

# 000 001 002 003 004 005 DREAM-MPC: GRADIENT-BASED MODEL PREDI- 006 C TIVE CONTROL WITH LATENT IMAGINATION 007 008 009

010 **Anonymous authors**  
011 Paper under double-blind review  
012  
013  
014  
015  
016  
017  
018  
019  
020  
021  
022  
023  
024  
025  
026  
027  
028  
029  
030  
031

## ABSTRACT

032 State-of-the-art model-based Reinforcement Learning (RL) approaches either use  
033 gradient-free, population-based methods for planning, learned policy networks, or  
034 a combination of policy networks and planning. Hybrid approaches that combine  
035 Model Predictive Control (MPC) with a learned model and a policy prior to ef-  
036 ficiently leverage the benefits of both paradigms have shown promising results.  
037 However, these hybrid approaches typically rely on gradient-free optimization  
038 methods, which can be computationally expensive for high-dimensional control  
039 tasks. While gradient-based methods are a promising approach, recent works have  
040 empirically shown that gradient-based methods often perform worse than their  
041 gradient-free counterparts due to the fact that gradient-based methods can con-  
042 verge to suboptimal local optima and are prone to exploding or vanishing gradi-  
043 ents. We propose Dream-MPC, a novel approach that generates few candidate tra-  
044 jectories from a rolled-out policy and optimizes each trajectory by gradient ascent  
045 using a learned world model. We incorporate uncertainty regularization directly  
046 into the optimization objective and amortize optimization iterations over time by  
047 reusing previously optimized actions. We evaluate our method on multiple contin-  
048 ous control tasks from the DeepMind Control Suite, Meta-World and Humanoid-  
049 Bench and show that gradient-based MPC can significantly improve the perfor-  
050 mance of the underlying policy and can outperform gradient-free MPC and state-  
051 of-the-art baselines. To facilitate further research on gradient-based MPC, we will  
052 open source our code and more at <https://dream-mpc.github.io>.  
053

## 1 INTRODUCTION

032 Reinforcement Learning has achieved promising results in recent years and demonstrated its appli-  
033 cation to robotics (Wu et al., 2023; Lancaster et al., 2024; Seo et al., 2025). However, model-free  
034 methods often struggle with sample efficiency and generalization, especially in complex and high-  
035 dimensional environments (Byravan et al., 2022). Model-based RL, on the other hand, can be more  
036 sample-efficient and can generalize better, but requires an accurate model of the environment (Xiao  
037 et al., 2019). There has been growing interest in world models that are learned from data and can  
038 be used for decision-making (Sutton, 1991; Ha & Schmidhuber, 2018). Many recent works (Hafner  
039 et al., 2019; Hansen et al., 2022; 2024; Srinivas et al., 2018) use a learned world model for plan-  
040 ning through imaginary rollouts with Model Predictive Control (MPC) (Richalet et al., 1978; Cutler  
041 & Ramaker, 1979) and rely on gradient-free, sampling-based methods such as the Cross Entropy  
042 Method (CEM) (Rubinstein, 1997) or Model Predictive Path Integral (MPPI) (Williams et al., 2015;  
043 2017) for trajectory optimization. Although sampling-based MPC methods can be parallelized using  
044 Graphics Processing Units (GPUs), their implementation on embedded systems can be challenging  
045 due to the limited computational resources. In addition, planning with sampling-based methods is  
046 highly inefficient or even intractable in high-dimensional spaces, which might limit their applicabil-  
047 ity to real-world robotics tasks (Xie et al., 2021).  
048

049 In contrast, fully amortized methods such as Dreamer (Hafner et al., 2020) learn a purely reactive  
050 policy via imaginary rollouts. Inference for the learned policy is computationally less expensive than  
051 the search procedure using CEM. However, amortized policies often lack generalization (Byravan  
052 et al., 2022). Since the learned world models are usually differentiable, it is quite natural to propose  
053 gradient-based methods for trajectory optimization because they can be more efficient than gradient-  
054 free, sampling-based methods. Instead of sampling many action sequences and evaluating them as



070 **Figure 1: Overview of the proposed approach.** Dream-MPC optimizes action sequences rolled  
 071 out from a policy network  $\pi$  in latent space  $z$  with gradient-based MPC.  $N$  candidate trajectories  
 072 are sampled from the policy prior and optimized for  $I$  iterations using gradient ascent to maximize  
 073 the objective  $J$ . The first action with the highest predicted return is applied, and the procedure is  
 074 repeated for the next time step. The policy network and world model are shared across candidates  
 075 and time steps.

077 done by CEM, gradients backpropagated through the model can be used to guide the optimization  
 078 procedure (Bharadhwaj et al., 2020). When the action dimension increases, there is an exponential  
 079 growth in search space for CEM, while there is only a small increase in computational load for  
 080 gradient descent, i.e., an additional gradient dimension (Bharadhwaj et al., 2020). While few works  
 081 propose to combine gradient-based optimization with world models, the empirical results observed  
 082 were worse than for their gradient-free counterparts (Bharadhwaj et al., 2020; S V et al., 2023; Zhou  
 083 et al., 2025).

084 We propose Dream-MPC, a novel method which combines gradient-based MPC with a learned pol-  
 085 icy network and world model. Our method incorporates uncertainty directly into the optimization  
 086 objective and amortizes optimization iterations over time to further improve performance and  
 087 computational efficiency. We evaluate our method empirically on various tasks from different domains,  
 088 including high-dimensional tasks and tasks with visual observations, as well as for different model-  
 089 based RL algorithms with distinct types of world models and when using gradient-based MPC dur-  
 090 ing training. The results show that our method can significantly improve the performance of the  
 091 policy and even outperform its gradient-free equivalent and state-of-the-art methods.

## 093 2 RELATED WORK

095 **Model-based RL.** Model-based RL tries to learn a model of the environment that can be used to  
 096 predict the outcome of actions and plan accordingly (Sutton, 1991). World models are considered a  
 097 central component of human thinking and decision-making processes (Sutton, 1991; Ha & Schmid-  
 098 huber, 2018; LeCun, 2022). While some approaches to world modelling show promising results and  
 099 are able to generalize to different domains, they are mostly focused on representation learning and  
 100 not or only partially cover the planning aspect. The combination of elements of planning and search  
 101 (especially Monte Carlo Tree Search) with deep reinforcement learning has shown remarkable suc-  
 102 cesses in game domains (Silver et al., 2016; 2017a). Most recent model-based RL approaches use  
 103 the learned world model for planning through imaginary rollouts (Srinivas et al., 2018; Micheli et al.,  
 104 2023; Hansen et al., 2024; Hafner et al., 2025; Mosbach et al., 2025). However, the performance  
 105 of these approaches depends heavily on the quality of the learned world model (Talvitie, 2014) and  
 106 often suffers from the compounding error problem (Asadi et al., 2019).

107 **MPC and RL.** State-of-the-art approaches such as those from the Dreamer family (Hafner et al.,  
 2020; 2021; 2025) use a policy network to predict the actions directly. While policy networks have

108 shown remarkable success for robotics applications, the world model and value function are typically  
 109 only utilized during training, and the policy is then frozen during inference. This procedure leads to a  
 110 reactive policy, which can be considered as offline planning and limits the generalization capabilities  
 111 (Byravan et al., 2022). To address this limitation, recent works such as TD-MPC (Hansen et al.,  
 112 2022; 2024), POLO (Lowrey et al., 2019) or PlaNet (Hafner et al., 2019) combine model-based  
 113 RL with online planning through MPC to leverage the benefits of both paradigms. Typically, MPC  
 114 is performed using gradient-free, sampling-based methods such as CEM or MPPI. Although, the  
 115 results obtained empirically are often good, for each time step, hundreds or thousands of different  
 116 action alternatives are sampled and evaluated, which increases the computational effort and renders  
 117 these approaches only partly suitable for real-time applications.

118 **Gradient-based Planning.** The idea of gradient-based planning has been around for decades (Kell-  
 119 ley, 1960) and typically refers to backpropagating gradients of a cost or reward function with respect  
 120 to actions to iteratively optimize a sequence of actions by gradient descent. While early works re-  
 121 lied on known analytic forms of environment dynamics, more recent works revisited the idea with  
 122 learned approximate models of the environment (Srinivas et al., 2018; Silver et al., 2017b; Henaff  
 123 et al., 2018). However, there are only a few works that have been able to successfully perform  
 124 gradient-based planning and these approaches are usually limited since they either require expert  
 125 demonstrations (Srinivas et al., 2018) or cannot scale to more challenging robotics tasks (Henaff  
 126 et al., 2018). Works such as (Bharadhwaj et al., 2020) and (S V et al., 2023) use a Gaussian as  
 127 a proposal distribution for gradient-based optimization. Typically, a more informative proposal is  
 128 used for MPC to warm-start the optimization procedure, for example a policy network. Prior works  
 129 which combine policy models and MPC mostly use the policy model to generate a trajectory which  
 130 is then optimized using gradient-free methods (Byravan et al., 2022; Mansard et al., 2018; Ham-  
 131 rick et al., 2021; Argenson & Dulac-Arnold, 2021; Morgan et al., 2021). Since the learned world  
 132 models are usually differentiable, also gradient-based methods have been proposed for optimizing  
 133 the trajectory proposal from a policy model (S V et al., 2023). However, gradient-based optimiza-  
 134 tion methods perform worse in their experiments compared to their gradient-free counterparts. The  
 135 reasons are attributed to problems with the gradients, but are not analyzed in detail.

