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ABSTRACT

State-of-the-art model-based Reinforcement Learning (RL) approaches either use
gradient-free, population-based methods for planning, learned policy networks, or
a combination of policy networks and planning. Hybrid approaches that combine
Model Predictive Control (MPC) with a learned model and a policy prior to ef-
ficiently leverage the benefits of both paradigms have shown promising results.
However, these hybrid approaches typically rely on gradient-free optimization
methods, which can be computationally expensive for high-dimensional control
tasks. While gradient-based methods are a promising approach, recent works have
empirically shown that gradient-based methods often perform worse than their
gradient-free counterparts due to the fact that gradient-based methods can con-
verge to suboptimal local optima and are prone to exploding or vanishing gradi-
ents. We propose Dream-MPC, a novel approach that generates few candidate tra-
jectories from a rolled-out policy and optimizes each trajectory by gradient ascent
using a learned world model. We incorporate uncertainty regularization directly
into the optimization objective and amortize optimization iterations over time by
reusing previously optimized actions. We evaluate our method on multiple contin-
uous control tasks from the DeepMind Control Suite, Meta-World and Humanoid-
Bench and show that gradient-based MPC can significantly improve the perfor-
mance of the underlying policy and can outperform gradient-free MPC and state-
of-the-art baselines. To facilitate further research on gradient-based MPC, we will
open source our code and more at https://dream-mpc.github.io.

1 INTRODUCTION

Reinforcement Learning has achieved promising results in recent years and demonstrated its appli-
cation to robotics (Wu et al., 2023; Lancaster et al., 2024; Seo et al., 2025). However, model-free
methods often struggle with sample efficiency and generalization, especially in complex and high-
dimensional environments (Byravan et al., 2022). Model-based RL, on the other hand, can be more
sample-efficient and can generalize better, but requires an accurate model of the environment (Xiao
et al., 2019). There has been growing interest in world models that are learned from data and can
be used for decision-making (Sutton, 1991; Ha & Schmidhuber, 2018). Many recent works (Hafner
et al., 2019; Hansen et al., 2022; 2024; Srinivas et al., 2018) use a learned world model for plan-
ning through imaginary rollouts with Model Predictive Control (MPC) (Richalet et al., 1978; Cutler
& Ramaker, 1979) and rely on gradient-free, sampling-based methods such as the Cross Entropy
Method (CEM) (Rubinstein, 1997) or Model Predictive Path Integral (MPPI) (Williams et al., 2015;
2017) for trajectory optimization. Although sampling-based MPC methods can be parallelized using
Graphics Processing Units (GPUs), their implementation on embedded systems can be challenging
due to the limited computational resources. In addition, planning with sampling-based methods is
highly inefficient or even intractable in high-dimensional spaces, which might limit their applicabil-
ity to real-world robotics tasks (Xie et al., 2021).

In contrast, fully amortized methods such as Dreamer (Hafner et al., 2020) learn a purely reactive
policy via imaginary rollouts. Inference for the learned policy is computationally less expensive than
the search procedure using CEM. However, amortized policies often lack generalization (Byravan
et al., 2022). Since the learned world models are usually differentiable, it is quite natural to propose
gradient-based methods for trajectory optimization because they can be more efficient than gradient-
free, sampling-based methods. Instead of sampling many action sequences and evaluating them as
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Figure 1: Overview of the proposed approach. Dream-MPC optimizes action sequences rolled
out from a policy network π in latent space z with gradient-based MPC. N candidate trajectories
are sampled from the policy prior and optimized for I iterations using gradient ascent to maximize
the objective J . The first action with the highest predicted return is applied, and the procedure is
repeated for the next time step. The policy network and world model are shared across candidates
and time steps.

done by CEM, gradients backpropagated through the model can be used to guide the optimization
procedure (Bharadhwaj et al., 2020). When the action dimension increases, there is an exponential
growth in search space for CEM, while there is only a small increase in computational load for
gradient descent, i.e., an additional gradient dimension (Bharadhwaj et al., 2020). While few works
propose to combine gradient-based optimization with world models, the empirical results observed
were worse than for their gradient-free counterparts (Bharadhwaj et al., 2020; S V et al., 2023; Zhou
et al., 2025).

We propose Dream-MPC, a novel method which combines gradient-based MPC with a learned pol-
icy network and world model. Our method incorporates uncertainty directly into the optimization
objective and amortizes optimization iterations over time to further improve performance and com-
putational efficiency. We evaluate our method empirically on various tasks from different domains,
including high-dimensional tasks and tasks with visual observations, as well as for different model-
based RL algorithms with distinct types of world models and when using gradient-based MPC dur-
ing training. The results show that our method can significantly improve the performance of the
policy and even outperform its gradient-free equivalent and state-of-the-art methods.

2 RELATED WORK

Model-based RL. Model-based RL tries to learn a model of the environment that can be used to
predict the outcome of actions and plan accordingly (Sutton, 1991). World models are considered a
central component of human thinking and decision-making processes (Sutton, 1991; Ha & Schmid-
huber, 2018; LeCun, 2022). While some approaches to world modelling show promising results and
are able to generalize to different domains, they are mostly focused on representation learning and
not or only partially cover the planning aspect. The combination of elements of planning and search
(especially Monte Carlo Tree Search) with deep reinforcement learning has shown remarkable suc-
cesses in game domains (Silver et al., 2016; 2017a). Most recent model-based RL approaches use
the learned world model for planning through imaginary rollouts (Srinivas et al., 2018; Micheli et al.,
2023; Hansen et al., 2024; Hafner et al., 2025; Mosbach et al., 2025). However, the performance
of these approaches depends heavily on the quality of the learned world model (Talvitie, 2014) and
often suffers from the compounding error problem (Asadi et al., 2019).

MPC and RL. State-of-the-art approaches such as those from the Dreamer family (Hafner et al.,
2020; 2021; 2025) use a policy network to predict the actions directly. While policy networks have
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shown remarkable success for robotics applications, the world model and value function are typically
only utilized during training, and the policy is then frozen during inference. This procedure leads to a
reactive policy, which can be considered as offline planning and limits the generalization capabilities
(Byravan et al., 2022). To address this limitation, recent works such as TD-MPC (Hansen et al.,
2022; 2024), POLO (Lowrey et al., 2019) or PlaNet (Hafner et al., 2019) combine model-based
RL with online planning through MPC to leverage the benefits of both paradigms. Typically, MPC
is performed using gradient-free, sampling-based methods such as CEM or MPPI. Although, the
results obtained empirically are often good, for each time step, hundreds or thousands of different
action alternatives are sampled and evaluated, which increases the computational effort and renders
these approaches only partly suitable for real-time applications.

Gradient-based Planning. The idea of gradient-based planning has been around for decades (Kel-
ley, 1960) and typically refers to backpropagating gradients of a cost or reward function with respect
to actions to iteratively optimize a sequence of actions by gradient descent. While early works re-
lied on known analytic forms of environment dynamics, more recent works revisited the idea with
learned approximate models of the environment (Srinivas et al., 2018; Silver et al., 2017b; Henaff
et al., 2018). However, there are only a few works that have been able to successfully perform
gradient-based planning and these approaches are usually limited since they either require expert
demonstrations (Srinivas et al., 2018) or cannot scale to more challenging robotics tasks (Henaff
et al., 2018). Works such as (Bharadhwaj et al., 2020) and (S V et al., 2023) use a Gaussian as
a proposal distribution for gradient-based optimization. Typically, a more informative proposal is
used for MPC to warm-start the optimization procedure, for example a policy network. Prior works
which combine policy models and MPC mostly use the policy model to generate a trajectory which
is then optimized using gradient-free methods (Byravan et al., 2022; Mansard et al., 2018; Ham-
rick et al., 2021; Argenson & Dulac-Arnold, 2021; Morgan et al., 2021). Since the learned world
models are usually differentiable, also gradient-based methods have been proposed for optimizing
the trajectory proposal from a policy model (S V et al., 2023). However, gradient-based optimiza-
tion methods perform worse in their experiments compared to their gradient-free counterparts. The
reasons are attributed to problems with the gradients, but are not analyzed in detail.

Note that while the general idea of combining policy networks with MPC itself is not new, previously
proposed methods have only been applied to few and relatively simple tasks without systematically
evaluating their performance. To the best of our knowledge, we are the first to achieve a gradient-
based MPC method with a learned world model that can outperform its gradient-free equivalent and
state-of-the-art baselines by introducing uncertainty regularization and reusing previously planned
actions. We have also evaluated the performance of gradient-based MPC for a broad variety of
environments, including state- and image-based observations and different types of world models.
We provide a summary over the main differences between Dream-MPC and hybrid Grad-MPC (S V
et al., 2023) in Appendix E.

