of TD-MPC2’s MPPI planner. While for simpler control problems Dream-
MPC can even outperform TD-MPC2 and match BMPC, we find that for high-dimensional problems
our method performs slightly worse. This issue may result from premature convergence due to less
diversity among the few candidate trajectories compared to MPPI. We also find improvements in
sample-efficiency and asymptotic performance when integrating our method into Dreamer. The

results are shown in[Appendix D.1]

We benchmark inference times of the different methods on a single Nvidia GeForce RTX 4090
GPU. The results in show that Dream-MPC is about as fast as MPPI for lower dimensional
problems, potentially enabling its usage for real-world robotics applications, which require high
control frequencies. While there is an increase in inference time for high-dimensional problems,
our method is still significantly faster as for example Grad-MPC 2023), which samples
hundreds of action sequences from a Gaussian and optimizes each candidate solution for multiple
iterations by using gradient ascent. The corresponding inference times are shown in[Tab. 16}

Table 3: Inference times of different methods for Acrobot Swingup. Mean and standard deviation
for three random seeds and ten test episodes per seed.

Method Inference time Method Inference time
BMPC 18.77 £ 0.11 ms TD-MPC2 20.83 £ 0.14 ms
Dream-MPC (BMPC) 18.15 4+ 0.12 ms Dream-MPC (TD-MPC2) 19.53 4+ 0.11 ms

5.2 ABLATION STUDY

We perform ablations to evaluate our design choices and provide insights into which components
are crucial to successfully perform gradient-based MPC. Using a high-quality policy prior to warm-
start the MPC optimization is particularly important for high-dimensional problems, as shown in
Together with reusing previously optimized actions, warm-starting reduces computational
costs. We replace the policy prior by a Gaussian distribution to highlight the importance of a good
initial proposal distribution to warm-start the MPC process and use the same number of candidate
trajectories as MPPI, i.e., 512. For a fair comparison, we compensate for the less informative prior
by increasing the number of optimization iterations to five, which, depending on the environment,
leads to an increase in inference time by a factor of about five to ten compared to Dream-MPC. We
further find that uncertainty regularization and amortization of optimization iterations by reuse of
previous planned actions are especially important when using gradient-based MPC during training,
as illustrated in shows a sensitivity analysis of the uncertainty regularization and
reuse coefficients, emphasizing that Dream-MPC is quite robust to the choice of these parameters.
We also conduct experiments in which we use this uncertainty regularization for TD-MPC2 and

Under review as a conference paper at ICLR 2026

BMPC and include the results in[Appendix C.3} The results indicate that for BMPC, the performance
slightly improves — except for HumanoidBench — while for TD-MPC2, the uncertainty regularization
leads to a performance decrease for all three domains. Additionally, we provide an analysis of the

planner gradients when integrating our method into Dreamer in [Appendix D.2] which suggests that
Dream-MPC is more robust, compared to Grad-MPC.

Acrobot Swingup Button Press Reach
1000 8000
g 2 1.0 g
2 7501 g 2 6000
5} = ©
- n -
% 500 1 205 ,Gg 4000
3
<3l = =
0+ ; ; ; " 0.0 ; ; ; " 0 ; " " "
0 250K 500K 750K 1M 0 250K 500K 750K 1M 0 500K 1M 1.5M 2M
Environment steps Environment steps Environment steps
== Dream-MPC (TD-MPC2) policy only —— w/o gradient ascent
w/o0 uncertainty regularization =~ === w/o action reuse
(a) Ablation of design choices
Acrobot Swingup Button Press Reach
1000 10 8000
n K
E 7501 ¢ \77 £ 60001
B 2 2
< 5001 <05 < 40001
é—} 2501 % ﬁ% 20001 2
¢ T T y T 0.0 ‘ 04+ y T T T
0 250K 500K 750K 1M 0 250K 500K 750K 1M 0 500K 1M 1.5M 2M
Environment steps Environment steps Environment steps
= Dream-MPC (TD-MPC2) — p=0.05 — p=0.2 Aune = 0.05 — Aunc = 0.1

(b) Sensitivity analysis of coefficients

Figure 4: Ablations. (a) Performance of different Dream-MPC (TD-MPC2) variants demonstrating
the importance of each design choice. (b) Performance of Dream-MPC (TD-MPC2) with different
uncertainty regularization and action reuse coefficients. The line represents the mean episodic return
and the shaded area the 95% confidence interval across 3 seeds.

Table 4: Dream-MPC ablations. We compare the performance of different
variants using trained BMPC models.

Method Acrobot Swingup Humanoid Run Button Press Reach

Dream-MPC (BMPC) 596 + 50 531 + 38 0.67 4+ 0.47 4348 + 215
w/o MPC (policy-only) 564 £ 52 458 £ 15 1.0 £0.0 2117 £ 309
wi/o policy prior 554 £21 T4 0.70 £ 0.22 842 + 239
w/o gradient ascent 579 £43 496 £ 25 0.97 £ 0.05 2362 + 323

The results are the mean episode returns and standard deviations for three random seeds
and ten test episodes. Best and second best results are highlighted.

We further evaluate the performance of fully trained BMPC agents with gradient-based MPC when
varying the number of candidates, the number of optimization iterations, and the planning horizon.
The results for Acrobot Swingup, Humanoid Run and Slide are shown in[Fig. 5] All other hyperpa-
rameters are fixed to their default value when varying one. While we use a single set of hyperpa-
rameters across all environments, algorithms, and for state-based and visual observations, we find
that dynamically adjusting the planning parameters can help to further improve performance. The
parameter sweep also shows that increasing the horizon and the number of optimization iterations

Under review as a conference paper at ICLR 2026

does not necessarily always increase the performance further, but can also impair the performance
for some environments. This issue may result from an inaccurate model, especially when using a
longer prediction horizon than the one used for training the model.

Acrobot Swingup

Episode return

—
w
ot
=1
N=
—_
w
ot
=1
Nel
—
w
ot
-1
o

Humanoid Run

Episode return
=
S
o

300
1 3 5 7 9 1 3 5 7 9 1 3 5 7 9
Slide
Z 600 }/{\%/’_1[)/%/’_<\(H\Q—i\f
3 400
=
20[)135791357913579
Candidates Horizon Iterations
—4— Dream-MPC (BMPC) policy-only —4— default

Figure 5: Parameter sweep. Performance of trained BMPC agents with Dream-MPC at test time
when varying the number of candidates, horizon and number of optimization iterations. When vary-
ing one hyperparameter, the others are fixed to their default value. We also include the performance
of the learned policy 7y and the default values of one iteration, a horizon of three and five candidate
trajectories.

6 CONCLUSION

We propose Dream-MPC, a novel method for gradient-based planning with a learned policy network
and world model, which incorporates amortization of optimization iterations over time and uncer-
tainty to overcome the limitations of previously proposed gradient-based MPC methods, namely
worse performance compared to their gradient-free equivalents and high computational costs. We
evaluate our method on a broad set of diverse tasks from different domains, including visual ob-
servations, to demonstrate its effectiveness. Our empirical evaluation shows that Dream-MPC can
not only outperform the baselines, but is also more robust to hyperparameters and faster compared
to previously proposed gradient-based MPC methods. Overall, our results highlight that gradient-
based trajectory optimization with a learned world model has the potential to significantly improve
the performance of model-based RL algorithms.

Our experiments suggest that it may be beneficial to dynamically adapt the optimization parameters
such as the action optimization step size and number of iterations to further improve the perfor-
mance, especially for high-dimensional problems. As our current approach is applied to single-task
problems, it would also be interesting to extend it to multi-task world models to evaluate its potential
in this setting.

REPRODUCIBILITY STATEMENT

To ensure reproducibility of our work and encourage further research on gradient-based MPC, we
have included details including hyperparameters of our proposed method as well as for the base-
lines in [Section 4| and [Appendix B} We will also release our source code and more at https:
//dream—-mpc.github.iol

10

https://dream-mpc.github.io
https://dream-mpc.github.io

Under review as a conference paper at ICLR 2026

REFERENCES

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare.
Deep reinforcement learning at the edge of the statistical precipice. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), 2021.

Arthur Argenson and Gabriel Dulac-Arnold. Model-based offline planning. In 9th International
Conference on Learning Representations (ICLR), 2021.

Kavosh Asadi, Dipendra Misra, Seungchan Kim, and Michel L. Littman. Combating the
compounding-error problem with a multi-step model, 2019. URL http://arxiv.org/abs/
1905.13320.