136 Note that while the general idea of combining policy networks with MPC itself is not new, previously  
 137 proposed methods have only been applied to few and relatively simple tasks without systematically  
 138 evaluating their performance. To the best of our knowledge, we are the first to achieve a gradient-  
 139 based MPC method with a learned world model that can outperform its gradient-free equivalent and  
 140 state-of-the-art baselines by introducing uncertainty regularization and reusing previously planned  
 141 actions. We have also evaluated the performance of gradient-based MPC for a broad variety of  
 142 environments, including state- and image-based observations and different types of world models.  
 143 We provide a summary over the main differences between Dream-MPC and hybrid Grad-MPC (S V  
 144 et al., 2023) in Appendix E.

### 3 PRELIMINARIES

145 **Reinforcement Learning** can be formulated as an infinite-horizon Markov Decision Process (MDP)  
 146 with continuous action and state spaces, which can be defined as a tuple  $\langle \mathcal{S}, \mathcal{A}, \mathcal{T}, \mathcal{R}, \gamma \rangle$ , where  $\mathcal{S}$   
 147 and  $\mathcal{A}$  are the state and action spaces,  $\mathcal{T} : \mathcal{S} \times \mathcal{A} \rightarrow \mathcal{S}$  is the transition or dynamics function,  
 148  $\mathcal{R} : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$  is the reward function and  $\gamma$  is a discount factor. The goal is to obtain a policy  $\pi : \mathcal{S} \rightarrow \mathcal{A}$ ,  
 149 which maximizes the expected discounted sum of rewards, i.e., the return  $\mathbb{E}_{\pi}[\sum_{t=0}^{\infty} \gamma^t r_t]$ ,  
 150 where  $r_t = \mathcal{R}(s_t, \pi(s_t))$ . Model-based RL learns a model of the environment, often referred to as  
 151 world model, which is then used for selecting actions and deriving a policy by planning with the  
 152 learned model.

153 **Model Predictive Control** is a well-known method for trajectory optimization, which minimizes a  
 154 cost function over a finite horizon while taking the system dynamics and constraints into account.  
 155 The optimization problem is solved at each time step, using the current state as initial condition and  
 156 the predicted future states. The solution provides the optimal action sequence for the next few time  
 157 steps with respect to the predicted costs. Thus, MPC generates a locally optimal sequence of actions  
 158 up to the prediction horizon  $H$  by solving the following optimization problem:

$$\pi(s_t) = \arg \max_{a_{t:t+H}} \mathbb{E} \left[ \sum_{i=0}^H \gamma^{t+i} \mathcal{R}(s_{t+i}, a_{t+i}) \right]. \quad (1)$$

162 The learned model is used to estimate the return of a candidate trajectory (Negenborn et al., 2005).  
 163 Since solving Eq. (1) leads to a locally optimal solution and is not guaranteed to solve the general  
 164 RL problem outlined before, most state-of-the-art methods learn value functions to bootstrap return  
 165 estimates beyond the horizon  $H$ .  
 166

#### 167 4 DREAM-MPC: GRADIENT-BASED MODEL PREDICTIVE CONTROL

169 We propose Dream-MPC, which uses gradient ascent to optimize action sequences sampled from a  
 170 policy network in an MPC-like manner. The idea is shown in Fig. 1. Since gradient ascent is prone  
 171 to getting stuck at local optima, we propose to generate few candidate trajectories by sampling  
 172 from a stochastic policy network. Instead of sampling thousands of trajectories from a Gaussian  
 173 distribution like CEM, we only consider few trajectories based on the policy. Namely, for each time  
 174 step  $t$ , the algorithm creates  $N$  initial action sequences by performing an imaginary rollout of a  
 175 stochastic policy  $\pi_\theta$  in latent space  $z$  using a learned latent dynamics model  $d$ :

$$177 \hat{a}_\tau^{(n)} \sim \pi_\theta(\cdot | z_\tau^{(n)}), \quad z_{\tau+1}^{(n)} = d(z_\tau^{(n)}, \hat{a}_\tau^{(n)}), \quad \text{with } \tau = t, \dots, t + H, \quad n = 1, \dots, N. \quad (2)$$

178 In case of a deterministic policy we add small perturbations to the initial action sequence sampled  
 179 from the policy to generate  $N$  candidate trajectories. The learned world model predicts the following  
 180 latent states as well as the rewards  $\hat{r}$  for each state and the terminal values  $\hat{q}$ . Each trajectory  
 181 is then refined using gradient ascent with step size  $\alpha$  to maximize the **respective** expected return,  
 182 which is estimated using the predictions from the world model. The first action of the candidate  
 183 trajectory with the highest expected return is applied, and the planning procedure is repeated in the  
 184 next time step. Sampling from a policy provides a warm-start through proposing a decent initial  
 185 solution for the optimization, which has been shown to be essential for the performance of gradient-  
 186 free (Hansen et al., 2022) and gradient-based optimization methods (Parmas et al., 2018). Our  
 187 method allows for combining the benefits of both, fully amortized methods using reactive policies  
 188 and fully online planning, namely improved generalization while reducing computational costs. In  
 189 contrast to naively sampling random action sequences, which do not leverage any knowledge of the  
 190 optimization problem, our approach uses gradients backpropagated through the learned world model  
 191 to efficiently guide the optimization.

192 Since we optimize actions over a receding horizon, but only apply the first action at each time  
 193 step, we propose to amortize optimization iterations over time by reusing corresponding optimized  
 194 actions from previous time steps to initialize actions as a mixture of previously optimized action  $\tilde{a}$   
 195 and policy actions  $\hat{a}$ :

$$196 \hat{a}_\tau^{(n)} = \rho \cdot \tilde{a}_{\tau-1}^{(n)} + (1 - \rho) \cdot \hat{a}_\tau^{(n)}, \quad n = 1, \dots, N, \quad (3)$$

197 where  $\rho$  is the reuse coefficient, which controls the influence of the previously optimized actions.  
 198 For the action at time step  $t + H$ , there is no previously planned action. Thus, we initialize the  
 199 planned action by the same value as the planned action of the time step before.  
 200

201 For our experiments, we integrate our method into TD-MPC2 (Hansen et al., 2024), a model-based  
 202 RL algorithm, which performs local trajectory optimization using MPPI in the latent space of a  
 203 learned world model. Instead of learning a dynamics model using a reconstruction objective, TD-  
 204 MPC2 implicitly learns a control-centric world model from environment interactions using a com-  
 205 bination of joint-embedding prediction, reward prediction, and TD-learning without decoding ob-  
 206 servations.

207 The TD-MPC2 architecture consists of following five learned components:

|                 |                                  |                                                     |
|-----------------|----------------------------------|-----------------------------------------------------|
| Encoder         | $z_t = h(s_t)$                   | (maps observations to latent representations),      |
| Latent dynamics | $z_{t+1} = d(z_t, a_t)$          | (predicts latent forward dynamics),                 |
| Reward          | $\hat{r}_t = R(z_t, a_t)$        | (predicts reward $r$ of a transition),              |
| Terminal value  | $\hat{q}_t = Q(z_t, a_t)$        | (predicts discounted sum of rewards, i.e., return), |
| Policy prior    | $\hat{a}_t \sim \pi_\theta(z_t)$ | (predicts action $a^*$ that maximizes $Q$ ),        |

214 where  $s$  and  $a$  are the states and actions, and  $z$  is the latent representation. Since we only consider  
 215 single-task experiments in this work, we omit the learnable task embedding used for multi-task  
 world models.

216 The policy prior  $\pi_\theta$  serves to guide the sampling-based MPPI trajectory optimizer in TD-MPC2 as  
 217 well as our gradient-based method. TD-MPC2 maintains a replay buffer  $\mathcal{B}$  during online interaction,  
 218 which is used to iteratively update the world model and collect new environment data by planning  
 219 with the learned model. Please refer to Appendix B for details on the model training, architecture  
 220 and MPPI planning procedure. We replace the MPPI planner by our gradient-based MPC method.  
 221

---

**222 Algorithm 1: Dream-MPC**


---

223 **Input:** Encoder  $h(s)$ , dynamics model  $d(z, a)$ , reward model  $R(z, a)$ , value function model  $Q(z, a)$ ,  
 224 policy prior  $\pi_\theta(z)$ , current state  $s_t$ , planning horizon  $H$ , optimization iterations  $I$ , candidates per  
 225 iteration  $N$ , action optimization rate  $\alpha$

226 Encode state into latent representation  $z_t \leftarrow h(s_t)$ .

227 Sample  $N$  action sequences by rolling out the policy  $\pi_\theta$  with the latent dynamics model  $d$ .

228 Initialize candidate action sequences  $a_{t:t+H}$  via Eq. (3).

229 **for** optimization iteration  $i = 1, 2, \dots, I$  **do**

230   **for** candidate action sequence  $n = 1, 2, \dots, N$  **do**

231     **for** rollout step  $\tau = t \dots t + H - 1$  **do**

232       Predict reward  $\hat{r}_\tau^{(n)} = R(z_\tau, a_\tau)$ .

233       Predict uncertainty  $u_\tau^{(n)}$  via Eq. (5).

234       Predict next latent state  $z_{\tau+1}^{(n)} \leftarrow d(z_\tau, a_\tau)$ .

235       Predict terminal value  $\hat{q}_{t+H}^{(n)} = Q(z_{t+H}, a_{t+H})$ .

236       Compute optimization objective  $J^{(n)}$  using  $\hat{r}$ ,  $\hat{q}$  and  $u$  via Eq. (6).

237       Optimize action sequence via  $a_{t:t+H}^{(n)} \leftarrow a_{t:t+H} + \alpha \nabla_a J^{(n)}$ .

238 **Output:** First optimized action  $a_t^{(k)}$  with  $k = \arg \max_n \{J^{(n)}\}_{n=1}^N$ .