3 PRELIMINARIES

Reinforcement Learning can be formulated as an infinite-horizon Markov Decision Process (MDP)
with continuous action and state spaces, which can be defined as a tuple ⟨S,A, T ,R, γ⟩, where S
and A are the state and action spaces, T : S × A → S is the transition or dynamics function,
R : S × A → R is the reward function and γ is a discount factor. The goal is to obtain a policy π :
S → A, which maximizes the expected discounted sum of rewards, i.e., the return Eπ[

∑∞
t=0 γ

trt],
where rt = R(st, π(st)). Model-based RL learns a model of the environment, often referred to as
world model, which is then used for selecting actions and deriving a policy by planning with the
learned model.

Model Predictive Control is a well-known method for trajectory optimization, which minimizes a
cost function over a finite horizon while taking the system dynamics and constraints into account.
The optimization problem is solved at each time step, using the current state as initial condition and
the predicted future states. The solution provides the optimal action sequence for the next few time
steps with respect to the predicted costs. Thus, MPC generates a locally optimal sequence of actions
up to the prediction horizon H by solving the following optimization problem:

π(st) = argmax
at:t+H

E

[
H∑
i=0

γt+iR(st+i, at+i)

]
. (1)
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The learned model is used to estimate the return of a candidate trajectory (Negenborn et al., 2005).
Since solving Eq. (1) leads to a locally optimal solution and is not guaranteed to solve the general
RL problem outlined before, most state-of-the-art methods learn value functions to bootstrap return
estimates beyond the horizon H .

4 DREAM-MPC: GRADIENT-BASED MODEL PREDICTIVE CONTROL

We propose Dream-MPC, which uses gradient ascent to optimize action sequences sampled from a
policy network in an MPC-like manner. The idea is shown in Fig. 1. Since gradient ascent is prone
to getting stuck at local optima, we propose to generate few candidate trajectories by sampling
from a stochastic policy network. Instead of sampling thousands of trajectories from a Gaussian
distribution like CEM, we only consider few trajectories based on the policy. Namely, for each time
step t, the algorithm creates N initial action sequences by performing an imaginary rollout of a
stochastic policy πθ in latent space z using a learned latent dynamics model d:

â(n)τ ∼ πθ(·|z(n)τ ), z
(n)
τ+1 = d(z(n)τ , â(n)τ ), with τ = t, ..., t+H, n = 1, ..., N. (2)

In case of a deterministic policy we add small perturbations to the initial action sequence sampled
from the policy to generate N candidate trajectories. The learned world model predicts the following
latent states as well as the rewards r̂ for each state and the terminal values q̂. Each trajectory
is then refined using gradient ascent with step size α to maximize the respective expected return,
which is estimated using the predictions from the world model. The first action of the candidate
trajectory with the highest expected return is applied, and the planning procedure is repeated in the
next time step. Sampling from a policy provides a warm-start through proposing a decent initial
solution for the optimization, which has been shown to be essential for the performance of gradient-
free (Hansen et al., 2022) and gradient-based optimization methods (Parmas et al., 2018). Our
method allows for combining the benefits of both, fully amortized methods using reactive policies
and fully online planning, namely improved generalization while reducing computational costs. In
contrast to naively sampling random action sequences, which do not leverage any knowledge of the
optimization problem, our approach uses gradients backpropagated through the learned world model
to efficiently guide the optimization.

Since we optimize actions over a receding horizon, but only apply the first action at each time
step, we propose to amortize optimization iterations over time by reusing corresponding optimized
actions from previous time steps to initialize actions as a mixture of previously optimized action ã
and policy actions â:

a(n)τ = ρ · ã(n)τ−1 + (1− ρ) · â(n)τ , n = 1, ..., N, (3)

where ρ is the reuse coefficient, which controls the influence of the previously optimized actions.
For the action at time step t + H , there is no previously planned action. Thus, we initialize the
planned action by the same value as the planned action of the time step before.

For our experiments, we integrate our method into TD-MPC2 (Hansen et al., 2024), a model-based
RL algorithm, which performs local trajectory optimization using MPPI in the latent space of a
learned world model. Instead of learning a dynamics model using a reconstruction objective, TD-
MPC2 implicitly learns a control-centric world model from environment interactions using a com-
bination of joint-embedding prediction, reward prediction, and TD-learning without decoding ob-
servations.

The TD-MPC2 architecture consists of following five learned components:

Encoder zt = h(st) (maps observations to latent representations),
Latent dynamics zt+1 = d(zt, at) (predicts latent forward dynamics),
Reward r̂t = R(zt, at) (predicts reward r of a transition),
Terminal value q̂t = Q(zt, at) (predicts discounted sum of rewards, i.e., return),
Policy prior ât ∼ πθ(zt) (predicts action a∗ that maximizes Q),

where s and a are the states and actions, and z is the latent representation. Since we only consider
single-task experiments in this work, we omit the learnable task embedding used for multi-task
world models.

4
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The policy prior πθ serves to guide the sampling-based MPPI trajectory optimizer in TD-MPC2 as
well as our gradient-based method. TD-MPC2 maintains a replay buffer B during online interaction,
which is used to iteratively update the world model and collect new environment data by planning
with the learned model. Please refer to Appendix B for details on the model training, architecture
and MPPI planning procedure. We replace the MPPI planner by our gradient-based MPC method.

Algorithm 1: Dream-MPC
Input: Encoder h(s), dynamics model d(z, a), reward model R(z, a), value function model Q(z, a),

policy prior πθ(z), current state st, planning horizon H , optimization iterations I , candidates per
iteration N , action optimization rate α

Encode state into latent representation zt ← h(st).
Sample N action sequences by rolling out the policy πθ with the latent dynamics model d.
Initialize candidate action sequences at:t+H via Eq. (3).
for optimization iteration i = 1, 2, . . . I do

for candidate action sequence n = 1, 2, . . . N do
for rollout step τ = t . . . t+H − 1 do

Predict reward r̂(n)τ = R(zτ , aτ ).
Predict uncertainty u(n)

τ via Eq. (5).
Predict next latent state z(n)τ+1 ← d(zτ , aτ ).

Predict terminal value q̂(n)t+H = Q(zt+H , at+H).
Compute optimization objective J(n) using r̂, q̂ and u via Eq. (6).
Optimize action sequence via a(n)t:t+H ← at:t+H + α∇aJ(n).

Output: First optimized action a(k)t with k = argmaxn{J(n)}Nn=1.

Our gradient-based MPC algorithm is summarized in Alg. 1. The MPC procedure requires N×I×H
evaluations of the world model at each time step, which equals 512× 6× 3 = 9216 for MPPI while
our method uses significantly less model evaluations, i.e., only 5 × 1 × 3 = 15. Note that while
we use TD-MPC2 for our experiments, our method can also be integrated into other model-based
reinforcement learning approaches such as Dreamer (Hafner et al., 2020) or DINO-WM (Zhou et al.,
2025). We include results and implementation details on integrating our method into Dreamer in
Appendix D.

We further integrate our method into BMPC (Wang et al., 2025), which builds on TD-MPC2 and
learns a policy πθ by imitating an MPC expert πMPC and at the same time uses the policy to guide
the MPC optimization process. Thus, the policy is learned using the following objective:

Lπ(θ) .
= E

(s,a)0:H∼B

[
H∑
t=0

λt [KL(πMPC(·|h(st), πθ), πθ(·|zt))/max(1, S)− βH(πθ(·|zt))]
]
,

z0 = h(s0), zt+1 = d(zt,at),

S
.
= EMA(Per(KL(πMPC, πθ), 95)− Per(KL(πMPC, πθ), 5), 0.99),

(4)

where H is the entropy, KL is the Kullback-Leibler divergence, z0:H are latent vectors rolled out
using the models h and d, and β and λ are hyperparameters for loss balancing and temporal weight-
ing, respectively. The KL loss is normalized using moving percentiles S, which are commonly used
to stabilize training. The results of Wang et al. (2025) show that this bootstrapping approach can
improve sample efficiency and asymptotic performance, especially for high-dimensional tasks. We
use BMPC since it provides a higher quality policy compared to TD-MPC2, where the performance
gap between the policy network and the MPC procedure is quite large as shown in Appendix C.3.
For more details on BMPC, please refer to Appendix B.2.

We further propose to regularize the planning procedure by penalizing trajectories with a large uncer-
tainty because our method may benefit from conservative value estimations given that the estimates
are directly used for optimizing the actions. Therefore, we estimate the (epistemic) uncertainty of a
trajectory as proposed by Hansen et al. (2024) for offline RL and multi-task world models:

ut = avg([q̂1, q̂2, . . . , q̂M ]) · std([q̂1, q̂2, . . . , q̂M ]), (5)
where q̂m is the predicted value from Q-function m from an ensemble of M Q-functions. The regu-
larization strength at each time step is scaled based on the magnitude of the mean value predictions

5
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for a given latent state to account for different tasks without requiring task-specific coefficients. The
planning objective is then redefined as:

J =

H−1∑
h=t

(
γh ·R(zh, ah)− λunc · uh

)
+ γH ·Q(zt+H , at+H)− λunc · ut+H , (6)

where λunc is a task-agnostic coefficient that balances return maximization and uncertainty mini-
mization. While this requires to specify a coefficient that weighs both aspects, we found it sufficient
in our experiments to set λunc = 0.01. All hyperparameters specific to Dream-MPC are listed in
Tab. 1. We also conduct experiments in which we use this uncertainty regularization for TD-MPC2
and BMPC and include the results in Appendix C.3.