Homanga Bharadhwaj, Kevin Xie, and Florian Shkurti. Model-predictive control via cross-entropy
and gradient-based optimization. In 2nd Conference on Learning for Dynamics and Control
(L4DC), 2020.

Arunkumar Byravan, Leonard Hasenclever, Piotr Trochim, Mehdi Mirza, Alessandro Davide Ia-
longo, Yuval Tassa, Jost Tobias Springenberg, Abbas Abdolmaleki, Nicolas Heess, Josh Merel,
and Martin A. Riedmiller. Evaluating model-based planning and planner amortization for contin-
uous control. In /0th International Conference on Learning Representations (ICLR), 2022.

Ignasi Clavera, Jonas Rothfuss, John Schulman, Yasuhiro Fujita, Tamim Asfour, and Pieter Abbeel.
Model-based reinforcement learning via meta-policy optimization. In 2nd Conference on Robot
Learning (CoRL), 2018.

C. R. Cutler and B.L. Ramaker. Dynamic matrix control - A computer control algorithm. IEEE
Transactions on Automatic Control, 17:72, 1979.

Ignat Georgiev, Varun Giridhar, Nicklas Hansen, and Animesh Garg. PWM: Policy learning with
multi-task world models. In 13th International Conference on Learning Representations (ICLR),
2025.

David Ha and Jiirgen Schmidhuber. World models, 2018. URL http://arxiv.org/abs/
1803.10122.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft Actor-Critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In 35th International
Conference on Machine Learning (ICML), 2018.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. In 36th International Conference
on Machine Learning (ICML), 2019.

Danijar Hafner, Timothy P. Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learn-
ing behaviors by latent imagination. In 8th International Conference on Learning Representations
(ICLR), 2020.

Danijar Hafner, Timothy P. Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering Atari with
discrete world models. In 9th International Conference on Learning Representations (ICLR),
2021.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse control tasks
through world models. Nature, 640:647-653, 2025.

Jessica B. Hamrick, Abram L. Friesen, Feryal M. P. Behbahani, Arthur Guez, Fabio Viola, Sims
Witherspoon, Thomas Anthony, Lars Holger Buesing, Petar Velickovic, and Theophane Weber.
On the role of planning in model-based deep reinforcement learning. In 9th International Con-
ference on Learning Representations (ICLR), 2021.

Nicklas Hansen, Hao Su, and Xiaolong Wang. TD-MPC2: scalable, robust world models for con-
tinuous control. In 12th International Conference on Learning Representations (ICLR), 2024.

11

http://arxiv.org/abs/1905.13320
http://arxiv.org/abs/1905.13320
http://arxiv.org/abs/1803.10122
http://arxiv.org/abs/1803.10122

Under review as a conference paper at ICLR 2026

Nicklas A Hansen, Hao Su, and Xiaolong Wang. Temporal difference learning for model predictive
control. In 39th International Conference on Machine Learning (ICML), 2022.

Mikael Henaff, William F. Whitney, and Yann LeCun. Model-based planning with discrete and
continuous actions, 2018. URL http://arxiv.org/abs/1705.07177.

Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Mohammadamin Barekatain, Simon
Schmitt, and David Silver. Learning and planning in complex action spaces. In 38th Interna-
tional Conference on Machine Learning (ICML), 2021.

Henry J. Kelley. Gradient theory of optimal flight paths. ARS Journal, 30(10):947-954, 1960.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd Interna-
tional Conference on Learning Representations (ICLR), 2015.

Patrick Lancaster, Nicklas Hansen, Aravind Rajeswaran, and Vikash Kumar. Modem-v2: Visuo-
motor world models for real-world robot manipulation. In IEEE International Conference on
Robotics and Automation (ICRA), 2024.

Yann LeCun. A path towards autonomous machine intelligence version 0.9.2, 2022-06-27, 2022.
URL https://openreview.net/pdf?id=BZ5alr-kVsfl

Hojoon Lee, Youngdo Lee, Takuma Seno, Donghu Kim, Peter Stone, and Jaegul Choo. Hyperspher-
ical normalization for scalable deep reinforcement learning. In 42nd International Conference on
Machine Learning (ICML), 2025.

Kendall Lowrey, Aravind Rajeswaran, Sham M. Kakade, Emanuel Todorov, and Igor Mordatch.
Plan online, learn offline: Efficient learning and exploration via model-based control. In 7zh
International Conference on Learning Representations (ICLR), 2019.

N. Mansard, A. DelPrete, M. Geisert, S. Tonneau, and O. Stasse. Using a memory of motion to
efficiently warm-start a nonlinear predictive controller. In IEEE International Conference on
Robotics and Automation (ICRA), 2018.

Vincent Micheli, Eloi Alonso, and Francois Fleuret. Transformers are sample-efficient world mod-
els. In 11th International Conference on Learning Representations (ICLR), 2023.

Andrew S. Morgan, Daljeet Nandha, Georgia Chalvatzaki, Carlo D’Eramo, Aaron M. Dollar, and
Jan Peters. Model predictive actor-critic: Accelerating robot skill acquisition with deep reinforce-
ment learning. In IEEE International Conference on Robotics and Automation (ICRA), 2021.

Malte Mosbach, Jan Niklas Ewertz, Angel Villar-Corrales, and Sven Behnke. Sold: Slot object-
centric latent dynamics models for relational manipulation learning from pixels. In 42nd Interna-
tional Conference on Machine Learning (ICML), 2025.

Rudy R. Negenborn, Bart De Schutter, Marco A. Wiering, and Hans Hellendoorn. Learning-based
model predictive control for markov decision processes. In 16th IFAC World Congress, 2005.

Paavo Parmas, Carl Edward Rasmussen, Jan Peters, and Kenji Doya. PIPPS: Flexible model-based
policy search robust to the curse of chaos. In 35th International Conference on Machine Learning
(ICML), 2018.

Paavo Parmas, Takuma Seno, and Yuma Aoki. Model-based reinforcement learning with scalable
composite policy gradient estimators. In 40th International Conference on Machine Learning
(ICML), 2023.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information Processing Systems (NeurIPS), 2019.

J. Richalet, A. Rault, J.L. Testud, and J. Papon. Model predictive heuristic control. Automatica, 14
(5):413-428, 1978.

12

http://arxiv.org/abs/1705.07177
https://openreview.net/pdf?id=BZ5a1r-kVsf

Under review as a conference paper at ICLR 2026

Reuven Y. Rubinstein. Optimization of computer simulation models with rare events. European
Journal of Operational Research, 99(1):89-112, 1997.

Jyothir S V, Siddhartha Jalagam, Yann LeCun, and Vlad Sobal. Gradient-based planning with world
models, 2023. URL http://arxiv.org/abs/2312.17227.

Younggyo Seo, Carmelo Sferrazza, Haoran Geng, Michal Nauman, Zhao-Heng Yin, and Pieter
Abbeel. Fasttd3: Simple, fast, and capable reinforcement learning for humanoid control. 2025.
URL https://arxiv.org/abs/2505.22642.

Carmelo Sferrazza, Dun-Ming Huang, Xingyu Lin, Youngwoon Lee, and Pieter Abbeel. Hu-
manoidBench: Simulated humanoid benchmark for whole-body locomotion and manipulation.
In Robotics: Science and Systems Confererence (RSS), 2024.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George Van Den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander
Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap,
Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game
of Go with deep neural networks and tree search. Nature, 529(7587):484—489, 2016.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan
Hui, Laurent Sifre, George Van Den Driessche, Thore Graepel, and Demis Hassabis. Mastering
the game of Go without human knowledge. Nature, 550(7676):354-359, 2017a.

David Silver, Hado van Hasselt, Matteo Hessel, Tom Schaul, Arthur Guez, Tim Harley, Gabriel
Dulac-Arnold, David Reichert, Neil Rabinowitz, Andre Barreto, and Thomas Degris. The predic-
tron: End-to-end learning and planning. In 34th International Conference on Machine Learning
(ICML), 2017b.

Aravind Srinivas, Allan Jabri, Pieter Abbeel, Sergey Levine, and Chelsea Finn. Universal planning
networks: Learning generalizable representations for visuomotor control. In 35th International
Conference on Machine Learning (ICML), 2018.

Hyung Ju Suh, Max Simchowitz, Kaiqing Zhang, and Russ Tedrake. Do differentiable simulators
give better policy gradients? In 39th International Conference on Machine Learning (ICML),
2022.

Richard S. Sutton. Dyna, an integrated architecture for learning, planning, and reacting. ACM
SIGART Bulletin, 2(4):160-163, 1991.

Erik Talvitie. Model regularization for stable sample rollouts. In 30th Conference on Uncertainty in
Artificial Intelligence (UAI), 2014.