---

240 Our gradient-based MPC algorithm is summarized in Alg. 1. The MPC procedure requires  $N \times I \times H$   
 241 evaluations of the world model at each time step, which equals  $512 \times 6 \times 3 = 9216$  for MPPI while  
 242 our method uses significantly less model evaluations, i.e., only  $5 \times 1 \times 3 = 15$ . Note that while  
 243 we use TD-MPC2 for our experiments, our method can also be integrated into other model-based  
 244 reinforcement learning approaches such as Dreamer (Hafner et al., 2020) or DINO-WM (Zhou et al.,  
 245 2025). We include results and implementation details on integrating our method into Dreamer in  
 246 Appendix D.

247 We further integrate our method into BMPC (Wang et al., 2025), which builds on TD-MPC2 and  
 248 learns a policy  $\pi_\theta$  by imitating an MPC expert  $\pi_{\text{MPC}}$  and at the same time uses the policy to guide  
 249 the MPC optimization process. Thus, the policy is learned using the following objective:

$$251 \quad \mathcal{L}_\pi(\theta) \doteq \mathbb{E}_{(\mathbf{s}, \mathbf{a})_{0:H} \sim \mathcal{B}} \left[ \sum_{t=0}^H \lambda^t [\text{KL}(\pi_{\text{MPC}}(\cdot | h(\mathbf{s}_t), \pi_\theta), \pi_\theta(\cdot | \mathbf{z}_t)) / \max(1, S) - \beta \mathcal{H}(\pi_\theta(\cdot | \mathbf{z}_t))] \right], \quad (4)$$

$$252 \quad \mathbf{z}_0 = h(\mathbf{s}_0), \quad \mathbf{z}_{t+1} = d(\mathbf{z}_t, \mathbf{a}_t),$$

$$253 \quad S \doteq \text{EMA}(\text{Per}(\text{KL}(\pi_{\text{MPC}}, \pi_\theta), 95) - \text{Per}(\text{KL}(\pi_{\text{MPC}}, \pi_\theta), 5), 0.99),$$

254 where  $\mathcal{H}$  is the entropy,  $\text{KL}$  is the Kullback-Leibler divergence,  $\mathbf{z}_{0:H}$  are latent vectors rolled out  
 255 using the models  $h$  and  $d$ , and  $\beta$  and  $\lambda$  are hyperparameters for loss balancing and temporal weight-  
 256 ing, respectively. The  $\text{KL}$  loss is normalized using moving percentiles  $S$ , which are commonly used  
 257 to stabilize training. The results of Wang et al. (2025) show that this bootstrapping approach can  
 258 improve sample efficiency and asymptotic performance, especially for high-dimensional tasks. We  
 259 use BMPC since it provides a **higher quality** policy compared to TD-MPC2, where the performance  
 260 gap between the policy network and the MPC procedure is quite large as shown in Appendix C.3.  
 261 For more details on BMPC, please refer to Appendix B.2.

262 We further propose to regularize the planning procedure by penalizing trajectories with a large uncer-  
 263 tainty because our method may benefit from conservative value estimations given that the estimates  
 264 are directly used for optimizing the actions. Therefore, we estimate the (epistemic) uncertainty of a  
 265 trajectory as proposed by Hansen et al. (2024) for offline RL and multi-task world models:

$$266 \quad u_t = \text{avg}([\hat{q}_1, \hat{q}_2, \dots, \hat{q}_M]) \cdot \text{std}([\hat{q}_1, \hat{q}_2, \dots, \hat{q}_M]), \quad (5)$$

267 where  $\hat{q}_m$  is the predicted value from Q-function  $m$  from an ensemble of  $M$  Q-functions. The regu-  
 268 larization strength at each time step is scaled based on the magnitude of the mean value predictions

270 for a given latent state to account for different tasks without requiring task-specific coefficients. The  
 271 planning objective is then redefined as:  
 272

$$273 \quad J = \sum_{h=t}^{H-1} (\gamma^h \cdot R(z_h, a_h) - \lambda_{\text{unc}} \cdot u_h) + \gamma^H \cdot Q(z_{t+H}, a_{t+H}) - \lambda_{\text{unc}} \cdot u_{t+H}, \quad (6)$$

275 where  $\lambda_{\text{unc}}$  is a task-agnostic coefficient that balances return maximization and uncertainty  
 276 minimization. While this requires to specify a coefficient that weighs both aspects, we found it sufficient  
 277 in our experiments to set  $\lambda_{\text{unc}} = 0.01$ . All hyperparameters specific to Dream-MPC are listed in  
 278 Tab. 1. We also conduct experiments in which we use this uncertainty regularization for TD-MPC2  
 279 and BMPC and include the results in Appendix C.3.  
 280

281 **Table 1: Dream-MPC Hyperparameters.** We use the same hyperparameters for all tasks. All other  
 282 hyperparameters are the default TD-MPC2 and BMPC values respectively.  
 283

| 284             | Hyperparameter                                                | 285 | Value |
|-----------------|---------------------------------------------------------------|-----|-------|
| <b>Planning</b> |                                                               |     |       |
| 286             | Iterations $I$                                                | 287 | 1     |
| 288             | Policy prior samples $N$                                      | 289 | 5     |
| 290             | Optimization step size $\alpha$                               | 291 | 0.1   |
| 292             | Action reuse coefficient $\rho$                               | 293 | 0.1   |
| 294             | Uncertainty regularization coefficient $\lambda_{\text{unc}}$ | 295 | 0.01  |

## 5 EXPERIMENTS

296 We evaluate our method on a set of 24 diverse continuous control tasks from the DeepMind Control  
 297 Suite (Tassa et al., 2020), HumanoidBench (Sferrazza et al., 2024) and Meta-World (Yu et al., 2019)  
 298 covering a wide range of task difficulties including high-dimensional state and action spaces, sparse  
 299 rewards, complex locomotion, and manipulation. Additionally, we also include results for six DM-  
 300 Control tasks with visual observations. For details on the environments, please refer to Appendix A.  
 301

### 5.1 COMPARISON TO BASELINES

302 We compare our method to following state-of-the-art baselines commonly used for continuous con-  
 303 trol tasks:  
 304

- 305 • Soft-Actor-Critic (SAC) (Haarnoja et al., 2018), a model-free RL method which uses a  
 306 maximum entropy objective for policy learning,
- 307 • Dreamer-v3 (Hafner et al., 2025), a model-based RL method which learns a policy network  
 308 using rollouts from a generative world model,
- 309 • TD-MPC2 (Hansen et al., 2024), a model-based RL method which uses policy-guided  
 310 MPPI for action selection, and
- 311 • BMPC (Wang et al., 2025), an extension of TD-MPC2 which uses imitation learning of the  
 312 MPC planner for policy learning.

313 We first evaluate the performance of Dream-MPC using (pre-)trained TD-MPC2 and BMPC models,  
 314 respectively, when replacing the MPPI planner by our proposed gradient-based MPC planner at test  
 315 time. For TD-MPC2, we use the models provided by Hansen et al. (2024) for the DeepMind Control  
 316 Suite and Meta-World, except for Cartpole Swingup Sparse, Dog Run, Dog Walk, Humanoid Run  
 317 and Humanoid Walk because some checkpoints cannot be loaded after code restructuring<sup>1</sup>. Thus,  
 318 we trained new models for these tasks as well as for HumanoidBench. We further train BMPC,  
 319 Dreamer-v3 and SAC models for all tasks. For more details on the baselines refer to Appendix B.  
 320

321 We report performance metrics across all 24 tasks using the *rliable*<sup>2</sup> package provided by Agarwal  
 322 et al. (2021) to evaluate the performance of our method. Specifically, we report the optimality gap,  
 323

<sup>1</sup>cf. <https://github.com/nicklashansen/tdmpc2/issues/23>

<sup>2</sup><https://github.com/google-research/rliable>



Figure 2: **Aggregate performance metrics.** Left: optimality gap, interquartile median (IQM), mean and median normalized scores with 95% confidence intervals. Right: score distributions across all tasks, which provides insights into the variance of the performance. Notably, Dream-MPC achieves the best results. Detailed results are included in Tabs. 9 to 11.

median, interquartile median (IQM), and mean normalized scores as well as the performance profile curves with 95% confidence intervals based on the evaluation scores of trained BMPC agents in Fig. 2. Confidence intervals are estimated using the percentile bootstrap with stratified sampling as recommended by Agarwal et al. (2021). For a comparison across different score scales of all tasks, we normalize DMControl scores by diving by 1000, and HumanoidBench scores as proposed in Lee et al. (2025):

$$\text{Normalized-Score}(x) = \frac{x - \text{random score}}{\text{target score} - \text{random score}}, \quad (7)$$

where we use the random and target success scores provided by the authors. Please refer to Lee et al. (2025) for more details. Meta-World scores are left as they are since the success rates are already values between zero and one. The detailed evaluation results for all environments are shown in Tabs. 9 to 11. Our gradient-based MPC method can improve the performance of the policy network and outperforms MPPI when using BMPC as a basis. While Dream-MPC can also significantly improve the performance of the underlying policy for TD-MPC2, it cannot consistently match the performance of MPPI because for TD-MPC2 there is a relatively large gap between the performance of the policy only and with MPPI as shown in Appendix C.3. This highlights the need for a good policy proposal for gradient-based MPC, especially for high-dimensional problems. We discuss this in more detail in Appendix C.2.