Table 1: Dream-MPC Hyperparameters. We use the same hyperparameters for all tasks. All other
hyperparameters are the default TD-MPC2 and BMPC values respectively.

Hyperparameter Value
Planning
Iterations I 1
Policy prior samples N 5
Optimization step size α 0.1
Action reuse coefficient ρ 0.1
Uncertainty regularization coefficient λunc 0.01

5 EXPERIMENTS

We evaluate our method on a set of 24 diverse continuous control tasks from the DeepMind Control
Suite (Tassa et al., 2020), HumanoidBench (Sferrazza et al., 2024) and Meta-World (Yu et al., 2019)
covering a wide range of task difficulties including high-dimensional state and action spaces, sparse
rewards, complex locomotion, and manipulation. Additionally, we also include results for six DM-
Control tasks with visual observations. For details on the environments, please refer to Appendix A.

5.1 COMPARISON TO BASELINES

We compare our method to following state-of-the-art baselines commonly used for continuous con-
trol tasks:

• Soft-Actor-Critic (SAC) (Haarnoja et al., 2018), a model-free RL method which uses a
maximum entropy objective for policy learning,

• Dreamer-v3 (Hafner et al., 2025), a model-based RL method which learns a policy network
using rollouts from a generative world model,

• TD-MPC2 (Hansen et al., 2024), a model-based RL method which uses policy-guided
MPPI for action selection, and

• BMPC (Wang et al., 2025), an extension of TD-MPC2 which uses imitation learning of the
MPC planner for policy learning.

We first evaluate the performance of Dream-MPC using (pre-)trained TD-MPC2 and BMPC models,
respectively, when replacing the MPPI planner by our proposed gradient-based MPC planner at test
time. For TD-MPC2, we use the models provided by Hansen et al. (2024) for the DeepMind Control
Suite and Meta-World, except for Cartpole Swingup Sparse, Dog Run, Dog Walk, Humanoid Run
and Humanoid Walk because some checkpoints cannot be loaded after code restructuring1. Thus,
we trained new models for these tasks as well as for HumanoidBench. We further train BMPC,
Dreamer-v3 and SAC models for all tasks. For more details on the baselines refer to Appendix B.

We report performance metrics across all 24 tasks using the rliable2 package provided by Agarwal
et al. (2021) to evaluate the performance of our method. Specifically, we report the optimality gap,

1cf. https://github.com/nicklashansen/tdmpc2/issues/23
2https://github.com/google-research/rliable
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Figure 2: Aggregate performance metrics. Left: optimality gap, interquartile median (IQM), mean
and median normalized scores with 95% confidence intervals. Right: score distributions across all
tasks, which provides insights into the variance of the performance. Notably, Dream-MPC achieves
the best results. Detailed results are included in Tabs. 9 to 11.

median, interquartile median (IQM), and mean normalized scores as well as the performance profile
curves with 95% confidence intervals based on the evaluation scores of trained BMPC agents in
Fig. 2. Confidence intervals are estimated using the percentile bootstrap with stratified sampling as
recommended by Agarwal et al. (2021). For a comparison across different score scales of all tasks,
we normalize DMControl scores by diving by 1000, and HumanoidBench scores as proposed in Lee
et al. (2025):

Normalized-Score(x) =
x− random score

target score − random score
, (7)

where we use the random and target success scores provided by the authors. Please refer to Lee et al.
(2025) for more details. Meta-World scores are left as they are since the success rates are already
values between zero and one. The detailed evaluation results for all environments are shown in
Tabs. 9 to 11. Our gradient-based MPC method can improve the performance of the policy network
and outperforms MPPI when using BMPC as a basis. While Dream-MPC can also significantly
improve the performance of the underlying policy for TD-MPC2, it cannot consistently match the
performance of MPPI because for TD-MPC2 there is a relatively large gap between the performance
of the policy only and with MPPI as shown in Appendix C.3. This highlights the need for a good
policy proposal for gradient-based MPC, especially for high-dimensional problems. We discuss this
in more detail in Appendix C.2.

Additionally, we evaluate the performance of our method using image-based observations to demon-
strate that our method also works well in these settings. The results are shown in Tab. 2. We find
that our method can also improve the performance of the underlying policy and even outperforms
MPPI for visual observations.

Table 2: Visual observations. Performance comparison of different BMPC
variants on tasks from the DeepMind Control Suite using image-based ob-
servations.

Environment BMPC BMPC (policy only) Dream-MPC (BMPC)
Acrobot Swingup 287 ± 45 292 ± 18 288 ± 31
Cartpole Swingup Sparse 709 ± 120 625 ± 283 725 ± 141
Cheetah Run 609 ± 23 597 ± 45 643 ± 9
Hopper Hop 253 ± 11 264 ± 6 275 ± 3
Quadruped Walk 427 ± 78 402 ± 44 435 ± 76
Walker Run 740 ± 15 740 ± 6 762 ± 6

The results are the mean episode returns and standard deviations for three random
seeds and ten test episodes. Best and second best results are highlighted.
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Figure 3: Learning curves for four tasks from the DeepMind Control Suite. The line represents
the mean episodic return and the shaded area the 95% confidence interval across 3 seeds.

In addition to analyzing our gradient-based MPC method only during inference, we also evaluate its
performance when it is already being used during training. Therefore, we use TD-MPC2 as a basis
without imitation learning because we hypothesize that the bootstrapping approach of BMPC might
lead to unstable training and premature convergence, especially since we have only few candidate
trajectories. While combining gradient-based MPC with imitation learning is an interesting research
direction, we leave this for future work. Fig. 3 shows the learning curves of BMPC, TD-MPC2
and of Dream-MPC for four different environments. Overall, our gradient-based MPC planner can
match the performance of TD-MPC2’s MPPI planner. While for simpler control problems Dream-
MPC can even outperform TD-MPC2 and match BMPC, we find that for high-dimensional problems
our method performs slightly worse. This issue may result from premature convergence due to less
diversity among the few candidate trajectories compared to MPPI. We also find improvements in
sample-efficiency and asymptotic performance when integrating our method into Dreamer. The
results are shown in Appendix D.1.

We benchmark inference times of the different methods on a single Nvidia GeForce RTX 4090
GPU. The results in Tab. 3 show that Dream-MPC is about as fast as MPPI for lower dimensional
problems, potentially enabling its usage for real-world robotics applications, which require high
control frequencies. While there is an increase in inference time for high-dimensional problems,
our method is still significantly faster as for example Grad-MPC (S V et al., 2023), which samples
hundreds of action sequences from a Gaussian and optimizes each candidate solution for multiple
iterations by using gradient ascent. The corresponding inference times are shown in Tab. 16.

Table 3: Inference times of different methods for Acrobot Swingup. Mean and standard deviation
for three random seeds and ten test episodes per seed.

Method Inference time

BMPC 18.77 ± 0.11 ms
Dream-MPC (BMPC) 18.15 ± 0.12 ms

Method Inference time

TD-MPC2 20.83 ± 0.14 ms
Dream-MPC (TD-MPC2) 19.53 ± 0.11 ms

5.2 ABLATION STUDY

We perform ablations to evaluate our design choices and provide insights into which components
are crucial to successfully perform gradient-based MPC. Using a high-quality policy prior to warm-
start the MPC optimization is particularly important for high-dimensional problems, as shown in
Tab. 4. Together with reusing previously optimized actions, warm-starting reduces computational
costs. We replace the policy prior by a Gaussian distribution to highlight the importance of a good
initial proposal distribution to warm-start the MPC process and use the same number of candidate
trajectories as MPPI, i.e., 512. For a fair comparison, we compensate for the less informative prior
by increasing the number of optimization iterations to five, which, depending on the environment,
leads to an increase in inference time by a factor of about five to ten compared to Dream-MPC. We
further find that uncertainty regularization and amortization of optimization iterations by reuse of
previous planned actions are especially important when using gradient-based MPC during training,
as illustrated in Fig. 4a. Fig. 4b shows a sensitivity analysis of the uncertainty regularization and
reuse coefficients, emphasizing that Dream-MPC is quite robust to the choice of these parameters.
We also conduct experiments in which we use this uncertainty regularization for TD-MPC2 and
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BMPC and include the results in Appendix C.3. The results indicate that for BMPC, the performance
slightly improves – except for HumanoidBench – while for TD-MPC2, the uncertainty regularization
leads to a performance decrease for all three domains. Additionally, we provide an analysis of the
planner gradients when integrating our method into Dreamer in Appendix D.2, which suggests that
Dream-MPC is more robust, compared to Grad-MPC.
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Figure 4: Ablations. (a) Performance of different Dream-MPC (TD-MPC2) variants demonstrating
the importance of each design choice. (b) Performance of Dream-MPC (TD-MPC2) with different
uncertainty regularization and action reuse coefficients. The line represents the mean episodic return
and the shaded area the 95% confidence interval across 3 seeds.