Yuval Tassa, Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Piotr Trochim, Siqi Liu,
Steven Bohez, Josh Merel, Tom Erez, Timothy Lillicrap, and Nicolas Heess. dm_control: Soft-
ware and tasks for continuous control. Software Impacts, 6, 2020.

Yuhang Wang, Hanwei Guo, Sizhe Wang, Long Qian, and Xuguang Lan. Bootstrapped model
predictive control. In 13th International Conference on Learning Representations (ICLR), 2025.

Grady Williams, Andrew Aldrich, and Evangelos A. Theodorou. Model predictive path integral
control using covariance variable importance sampling. 2015. URL http://arxiv.org/
abs/1509.011409.

Grady Williams, Nolan Wagener, Brian Goldfain, Paul Drews, James M. Rehg, Byron Boots, and
Evangelos A. Theodorou. Information theoretic MPC for model-based reinforcement learning. In
IEEE International Conference on Robotics and Automation (ICRA), 2017.

Philipp Wu, Alejandro Escontrela, Danijar Hafner, Pieter Abbeel, and Ken Goldberg. Daydreamer:
World models for physical robot learning. In 6th Conference on Robot Learning (CoRL), 2023.

13

http://arxiv.org/abs/2312.17227
https://arxiv.org/abs/2505.22642
http://arxiv.org/abs/1509.01149
http://arxiv.org/abs/1509.01149

Under review as a conference paper at ICLR 2026

Chenjun Xiao, Yifan Wu, Chen Ma, Dale Schuurmans, and Martin Miiller. Learning to combat
compounding-error in model-based reinforcement learning, 2019. URL https://arxiv.
org/abs/1912.11206.

Kevin Xie, Homanga Bharadhwaj, Danijar Hafner, Animesh Garg, and Florian Shkurti. Latent skill
planning for exploration and transfer. In 9th International Conference on Learning Representa-
tions (ICLR), 2021.

Denis Yarats, Amy Zhang, Ilya Kostrikov, Brandon Amos, Joelle Pineau, and Rob Fergus. Improv-
ing sample efficiency in model-free reinforcement learning from images. In AAAI Conference on
Artificial Intelligence, 2021.

Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Mastering visual continuous con-
trol: Improved data-augmented reinforcement learning. In /0th International Conference on
Learning Representations (ICLR), 2022.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In 3rd Conference on Robot Learning (CoRL), 2019.

Gaoyue Zhou, Hengkai Pan, Yann LeCun, and Lerrel Pinto. DINO-WM: World models on pre-
trained visual features enable zero-shot planning. In 42nd International Conference on Machine
Learning (ICML), 2025.

14

https://arxiv.org/abs/1912.11206
https://arxiv.org/abs/1912.11206

Under review as a conference paper at ICLR 2026

A ENVIRONMENT DETAILS

We evaluate our method on a total of 24 continuous control tasks from three different domains: eight
environments from the Deep Mind Control suite, including four high-dimensional locomotion tasks,
eight environments from HumanoidBench, and eight environments from Meta-World. All three do-
mains are infinite-horizon continuous control environments for which we use a fixed episode length,
an action repeat of 2 for the DeepMind Control Suite and Meta-World and 1 for HumanoidBench,
and no termination conditions. We follow the success definition of [Hansen et al.| (2024). This sec-

tion provides an overview and details for all tasks considered, including their observation and action

s~

dimensions.

Acrobot

Cheetah

Fish Hopper Humanoid Walker

Figure 6: DeepMind Control Suite benchmarking domains (Tassa et al.,2020).

Table 5: Overview of DeepMind Control Suite tasks. Classification is based on [Hubert et al.|

(2021); Yarats et al.| (2022)

Task Difficulty Reward dim(S) dim(A)
Acrobot Swingup hard dense 6 1
Cartpole Swingup Sparse easy sparse 5 1
Dog Run hard dense 223 38
Dog Walk hard dense 223 38
Fish Swim medium dense 24 5
Hopper Hop medium dense 15 4
Humanoid Run hard dense 67 24
Humanoid Walk hard dense 67 24

We consider following eight tasks from Meta-World:

* Assembly: Pick up a nut and place it onto a peg (peg and nut positions are randomized),
* Button Press: Press a button (button positions are randomized),

* Disassemble: Remove a nut from a peg (peg and nut positions are randomized),

* Lever Pull: Pull a lever down 90 degrees (lever positions are randomized),

* Pick Place Wall: Pick a puck, bypass a wall and place the puck (puck and goal positions
are randomized),

 Push Back: Push the puck to a goal (puck and goal positions are randomized),
* Shelf Place: Pick and place a puck onto a shelf (puck and shelf positions are randomized),

* Window Open: Push and open a window (window positions are randomized).

15

Under review as a conference paper at ICLR 2026

All tasks from Meta-World share the same embodiment, observation space (dim(S) = 39) and action
space (dim(A) = 4). Please refer to (2019)) for the definitions of the reward functions and

success metrics used in the Meta-World tasks.

Assembly Button Press Disassemble Lever Pull
”
=
J
ey

Pick Place Wall Push Back Shelf Place Window Open

Figure 7: Meta-World manipulation tasks. We consider eight different tasks from the Meta-World
Benchmark.

We further consider following eight tasks from the twelve benchmarking locomotion tasks of Hu-
manoidBench:

* Balance Hard: Balance on the unstable board while the spherical pivot beneath the board
does move,

* Balance Simple: Balance on the unstable board while the spherical pivot beneath the board
does not move,

* Hurdle: Keep forward velocity close to 5 m/s while successfully overcoming hurdles,
* Maze: Reach the goal position in a maze by taking multiple turns at the intersections,
* Reach: Reach a randomly initialized 3D point with the left hand,

* Run: Run forward at a speed of 5 m/s,

» Slide: Walk over an iterating sequence of upward and downward slides at 1 m/s,

* Stair: Traverse an iterating sequence of upward and downward stairs at 1 m/s.

Visualizations of the tasks are shown in[Fig. 8]

The benchmark uses the Unitree H1 with two dexterous hands. The observation and action spaces,
and degrees of freedom of the robot system with the dexterous hands are summarized in[Tab. 6

Table 6: Humanoid robot specifications with two hands.

Parameter Value
Observation space 151
Action space 61
DoF (body) 25
DoF (hands) 50

B IMPLEMENTATION DETAILS

TD-MPC2 implementation. We use the official implementation of TD-MPC2 avaliable at ht tps:
//github.com/nicklashansen/tdmpc2) and use the default hyperparameters suggested
by the authors. A complete list of hyperparameters is provided in [Tab. 7] Details on TD-MPC2 can

be found in [Appendix B.1

BMPC implementation. We use the official implementation of BMPC from https://github.
com/wertyuilife2/bmpc, and use the default hyperparameters suggested by the authors.

16

https://github.com/nicklashansen/tdmpc2
https://github.com/nicklashansen/tdmpc2
https://github.com/wertyuilife2/bmpc
https://github.com/wertyuilife2/bmpc

Under review as a conference paper at ICLR 2026

==
@ 1
- -
- 2 < L.
~

—_—
Balance Reach Run Hurdle
@ (! \ !
Maze Slide Stair

Figure 8: HumanoidBench locomotion tasks. We consider eight tasks from the HumanoidBench
locomotion benchmark that cover a wide variety of interactions and difficulties. This figure illus-
trates an initial state for each task.

Since the code is based on the official TD-MPC2 codebase and incorporates both algorithms, we
use this implementation as a basis for our method. Details on BMPC are provided in[Appendix B.2}

Dreamer-v3 baseline implementation. We use the official implementation of Dreamer-v3 avail-
able at https://github.com/danijar/dreamerv3l We follow the decision of [Hansen|
and use the authors’ suggested hyperparameters for proprioceptive control (DeepMind
Control Suite). Please refer to [Hafner et al|(2025) and [Hansen et al.| (2024) for a complete list of

hyperparameters and implementation details.

SAC baseline implementation. We use the SAC implementation from https://github.com/
denisyarats/pytorch_sac| as in the TD-MPC (Hansen et al. 2022) paper, and use the hy-
perparameters suggested by the authors. Please refer to their paper for a complete list of hyperpa-
rameters.