Additionally, we evaluate the performance of our method using image-based observations to demonstrate that our method also works well in these settings. The results are shown in Tab. 2. We find that our method can also improve the performance of the underlying policy and even outperforms MPPI for visual observations.

Table 2: **Visual observations.** Performance comparison of different BMPC variants on tasks from the DeepMind Control Suite using image-based observations.

| Environment             | BMPC                            | BMPC (policy only)             | Dream-MPC (BMPC)                |
|-------------------------|---------------------------------|--------------------------------|---------------------------------|
| Acrobot Swingup         | $287 \pm 45$                    | <b><math>292 \pm 18</math></b> | $288 \pm 31$                    |
| Cartpole Swingup Sparse | <b><math>709 \pm 120</math></b> | $625 \pm 283$                  | <b><math>725 \pm 141</math></b> |
| Cheetah Run             | $609 \pm 23$                    | $597 \pm 45$                   | <b><math>643 \pm 9</math></b>   |
| Hopper Hop              | $253 \pm 11$                    | $264 \pm 6$                    | <b><math>275 \pm 3</math></b>   |
| Quadruped Walk          | $427 \pm 78$                    | $402 \pm 44$                   | <b><math>435 \pm 76</math></b>  |
| Walker Run              | $740 \pm 15$                    | $740 \pm 6$                    | <b><math>762 \pm 6</math></b>   |

The results are the mean episode returns and standard deviations for three random seeds and ten test episodes. **Best** and second best results are highlighted.



Figure 3: **Learning curves for four tasks from the DeepMind Control Suite.** The line represents the mean episodic return and the shaded area the 95% confidence interval across 3 seeds.

In addition to analyzing our gradient-based MPC method only during inference, we also evaluate its performance when it is already being used during training. Therefore, we use TD-MPC2 as a basis without imitation learning because we hypothesize that the bootstrapping approach of BMPC might lead to unstable training and premature convergence, especially since we have only few candidate trajectories. While combining gradient-based MPC with imitation learning is an interesting research direction, we leave this for future work. Fig. 3 shows the learning curves of BMPC, TD-MPC2 and of Dream-MPC for four different environments. Overall, our gradient-based MPC planner can match the performance of TD-MPC2’s MPPI planner. While for simpler control problems Dream-MPC can even outperform TD-MPC2 and match BMPC, we find that for high-dimensional problems our method performs slightly worse. This issue may result from premature convergence due to less diversity among the few candidate trajectories compared to MPPI. We also find improvements in sample-efficiency and asymptotic performance when integrating our method into Dreamer. The results are shown in Appendix D.1.

We benchmark inference times of the different methods on a single Nvidia GeForce RTX 4090 GPU. The results in Tab. 3 show that Dream-MPC is about as fast as MPPI for lower dimensional problems, potentially enabling its usage for real-world robotics applications, which require high control frequencies. While there is an increase in inference time for high-dimensional problems, our method is still significantly faster as for example Grad-MPC (S V et al., 2023), which samples hundreds of action sequences from a Gaussian and optimizes each candidate solution for multiple iterations by using gradient ascent. The corresponding inference times are shown in Tab. 16.

Table 3: **Inference times of different methods for Acrobot Swingup.** Mean and standard deviation for three random seeds and ten test episodes per seed.

| Method           | Inference time                        | Method              | Inference time                        |
|------------------|---------------------------------------|---------------------|---------------------------------------|
| BMPC             | $18.77 \pm 0.11$ ms                   | TD-MPC2             | $20.83 \pm 0.14$ ms                   |
| Dream-MPC (BMPC) | <b><math>18.15 \pm 0.12</math> ms</b> | Dream-MPC (TD-MPC2) | <b><math>19.53 \pm 0.11</math> ms</b> |

## 5.2 ABLATION STUDY

We perform ablations to evaluate our design choices and provide insights into which components are crucial to successfully perform gradient-based MPC. Using a high-quality policy prior to warm-start the MPC optimization is particularly important for high-dimensional problems, as shown in Tab. 4. Together with reusing previously optimized actions, warm-starting reduces computational costs. We replace the policy prior by a Gaussian distribution to highlight the importance of a good initial proposal distribution to warm-start the MPC process and use the same number of candidate trajectories as MPPI, i.e., 512. For a fair comparison, we compensate for the less informative prior by increasing the number of optimization iterations to five, which, depending on the environment, leads to an increase in inference time by a factor of about five to ten compared to Dream-MPC. We further find that uncertainty regularization and amortization of optimization iterations by reuse of previous planned actions are especially important when using gradient-based MPC during training, as illustrated in Fig. 4a. Fig. 4b shows a sensitivity analysis of the uncertainty regularization and reuse coefficients, emphasizing that Dream-MPC is quite robust to the choice of these parameters. We also conduct experiments in which we use this uncertainty regularization for TD-MPC2 and

432 BMPC and include the results in Appendix C.3. The results indicate that for BMPC, the performance  
 433 slightly improves – except for HumanoidBench – while for TD-MPC2, the uncertainty regularization  
 434 leads to a performance decrease for all three domains. Additionally, we provide an analysis of the  
 435 planner gradients when integrating our method into Dreamer in Appendix D.2, which suggests that  
 436 Dream-MPC is more robust, compared to Grad-MPC.  
 437



465 **Figure 4: Ablations.** (a) Performance of different Dream-MPC (TD-MPC2) variants demonstrating  
 466 the importance of each design choice. (b) Performance of Dream-MPC (TD-MPC2) with different  
 467 uncertainty regularization and action reuse coefficients. The line represents the mean episodic return  
 468 and the shaded area the 95% confidence interval across 3 seeds.  
 469

470 **Table 4: Dream-MPC ablations.** We compare the performance of different  
 471 variants using trained BMPC models.  
 472

| Method                | Acrobot Swingup | Humanoid Run    | Button Press       | Reach             |
|-----------------------|-----------------|-----------------|--------------------|-------------------|
| Dream-MPC (BMPC)      | <b>596 ± 50</b> | <b>531 ± 38</b> | 0.67 ± 0.47        | <b>4348 ± 215</b> |
| w/o MPC (policy-only) | 564 ± 52        | 458 ± 15        | <b>1.0 ± 0.0</b>   | 2117 ± 309        |
| w/o policy prior      | 554 ± 21        | 7 ± 4           | 0.70 ± 0.22        | 842 ± 239         |
| w/o gradient ascent   | <u>579 ± 43</u> | <u>496 ± 25</u> | <u>0.97 ± 0.05</u> | <u>2362 ± 323</u> |

473 The results are the mean episode returns and standard deviations for three random seeds  
 474 and ten test episodes. **Best** and second best results are highlighted.  
 475

476 We further evaluate the performance of fully trained BMPC agents with gradient-based MPC when  
 477 varying the number of candidates, the number of optimization iterations, and the planning horizon.  
 478 The results for Acrobot Swingup, Humanoid Run and Slide are shown in Fig. 5. All other hyperpa-  
 479 rameters are fixed to their default value when varying one. While we use a single set of hyperpa-  
 480 rameters across all environments, algorithms, and for state-based and visual observations, we find  
 481 that dynamically adjusting the planning parameters can help to further improve performance. The  
 482 parameter sweep also shows that increasing the horizon and the number of optimization iterations  
 483

486 does not necessarily always increase the performance further, but can also impair the performance  
 487 for some environments. This issue may result from an inaccurate model, especially when using a  
 488 longer prediction horizon than the one used for training the model.  
 489



512 **Figure 5: Parameter sweep.** Performance of trained BMPC agents with Dream-MPC at test time  
 513 when varying the number of candidates, horizon and number of optimization iterations. When varying  
 514 one hyperparameter, the others are fixed to their default value. We also include the performance  
 515 of the learned policy  $\pi_\theta$  and the default values of one iteration, a horizon of three and five candidate  
 516 trajectories.

## 517 6 CONCLUSION

520 We propose Dream-MPC, a novel method for gradient-based planning with a learned policy network  
 521 and world model, which incorporates amortization of optimization iterations over time and uncer-  
 522 tainty to overcome the limitations of previously proposed gradient-based MPC methods, namely  
 523 worse performance compared to their gradient-free equivalents and high computational costs. We  
 524 evaluate our method on a broad set of diverse tasks from different domains, including visual ob-  
 525 servations, to demonstrate its effectiveness. Our empirical evaluation shows that Dream-MPC can  
 526 not only outperform the baselines, but is also more robust to hyperparameters and faster compared  
 527 to previously proposed gradient-based MPC methods. Overall, our results highlight that gradient-  
 528 based trajectory optimization with a learned world model has the potential to significantly improve  
 529 the performance of model-based RL algorithms.

530 Our experiments suggest that it may be beneficial to dynamically adapt the optimization parameters  
 531 such as the action optimization step size and number of iterations to further improve the perfor-  
 532 mance, especially for high-dimensional problems. As our current approach is applied to single-task  
 533 problems, it would also be interesting to extend it to multi-task world models to evaluate its potential  
 534 in this setting.

## 535 REPRODUCIBILITY STATEMENT

537 To ensure reproducibility of our work and encourage further research on gradient-based MPC, we  
 538 have included details including hyperparameters of our proposed method as well as for the base-  
 539 lines in Section 4 and Appendix B. We will also release our source code and more at <https://dream-mpc.github.io>.

540 REFERENCES  
541

542 Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare.  
543 Deep reinforcement learning at the edge of the statistical precipice. In *Advances in Neural Infor-*  
544 *mation Processing Systems (NeurIPS)*, 2021.