Table 4: Dream-MPC ablations. We compare the performance of different
variants using trained BMPC models.

Method Acrobot Swingup Humanoid Run Button Press Reach

Dream-MPC (BMPC) 596 ± 50 531 ± 38 0.67 ± 0.47 4348 ± 215
w/o MPC (policy-only) 564 ± 52 458 ± 15 1.0 ± 0.0 2117 ± 309
w/o policy prior 554 ± 21 7 ± 4 0.70 ± 0.22 842 ± 239
w/o gradient ascent 579 ± 43 496 ± 25 0.97 ± 0.05 2362 ± 323

The results are the mean episode returns and standard deviations for three random seeds
and ten test episodes. Best and second best results are highlighted.

We further evaluate the performance of fully trained BMPC agents with gradient-based MPC when
varying the number of candidates, the number of optimization iterations, and the planning horizon.
The results for Acrobot Swingup, Humanoid Run and Slide are shown in Fig. 5. All other hyperpa-
rameters are fixed to their default value when varying one. While we use a single set of hyperpa-
rameters across all environments, algorithms, and for state-based and visual observations, we find
that dynamically adjusting the planning parameters can help to further improve performance. The
parameter sweep also shows that increasing the horizon and the number of optimization iterations
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does not necessarily always increase the performance further, but can also impair the performance
for some environments. This issue may result from an inaccurate model, especially when using a
longer prediction horizon than the one used for training the model.
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Figure 5: Parameter sweep. Performance of trained BMPC agents with Dream-MPC at test time
when varying the number of candidates, horizon and number of optimization iterations. When vary-
ing one hyperparameter, the others are fixed to their default value. We also include the performance
of the learned policy πθ and the default values of one iteration, a horizon of three and five candidate
trajectories.

6 CONCLUSION

We propose Dream-MPC, a novel method for gradient-based planning with a learned policy network
and world model, which incorporates amortization of optimization iterations over time and uncer-
tainty to overcome the limitations of previously proposed gradient-based MPC methods, namely
worse performance compared to their gradient-free equivalents and high computational costs. We
evaluate our method on a broad set of diverse tasks from different domains, including visual ob-
servations, to demonstrate its effectiveness. Our empirical evaluation shows that Dream-MPC can
not only outperform the baselines, but is also more robust to hyperparameters and faster compared
to previously proposed gradient-based MPC methods. Overall, our results highlight that gradient-
based trajectory optimization with a learned world model has the potential to significantly improve
the performance of model-based RL algorithms.

Our experiments suggest that it may be beneficial to dynamically adapt the optimization parameters
such as the action optimization step size and number of iterations to further improve the perfor-
mance, especially for high-dimensional problems. As our current approach is applied to single-task
problems, it would also be interesting to extend it to multi-task world models to evaluate its potential
in this setting.

REPRODUCIBILITY STATEMENT

To ensure reproducibility of our work and encourage further research on gradient-based MPC, we
have included details including hyperparameters of our proposed method as well as for the base-
lines in Section 4 and Appendix B. We will also release our source code and more at https:
//dream-mpc.github.io.
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A ENVIRONMENT DETAILS

We evaluate our method on a total of 24 continuous control tasks from three different domains: eight
environments from the Deep Mind Control suite, including four high-dimensional locomotion tasks,
eight environments from HumanoidBench, and eight environments from Meta-World. All three do-
mains are infinite-horizon continuous control environments for which we use a fixed episode length,
an action repeat of 2 for the DeepMind Control Suite and Meta-World and 1 for HumanoidBench,
and no termination conditions. We follow the success definition of Hansen et al. (2024). This sec-
tion provides an overview and details for all tasks considered, including their observation and action
dimensions.

Acrobot Cartpole Cheetah Dog

Fish Hopper Humanoid Walker

Figure 6: DeepMind Control Suite benchmarking domains (Tassa et al., 2020).

Table 5: Overview of DeepMind Control Suite tasks. Classification is based on Hubert et al.
(2021); Yarats et al. (2022)

Task Difficulty Reward dim(S) dim(A)
Acrobot Swingup hard dense 6 1
Cartpole Swingup Sparse easy sparse 5 1
Dog Run hard dense 223 38
Dog Walk hard dense 223 38
Fish Swim medium dense 24 5
Hopper Hop medium dense 15 4
Humanoid Run hard dense 67 24
Humanoid Walk hard dense 67 24

We consider following eight tasks from Meta-World:

• Assembly: Pick up a nut and place it onto a peg (peg and nut positions are randomized),
• Button Press: Press a button (button positions are randomized),
• Disassemble: Remove a nut from a peg (peg and nut positions are randomized),
• Lever Pull: Pull a lever down 90 degrees (lever positions are randomized),
• Pick Place Wall: Pick a puck, bypass a wall and place the puck (puck and goal positions

are randomized),
• Push Back: Push the puck to a goal (puck and goal positions are randomized),
• Shelf Place: Pick and place a puck onto a shelf (puck and shelf positions are randomized),
• Window Open: Push and open a window (window positions are randomized).
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All tasks from Meta-World share the same embodiment, observation space (dim(S) = 39) and action
space (dim(A) = 4). Please refer to Yu et al. (2019) for the definitions of the reward functions and
success metrics used in the Meta-World tasks.

Assembly Button Press Disassemble Lever Pull

Pick Place Wall Push Back Shelf Place Window Open

Figure 7: Meta-World manipulation tasks. We consider eight different tasks from the Meta-World
Benchmark.

We further consider following eight tasks from the twelve benchmarking locomotion tasks of Hu-
manoidBench:

• Balance Hard: Balance on the unstable board while the spherical pivot beneath the board
does move,

• Balance Simple: Balance on the unstable board while the spherical pivot beneath the board
does not move,

• Hurdle: Keep forward velocity close to 5 m/s while successfully overcoming hurdles,
• Maze: Reach the goal position in a maze by taking multiple turns at the intersections,
• Reach: Reach a randomly initialized 3D point with the left hand,
• Run: Run forward at a speed of 5 m/s,
• Slide: Walk over an iterating sequence of upward and downward slides at 1 m/s,
• Stair: Traverse an iterating sequence of upward and downward stairs at 1 m/s.

Visualizations of the tasks are shown in Fig. 8.

The benchmark uses the Unitree H1 with two dexterous hands. The observation and action spaces,
and degrees of freedom of the robot system with the dexterous hands are summarized in Tab. 6.

Table 6: Humanoid robot specifications with two hands.

Parameter Value
Observation space 151
Action space 61
DoF (body) 25
DoF (hands) 50

B IMPLEMENTATION DETAILS

TD-MPC2 implementation. We use the official implementation of TD-MPC2 avaliable at https:
//github.com/nicklashansen/tdmpc2, and use the default hyperparameters suggested
by the authors. A complete list of hyperparameters is provided in Tab. 7. Details on TD-MPC2 can
be found in Appendix B.1.

BMPC implementation. We use the official implementation of BMPC from https://github.
com/wertyuilife2/bmpc, and use the default hyperparameters suggested by the authors.
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Balance Reach Run Hurdle

Maze Slide Stair

Figure 8: HumanoidBench locomotion tasks. We consider eight tasks from the HumanoidBench
locomotion benchmark that cover a wide variety of interactions and difficulties. This figure illus-
trates an initial state for each task.

Since the code is based on the official TD-MPC2 codebase and incorporates both algorithms, we
use this implementation as a basis for our method. Details on BMPC are provided in Appendix B.2.

Dreamer-v3 baseline implementation. We use the official implementation of Dreamer-v3 avail-
able at https://github.com/danijar/dreamerv3. We follow the decision of Hansen
et al. (2024) and use the authors’ suggested hyperparameters for proprioceptive control (DeepMind
Control Suite). Please refer to Hafner et al. (2025) and Hansen et al. (2024) for a complete list of
hyperparameters and implementation details.

SAC baseline implementation. We use the SAC implementation from https://github.com/
denisyarats/pytorch_sac as in the TD-MPC (Hansen et al., 2022) paper, and use the hy-
perparameters suggested by the authors. Please refer to their paper for a complete list of hyperpa-
rameters.