B.1 TD-MPC2

Architectural details. All components of TD-MPC2 are implemented as multi-layer perceptrons
(MLPs). The encoder h contains a variable number of layers (2 — 5), depending on the architecture
size; all other components are 3-layer MLPs. Intermediate layers consist of a linear layer followed
by LayerNorm and a Mish activation function. The latent representation is normalized as a simplicial
embedding. ()-functions additionally use Dropout. We summarize the TD-MPC?2 architecture for
the 5M parameter base (default for online RL) model size using PyTorch-like notation:

Encoder parameters: 167,936
Dynamics parameters: 843,264
Reward parameters: 631,397
Policy parameters: 582,668

Q parameters: 3,156,985

Task parameters: 7,680

Total parameters: 5,389,930

Architecture: TD-MPC2 base 5M(
(task_embedding) : Embedding (T, 96, max_norm=1)
(encoder) : ModuleDict (

(state): Sequential (
(0) : NormedLinear (in_features=S+T, out_features=256, act=Mish)
(1) : NormedLinear (in_features=256, out_features=512, act=SimNorm)

)
)

17

https://github.com/danijar/dreamerv3
https://github.com/denisyarats/pytorch_sac
https://github.com/denisyarats/pytorch_sac

Under review as a conference paper at ICLR 2026

(dynamics) : Sequential (
(0) : NormedLinear (in_features=512+T+A, out_features=512, act=Mish)
(1) : NormedLinear (in_features=512, out_features=512, act=Mish)
(2) : NormedLinear (in_features=512, out_features=512, act=SimNorm)

)

(reward) : Sequential (
(0) : NormedLinear (in_features=512+T+A, out_features=512, act=Mish)
(1) : NormedLinear (in_features=512, out_features=512, act=Mish)
(2) : Linear (in_features=512, out_features=101,)

)

(pi) Sequential (
(0) : NormedLinear (in_features=512+T, out_features=512, act=Mish)
(1) : NormedLinear (in_features=512, out_features=512, act=Mish)
(2): Linear (in_features=512, out_features=2A, bias=True)

(Qs) : Vectorized ModuleList (
(0-4): 5 x Sequential (
) : NormedLinear (in_features=512+T+A, out_features=512, dropout=0.01, act=Mish)
) : NormedLinear (in_features=512, out_features=512, act=Mish)
) : Linear (in_features=512, out_features=101, bias=True)

where S is the input dimensionality, T is the number of tasks, and A is the action space. We exclude
the task embedding T from single-task experiments. The exact parameter counts listed above are for
S= 39, T= 80, and A= 6. Since we only perform single-task experiments in this work, all models
contain around 5SM parameters for TD-MPC2.

Policy-guided MPC. TD-MPC2 uses Model Predictive Path Integral (MPPI) (Williams et al., 2015
2017) for local trajectory optimization, which is a gradient-free, sampling-based MPC method.
MPPI iteratively samples action sequences (a¢, @1, - - ., as4) of length H from N (u, 02), evalu-
ates their expected return by rolling out latent trajectories with the model, and updates the parameters
u, o of a time-dependent multivariate Gaussian with diagonal covariance based on a weighted av-
erage such that the expected return is maximized. This iterative optimization procedure is repeated
for a fixed number of iterations and the first action a; ~ N (u},0;) is applied to the environment.
TD-MPC2 augments the sampling procedure with samples from the policy prior 7y and warm-starts
the optimization procedure by initializing (u, o) as the solution of the previous step shifted by one
to improve performance. Please refer toHansen et al.|(2022) for more details.

B.2 BMPC

Architectural details. The main architectural difference of BMPC to TD-MPC?2 is that it uses two
V -functions instead of five ()-functions:

V parameters: 1,256,650
Total parameters: 3,489,595

Architecture: Difference BMPC to TD-MPC2
(
(Vs) : Vectorized ModuleList (
(0-1): 2 x Sequential (
(0) : NormedLinear (in_features=512+T, out_features=512, dropout=0.01, act=Mish)
(1) : NormedLinear (in_features=512, out_features=512, act=Mish)
(2): Linear (in_features=512, out_features=101, bias=True)

Model-based TD-learning. Since BMPC does not use a SAC-style max-Q approach for policy
improvement, the authors decide to learn a state value function V), instead of a state-action value
function Q). The value network is learned by minimizing the cross-entropy loss with respect to the

discretized n-step TD-target 1% computed by using the latest model, policy, and target value network:

H
Lo(@)= B ASTX [CB(Vo(), V(A(s0)] | 20 = hiso), mess = dme,a0)
»&)0:H ™~ =0
A N ®)
V() =7 Vi (thon) + Y2 1 Rty ozt 1), 2hey = (2 m0(2))
k=0

18

Under review as a conference paper at ICLR 2026

Table 7: TD-MPC2 hyperparameters. We use the same hyperparameters across all tasks. Certain
hyperparameters are set automatically using heuristics.

Hyperparameter Value
Planning

Horizon (H) 3
Iterations 6 (+2if [| Al > 20)
Population size 512
Policy prior samples 24
Number of elites 64
Minimum std. 0.05
Maximum std. 2
Temperature 0.5
Momentum No

Policy prior

Log std. min. —10

Log std. max. 2

Replay buffer

Capacity 1,000, 000
Sampling Uniform

Architecture (5M)

Encoder dim 256
MLP dim 512
Latent state dim 512
Task embedding dim 96
Task embedding norm 1
Activation LayerNorm + Mish
Q-function dropout rate 1%
Number of Q-functions 5
Number of reward/value bins 101
SimNorm dim (V) 8
SimNorm temperature (7) 1

Optimization

Update-to-data ratio 1

Batch size 256

Joint-embedding coef. 20

Reward prediction coef. 0.1

Value prediction coef. 0.1

Temporal coef. () 0.5

@-fn. momentum coef. 0.99

Policy prior entropy coef. 1x 1074

Policy prior loss norm. Moving (5%, 95%) percentiles
Optimizer Adam (Kingma & Ba, |2015)
Learning rate 3x 107

Encoder learning rate 1x1074

Gradient clip norm 20

Discount factor Heuristic

Seed steps Heuristic

where N is the TD horizon, z.z are latent vectors rolled out through the models A and d. V is the
TD-target computed using the model d, R and the policy 7y in an on-policy manner. The authors
use a fixed value of N = 1 to keep compounding errors small.

19

Under review as a conference paper at ICLR 2026

Lazy reanalyze. BMPC stores imitation targets in the replay buffer and uses lazy reanalyze to avoid
costly replanning for all samples during every update to compute the policy objective. For every
k-th network update, b samples are drawn from the batch and used to get new imitation targets, i.e.,
the mean and standard deviation of the action distribution m; = mmpc(+|h(s:), Tg) by replanning.
These targets m; are then placed back into the replay buffer. Since the replanning is performed
independently of the training process, the replay buffer can be approximately seen as an expert
dataset and used to sample state-action pairs from it for supervised learning. During replanning,
additional noise is added to the policy prior to increase exploration in MPC planning. Thus, the
resulting surrogate policy objective with lazy reanalyze can be defined as:

H
Ll (9) = warE > A KL(my, w9 (-|z1)) /max(1, §) — BH(ma(-|2¢))] 9)
sy 0:H ™ t=0

where T, is the expert action distribution from the replay buffer.

Table §8: BMPC hyperparameters. We use the same hyperparameters for all tasks. All other
hyperparameters are the default TD-MPC2 values.

Hyperparameter Value
Horizon 3
Replanning horizon 3

Lazy reanalyze interval (k) 10
Lazy reanalyze batch size (b) 20

Log std. min. -3
Log std. max. 1
Log std. min. (replanning) —2

Log std. max. (replanning) 1

Number of V -functions 2

Batch size 256

TD horizon () 1

Policy prior entropy coef. 1x1074

B.3 DREAM-MPC

Hyperparameters. We use the same hyperparameters across all tasks. The hyperparameters specific
to our method are listed in

C ADDITIONAL RESULTS

In this section, we provide the learning curves for all baselines as well as detailed evaluation results
for all environments.

C.1 LEARNING CURVES

to [TT] show the episode returns and the success rates as a function of environment steps,
respectively.

20

Under review as a conference paper at ICLR 2026

Acrobot Swingup Cartpole Swingup Sparse Fish Swim Hopper Hop
1000 1000 10

Episode return
[) w -~
ot (=3 (<1
(=1 (=] (=] (=]
(&) ot -~
Sy (=3 ot
f=1 (=1 f=]
[[-~
Sy (=3 ot
(=] (=] (=] (=]
[%) w -~
o (=3 [
(=] o (=] (=]

0
0 250K 500K 750K 1M 0 250K 500K 750K 1M 0 250K 500K 750K 1M 0 250K 500K 750K 1M

Dog Run Dog Walk Humanoid Run Humanoid Walk
1000 1000 1000 1000

Episode return
[[-~
[N (=1 ot
(=] (=] (=]
[%) [-~
(S (=3 ot
(=1 [=] (=]
[%) o -~
[(=3 ot
(=3 (=] (=]
[OIS .
[(=3 ot
(=] (=] (=]

0 0 0 0
0 250K 500K 750K 1M 0 250K 500K 750K 1M 0 250K 500K 750K 1M 0 250K 500K 750K 1M
Environment steps Environment steps Environment steps Environment steps

= SAC Dreamer-v3 = TD-MPC2 BMPC

Figure 9: Learning curves for the DeepMind Control Suite. The line represents the mean episodic
return and the shaded area the 95% confidence interval across 3 seeds.