545 Arthur Argenson and Gabriel Dulac-Arnold. Model-based offline planning. In *9th International*  
546 *Conference on Learning Representations (ICLR)*, 2021.

547 Kavosh Asadi, Dipendra Misra, Seungchan Kim, and Michel L. Littman. Combating the  
548 compounding-error problem with a multi-step model, 2019. URL <http://arxiv.org/abs/1905.13320>.

549 Homanga Bharadhwaj, Kevin Xie, and Florian Shkurti. Model-predictive control via cross-entropy  
550 and gradient-based optimization. In *2nd Conference on Learning for Dynamics and Control*  
551 (*L4DC*), 2020.

552 Arunkumar Byravan, Leonard Hasenclever, Piotr Trochim, Mehdi Mirza, Alessandro Davide Ia-  
553 longo, Yuval Tassa, Jost Tobias Springenberg, Abbas Abdolmaleki, Nicolas Heess, Josh Merel,  
554 and Martin A. Riedmiller. Evaluating model-based planning and planner amortization for contin-  
555 uous control. In *10th International Conference on Learning Representations (ICLR)*, 2022.

556 Ignasi Clavera, Jonas Rothfuss, John Schulman, Yasuhiro Fujita, Tamim Asfour, and Pieter Abbeel.  
557 Model-based reinforcement learning via meta-policy optimization. In *2nd Conference on Robot*  
558 *Learning (CoRL)*, 2018.

559 C. R. Cutler and B.L. Ramaker. Dynamic matrix control - A computer control algorithm. *IEEE*  
560 *Transactions on Automatic Control*, 17:72, 1979.

561 Ignat Georgiev, Varun Giridhar, Nicklas Hansen, and Animesh Garg. PWM: Policy learning with  
562 multi-task world models. In *13th International Conference on Learning Representations (ICLR)*,  
563 2025.

564 David Ha and Jürgen Schmidhuber. World models, 2018. URL <http://arxiv.org/abs/1803.10122>.

565 Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft Actor-Critic: Off-policy  
566 maximum entropy deep reinforcement learning with a stochastic actor. In *35th International*  
567 *Conference on Machine Learning (ICML)*, 2018.

568 Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James  
569 Davidson. Learning latent dynamics for planning from pixels. In *36th International Conference*  
570 *on Machine Learning (ICML)*, 2019.

571 Danijar Hafner, Timothy P. Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learn-  
572 ing behaviors by latent imagination. In *8th International Conference on Learning Representations*  
573 (*ICLR*), 2020.

574 Danijar Hafner, Timothy P. Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering Atari with  
575 discrete world models. In *9th International Conference on Learning Representations (ICLR)*,  
576 2021.

577 Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse control tasks  
578 through world models. *Nature*, 640:647–653, 2025.

579 Jessica B. Hamrick, Abram L. Friesen, Feryal M. P. Behbahani, Arthur Guez, Fabio Viola, Sims  
580 Witherspoon, Thomas Anthony, Lars Holger Buesing, Petar Velickovic, and Theophane Weber.  
581 On the role of planning in model-based deep reinforcement learning. In *9th International Con-*  
582 *ference on Learning Representations (ICLR)*, 2021.

583 Nicklas Hansen, Hao Su, and Xiaolong Wang. TD-MPC2: scalable, robust world models for con-  
584 tinuous control. In *12th International Conference on Learning Representations (ICLR)*, 2024.

594 Nicklas A Hansen, Hao Su, and Xiaolong Wang. Temporal difference learning for model predictive  
 595 control. In *39th International Conference on Machine Learning (ICML)*, 2022.

596

597 Mikael Henaff, William F. Whitney, and Yann LeCun. Model-based planning with discrete and  
 598 continuous actions, 2018. URL <http://arxiv.org/abs/1705.07177>.

599

600 Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Mohammadamin Barekatain, Simon  
 601 Schmitt, and David Silver. Learning and planning in complex action spaces. In *38th Interna-*  

602 *tional Conference on Machine Learning (ICML)*, 2021.

603

604 Henry J. Kelley. Gradient theory of optimal flight paths. *ARS Journal*, 30(10):947–954, 1960.

605

606 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In *3rd Interna-*  

607 *tional Conference on Learning Representations (ICLR)*, 2015.

608

609 Patrick Lancaster, Nicklas Hansen, Aravind Rajeswaran, and Vikash Kumar. Modem-v2: Visuo-  
 610 motor world models for real-world robot manipulation. In *IEEE International Conference on*  

611 *Robotics and Automation (ICRA)*, 2024.

612

613 Yann LeCun. A path towards autonomous machine intelligence version 0.9.2, 2022-06-27, 2022.  
 614 URL <https://openreview.net/pdf?id=BZ5a1r-kVsF>.

615

616 Hojoon Lee, Youngdo Lee, Takuma Seno, Donghu Kim, Peter Stone, and Jaegul Choo. Hyperspher-  
 617 ical normalization for scalable deep reinforcement learning. In *42nd International Conference on*  

618 *Machine Learning (ICML)*, 2025.

619

620 Kendall Lowrey, Aravind Rajeswaran, Sham M. Kakade, Emanuel Todorov, and Igor Mordatch.  
 621 Plan online, learn offline: Efficient learning and exploration via model-based control. In *7th*  

622 *International Conference on Learning Representations (ICLR)*, 2019.

623

624 N. Mansard, A. DelPrete, M. Geisert, S. Tonneau, and O. Stasse. Using a memory of motion to  
 625 efficiently warm-start a nonlinear predictive controller. In *IEEE International Conference on*  

626 *Robotics and Automation (ICRA)*, 2018.

627

628 Vincent Micheli, Eloi Alonso, and François Fleuret. Transformers are sample-efficient world mod-  
 629 els. In *11th International Conference on Learning Representations (ICLR)*, 2023.

630

631 Andrew S. Morgan, Daljeet Nandha, Georgia Chalvatzaki, Carlo D’Eramo, Aaron M. Dollar, and  
 632 Jan Peters. Model predictive actor-critic: Accelerating robot skill acquisition with deep reinforce-  

633 *ment learning*. In *IEEE International Conference on Robotics and Automation (ICRA)*, 2021.

634

635 Malte Mosbach, Jan Niklas Ewertz, Angel Villar-Corrales, and Sven Behnke. Sold: Slot object-  
 636 centric latent dynamics models for relational manipulation learning from pixels. In *42nd Interna-*  

637 *tional Conference on Machine Learning (ICML)*, 2025.

638

639 Rudy R. Negenborn, Bart De Schutter, Marco A. Wiering, and Hans Hellendoorn. Learning-based  
 640 model predictive control for markov decision processes. In *16th IFAC World Congress*, 2005.

641

642 Paavo Parmas, Carl Edward Rasmussen, Jan Peters, and Kenji Doya. PIPPS: Flexible model-based  
 643 policy search robust to the curse of chaos. In *35th International Conference on Machine Learning*  

644 *(ICML)*, 2018.

645

646 Paavo Parmas, Takuma Seno, and Yuma Aoki. Model-based reinforcement learning with scalable  
 647 composite policy gradient estimators. In *40th International Conference on Machine Learning*  

648 *(ICML)*, 2023.

649

650 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor  
 651 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward  
 652 Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,  
 653 Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep  
 654 learning library. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2019.

655

656 J. Richalet, A. Rault, J.L. Testud, and J. Papon. Model predictive heuristic control. *Automatica*, 14  
 657 (5):413–428, 1978.

648 Reuven Y. Rubinstein. Optimization of computer simulation models with rare events. *European*  
 649 *Journal of Operational Research*, 99(1):89–112, 1997.  
 650

651 Jyothir S V, Siddhartha Jalagam, Yann LeCun, and Vlad Sobal. Gradient-based planning with world  
 652 models, 2023. URL <http://arxiv.org/abs/2312.17227>.  
 653

654 Younggyo Seo, Carmelo Sferrazza, Haoran Geng, Michal Nauman, Zhao-Heng Yin, and Pieter  
 655 Abbeel. Fasttd3: Simple, fast, and capable reinforcement learning for humanoid control. 2025.  
 656 URL <https://arxiv.org/abs/2505.22642>.  
 657

658 Carmelo Sferrazza, Dun-Ming Huang, Xingyu Lin, Youngwoon Lee, and Pieter Abbeel. Hu-  
 659 manoidBench: Simulated humanoid benchmark for whole-body locomotion and manipulation.  
 660 In *Robotics: Science and Systems Conference (RSS)*, 2024.  
 661

662 David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George Van Den Driess-  
 663 che, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander  
 664 Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap,  
 665 Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game  
 666 of Go with deep neural networks and tree search. *Nature*, 529(7587):484–489, 2016.  
 667

668 David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,  
 669 Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan  
 670 Hui, Laurent Sifre, George Van Den Driessche, Thore Graepel, and Demis Hassabis. Mastering  
 671 the game of Go without human knowledge. *Nature*, 550(7676):354–359, 2017a.  
 672

673 David Silver, Hado van Hasselt, Matteo Hessel, Tom Schaul, Arthur Guez, Tim Harley, Gabriel  
 674 Dulac-Arnold, David Reichert, Neil Rabinowitz, Andre Barreto, and Thomas Degrif. The predic-  
 675 tron: End-to-end learning and planning. In *34th International Conference on Machine Learning*  
 676 (*ICML*), 2017b.  
 677

678 Aravind Srinivas, Allan Jabri, Pieter Abbeel, Sergey Levine, and Chelsea Finn. Universal planning  
 679 networks: Learning generalizable representations for visuomotor control. In *35th International*  
 680 *Conference on Machine Learning (ICML)*, 2018.  
 681