B.1 TD-MPC2

Architectural details. All components of TD-MPC2 are implemented as multi-layer perceptrons
(MLPs). The encoder h contains a variable number of layers (2− 5), depending on the architecture
size; all other components are 3-layer MLPs. Intermediate layers consist of a linear layer followed
by LayerNorm and a Mish activation function. The latent representation is normalized as a simplicial
embedding. Q-functions additionally use Dropout. We summarize the TD-MPC2 architecture for
the 5M parameter base (default for online RL) model size using PyTorch-like notation:

Encoder parameters: 167,936
Dynamics parameters: 843,264
Reward parameters: 631,397
Policy parameters: 582,668
Q parameters: 3,156,985
Task parameters: 7,680
Total parameters: 5,389,930

Architecture: TD-MPC2 base 5M(
(task_embedding): Embedding(T, 96, max_norm=1)
(encoder): ModuleDict(
(state): Sequential(

(0): NormedLinear(in_features=S+T, out_features=256, act=Mish)
(1): NormedLinear(in_features=256, out_features=512, act=SimNorm)

)
)
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(dynamics): Sequential(
(0): NormedLinear(in_features=512+T+A, out_features=512, act=Mish)
(1): NormedLinear(in_features=512, out_features=512, act=Mish)
(2): NormedLinear(in_features=512, out_features=512, act=SimNorm)

)
(reward): Sequential(
(0): NormedLinear(in_features=512+T+A, out_features=512, act=Mish)
(1): NormedLinear(in_features=512, out_features=512, act=Mish)
(2): Linear(in_features=512, out_features=101,)

)
(pi): Sequential(
(0): NormedLinear(in_features=512+T, out_features=512, act=Mish)
(1): NormedLinear(in_features=512, out_features=512, act=Mish)
(2): Linear(in_features=512, out_features=2A, bias=True)

)
(Qs): Vectorized ModuleList(
(0-4): 5 x Sequential(

(0): NormedLinear(in_features=512+T+A, out_features=512, dropout=0.01, act=Mish)
(1): NormedLinear(in_features=512, out_features=512, act=Mish)
(2): Linear(in_features=512, out_features=101, bias=True)

)
)

where S is the input dimensionality, T is the number of tasks, and A is the action space. We exclude
the task embedding T from single-task experiments. The exact parameter counts listed above are for
S= 39, T= 80, and A= 6. Since we only perform single-task experiments in this work, all models
contain around 5M parameters for TD-MPC2.

Policy-guided MPC. TD-MPC2 uses Model Predictive Path Integral (MPPI) (Williams et al., 2015;
2017) for local trajectory optimization, which is a gradient-free, sampling-based MPC method.
MPPI iteratively samples action sequences (at, at+1, . . . , at+H) of length H from N (µ, σ2), evalu-
ates their expected return by rolling out latent trajectories with the model, and updates the parameters
µ, σ of a time-dependent multivariate Gaussian with diagonal covariance based on a weighted av-
erage such that the expected return is maximized. This iterative optimization procedure is repeated
for a fixed number of iterations and the first action at ∼ N (µ∗

t , σ
∗
t ) is applied to the environment.

TD-MPC2 augments the sampling procedure with samples from the policy prior πθ and warm-starts
the optimization procedure by initializing (µ, σ) as the solution of the previous step shifted by one
to improve performance. Please refer to Hansen et al. (2022) for more details.

B.2 BMPC

Architectural details. The main architectural difference of BMPC to TD-MPC2 is that it uses two
V -functions instead of five Q-functions:

V parameters: 1,256,650

Total parameters: 3,489,595

Architecture: Difference BMPC to TD-MPC2
(
(Vs): Vectorized ModuleList(

(0-1): 2 x Sequential(
(0): NormedLinear(in_features=512+T, out_features=512, dropout=0.01, act=Mish)
(1): NormedLinear(in_features=512, out_features=512, act=Mish)
(2): Linear(in_features=512, out_features=101, bias=True)

)
)

Model-based TD-learning. Since BMPC does not use a SAC-style max-Q approach for policy
improvement, the authors decide to learn a state value function Vϕ instead of a state-action value
function Qϕ. The value network is learned by minimizing the cross-entropy loss with respect to the
discretized n-step TD-target V̂ computed by using the latest model, policy, and target value network:

LV (ϕ) .
= E

(s,a)0:H∼B

[
H∑
t=0

λt
[
CE(Vϕ(zt), V̂ (h(st)))

]]
, z0 = h(s0), zt+1 = d(zt,at)

V̂ (z′t)
.
= γNVϕ−(z′t+N ) +

N−1∑
k=0

γkR(z′t+k, πθ(z
′
t+k)), z

′
t+1 = d(z′t, πθ(z

′
t))

(8)
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Table 7: TD-MPC2 hyperparameters. We use the same hyperparameters across all tasks. Certain
hyperparameters are set automatically using heuristics.

Hyperparameter Value
Planning
Horizon (H) 3
Iterations 6 (+2 if ∥A∥ ≥ 20)
Population size 512
Policy prior samples 24
Number of elites 64
Minimum std. 0.05
Maximum std. 2
Temperature 0.5
Momentum No

Policy prior
Log std. min. −10
Log std. max. 2

Replay buffer
Capacity 1, 000, 000
Sampling Uniform

Architecture (5M)
Encoder dim 256
MLP dim 512
Latent state dim 512
Task embedding dim 96
Task embedding norm 1
Activation LayerNorm + Mish
Q-function dropout rate 1%
Number of Q-functions 5
Number of reward/value bins 101
SimNorm dim (V ) 8
SimNorm temperature (τ ) 1

Optimization
Update-to-data ratio 1
Batch size 256
Joint-embedding coef. 20
Reward prediction coef. 0.1
Value prediction coef. 0.1
Temporal coef. (λ) 0.5
Q-fn. momentum coef. 0.99
Policy prior entropy coef. 1× 10−4

Policy prior loss norm. Moving (5%, 95%) percentiles
Optimizer Adam (Kingma & Ba, 2015)
Learning rate 3× 10−4

Encoder learning rate 1× 10−4

Gradient clip norm 20
Discount factor Heuristic
Seed steps Heuristic

where N is the TD horizon, z0:H are latent vectors rolled out through the models h and d. V̂ is the
TD-target computed using the model d,R and the policy πθ in an on-policy manner. The authors
use a fixed value of N = 1 to keep compounding errors small.
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Lazy reanalyze. BMPC stores imitation targets in the replay buffer and uses lazy reanalyze to avoid
costly replanning for all samples during every update to compute the policy objective. For every
k-th network update, b samples are drawn from the batch and used to get new imitation targets, i.e.,
the mean and standard deviation of the action distribution πt = πMPC(·|h(st), πθ) by replanning.
These targets πt are then placed back into the replay buffer. Since the replanning is performed
independently of the training process, the replay buffer can be approximately seen as an expert
dataset and used to sample state-action pairs from it for supervised learning. During replanning,
additional noise is added to the policy prior to increase exploration in MPC planning. Thus, the
resulting surrogate policy objective with lazy reanalyze can be defined as:

Llazy
π (θ)

.
= E

(s,a,π)0:H∼B

[
H∑
t=0

λt [KL(πt, πθ(·|zt))/max(1, S)− βH(πθ(·|zt))]
]

(9)

where πt is the expert action distribution from the replay buffer.

Table 8: BMPC hyperparameters. We use the same hyperparameters for all tasks. All other
hyperparameters are the default TD-MPC2 values.

Hyperparameter Value
Planning
Horizon 3
Replanning horizon 3
Lazy reanalyze interval (k) 10
Lazy reanalyze batch size (b) 20

Policy prior
Log std. min. −3
Log std. max. 1
Log std. min. (replanning) −2
Log std. max. (replanning) 1

Architecture
Number of V -functions 2

Optimization
Batch size 256
TD horizon (N ) 1
Policy prior entropy coef. 1× 10−4

B.3 DREAM-MPC

Hyperparameters. We use the same hyperparameters across all tasks. The hyperparameters specific
to our method are listed in Tab. 1.

C ADDITIONAL RESULTS

In this section, we provide the learning curves for all baselines as well as detailed evaluation results
for all environments.

C.1 LEARNING CURVES

Figs. 9 to 11 show the episode returns and the success rates as a function of environment steps,
respectively.
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Figure 9: Learning curves for the DeepMind Control Suite. The line represents the mean episodic
return and the shaded area the 95% confidence interval across 3 seeds.
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Figure 10: Learning curves for Meta-World. The line represents the mean episodic return and the
shaded area the 95% confidence interval across 3 seeds.
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Figure 11: Learning curves for HumanoidBench. The line represents the mean episodic return
and the shaded area the 95% confidence interval across 3 seeds.
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C.2 DETAILED EVALUATION RESULTS

We find that having a good policy is important because it leads to better value estimates, which
are crucial for gradient-based MPC. While Dream-MPC can improve the performance of the policy
for TD-MPC2, it cannot consistently match the performance of MPPI. Since the performance of
the policy is quite weak as shown in Tabs. 12 to 14, this fact favours MPPI, which has a higher
diversity of the initial solutions due to the sampling procedure. While we can further improve the
performance of Dream-MPC with TD-MPC2 as a basis, for example by increasing the number of
optimization iterations, this also increases computational costs. This highlights the importance of a
good initial solution to warm-start the MPC optimization process, especially for high-dimensional
problems.

Table 9: DeepMind Control Suite evaluation results of different algorithms.