Assembly Button Press Disassemble Lever Pull
1.0 1.0

0.5 0.5 0.5

0.0 0.0 /{\—/ 0.0

0 250K 500K 750K 1M 0 250K 500K 750K 1M 0 250K 500K 750K 1M 0 250K 500K 750K 1M
Pick Place Wall Push Back Window Open Shelf Place
1.0 1.0 1.0

Episode success
(=1 o —
o o o

—
o

0.5 0.5 0.5

Episode success
(=1 o —
o o o

0.0 0.0 0.0
0 250K 500K 750K 1M 0 250K 500K 750K 1M 0 250K 500K 750K 1M 0 250K 500K 750K 1M
Environment steps Environment steps Environment steps Environment steps

—— SAC Dreamer-v3 = TD-MPC2 - BMPC

Figure 10: Learning curves for Meta-World. The line represents the mean episodic return and the
shaded area the 95% confidence interval across 3 seeds.

Reach Hurdle Maze Run
12000 1000 1000 1000
=l
£ 9000 750 7501 750
o
4
g 60009 500 5004 500
2
'& 3000+ 250 2501 ;/:l:: :5: 250 J\M
0 0 0 0
0 500K IM 1.5M 2M 0 500K 1M 1.5M 2M 0 500K IM 1.5M 2M 0 500K 1M 1.5M 2M
Balance Simple Balance Hard Stair Slide
1000 1000 1000 1000
=
£ 7501 750 7501 750
3]
_': 5001 500 5001 500
E 2504 250 2501 250
=
——
0 L= 0- 0
0 500K IM 1.5M 2M 0 500K 1M 1.5M 2M 0 500K IM 1.5M 2M 0 500K 1M 1.5M 2M
Environment steps Environment steps Environment steps Environment steps
— SAC Dreamer-v3 = TD-MPC2 BMPC

Figure 11: Learning curves for HumanoidBench. The line represents the mean episodic return
and the shaded area the 95% confidence interval across 3 seeds.

Under review as a conference paper at ICLR 2026

C.2 DETAILED EVALUATION RESULTS

We find that having a good policy is important because it leads to better value estimates, which
are crucial for gradient-based MPC. While Dream-MPC can improve the performance of the policy
for TD-MPC?2, it cannot consistently match the performance of MPPI. Since the performance of
the policy is quite weak as shown in to this fact favours MPPI, which has a higher
diversity of the initial solutions due to the sampling procedure. While we can further improve the
performance of Dream-MPC with TD-MPC?2 as a basis, for example by increasing the number of
optimization iterations, this also increases computational costs. This highlights the importance of a
good initial solution to warm-start the MPC optimization process, especially for high-dimensional
problems.

Table 9: DeepMind Control Suite evaluation results of different algorithms.

Dream-MPC Dream-MPC

Task SAC Dreamer-v3 TD-MPC2 BMPC (TD-MPC2) (BMPC)
Acrobot Swingup 176 £ 21 372 + 141 595+ 34 587+ 25 590 + 40 596 + 50
Cartpole Swingup Sparse 788 £ 10 538 £325 848 £ 0 837+ 14 847+ 3 849 £1
Fish Swim 657 £ 110 729 £ 98 786 + 8 804 4+ 17 764 £ 56 816 + 11
Hopper Hop 287 + 15 198 + 111 493 + 47 404 + 39 307 4 38 423 + 54
Dog Run I5£6 26 £7 358 + 228 678 + 27 115+ 72 703 £ 19
Dog Walk 42 £33 47 +£20 933 £ 10 937 +4 389 + 22 946 +7
Humanoid Run 83 +43 1+1 344 + 60 528 + 29 110+ 10 531 + 38
Humanoid Walk 364 + 95 241 899 £+ 10 917+ 6 338 + 63 937 + 4
Mean 302 + 269 239 + 261 657 £ 225 711 £ 181 433 £+ 259 725 + 181

The results are the mean episode returns and standard deviations for three random seeds and ten test episodes.
Best and second best results are highlighted.

Table 10: Meta-World evaluation results of different algorithms.

Dream-MPC Dream-MPC

Task SAC Dreamer-v3 TD-MPC2 BMPC (TD-MPC2) (BMPC)
Assembly 0.0 £ 0.0 0.0 £ 0.0 1.0+ 0.0 1.0 £ 0.0 1.0 + 0.0 1.0 + 0.0
Button Press 0.27 £ 0.31 0.61 £ 0.02 0.33 £ 047 0.33 £ 047 0.33 £ 0.47 0.67 £+ 0.47
Disassemble 0.03 £ 0.05 0.27 £0.23 0.67 £ 047 1.0 £ 0.0 0.67 £ 0.47 1.0 + 0.0
Lever Pull 0.03 £ 0.05 0.52 £ 0.1 0.0 £0.0 0.67 £ 047 0.0 £ 0.0 0.67 = 0.47
Pick Place Wall 0.0 £ 0.0 0.21 £0.24 1.0 £ 0.0 0.0 £ 0.0 0.67 £ 0.47 0.67 + 0.47
Push Back 0.67 £ 0.47 032 +£0.23 0.67 £ 047 0.33 £ 047 0.67 £ 0.47 0.33 £ 0.47
Shelf Place 0.0 £ 0.0 0.27 £0.21 0.67 £ 0.47 0.67 £ 0.47 1.0+ 0.0 1.0 + 0.0
Window Open 1.0 £ 0.0 0.48 £ 0.09 1.0 £ 0.0 0.67 £ 0.47 0.67 £ 0.47 1.0 + 0.0
Mean 0.25 +0.36 033 £0.18 0.67 £ 0.33 0.58 £ 0.32 0.62 £ 0.31 0.79 £+ 0.23

The results are the mean episode successes and standard deviations for three random seeds and ten
test episodes. Best and second best results are highlighted.

Table 11: HumanoidBench evaluation results of different algorithms.

Dream-MPC Dream-MPC

Task SAC Dreamer-v3 TD-MPC2 BMPC (TD-MPC2) (BMPC)
Balance Hard 55+3 28 + 12 92 + 12 81+ 12 45+ 10 82412
Balance Simple 70 £+ 10 39+ 14 240 + 37 489 + 84 47 + 14 654 + 89
Hurdle 543 13+£5 78 £ 24 120 + 43 1241 249 + 34
Maze 140 + 7 110 + 4 169 + 47 349 +2 120 + 8 266 + 33
Reach 2048 + 212 2151 + 1038 5037 + 1436 4125 + 324 2751 + 444 4348 + 215
Run 8+3 11£5 136 + 110 139 4 81 10+7 302 + 11
Slide 11+5 56 429 237 4+ 54 442 + 36 16 +3 632 + 114
Stair 15+£15 35+ 17 100 + 18 403 £ 145 30+6 456 + 145
Mean 294 + 664 305 + 698 761 £ 1617 769 £ 1277 379 + 897 874 + 1326

The results are the mean episode returns and standard deviations for three random seeds and ten test
episodes. Best and second best results are highlighted.

22

Under review as a conference paper at ICLR 2026

C.3 DETAILED TD-MPC2 AND BMPC RESULTS

We include full results of TD-MPC2 and BMPC for all environments in to[14] including the
performance of using the underlying policy network only. We also conduct experiments in which we
apply the test-time regularization defined in[Eq. (5)| with a regularization coefficient of \,,. = 0.01
to TD-MPC2 and BMPC. While the regularization can improve the performance of BMPC in some
cases, it causes a significant performance decrease for TD-MPC?2, especially for high-dimensional
problems.

Table 12: DeepMind Control Suite evaluation results of different TD-MPC2 and BMPC variants.