682 Hyung Ju Suh, Max Simchowitz, Kaiqing Zhang, and Russ Tedrake. Do differentiable simulators  
 683 give better policy gradients? In *39th International Conference on Machine Learning (ICML)*,  
 684 2022.  
 685

686 Richard S. Sutton. Dyna, an integrated architecture for learning, planning, and reacting. *ACM*  
 687 *SIGART Bulletin*, 2(4):160–163, 1991.  
 688

689 Erik Talvitie. Model regularization for stable sample rollouts. In *30th Conference on Uncertainty in*  
 690 *Artificial Intelligence (UAI)*, 2014.  
 691

692 Yuval Tassa, Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Piotr Trochim, Siqi Liu,  
 693 Steven Bohez, Josh Merel, Tom Erez, Timothy Lillicrap, and Nicolas Heess. dm\_control: Soft-  
 694 ware and tasks for continuous control. *Software Impacts*, 6, 2020.  
 695

696 Yuhang Wang, Hanwei Guo, Sizhe Wang, Long Qian, and Xuguang Lan. Bootstrapped model  
 697 predictive control. In *13th International Conference on Learning Representations (ICLR)*, 2025.  
 698

699 Grady Williams, Andrew Aldrich, and Evangelos A. Theodorou. Model predictive path integral  
 700 control using covariance variable importance sampling. 2015. URL <http://arxiv.org/abs/1509.01149>.  
 701

702 Grady Williams, Nolan Wagener, Brian Goldfain, Paul Drews, James M. Rehg, Byron Boots, and  
 703 Evangelos A. Theodorou. Information theoretic MPC for model-based reinforcement learning. In  
 704 *IEEE International Conference on Robotics and Automation (ICRA)*, 2017.  
 705

706 Philipp Wu, Alejandro Escontrela, Danijar Hafner, Pieter Abbeel, and Ken Goldberg. Daydreamer:  
 707 World models for physical robot learning. In *6th Conference on Robot Learning (CoRL)*, 2023.  
 708

702 Chenjun Xiao, Yifan Wu, Chen Ma, Dale Schuurmans, and Martin Müller. Learning to combat  
703 compounding-error in model-based reinforcement learning, 2019. URL <https://arxiv.org/abs/1912.11206>.  
704

705 Kevin Xie, Homanga Bharadhwaj, Danijar Hafner, Animesh Garg, and Florian Shkurti. Latent skill  
706 planning for exploration and transfer. In *9th International Conference on Learning Representa-*  
707 *tions (ICLR)*, 2021.

709 Denis Yarats, Amy Zhang, Ilya Kostrikov, Brandon Amos, Joelle Pineau, and Rob Fergus. Improv-  
710 ing sample efficiency in model-free reinforcement learning from images. In *AAAI Conference on*  
711 *Artificial Intelligence*, 2021.

712 Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Mastering visual continuous con-  
713 trol: Improved data-augmented reinforcement learning. In *10th International Conference on*  
714 *Learning Representations (ICLR)*, 2022.

716 Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey  
717 Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.  
718 In *3rd Conference on Robot Learning (CoRL)*, 2019.

719 Gaoyue Zhou, Hengkai Pan, Yann LeCun, and Lerrel Pinto. DINO-WM: World models on pre-  
720 trained visual features enable zero-shot planning. In *42nd International Conference on Machine*  
721 *Learning (ICML)*, 2025.

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **A ENVIRONMENT DETAILS**  
757

758 We evaluate our method on a total of 24 continuous control tasks from three different domains: eight  
 759 environments from the Deep Mind Control suite, including four high-dimensional locomotion tasks,  
 760 eight environments from HumanoidBench, and eight environments from Meta-World. All three do-  
 761 mains are infinite-horizon continuous control environments for which we use a fixed episode length,  
 762 an action repeat of 2 for the DeepMind Control Suite and Meta-World and 1 for HumanoidBench,  
 763 and no termination conditions. We follow the success definition of Hansen et al. (2024). This sec-  
 764 tion provides an overview and details for all tasks considered, including their observation and action  
 765 dimensions.

782 **Figure 6: DeepMind Control Suite benchmarking domains (Tassa et al., 2020).**  
783784 **Table 5: Overview of DeepMind Control Suite tasks.** Classification is based on Hubert et al.  
785 (2021); Yarats et al. (2022)

| 788 <b>Task</b>             | <b>Difficulty</b> | <b>Reward</b> | $\dim(\mathcal{S})$ | $\dim(\mathcal{A})$ |
|-----------------------------|-------------------|---------------|---------------------|---------------------|
| 789 Acrobot Swingup         | hard              | dense         | 6                   | 1                   |
| 790 Cartpole Swingup Sparse | easy              | sparse        | 5                   | 1                   |
| 791 Dog Run                 | hard              | dense         | 223                 | 38                  |
| 792 Dog Walk                | hard              | dense         | 223                 | 38                  |
| 793 Fish Swim               | medium            | dense         | 24                  | 5                   |
| 794 Hopper Hop              | medium            | dense         | 15                  | 4                   |
| 795 Humanoid Run            | hard              | dense         | 67                  | 24                  |
| 796 Humanoid Walk           | hard              | dense         | 67                  | 24                  |

797  
798 We consider following eight tasks from Meta-World:  
799

- 800 • Assembly: Pick up a nut and place it onto a peg (peg and nut positions are randomized),  
801
- 802 • Button Press: Press a button (button positions are randomized),  
803
- 804 • Disassemble: Remove a nut from a peg (peg and nut positions are randomized),  
805
- 806 • Lever Pull: Pull a lever down 90 degrees (lever positions are randomized),  
807
- 808 • Pick Place Wall: Pick a puck, bypass a wall and place the puck (puck and goal positions  
809 are randomized),  
810
- 811 • Push Back: Push the puck to a goal (puck and goal positions are randomized),  
812
- 813 • Shelf Place: Pick and place a puck onto a shelf (puck and shelf positions are randomized),  
814
- 815 • Window Open: Push and open a window (window positions are randomized).

810  
811 All tasks from Meta-World share the same embodiment, observation space ( $\text{dim}(\mathcal{S}) = 39$ ) and action  
812 space ( $\text{dim}(\mathcal{A}) = 4$ ). Please refer to Yu et al. (2019) for the definitions of the reward functions and  
813 success metrics used in the Meta-World tasks.