Task SAC Dreamer-v3 TD-MPC2 BMPC Dream-MPC
(TD-MPC2)

Dream-MPC
(BMPC)

Acrobot Swingup 176 ± 21 372 ± 141 595 ± 34 587 ± 25 590 ± 40 596 ± 50
Cartpole Swingup Sparse 788 ± 10 538 ± 325 848 ± 0 837 ± 14 847 ± 3 849 ± 1
Fish Swim 657 ± 110 729 ± 98 786 ± 8 804 ± 17 764 ± 56 816 ± 11
Hopper Hop 287 ± 15 198 ± 111 493 ± 47 404 ± 39 307 ± 38 423 ± 54
Dog Run 15 ± 6 26 ± 7 358 ± 228 678 ± 27 115 ± 72 703 ± 19
Dog Walk 42 ± 33 47 ± 20 933 ± 10 937 ± 4 389 ± 22 946 ± 7
Humanoid Run 83 ± 43 1 ± 1 344 ± 60 528 ± 29 110 ± 10 531 ± 38
Humanoid Walk 364 ± 95 2 ± 1 899 ± 10 917 ± 6 338 ± 63 937 ± 4

Mean 302 ± 269 239 ± 261 657 ± 225 711 ± 181 433 ± 259 725 ± 181

The results are the mean episode returns and standard deviations for three random seeds and ten test episodes.
Best and second best results are highlighted.

Table 10: Meta-World evaluation results of different algorithms.

Task SAC Dreamer-v3 TD-MPC2 BMPC Dream-MPC
(TD-MPC2)

Dream-MPC
(BMPC)

Assembly 0.0 ± 0.0 0.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
Button Press 0.27 ± 0.31 0.61 ± 0.02 0.33 ± 0.47 0.33 ± 0.47 0.33 ± 0.47 0.67 ± 0.47
Disassemble 0.03 ± 0.05 0.27 ± 0.23 0.67 ± 0.47 1.0 ± 0.0 0.67 ± 0.47 1.0 ± 0.0
Lever Pull 0.03 ± 0.05 0.52 ± 0.1 0.0 ± 0.0 0.67 ± 0.47 0.0 ± 0.0 0.67 ± 0.47
Pick Place Wall 0.0 ± 0.0 0.21 ± 0.24 1.0 ± 0.0 0.0 ± 0.0 0.67 ± 0.47 0.67 ± 0.47
Push Back 0.67 ± 0.47 0.32 ± 0.23 0.67 ± 0.47 0.33 ± 0.47 0.67 ± 0.47 0.33 ± 0.47
Shelf Place 0.0 ± 0.0 0.27 ± 0.21 0.67 ± 0.47 0.67 ± 0.47 1.0 ± 0.0 1.0 ± 0.0
Window Open 1.0 ± 0.0 0.48 ± 0.09 1.0 ± 0.0 0.67 ± 0.47 0.67 ± 0.47 1.0 ± 0.0

Mean 0.25 ± 0.36 0.33 ± 0.18 0.67 ± 0.33 0.58 ± 0.32 0.62 ± 0.31 0.79 ± 0.23

The results are the mean episode successes and standard deviations for three random seeds and ten
test episodes. Best and second best results are highlighted.

Table 11: HumanoidBench evaluation results of different algorithms.

Task SAC Dreamer-v3 TD-MPC2 BMPC Dream-MPC
(TD-MPC2)

Dream-MPC
(BMPC)

Balance Hard 55 ± 3 28 ± 12 92 ± 12 81 ± 12 45 ± 10 82 ± 12
Balance Simple 70 ± 10 39 ± 14 240 ± 37 489 ± 84 47 ± 14 654 ± 89
Hurdle 5 ± 3 13 ± 5 78 ± 24 120 ± 43 12 ± 1 249 ± 34
Maze 140 ± 7 110 ± 4 169 ± 47 349 ± 2 120 ± 8 266 ± 33
Reach 2048 ± 212 2151 ± 1038 5037 ± 1436 4125 ± 324 2751 ± 444 4348 ± 215
Run 8 ± 3 11 ± 5 136 ± 110 139 ± 81 10 ± 7 302 ± 11
Slide 11 ± 5 56 ± 29 237 ± 54 442 ± 36 16 ± 3 632 ± 114
Stair 15 ± 15 35 ± 17 100 ± 18 403 ± 145 30 ± 6 456 ± 145

Mean 294 ± 664 305 ± 698 761 ± 1617 769 ± 1277 379 ± 897 874 ± 1326

The results are the mean episode returns and standard deviations for three random seeds and ten test
episodes. Best and second best results are highlighted.
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C.3 DETAILED TD-MPC2 AND BMPC RESULTS

We include full results of TD-MPC2 and BMPC for all environments in Tabs. 12 to 14, including the
performance of using the underlying policy network only. We also conduct experiments in which we
apply the test-time regularization defined in Eq. (5) with a regularization coefficient of λunc = 0.01
to TD-MPC2 and BMPC. While the regularization can improve the performance of BMPC in some
cases, it causes a significant performance decrease for TD-MPC2, especially for high-dimensional
problems.

Table 12: DeepMind Control Suite evaluation results of different TD-MPC2 and BMPC variants.

Environment TD-MPC2 TD-MPC2
(policy only)

TD-MPC2 (w/ test-time
regularization) BMPC BMPC (policy

only)
BMPC (w/ test-time

regularization)
Acrobot Swingup 595 ± 34 551 ± 21 594 ± 32 587 ± 25 564 ± 52 573 ± 11
Cartpole Swingup Sparse 848 ± 0 760 ± 114 848 ± 0 837 ± 14 848 ± 1 845 ± 3
Fish Swim 786 ± 8 645 ± 83 783 ± 13 804 ± 17 804 ± 14 776 ± 9
Hopper Hop 493 ± 47 383 ± 154 465 ± 79 404 ± 39 445 ± 106 440 ± 87
Dog Run 358 ± 228 89 ± 52 376 ± 231 678 ± 27 670 ± 13 678 ± 23
Dog Walk 933 ± 10 298 ± 20 926 ± 9 937 ± 4 930 ± 5 940 ± 4
Humanoid Run 344 ± 60 65 ± 2 345 ± 55 528 ± 29 458 ± 15 514 ± 31
Humanoid Walk 899 ± 10 142 ± 36 881 ± 9 917 ± 6 930 ± 7 931 ± 3

Mean 657 ± 225 367 ± 247 652 ± 221 711 ± 181 706 ± 187 712 ± 179

The results are the mean episode returns and standard deviations for three random seeds and ten test episodes.
Best and second best results are highlighted.

Table 13: Meta-World evaluation results of different TD-MPC2 and BMPC variants.

Environment TD-MPC2 TD-MPC2
(policy only)

TD-MPC2 (w/ test-time
regularization) BMPC BMPC (policy

only)
BMPC (w/ test-time

regularization)
Assembly 1.0 ± 0.0 1.0 ± 0.0 0.67 ± 0.47 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
Button Press 0.33 ± 0.47 0.0 ± 0.0 0.67 ± 0.47 0.33 ± 0.47 1.0 ± 0.0 0.33 ± 0.47
Disassemble 0.67 ± 0.47 0.67 ± 0.47 0.67 ± 0.47 1.0 ± 0.0 0.67 ± 0.47 1.0 ± 0.0
Lever Pull 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.67 ± 0.47 1.0 ± 0.0 0.67 ± 0.47
Pick Place Wall 1.0 ± 0.0 0.0 ± 0.0 0.33 ± 0.47 0.0 ± 0.0 0.67 ± 0.47 0.33 ± 0.47
Push Back 0.67 ± 0.47 0.33 ± 0.47 0.67 ± 0.47 0.33 ± 0.47 0.33 ± 0.47 0.33 ± 0.47
Shelf Place 0.67 ± 0.47 0.67 ± 0.47 1.0 ± 0.0 0.67 ± 0.47 1.0 ± 0.0 1.0 ± 0.0
Window Open 1.0 ± 0.0 0.33 ± 0.47 1.0 ± 0.0 0.67 ± 0.47 1.0 ± 0.0 0.67 ± 0.47

Mean 0.67 ± 0.33 0.38 ± 0.35 0.62 ± 0.31 0.58 ± 0.32 0.83 ± 0.24 0.67 ± 0.29

The results are the mean episode returns and standard deviations for three random seeds and ten test
episodes. Best and second best results are highlighted.

Table 14: HumanoidBench evaluation results of different TD-MPC2 and BMPC variants.

Environment TD-MPC2 TD-MPC2
(policy only)

TD-MPC2 (w/ test-time
regularization) BMPC BMPC (policy

only)
BMPC (w/ test-time

regularization)
Balance Hard 92 ± 12 34 ± 3 94 ± 22 81 ± 12 78 ± 8 80 ± 9
Balance Simple 240 ± 37 33 ± 16 208 ± 34 489 ± 84 414 ± 45 778 ± 77
Hurdle 78 ± 24 14 ± 3 73 ± 27 120 ± 43 147 ± 40 175 ± 51
Maze 169 ± 47 111 ± 3 115 ± 4 349 ± 2 121 ± 7 347 ± 4
Reach 5037 ± 1436 1558 ± 368 399 ± 208 4125 ± 324 2117 ± 309 2279 ± 376
Run 136 ± 110 8 ± 4 99 ± 72 139 ± 81 91 ± 25 222 ± 56
Slide 237 ± 54 14 ± 2 248 ± 77 442 ± 36 250 ± 26 553 ± 100
Stair 100 ± 18 24 ± 8 91 ± 23 403 ± 145 208 ± 46 432 ± 199

Mean 761 ± 1617 224 ± 505 166 ± 106 769 ± 1277 428 ± 646 608 ± 665

The results are the mean episode returns and standard deviations for three random seeds and ten test
episodes. Best and second best results are highlighted.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

D INTEGRATION INTO DREAMER

We further integrate our base method (without uncertainty regularization) into Dreamer (Hafner
et al., 2020) to show that it also works with other model-based RL algorithms. Dreamer learns a
latent dynamics model, often referred to as a world model, consisting of the following components:

• Representation model: pθ(st|st−1, at−1, ot)

• Transition model: qθ(st|st−1, at−1)

• Reward model: qθ(rt|st)
• Observation model (only used as an additional learning signal): qθ(ot|st)

All components are jointly optimized to increase the variational lower bound (ELBO), including
reconstruction terms for observations and rewards as well as a KL regularizer:

LRec = E

[∑
t

(LtO + LtR + LtD)
]
+ const, (10)

where

LtO = ln q(ot|st),
LtR = ln q(rt|st),
LtD = −βKL(p(st|st−1, at−1, ot)||q(st|st−1, at−1)).