Environment TD-MPC2 TD-MPC2 TD-MPC2 (w/ test-time BMPC BMPC (policy BMPC (w/ test-time

(policy only) regularization) only) regularization)
Acrobot Swingup 595 + 34 551 +£21 594 4+ 32 587 + 25 564 £+ 52 573 + 11
Cartpole Swingup Sparse 848 + 0 760 + 114 848 +0 837 £+ 14 848 +1 84543
Fish Swim 786 + 8 645 4 83 783 + 13 804 £+ 17 804 + 14 776 £ 9
Hopper Hop 493 + 47 383 £ 154 465 + 79 404 + 39 445 + 106 440 + 87
Dog Run 358 4 228 89 £+ 52 376 + 231 678 4+ 27 670 £+ 13 678 + 23
Dog Walk 933 + 10 298 + 20 926 £9 937+ 4 930+ 5 940 + 4
Humanoid Run 344 4+ 60 65+ 2 345 £+ 55 528 4+ 29 458 + 15 514 4+ 31
Humanoid Walk 899 £+ 10 142 4+ 36 881 +9 917+ 6 930 +7 931 +3
Mean 657 4 225 367 4 247 652 + 221 711 4 181 706 + 187 712 + 179

The results are the mean episode returns and standard deviations for three random seeds and ten test episodes.
Best and second best results are highlighted.

Table 13: Meta-World evaluation results of different TD-MPC2 and BMPC variants.

Environment TD-MPC2 TD-MPC2 TD-MPC2 (w/ test-time BMPC BMPC (policy BMPC (w/ test-time

(policy only) regularization) only) regularization)

Assembly 1.0 £ 0.0 1.0 £0.0 0.67 + 0.47 1.0 £ 0.0 1.0 £ 0.0 1.0 £ 0.0

Button Press 0.33 +0.47 0.0 + 0.0 0.67 4+ 0.47 0.33 +0.47 1.0 £ 0.0 0.33 + 047
Disassemble 0.67 £ 047 0.67 +0.47 0.67 £ 0.47 1.0 £ 0.0 0.67 £ 0.47 1.0 + 0.0

Lever Pull 0.0 £ 0.0 0.0 £0.0 0.0 £ 0.0 0.67 £ 0.47 1.0 + 0.0 0.67 £+ 047
Pick Place Wall 1.0 £ 0.0 0.0 £ 0.0 0.33 £ 047 0.0 + 0.0 0.67 4+ 0.47 0.33 £ 0.47
Push Back 0.67 047 033+ 047 0.67 + 0.47 033 +047 0.33+047 0.33 + 047
Shelf Place 0.67 =047 0.67 +0.47 1.0 + 0.0 0.67 + 0.47 1.0 0.0 1.0 £ 0.0

Window Open 1.0 £ 0.0 0.33 £ 047 1.0 £ 0.0 0.67 £ 0.47 1.0 + 0.0 0.67 £ 0.47
Mean 0.67 £0.33 0.38 +0.35 0.62 £ 0.31 0.58 £0.32 0.83 £ 0.24 0.67 £ 0.29

The results are the mean episode returns and standard deviations for three random seeds and ten test
episodes. Best and second best results are highlighted.

Table 14: HumanoidBench evaluation results of different TD-MPC2 and BMPC variants.

TD-MPC2 TD-MPC2 (w/ test-time BMPC (policy BMPC (w/ test-time

Environment TD-MPC2 . L BMPC .
(policy only) regularization) only) regularization)

Balance Hard 92 £12 34+3 94 + 22 81+ 12 78 £8 80+9
Balance Simple 240 + 37 33£16 208 £ 34 489 + 84 414 £ 45 778 £ 77
Hurdle 78 £ 24 14+3 73 +£27 120 43 147 + 40 175 + 51
Maze 169 £ 47 111 +3 115+ 4 349 +2 121 +7 347+ 4
Reach 5037 £ 1436 1558 £ 368 399 + 208 4125 £324 2117 £ 309 2279 + 376
Run 136 £ 110 8t4 99 £ 72 139 £ 81 91 £25 222 £ 56
Slide 237 £ 54 14£2 248 £ 77 442 £ 36 250 £ 26 553 £+ 100
Stair 100 + 18 24 £8 91 +£23 403 £ 145 208 + 46 432 + 199
Mean 761 £ 1617 224 £ 505 166 + 106 769 + 1277 428 £ 646 608 + 665

The results are the mean episode returns and standard deviations for three random seeds and ten test
episodes. Best and second best results are highlighted.

23

Under review as a conference paper at ICLR 2026

D INTEGRATION INTO DREAMER

We further integrate our base method (without uncertainty regularization) into Dreamer (Hafner
et al., |2020) to show that it also works with other model-based RL algorithms. Dreamer learns a
latent dynamics model, often referred to as a world model, consisting of the following components:

* Representation model: py(st|st—1, at—1,0¢)
* Transition model: gg(s¢|st—1,a:—1)
» Reward model: gq(7¢|s¢)

* Observation model (only used as an additional learning signal): g (04 |s¢)

All components are jointly optimized to increase the variational lower bound (ELBO), including
reconstruction terms for observations and rewards as well as a KL regularizer:

Lree =B | > (LH + L + L) | + const, (10)
t
where
LY =1nq(og|st),
Ll =ng(ryse), 1)
L= _5KL(p(5t|5t—17at—laot)HQ(St‘st—laat—l))~

The expected values are calculated based on the dataset and representation model. Please refer to
Hafner et al.| (2020) for the derivation of the variational bound.

Following the original Dreamer implementation, we estimate state values using V), an
exponentially-weighted average of the reward estimates for a different number of steps beyond the
horizon with the learned value model to balance bias and variance:

t+H
Vi(sr) = Eg m, [Z rnl : (12)

n=rt

h—1
Vi(sr) =Egpmy [7" Trn+ vh_va(sh)] with b = min(7 + k,t + H), (13)

n=t

H-1
Valsr) = (1=X) D X"V (sr) + A1V (). (14)

n=1

For each time step ¢, Dream-MPC creates an initial sequence of actions by performing an imaginary
rollout of the policy 7, and generates N candidate trajectories adding small perturbations to the
initial action sequence:

(a1 = {mg(aralsr—1)+eM|r = t+1,. t+ H+1},, where el ~ N(0,02). (15)

The imaginary rollout is done by encoding observations and actions into latent space using the rep-

resentation model py and repeatedly calling the one-step transition model gy to generate a sequence

of predicted states {s, }.}/} for each candidate trajectory.

t+H+1
Sgn) NP0(5§H)|5gﬁ)1va§i)1a0t), sgi)1:t+H+l ~ H ‘IH(SSRHS(T@UG(T@O (16)
T=t+1

24

Under review as a conference paper at ICLR 2026

We integrate our gradient-based MPC method into Dreamer as shown in [Alg. 7]

Algorithm 2: Dream-MPC integration into Dreamer

Input: Representation model pg (s¢|st—1, at—1, 0¢), transition model gg (s¢|s¢—1, at—1), reward model
o (1¢|st), value function model vy (s¢), policy model 74 (a|s¢), exploration noise p(e), action
repeat R, seed episodes S, collect interval C, batch size B, chunk length L, learning rate 7

Initialize dataset D with S random seed episodes.
Initialize model parameters 6, ¢, 1) randomly.
while not converged do

for update step s = 1..C do

// Dynamics model learning

Draw sequences {(o¢, at, ¢ L+F1B |~ D uniformly at random from the dataset.
Compute loss £(6) from|[Eq. (10)
Update model parameters @ < 0 — nVoL(6).

// Policy learning

Imagine trajectories { (s, a,)}:t from each s;.

Predict rewards E [go (7+|s-)] and values vy (s-).

Compute value estimates V) (s-) via|Eq. (14)

Update ¢ + ¢ + 1V S0 Vi (s5).