814  
815  
816  
817  
818  
819  
820  
821  
822  
823  
824  
825  
826  
827  
828  
829  
830  
831  
832  
833  
834  
835  
836  
837  
838  
839  
840  
841  
842  
843  
844  
845  
846  
847  
848  
849  
850  
851  
852  
853  
854  
855  
856  
857  
858  
859  
860  
861  
862  
863  
864  
865  
866  
867  
868  
869  
870  
871  
872  
873  
874  
875  
876  
877  
878  
879  
880  
881  
882  
883  
884  
885  
886  
887  
888  
889  
890  
891  
892  
893  
894  
895  
896  
897  
898  
899  
900  
901  
902  
903  
904  
905  
906  
907  
908  
909  
910  
911  
912  
913  
914  
915  
916  
917  
918  
919  
920  
921  
922  
923  
924  
925  
926  
927  
928  
929  
930  
931  
932  
933  
934  
935  
936  
937  
938  
939  
940  
941  
942  
943  
944  
945  
946  
947  
948  
949  
950  
951  
952  
953  
954  
955  
956  
957  
958  
959  
960  
961  
962  
963  
964  
965  
966  
967  
968  
969  
970  
971  
972  
973  
974  
975  
976  
977  
978  
979  
980  
981  
982  
983  
984  
985  
986  
987  
988  
989  
990  
991  
992  
993  
994  
995  
996  
997  
998  
999  
1000  
1001  
1002  
1003  
1004  
1005  
1006  
1007  
1008  
1009  
1010  
1011  
1012  
1013  
1014  
1015  
1016  
1017  
1018  
1019  
1020  
1021  
1022  
1023  
1024  
1025  
1026  
1027  
1028  
1029  
1030  
1031  
1032  
1033  
1034  
1035  
1036  
1037  
1038  
1039  
1040  
1041  
1042  
1043  
1044  
1045  
1046  
1047  
1048  
1049  
1050  
1051  
1052  
1053  
1054  
1055  
1056  
1057  
1058  
1059  
1060  
1061  
1062  
1063  
1064  
1065  
1066  
1067  
1068  
1069  
1070  
1071  
1072  
1073  
1074  
1075  
1076  
1077  
1078  
1079  
1080  
1081  
1082  
1083  
1084  
1085  
1086  
1087  
1088  
1089  
1090  
1091  
1092  
1093  
1094  
1095  
1096  
1097  
1098  
1099  
1100  
1101  
1102  
1103  
1104  
1105  
1106  
1107  
1108  
1109  
1110  
1111  
1112  
1113  
1114  
1115  
1116  
1117  
1118  
1119  
1120  
1121  
1122  
1123  
1124  
1125  
1126  
1127  
1128  
1129  
1130  
1131  
1132  
1133  
1134  
1135  
1136  
1137  
1138  
1139  
1140  
1141  
1142  
1143  
1144  
1145  
1146  
1147  
1148  
1149  
1150  
1151  
1152  
1153  
1154  
1155  
1156  
1157  
1158  
1159  
1160  
1161  
1162  
1163  
1164  
1165  
1166  
1167  
1168  
1169  
1170  
1171  
1172  
1173  
1174  
1175  
1176  
1177  
1178  
1179  
1180  
1181  
1182  
1183  
1184  
1185  
1186  
1187  
1188  
1189  
1190  
1191  
1192  
1193  
1194  
1195  
1196  
1197  
1198  
1199  
1200  
1201  
1202  
1203  
1204  
1205  
1206  
1207  
1208  
1209  
1210  
1211  
1212  
1213  
1214  
1215  
1216  
1217  
1218  
1219  
1220  
1221  
1222  
1223  
1224  
1225  
1226  
1227  
1228  
1229  
1230  
1231  
1232  
1233  
1234  
1235  
1236  
1237  
1238  
1239  
1240  
1241  
1242  
1243  
1244  
1245  
1246  
1247  
1248  
1249  
1250  
1251  
1252  
1253  
1254  
1255  
1256  
1257  
1258  
1259  
1260  
1261  
1262  
1263  
1264  
1265  
1266  
1267  
1268  
1269  
1270  
1271  
1272  
1273  
1274  
1275  
1276  
1277  
1278  
1279  
1280  
1281  
1282  
1283  
1284  
1285  
1286  
1287  
1288  
1289  
1290  
1291  
1292  
1293  
1294  
1295  
1296  
1297  
1298  
1299  
1300  
1301  
1302  
1303  
1304  
1305  
1306  
1307  
1308  
1309  
1310  
1311  
1312  
1313  
1314  
1315  
1316  
1317  
1318  
1319  
1320  
1321  
1322  
1323  
1324  
1325  
1326  
1327  
1328  
1329  
1330  
1331  
1332  
1333  
1334  
1335  
1336  
1337  
1338  
1339  
1340  
1341  
1342  
1343  
1344  
1345  
1346  
1347  
1348  
1349  
1350  
1351  
1352  
1353  
1354  
1355  
1356  
1357  
1358  
1359  
1360  
1361  
1362  
1363  
1364  
1365  
1366  
1367  
1368  
1369  
1370  
1371  
1372  
1373  
1374  
1375  
1376  
1377  
1378  
1379  
1380  
1381  
1382  
1383  
1384  
1385  
1386  
1387  
1388  
1389  
1390  
1391  
1392  
1393  
1394  
1395  
1396  
1397  
1398  
1399  
1400  
1401  
1402  
1403  
1404  
1405  
1406  
1407  
1408  
1409  
1410  
1411  
1412  
1413  
1414  
1415  
1416  
1417  
1418  
1419  
1420  
1421  
1422  
1423  
1424  
1425  
1426  
1427  
1428  
1429  
1430  
1431  
1432  
1433  
1434  
1435  
1436  
1437  
1438  
1439  
1440  
1441  
1442  
1443  
1444  
1445  
1446  
1447  
1448  
1449  
1450  
1451  
1452  
1453  
1454  
1455  
1456  
1457  
1458  
1459  
1460  
1461  
1462  
1463  
1464  
1465  
1466  
1467  
1468  
1469  
1470  
1471  
1472  
1473  
1474  
1475  
1476  
1477  
1478  
1479  
1480  
1481  
1482  
1483  
1484  
1485  
1486  
1487  
1488  
1489  
1490  
1491  
1492  
1493  
1494  
1495  
1496  
1497  
1498  
1499  
1500  
1501  
1502  
1503  
1504  
1505  
1506  
1507  
1508  
1509  
1510  
1511  
1512  
1513  
1514  
1515  
1516  
1517  
1518  
1519  
1520  
1521  
1522  
1523  
1524  
1525  
1526  
1527  
1528  
1529  
1530  
1531  
1532  
1533  
1534  
1535  
1536  
1537  
1538  
1539  
1540  
1541  
1542  
1543  
1544  
1545  
1546  
1547  
1548  
1549  
1550  
1551  
1552  
1553  
1554  
1555  
1556  
1557  
1558  
1559  
1560  
1561  
1562  
1563  
1564  
1565  
1566  
1567  
1568  
1569  
1570  
1571  
1572  
1573  
1574  
1575  
1576  
1577  
1578  
1579  
1580  
1581  
1582  
1583  
1584  
1585  
1586  
1587  
1588  
1589  
1590  
1591  
1592  
1593  
1594  
1595  
1596  
1597  
1598  
1599  
1600  
1601  
1602  
1603  
1604  
1605  
1606  
1607  
1608  
1609  
1610  
1611  
1612  
1613  
1614  
1615  
1616  
1617  
1618  
1619  
1620  
1621  
1622  
1623  
1624  
1625  
1626  
1627  
1628  
1629  
1630  
1631  
1632  
1633  
1634  
1635  
1636  
1637  
1638  
1639  
1640  
1641  
1642  
1643  
1644  
1645  
1646  
1647  
1648  
1649  
1650  
1651  
1652  
1653  
1654  
1655  
1656  
1657  
1658  
1659  
1660  
1661  
1662  
1663  
1664  
1665  
1666  
1667  
1668  
1669  
1670  
1671  
1672  
1673  
1674  
1675  
1676  
1677  
1678  
1679  
1680  
1681  
1682  
1683  
1684  
1685  
1686  
1687  
1688  
1689  
1690  
1691  
1692  
1693  
1694  
1695  
1696  
1697  
1698  
1699  
1700  
1701  
1702  
1703  
1704  
1705  
1706  
1707  
1708  
1709  
1710  
1711  
1712  
1713  
1714  
1715  
1716  
1717  
1718  
1719  
1720  
1721  
1722  
1723  
1724  
1725  
1726  
1727  
1728  
1729  
1730  
1731  
1732  
1733  
1734  
1735  
1736  
1737  
1738  
1739  
1740  
1741  
1742  
1743  
1744  
1745  
1746  
1747  
1748  
1749  
1750  
1751  
1752  
1753  
1754  
1755  
1756  
1757  
1758  
1759  
1760  
1761  
1762  
1763  
1764  
1765  
1766  
1767  
1768  
1769  
1770  
1771  
1772  
1773  
1774  
1775  
1776  
1777  
1778  
1779  
17710  
17711  
17712  
17713  
17714  
17715  
17716  
17717  
17718  
17719  
17720  
17721  
17722  
17723  
17724  
17725  
17726  
17727  
17728  
17729  
17730  
17731  
17732  
17733  
17734  
17735  
17736  
17737  
17738  
17739  
17740  
17741  
17742  
17743  
17744  
17745  
17746  
17747  
17748  
17749  
17750  
17751  
17752  
17753  
17754  
17755  
17756  
17757  
17758  
17759  
17760  
17761  
17762  
17763  
17764  
17765  
17766  
17767  
17768  
17769  
17770  
17771  
17772  
17773  
17774  
17775  
17776  
17777  
17778  
17779  
17780  
17781  
17782  
17783  
17784  
17785  
17786  
17787  
17788  
17789  
17790  
17791  
17792  
17793  
17794  
17795  
17796  
17797  
17798  
17799  
177100  
177101  
177102  
177103  
177104  
177105  
177106  
177107  
177108  
177109  
177110  
177111  
177112  
177113  
177114  
177115  
177116  
177117  
177118  
177119  
177120  
177121  
177122  
177123  
177124  
177125  
177126  
177127  
177128  
177129  
177130  
177131  
177132  
177133  
177134  
177135  
177136  
177137  
177138  
177139  
177140  
177141  
177142  
177143  
177144  
177145  
177146  
177147  
177148  
177149  
177150  
177151  
177152  
177153  
177154  
177155  
177156  
177157  
177158  
177159  
177160  
177161  
177162  
177163  
177164  
177165  
177166  
177167  
177168  
177169  
177170  
177171  
177172  
177173  
177174  
177175  
177176  
177177  
177178  
177179  
177180  
177181  
177182  
177183  
177184  
177185  
177186  
177187  
177188  
177189  
177190  
177191  
177192  
177193  
177194  
177195  
177196  
177197  
177198  
177199  
177200  
177201  
177202  
177203  
177204  
177205  
177206  
177207  
177208  
177209  
177210  
177211  
177212  
177213  
177214  
177215  
177216  
177217  
177218  
177219  
177220  
177221  
177222  
177223  
177224  
177225  
177226  
177227  
177228  
177229  
177230  
177231  
177232  
177233  
177234  
177235  
177236  
177237  
177238  
177239  
177240  
177241  
177242  
177243  
177244  
177245  
177246  
177247  
177248  
177249  
177250  
177251  
177252  
177253  
177254  
177255  
177256  
177257  
177258  
177259  
177260  
177261  
177262  
177263  
177264  
177265  
177266  
177267  
177268  
177269  
177270  
177271  
177272  
177273  
177274  
177275  
177276  
177277  
177278  
177279  
177280  
177281  
177282  
177283  
177284  
177285  
177286  
177287  
177288  
177289  
177290  
177291  
177292  
177293  
177294  
177295  
177296  
177297  
177298  
177299  
177300  
177301  
177302  
177303  
177304  
177305  
177306  
177307  
177308  
177309  
177310  
177311  
177312  
177313  
177314  
177315  
177316  
177317  
177318  
177319  
177320  
177321  
177322  
177323  
177324  
177325  
177326  
177327  
177328  
177329  
177330  
177331  
177332  
177333  
177334  
177335  
177336  
177337  
177338  
177339  
177340  
177341  
177342  
177343  
177344  
177345  
177346  
177347  
177348  
177349  
177350  
177351  
177352  
177353  
177354  
177355  
177356  
177357  
177358  
177359  
177360  
177361  
177362  
177363  
177364  
177365  
177366  
177367  
177368  
177369  
177370  
177371  
177372  
177373  
177374  
177375  
177376  
177377  
177378  
177379  
177380  
177381  
177382  
177383  
177384  
177385  
177386  
177387  
177388  
177389  
177390  
177391  
177392  
177393  
177394  
177395  
177396  
177397  
177398  
177399  
177400  
177401  
177402  
177403  
177404  
177405  
177406  
177407  
177408  
177409  
177410  
177411  
177412  
177413  
177414  
177415  
177416  
177417  
177418  
177419  
177420  
177421  
177422  
177423  
177424  
177425  
177426  
177427  
177428  
177429  
177430  
177431  
177432  
177433  
177434  
177435  
177436  
177437  
177438  
177439  
177440  
177441  
177442  
177443  
177444  
177445  
177446  
177447  
177448  
177449  
177450  
177451  
177452  
177453  
177454  
177455  
177456  
177457  
177458  
177459  
177460  
177461  
177462  
177463  
177464  
177465  
177466  
177467  
177468  
177469  
177470  
177471  
177472  
177473  
177474  
177475  
177476  
177477  
177478  
177479  
177480  
177481  
177482  
177483  
177484  
177485  
177486  
177487  
177488  
177489  
177490  
177491  
177492  
177493  
177494  
177495  
177496  
177497  
177498  
177499  
177500  
177501  
177502  
177503  
177504  
177505  
177506  
177507  
177508  
177509  
177510  
177511  
177512  
177513  
177514  
177515  
177516  
177517  
177518  
177519  
177520  
177521  
177522  
177523  
177524  
177525  
177526  
177527  
177528  
177529  
177530  
177531  
177532  
177533  
177534  
177535  
177536  
177537  
177538  
177539  
177540  
177541  
177542  
177543  
177544  
177545  
177546  
177547  
177548  
177549  
177550  
177551  
177552  
177553  
177554  
177555  
177556  
177557  
177558  
177559  
177560  
177561  
177562  
177563  
177564  
177565  
177566  
177567  
177568  
177569  
177570  
177571  
177572  
177573  
177574  
177575  
177576  
177577  
177578  
177579  
177580  
177581  
177582  
177583  
177584  
177585  
177586  
177587  
177588  
177589  
177590  
177591  
177592  
177593  
177594  
177595  
177596  
177597  
177598  
177599  
177600  
177601  
177602  
177603  
177604  
177605  
177606  
177607  
177608  
177609  
177610  
177611  
177612  
177613  
177614  
177615  
177616  
177617  
177618  
177619  
177620  
177621  
177622  
177623  
177624  
177625  
177626  
177627  
177628  
177629  
177630  
177631  
177632  
177633  
177634  
177635  
177636  
177637  
177638  
177639  
177640  
177641  
177642  
177643  
177644  
177645  
177646  
177647  
177648  
177649  
177650  
177651  
177652  
177653  
177654  
177655  
177656  
177657  
177658  
177659  
177660  
177661  
177662  
177663  
177664  
177665  
177666  
177667  
177668  
177669  
177670  
177671  
177672  
177673  
177674  
177675  
177676  
177677  
177678  
177679  
177680  
177681  
177682  
177683  
177684  
177685  
177686  
177687  
177688  
177689  
177690  
1776