(11)

The expected values are calculated based on the dataset and representation model. Please refer to
Hafner et al. (2020) for the derivation of the variational bound.

Following the original Dreamer implementation, we estimate state values using Vλ, an
exponentially-weighted average of the reward estimates for a different number of steps beyond the
horizon with the learned value model to balance bias and variance:

VR(sτ ) = Eqθ,πϕ

[
t+H∑
n=τ

rn

]
, (12)

V k
N (sτ ) = Eqθ,πϕ

[
h−1∑
n=τ

γn−τrn + γh−τvψ(sh)

]
with h = min(τ + k, t+H), (13)

Vλ(sτ ) = (1− λ)

H−1∑
n=1

λn−1V n
N (sτ ) + λH−1V H

N (sτ ). (14)

For each time step t, Dream-MPC creates an initial sequence of actions by performing an imaginary
rollout of the policy πϕ and generates N candidate trajectories adding small perturbations to the
initial action sequence:

{â(n)}Nn=1 = {πϕ(aτ−1|sτ−1)+ϵ(n)τ |τ = t+1, ..., t+H+1}Nn=1, where ϵ(n)τ ∼ N (0, σ2
a). (15)

The imaginary rollout is done by encoding observations and actions into latent space using the rep-
resentation model pθ and repeatedly calling the one-step transition model qθ to generate a sequence
of predicted states {sτ}t+H+1

τ=t+1 for each candidate trajectory.

s
(n)
t ∼ pθ(s

(n)
t |s(n)t−1, a

(n)
t−1, ot), s

(n)
t+1:t+H+1 ∼

t+H+1∏
τ=t+1

qθ(s
(n)
τ |s(n)τ−1, a

(n)
τ−1) (16)
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We integrate our gradient-based MPC method into Dreamer as shown in Alg. 2.

Algorithm 2: Dream-MPC integration into Dreamer
Input: Representation model pθ(st|st−1, at−1, ot), transition model qθ(st|st−1, at−1), reward model

qθ(rt|st), value function model vψ(st), policy model πϕ(at|st), exploration noise p(ϵ), action
repeat R, seed episodes S, collect interval C, batch size B, chunk length L, learning rate η

Initialize dataset D with S random seed episodes.
Initialize model parameters θ, ϕ, ψ randomly.
while not converged do

for update step s = 1..C do
// Dynamics model learning

Draw sequences {(ot, at, rt)L+k
t=k }

B
i=1 ∼ D uniformly at random from the dataset.

Compute loss L(θ) from Eq. (10).
Update model parameters θ ← θ − η∇θL(θ).
// Policy learning

Imagine trajectories {(sτ , aτ )}t+Hτ=t from each st.
Predict rewards E [qθ(rτ |sτ )] and values vψ(sτ ).
Compute value estimates Vλ(sτ ) via Eq. (14).
Update ϕ← ϕ+ η∇ϕ

∑t+H
τ=t Vλ(sτ ).

Update ψ ← ψ − η∇ψ
∑t+H
τ=t

1
2
||vψ(sτ )− Vλ(sτ )||2.

// Data collection
o1 ← env.reset()
for time step t = 1..[T

R
] do

Infer current state st ∼ pθ(st|st−1, at−1, ot) from the history.
at ← planner(st), see Alg. 3 for details.
Add exploration noise ϵ ∼ p(ϵ) to the action.
for action repeat k = 1..R do

rkt , o
k
t+1 ← env.step(at)

rt, ot+1 ←
∑R
k=1 r

k
t , o

R
t+1

D ← D ∪ {(ot, at, rt)Tt=1}

Algorithm 3: Dream-MPC planner for Dreamer
Input: Representation model pθ(st|st−1, at−1, ot), transition model qθ(st|st−1, at−1), reward model

qθ(rt|st), value function model vψ(st), policy model πϕ(at|st), planning horizon H ,
optimization iterations I , candidates per iteration J , action noise σ2

a, action optimization rate α

Initialize proposal by rolling out the policy πϕ with the transition model ât:t+H ∼ πϕ(st:t+H).
Generate N candidates by adding noiseN (0, σ2

a) to the proposal via Eq. (15).
Initialize candidate action sequences at:t+H via Eq. (3).
for optimization iteration i = 1, 2, . . . I do

for candidate action sequence n = 1, 2, . . . N do
Predict imagined states s(n)τ = s

(n)
t:t+H+1 via Eq. (16)

Predict rewards E
[
qθ(r

(n)
τ |s(n)τ )

]
and values vψ(s

(n)
τ )

Compute value estimates Vλ(s
(n)
τ ) via Eq. (14)

Optimize action sequence via a(n)τ ← {a(n)τ + α∇
a
(n)
τ
V

(n)
λ (s

(n)
τ )|τ = t, ..., t+H}

Output: First optimized action a(k)t with k = argmaxn{V
(n)
λ }Nn=1.

D.1 EXPERIMENTS

We evaluate our method on four different environments from the DeepMind Control Suite and com-
pare our method with PlaNet (Hafner et al., 2019), Dreamer (Hafner et al., 2020), SAC+AE (Yarats
et al., 2021), a variant of the model-free Soft Actor Critic (SAC) (Haarnoja et al., 2018) algorithm
for image-based observations and the (hybrid) Grad-MPC method proposed in (S V et al., 2023).
Note that hybrid Grad-MPC and Dream-MPC both share the general idea of using a policy network
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Figure 12: Learning curves for four tasks from the DeepMind Control Suite. The line represents
the mean episodic return and the shaded area the 95% confidence interval across 3 seeds.

to warm-start gradient-based MPC. We provide a summary of the main differences in Appendix E.
All experiments are performed with only RGB visual observations with a resolution of 64 × 64.

We evaluate the performance of our method when enabling planning already during training. The
learning curves are shown in Fig. 12 and the evaluation results are presented in Tab. 15. We find that
our method can not only outperform the baselines, but also that planning during training can improve
the sample efficiency without leading to premature convergence. In contrast to PlaNet (CEM) and
Grad-MPC, which both use 1000× 10× 12 = 120 000 evaluations of the world model at each time
step, our method only requires 5 × 1 × 15 = 75 evaluations. These results are not only promising
since Dreamer uses a recurrent dynamics model and a relatively long planning horizon, but also in
particular for Acrobot Swingup, which is a non-linear system with chaotic dynamics. All aspects
usually affect gradient quality negatively, especially since first order gradient estimators can accu-
mulate significant variance over long-horizon rollouts, which makes them in particular ineffective in
chaotic systems (Suh et al., 2022).

Table 15: Performance comparison of different algorithms.

Method Acrobot
Swingup Cheetah Run Hopper Hop Walker Run

SAC+AE 7 ± 19 495 ± 100 86 ± 75 453 ± 69
PlaNet 7 ± 18 535 ± 70 1 ± 4 228 ± 149
Dreamer 134 ± 91 751 ± 111 182 ± 43 575 ± 33
Grad-MPC 7 ± 18 438 ± 81 3 ± 5 382 ± 35
Hybrid Grad-MPC 144 ± 7 591 ± 131 158 ± 47 556 ± 33
CEM + policy 12 ± 26 674 ± 20 43 ± 42 638 ± 21
Dream-MPC (Dreamer) 147 ± 101 836 ± 49 298 ± 86 632 ± 52

The results are the mean episode returns and standard deviations for
three random seeds and ten test episodes. Best and second best results
are highlighted.

We benchmark inference times of the different methods on a single Nvidia GeForce RTX 4090 GPU.
The results in Tab. 16 show that Dream-MPC is significantly faster as Grad-MPC, which uses a much
higher number of candidate trajectories. While hybrid Grad-MPC is faster than Dream-MPC due to
using a horizon of one, the overall performance is worse compared to using the policy only because
such a myopic optimization is most likely unsuitable for many problems. Note that at the moment
a batched version of one operation in the recurrent world model is missing in PyTorch, which slows
the parallelized gradient computation down. While this can potentially be further improved, it affects
all gradient-based MPC methods in the same way, thus leading to a fair comparison.