Update ¢ ¢ ¢ — 0V 3270 §lvw(s-) — Valso)l1*

// Data collection
01 < env.reset ()

for time step t = 1..[%] do
Infer current state s¢ ~ pg(s¢|St—1, at—1,0¢) from the history.
a; < planner (s¢), seefor details.
Add exploration noise € ~ p(€) to the action.

for action repeat k = 1..R do
L rf,oﬁ_l < env.step (as)

Tty Ot+1 < ZkRzl 7“57 05+1
D+ DU{(01,ar,me){1}

Algorithm 3: Dream-MPC planner for Dreamer

Input: Representation model py(s¢|st—1, at—1, 0¢), transition model go(s¢|s¢—1, a:—1), reward model
qo(7¢|st), value function model vy, (s¢), policy model 74 (a¢|s:), planning horizon H,
optimization iterations I, candidates per iteration .J, action noise o2, action optimization rate o

Initialize proposal by rolling out the policy 74 with the transition model de.t4 i ~ 7o (St:t4+1)-
Generate N candidates by adding noise A/ (0, 02) to the proposal Via

Initialize candidate action sequences a.++m Via

for optimization iterationi = 1,2,...1 do

for candidate action sequence n = 1,2,... N do

Predict imagined states s{™ = SEZLHH vialEq. (16)

Predict rewards E [qg (rim|stm)] and values v, (s$"™)
Compute value estimates V)\(S(Tn>) via[Eq. (14),

(n

Optimize action sequence via a{™ + {a{™ + aVv) V;m (s8N =t,.,t+ H}

Output: First optimized action a§k> with k = arg max,, { V;m JEN

D.1 EXPERIMENTS

We evaluate our method on four different environments from the DeepMind Control Suite and com-
pare our method with PlaNet (Hafner et al.,|2019), Dreamer (Hafner et al.| 2020), SAC+AE (Yarats
et al.,[2021), a variant of the model-free Soft Actor Critic (SAC) (Haarnoja et al.l |2018)) algorithm
for image-based observations and the (hybrid) Grad-MPC method proposed in (S V et al.l [2023).
Note that hybrid Grad-MPC and Dream-MPC both share the general idea of using a policy network

25

Under review as a conference paper at ICLR 2026

Acrobot Swingup Cheetah Run Hopper Hop Walker Run
240 600
£ 70 240
Z 450
© 160
= 500
s 160 300
2
£ 80 Mv’ 250 80 1501
&3]
0h . : . . oL : : : . 0 i | . ; 0L : : : .
0 250K 500K 750K 1M 0 250K 500K 750K 1M 0 250K 500K 750K 1M 0 250K 500K 750K 1M
Environment steps Environment steps Environment steps Environment steps
PlaNet = SAC+AE = Dreamer Dream-MPC (Dreamer)

Figure 12: Learning curves for four tasks from the DeepMind Control Suite. The line represents
the mean episodic return and the shaded area the 95% confidence interval across 3 seeds.

to warm-start gradient-based MPC. We provide a summary of the main differences in|Appendix H
All experiments are performed with only RGB visual observations with a resolution of 64 x 64.

We evaluate the performance of our method when enabling planning already during training. The
learning curves are shown in[Fig. 12]and the evaluation results are presented in[Tab. 15] We find that
our method can not only outperform the baselines, but also that planning during training can improve
the sample efficiency without leading to premature convergence. In contrast to PlaNet (CEM) and
Grad-MPC, which both use 1000 x 10 x 12 = 120000 evaluations of the world model at each time
step, our method only requires 5 X 1 x 15 = 75 evaluations. These results are not only promising
since Dreamer uses a recurrent dynamics model and a relatively long planning horizon, but also in
particular for Acrobot Swingup, which is a non-linear system with chaotic dynamics. All aspects
usually affect gradient quality negatively, especially since first order gradient estimators can accu-
mulate significant variance over long-horizon rollouts, which makes them in particular ineffective in
chaotic systems (Suh et al.| 2022).

Table 15: Performance comparison of different algorithms.

Method ACFObOt Cheetah Run Hopper Hop Walker Run
Swingup
SAC+AE 7+ 19 495 + 100 86 + 75 453 + 69
PlaNet 7+18 535+ 70 1+4 228 + 149
Dreamer 134 + 91 751 £ 111 182 £43 575+ 33
Grad-MPC 7418 438 £+ 81 3+5 382 + 35
Hybrid Grad-MPC 144 +7 591 4 131 158 + 47 556 4 33
CEM + policy 12+ 26 674 £ 20 43 +42 638 + 21

Dream-MPC (Dreamer) 147 + 101 836 + 49 298 + 86 632 £+ 52

The results are the mean episode returns and standard deviations for
three random seeds and ten test episodes. Best and second best results
are highlighted.

We benchmark inference times of the different methods on a single Nvidia GeForce RTX 4090 GPU.
The results in[Tab. 16]show that Dream-MPC is significantly faster as Grad-MPC, which uses a much
higher number of candidate trajectories. While hybrid Grad-MPC is faster than Dream-MPC due to
using a horizon of one, the overall performance is worse compared to using the policy only because
such a myopic optimization is most likely unsuitable for many problems. Note that at the moment
a batched version of one operation in the recurrent world model is missing in PyTorch, which slows
the parallelized gradient computation down. While this can potentially be further improved, it affects
all gradient-based MPC methods in the same way, thus leading to a fair comparison.

Table 16: Inference times of different methods for Acrobot Swingup. Mean and standard devia-
tion for three random seeds and ten test episodes per seed.

Method Inference time
PlaNet 31.10 £ 0.65 ms
Grad-MPC 195.75 £ 1.33 ms
Hybrid Grad-MPC 23.16 £ 0.55 ms
Dream-MPC (Dreamer) 44.86 £ 0.60 ms

26

Under review as a conference paper at ICLR 2026

D.2 GRADIENT ANALYSIS

We evaluate the planner gradients of Grad-MPC and of our method for the ground truth dynamics
(simulator) and the learned dynamics model for different planning horizons on the Pendulum-v1 en-
vironment with state observations. As shows, the magnitudes of the gradients are in reason-
able orders when using the ground truth dynamics. While the variance increases for longer horizons
and might also do for more complex problems, the gradients do not explode or vanish in this case.
However, the variance increases significantly for longer planning horizons when using the learned
dynamics model. In contrast to Grad-MPC, the variance increases much less for Dream-MPC and
although relatively large remains bounded, suggesting that the performance issues of gradient-based
planning should not solely be attributed to issues with the gradients caused by the architecture of
the world model. Our work shows that there are more aspects that need to be considered such as the
quality of the initial proposal for MPC and the learned world model, advocating that further research
on gradient-based planning is needed.

H=1 H=3 H=5 H=10 H=15 H=20
8 80
- 0.0 04 . 600 10000
g —1 O e a e
5 0.001 AR Y 0.0] VA A o 10 WVV"W'V\/\,[\/\N 300 WWVW 5000 WMW
o —om —04 1 0 0 0
a 0 1K 102K 0 1K 102K 0 1K 102K 0 1K 102K 0 1K 102K 0 1K 102K
= 16
2 £ 000025 0.08 0.2 0.5 5 6
ZE Ao AR 1 R
O E 0.0000017 A 0.00 0.0 0.0 o] o 8 ”"\,"’M'\m
5 ~0.00025 -008 0.2 05 -1 0| SORREREGa
0 1k 102K 0 11 102K 0 11 102K 0 11 102K [) 11 102K 0 1k 102K
0.6 2 80
- o1 6 1 60 80
£ ~ 0.0
E (e o Ratrsotiy 4 M 10 W 10 W
IS 01 —0.6 1 0 0 0
[0 51K 102K 0 51K 102K 0 51K 102K 0 51K 102K 0 51K 102K 0 51K 102K
=
- = 0.15 _
g E oo 025 0.6 R 16
5 & 15
G & Ty 8
Qg g 0.000 W%M\,W 0.00 vé--v-»\,_—-_ 0.00- 'VWW 0.0 WW 0.0] AR AASRR M
3 _ 0] SN
& oo —0.15 —0.25 0.6 15
0 51K 102K 0 51K 102K 0 51K 102K 0 51K 102K 0 51K 102K 0 51K 102K
Environment steps Environment steps Environment steps Environment steps Environment steps Environment steps
—— Gradient mean —— Gradient variance

Figure 13: Planner gradients of Grad-MPC and Dream-MPC. For different planning horizons
on the Pendulum-v1 environment using the ground truth (simulator) and learned dynamics model
respectively and state observations. The values are represented by their mean and standard deviation
for three different random seeds. The default hyperparameters provided in are used unless
otherwise specified.

As pointed out in [Parmas et al.| (2023)), simply evaluating the gradient quality based on variance
alone is insufficient. Thus, we follow the proposal of the authors and analyze the gradients using
their Expected Signal-to-Noise Ratio (ESNR), which is defined as

ESNR(VR) — E [%] , (17)

t+H+1 . . .
where R = Z:;t :1 r, 1s the return, i.e., the undiscounted sum of rewards.

shows the ESNRs of Grad-MPC and Dream-MPC using the ground truth dynamics or learned
dynamics model. While the ESNR remains stable when using the ground truth dynamics, especially
for longer horizons the ESNR drops when using the learned model. Recent findings (Georgiev et al.}
2025) suggest that learned models can improve ESNR compared to using the ground truth dynamics
for some problems, indicating the possibility of further improvement. While the ESNR significantly
suffers for horizons greater than ten for Grad-MPC using the learned dynamics model, the ESNR for
Dream-MPC remains much more stable for increasing horizons. Together with the variance which
increases but does not explode, this suggests that our method is more robust compared to Grad-MPC.

D.3 MODEL EXPLOITATION

We further analyze the problem of model exploitation, a general challenge in model-based rein-
forcement learning, where policies tend to exploit inaccuracies in high-capacity dynamics models,

27

Under review as a conference paper at ICLR 2026

H=1 H=3 H=5 H=10 H=15 H=20
18 24
2.4
2.0 L8
45 L5
5 MI*W‘\UV/W 18 16
& 15 1.2
= 30 1.2
E: Mm '
3 10 3
© s 0.9 08 0.6
0.6
Lt mant i e s ad ALt]
0.5
0.0 0.6 5 00 00
0 51K 102K 0 51K 102K 0 51K 102K 0 51K 102K 0 51K 102K 0 51K 102K
75 4 ;
750 24 94
2.4
o 3
& 500 50 18 MMM 8 18
F B MM/‘\Nw
£ : 2 A W 12 12
= - N M M
e 0.6
0 1 0.6 g
0.0 0.6
0 51K 102K 0 51K 102K 0 51K 102K 0 51K 102K 0 51K 102K 0 51K 102K
Environment steps Environment steps Environment steps Environment steps Environment steps Environment steps
—— Learned Ground Truth

Figure 14: Expected Signal-to-Noise Ratio (ESNR) of the planner gradients of Grad-MPC
and Dream-MPC. Calculated via for different planning horizons on the Pendulum-v1
environment using the ground truth (simulator) and learned dynamics model respectively and state
observations. The values are represented by their mean and standard deviation for three different

random seeds. The default hyperparameters provided in[Tab. T7]are used unless otherwise specified.

potentially leading to poor real-world performance despite high predicted returns (Clavera et al.,
2018)). Since our method optimizes actions to maximize expected returns, we rely on accurate pre-
dictions. [Fig. 5| shows the mean difference between the actual returns and the predicted returns of
a trained policy on the Acrobot Swingup task in for three different seeds and ten test episodes per
seed. We find that the differences are quite small, which indicates that the policy may not exploit
the learned model. This is probably because the prediction horizon is sufficiently short and MPC
may also help to compensate for model inaccuracies by replanning at each step. While the models
for other environments might not necessarily be as accurate as for Acrobot Swingup, we empirically
find that the learned model tends to estimate the reward quite accurately. Using an ensemble of
models to consider uncertainty as for TD-MPC2 can further help to reduce model exploitation.

? =
E 1.54 150 /f 7

2 / e

g} Il '_l

z = 100+ ===t /

= 107 = I / L

54 B 7 J—

E ot 1’ o T 7

1 50 4 ” ’II ,'l

£ 0.51 / / /

= / { /

3 N P |

0.0 0 200 400 600 800 1000
0 200 400 600 800 1000 Environment steps

Environment steps

Actual

= Predicted
(a) Mean difference between actual and predicted
returns and standard deviation for three different
seeds and ten test episodes per seed.

(b) Actual and predicted return for five exemplary
evaluation episodes.

Figure 15: Analysis of predicted returns over the number of environment steps for Acrobot

Swingup.

28

Under review as a conference paper at ICLR 2026

D.4 IMPLEMENTATION DETAILS

We use PyTorch (Paszke et al}[2019) implementations of SAC+AH} PlaNet and Dreamei| that are
distributed under MIT license and also base the implementations of hybrid Grad-MPC and of our
method on the latter. The hyperparameters are listed in

We use the default hyperparameters for SAC+AE as described in|Yarats et al.[(2021])), except for the
action repeat, which we set to two for a fair comparison.

Table 17: Hyperparameters and their values used for the experiments.

Algorithm Hyperparameter Value
Optimizer Adam 2015)
Max. episode length 000
Action repeat 2
Experience size 1000000
Embedding size 1024
Hidden size 200
Belief size 200
State size 30
All Exploration noise 0.3
Seed episodes 5
Collect interval 100
Batch size 50
Overshooting distance 0
Overshooting KL beta 0
Overshooting reward scale 0
Global KL beta 0
Free nats 3
Bit depth 5
Dreamer & Dream-MPC Planning horizon 15
Activation function ReLU/ELU
Model learning rate 6e-4
Actor learning rate 8e-5
Dreamer, Dream-MPC ir;tic learpling rate ?e—g
. am epsilon e-
& hybrid Grad-MPC Gred CH‘}’) . 100
Discount factor 0.99
Horizon discount factor 0.95
Dream-MPC Act?on op'limization rate 0.1
Action noise 0.2
Action reuse coefficient 0.1
Candidates 5
Optimization iterations 1
Hybrid Grad-MPC Actiop oplimization rate 0.05
Planning horizon 1
Hybrid Grad-MPC & PlaNet Optimization iterations 10
Activation function ReLU
Candidates 1000
Elite candidates 100
PlaNet Grad clip norm 1000
Model learning rate le-3
Adam epsilon le-4
Planning horizon 12

— Appendices continue on next page —

*https://github.com/denisyarats/pytorch_sac_ae
*nttps://github.com/yusukeurakami/dreamer—pytorch

29

https://github.com/denisyarats/pytorch_sac_ae
https://github.com/yusukeurakami/dreamer-pytorch

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

E SUMMARY OF DIFFERENCES TO HYBRID GRAD-MPC

We summarize the main differences between Dream-MPC and hybrid Grad-MPC [023)
(also referred to as policy + Grad-MPC by the original authors) as follows:

* Trajectory optimization. While the general idea of using a policy to initialize gradient-
based MPC is shared by both methods, there are important differences. Dream-MPC uses
not just a single trajectory but samples few trajectories from the policy and optimizes each
trajectory independently. Additionally, rollout and optimization is performed using longer
horizons than just a horizon of one, which is used by hybrid Grad-MPC. While these values
can be parameterized, they have a significant impact on the behavior and performance
of the optimization. For example, using a horizon of one time step leads to a myopic
optimization, which is unsuitable for most problems as outlined in Longer
rollouts with learned world models are also more challenging due to imperfect models as

shown in[Xppendix D7)

* Uncertainty regularization. We propose to incorporate uncertainty regularization into the
MPC objective, which we find to be particularly important for high-dimensional problems.

* Action reuse. We further propose to reuse previously optimized actions instead of com-
pletely discarding them to reduce the number of optimization iterations and improve com-
putational efficiency.

 Extensive experiments and thorough ablations. Grad-MPC [2023)) provides
only limited experimental results and lacks in-depth implementation details. While it shows
that gradient-based MPC with a policy network is promising for two sparse-reward tasks
from the DeepMind Control Suite, it does not provide a full evaluation of the method in
diverse settings such as different benchmarks, different world models or types of obser-
vations, nor does it address high-dimensional problems, efficiency of gradient-based MPC
or analyzes why the performance of gradient-based MPC is usually worse, compared to
gradient-free methods. In contrast, Dream-MPC offers a comprehensive set of experiments
that systematically analyze the performance of our method across a wide range of condi-
tions, providing new insights into its applicability and efficiency to enable further research.

* Training with gradient-based MPC. We also evaluate Dream-MPC when enabling
gradient-based MPC already during training and not just during inference. In contrast,
hybrid Grad-MPC is only evaluated using pretrained Dreamer models. Our results show
that our method is also competitive to gradient-free MPC methods such as MPPI in this
setting. In contrast, our experiments with hybrid Grad-MPC showed that it prematurely
converges due to the horizon of just one time step.

* Different world models. We integrate our method into different types of world mod-
els, i.e., Dreamer (generative) and TD-MPC2 (implicit, control-centric) to show that our
method is not targeted to a specific world model architecture while (hybrid) Grad-MPC
only evaluates their method using Dreamer.

e Implementation. Furthermore, we were not able to reproduce the results shown in |§__V|
(2023) with the given information because it lacks in-depth implementation details
and there is no official implementation available. In contrast, we provide implementation
details and will open-source our implementation so that future work can replicate and build
upon.

30

	Introduction
	Related Work
	Preliminaries
	Dream-MPC: Gradient-Based Model Predictive Control
	Experiments
	Comparison to Baselines
	Ablation Study

	Conclusion
	Environment Details
	Implementation Details
	TD-MPC2
	BMPC
	Dream-MPC

	Additional Results
	Learning Curves
	Detailed Evaluation Results
	Detailed TD-MPC2 and BMPC Results

	Integration into Dreamer
	Experiments
	Gradient Analysis
	Model Exploitation
	Implementation Details

	Summary of Differences to Hybrid Grad-MPC