Table 16: Inference times of different methods for Acrobot Swingup. Mean and standard devia-
tion for three random seeds and ten test episodes per seed.

Method Inference time

PlaNet 31.10 ± 0.65 ms
Grad-MPC 195.75 ± 1.33 ms
Hybrid Grad-MPC 23.16 ± 0.55 ms
Dream-MPC (Dreamer) 44.86 ± 0.60 ms
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D.2 GRADIENT ANALYSIS

We evaluate the planner gradients of Grad-MPC and of our method for the ground truth dynamics
(simulator) and the learned dynamics model for different planning horizons on the Pendulum-v1 en-
vironment with state observations. As Fig. 13 shows, the magnitudes of the gradients are in reason-
able orders when using the ground truth dynamics. While the variance increases for longer horizons
and might also do for more complex problems, the gradients do not explode or vanish in this case.
However, the variance increases significantly for longer planning horizons when using the learned
dynamics model. In contrast to Grad-MPC, the variance increases much less for Dream-MPC and
although relatively large remains bounded, suggesting that the performance issues of gradient-based
planning should not solely be attributed to issues with the gradients caused by the architecture of
the world model. Our work shows that there are more aspects that need to be considered such as the
quality of the initial proposal for MPC and the learned world model, advocating that further research
on gradient-based planning is needed.
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Figure 13: Planner gradients of Grad-MPC and Dream-MPC. For different planning horizons
on the Pendulum-v1 environment using the ground truth (simulator) and learned dynamics model
respectively and state observations. The values are represented by their mean and standard deviation
for three different random seeds. The default hyperparameters provided in Tab. 17 are used unless
otherwise specified.

As pointed out in Parmas et al. (2023), simply evaluating the gradient quality based on variance
alone is insufficient. Thus, we follow the proposal of the authors and analyze the gradients using
their Expected Signal-to-Noise Ratio (ESNR), which is defined as

ESNR(∇R) = E
[ ∑

E[∇R]2∑
Var[∇R]

]
, (17)

where R =
∑t+H+1
τ=t+1 rτ is the return, i.e., the undiscounted sum of rewards.

Fig. 14 shows the ESNRs of Grad-MPC and Dream-MPC using the ground truth dynamics or learned
dynamics model. While the ESNR remains stable when using the ground truth dynamics, especially
for longer horizons the ESNR drops when using the learned model. Recent findings (Georgiev et al.,
2025) suggest that learned models can improve ESNR compared to using the ground truth dynamics
for some problems, indicating the possibility of further improvement. While the ESNR significantly
suffers for horizons greater than ten for Grad-MPC using the learned dynamics model, the ESNR for
Dream-MPC remains much more stable for increasing horizons. Together with the variance which
increases but does not explode, this suggests that our method is more robust compared to Grad-MPC.

D.3 MODEL EXPLOITATION

We further analyze the problem of model exploitation, a general challenge in model-based rein-
forcement learning, where policies tend to exploit inaccuracies in high-capacity dynamics models,
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Figure 14: Expected Signal-to-Noise Ratio (ESNR) of the planner gradients of Grad-MPC
and Dream-MPC. Calculated via Eq. (17) for different planning horizons on the Pendulum-v1
environment using the ground truth (simulator) and learned dynamics model respectively and state
observations. The values are represented by their mean and standard deviation for three different
random seeds. The default hyperparameters provided in Tab. 17 are used unless otherwise specified.

potentially leading to poor real-world performance despite high predicted returns (Clavera et al.,
2018). Since our method optimizes actions to maximize expected returns, we rely on accurate pre-
dictions. Fig. 15 shows the mean difference between the actual returns and the predicted returns of
a trained policy on the Acrobot Swingup task in for three different seeds and ten test episodes per
seed. We find that the differences are quite small, which indicates that the policy may not exploit
the learned model. This is probably because the prediction horizon is sufficiently short and MPC
may also help to compensate for model inaccuracies by replanning at each step. While the models
for other environments might not necessarily be as accurate as for Acrobot Swingup, we empirically
find that the learned model tends to estimate the reward quite accurately. Using an ensemble of
models to consider uncertainty as for TD-MPC2 can further help to reduce model exploitation.
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Figure 15: Analysis of predicted returns over the number of environment steps for Acrobot
Swingup.
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D.4 IMPLEMENTATION DETAILS

We use PyTorch (Paszke et al., 2019) implementations of SAC+AE3, PlaNet and Dreamer4 that are
distributed under MIT license and also base the implementations of hybrid Grad-MPC and of our
method on the latter. The hyperparameters are listed in Tab. 17.

We use the default hyperparameters for SAC+AE as described in Yarats et al. (2021), except for the
action repeat, which we set to two for a fair comparison.

Table 17: Hyperparameters and their values used for the experiments.

Algorithm Hyperparameter Value

All

Optimizer Adam (Kingma & Ba, 2015)
Max. episode length 1000
Action repeat 2
Experience size 1000000
Embedding size 1024
Hidden size 200
Belief size 200
State size 30
Exploration noise 0.3
Seed episodes 5
Collect interval 100
Batch size 50
Overshooting distance 0
Overshooting KL beta 0
Overshooting reward scale 0
Global KL beta 0
Free nats 3
Bit depth 5

Dreamer & Dream-MPC Planning horizon 15

Dreamer, Dream-MPC
& hybrid Grad-MPC

Activation function ReLU / ELU
Model learning rate 6e-4
Actor learning rate 8e-5
Critic learning rate 8e-5
Adam epsilon 1e-7
Grad clip norm 100
Discount factor 0.99
Horizon discount factor 0.95

Dream-MPC Action optimization rate 0.1
Action noise 0.2
Action reuse coefficient 0.1
Candidates 5
Optimization iterations 1

Hybrid Grad-MPC Action optimization rate 0.05
Planning horizon 1

Hybrid Grad-MPC & PlaNet Optimization iterations 10

PlaNet

Activation function ReLU
Candidates 1000
Elite candidates 100
Grad clip norm 1000
Model learning rate 1e-3
Adam epsilon 1e-4
Planning horizon 12

— Appendices continue on next page —

3https://github.com/denisyarats/pytorch_sac_ae
4https://github.com/yusukeurakami/dreamer-pytorch
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E SUMMARY OF DIFFERENCES TO HYBRID GRAD-MPC

We summarize the main differences between Dream-MPC and hybrid Grad-MPC (S V et al., 2023)
(also referred to as policy + Grad-MPC by the original authors) as follows:

• Trajectory optimization. While the general idea of using a policy to initialize gradient-
based MPC is shared by both methods, there are important differences. Dream-MPC uses
not just a single trajectory but samples few trajectories from the policy and optimizes each
trajectory independently. Additionally, rollout and optimization is performed using longer
horizons than just a horizon of one, which is used by hybrid Grad-MPC. While these values
can be parameterized, they have a significant impact on the behavior and performance
of the optimization. For example, using a horizon of one time step leads to a myopic
optimization, which is unsuitable for most problems as outlined in Appendix D. Longer
rollouts with learned world models are also more challenging due to imperfect models as
shown in Appendix D.2.

• Uncertainty regularization. We propose to incorporate uncertainty regularization into the
MPC objective, which we find to be particularly important for high-dimensional problems.

• Action reuse. We further propose to reuse previously optimized actions instead of com-
pletely discarding them to reduce the number of optimization iterations and improve com-
putational efficiency.

• Extensive experiments and thorough ablations. Grad-MPC (S V et al., 2023) provides
only limited experimental results and lacks in-depth implementation details. While it shows
that gradient-based MPC with a policy network is promising for two sparse-reward tasks
from the DeepMind Control Suite, it does not provide a full evaluation of the method in
diverse settings such as different benchmarks, different world models or types of obser-
vations, nor does it address high-dimensional problems, efficiency of gradient-based MPC
or analyzes why the performance of gradient-based MPC is usually worse, compared to
gradient-free methods. In contrast, Dream-MPC offers a comprehensive set of experiments
that systematically analyze the performance of our method across a wide range of condi-
tions, providing new insights into its applicability and efficiency to enable further research.

• Training with gradient-based MPC. We also evaluate Dream-MPC when enabling
gradient-based MPC already during training and not just during inference. In contrast,
hybrid Grad-MPC is only evaluated using pretrained Dreamer models. Our results show
that our method is also competitive to gradient-free MPC methods such as MPPI in this
setting. In contrast, our experiments with hybrid Grad-MPC showed that it prematurely
converges due to the horizon of just one time step.

• Different world models. We integrate our method into different types of world mod-
els, i.e., Dreamer (generative) and TD-MPC2 (implicit, control-centric) to show that our
method is not targeted to a specific world model architecture while (hybrid) Grad-MPC
only evaluates their method using Dreamer.

• Implementation. Furthermore, we were not able to reproduce the results shown in S V
et al. (2023) with the given information because it lacks in-depth implementation details
and there is no official implementation available. In contrast, we provide implementation
details and will open-source our implementation so that future work can replicate and build
upon.
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