Figure 8: **HumanoidBench locomotion tasks.** We consider eight tasks from the HumanoidBench locomotion benchmark that cover a wide variety of interactions and difficulties. This figure illustrates an initial state for each task.

Since the code is based on the official TD-MPC2 codebase and incorporates both algorithms, we use this implementation as a basis for our method. Details on BMPC are provided in Appendix B.2.

**Dreamer-v3 baseline implementation.** We use the official implementation of Dreamer-v3 available at <https://github.com/danijar/dreamerv3>. We follow the decision of Hansen et al. (2024) and use the authors’ suggested hyperparameters for proprioceptive control (DeepMind Control Suite). Please refer to Hafner et al. (2025) and Hansen et al. (2024) for a complete list of hyperparameters and implementation details.

**SAC baseline implementation.** We use the SAC implementation from [https://github.com/denisyarats/pytorch\\_sac](https://github.com/denisyarats/pytorch_sac) as in the TD-MPC (Hansen et al., 2022) paper, and use the hyperparameters suggested by the authors. Please refer to their paper for a complete list of hyperparameters.

## B.1 TD-MPC2

**Architectural details.** All components of TD-MPC2 are implemented as multi-layer perceptrons (MLPs). The encoder  $h$  contains a variable number of layers (2 – 5), depending on the architecture size; all other components are 3-layer MLPs. Intermediate layers consist of a linear layer followed by LayerNorm and a Mish activation function. The latent representation is normalized as a simplicial embedding.  $Q$ -functions additionally use Dropout. We summarize the TD-MPC2 architecture for the 5M parameter base (default for online RL) model size using PyTorch-like notation:

```

908 Encoder parameters: 167,936
909 Dynamics parameters: 843,264
910 Reward parameters: 631,397
911 Policy parameters: 582,668
912 Q parameters: 3,156,985
913 Task parameters: 7,680
914 Total parameters: 5,389,930

915 Architecture: TD-MPC2 base 5M(
916     (task_embedding): Embedding(T, 96, max_norm=1)
917     (encoder): ModuleDict(
918         (state): Sequential(
919             (0): NormedLinear(in_features=S+T, out_features=256, act=Mish)
920             (1): NormedLinear(in_features=256, out_features=512, act=SimNorm)
921         )
922     )

```

```

918     (dynamics): Sequential(
919         (0): NormedLinear(in_features=512+T+A, out_features=512, act=Mish)
920         (1): NormedLinear(in_features=512, out_features=512, act=Mish)
921         (2): NormedLinear(in_features=512, out_features=512, act=SimNorm)
922     )
923     (reward): Sequential(
924         (0): NormedLinear(in_features=512+T+A, out_features=512, act=Mish)
925         (1): NormedLinear(in_features=512, out_features=512, act=Mish)
926         (2): Linear(in_features=512, out_features=101, )
927     )
928     (pi): Sequential(
929         (0): NormedLinear(in_features=512+T, out_features=512, act=Mish)
930         (1): NormedLinear(in_features=512, out_features=512, act=Mish)
931         (2): Linear(in_features=512, out_features=2A, bias=True)
932     )
933     (Qs): Vectorized ModuleList(
934         (0-4): 5 x Sequential(
935             (0): NormedLinear(in_features=512+T+A, out_features=512, dropout=0.01, act=Mish)
936             (1): NormedLinear(in_features=512, out_features=512, act=Mish)
937             (2): Linear(in_features=512, out_features=101, bias=True)
938         )
939     )

```

where  $S$  is the input dimensionality,  $T$  is the number of tasks, and  $A$  is the action space. We exclude the task embedding  $T$  from single-task experiments. The exact parameter counts listed above are for  $S = 39$ ,  $T = 80$ , and  $A = 6$ . Since we only perform single-task experiments in this work, all models contain around 5M parameters for TD-MPC2.

**Policy-guided MPC.** TD-MPC2 uses Model Predictive Path Integral (MPPI) (Williams et al., 2015; 2017) for local trajectory optimization, which is a gradient-free, sampling-based MPC method. MPPI iteratively samples action sequences  $(a_t, a_{t+1}, \dots, a_{t+H})$  of length  $H$  from  $\mathcal{N}(\mu, \sigma^2)$ , evaluates their expected return by rolling out latent trajectories with the model, and updates the parameters  $\mu, \sigma$  of a time-dependent multivariate Gaussian with diagonal covariance based on a weighted average such that the expected return is maximized. This iterative optimization procedure is repeated for a fixed number of iterations and the first action  $a_t \sim \mathcal{N}(\mu_t^*, \sigma_t^*)$  is applied to the environment. TD-MPC2 augments the sampling procedure with samples from the policy prior  $\pi_\theta$  and warm-starts the optimization procedure by initializing  $(\mu, \sigma)$  as the solution of the previous step shifted by one to improve performance. Please refer to Hansen et al. (2022) for more details.

## B.2 BMPC

**Architectural details.** The main architectural difference of BMPC to TD-MPC2 is that it uses two  $V$ -functions instead of five  $Q$ -functions:

```
V parameters: 1,256,650
Total parameters: 3,489,595
Architecture: Difference BMPC to TD-MPC2
(
  (Vs): Vectorized ModuleList(
    (0-1): 2 x Sequential(
      (0): NormedLinear(in_features=512+T, out_features=512, dropout=0.01, act=Mish)
      (1): NormedLinear(in_features=512, out_features=512, act=Mish)
      (2): Linear(in_features=512, out_features=101, bias=True)
    )
  )
)
```

**Model-based TD-learning.** Since BMPC does not use a SAC-style max-Q approach for policy improvement, the authors decide to learn a state value function  $V_\phi$  instead of a state-action value function  $Q_\phi$ . The value network is learned by minimizing the cross-entropy loss with respect to the discretized n-step TD-target  $\hat{V}$  computed by using the latest model, policy, and target value network:

$$\begin{aligned} \mathcal{L}_V(\phi) &\doteq \mathbb{E}_{(\mathbf{s}, \mathbf{a})_{0:H} \sim \mathcal{B}} \left[ \sum_{t=0}^H \lambda^t \left[ \text{CE}(V_\phi(\mathbf{z}_t), \hat{V}(h(\mathbf{s}_t))) \right] \right], \quad \mathbf{z}_0 = h(\mathbf{s}_0), \quad \mathbf{z}_{t+1} = d(\mathbf{z}_t, \mathbf{a}_t) \\ \hat{V}(\mathbf{z}'_t) &\doteq \gamma^N V_{\phi^-}(\mathbf{z}'_{t+N}) + \sum_{k=0}^{N-1} \gamma^k R(\mathbf{z}'_{t+k}, \pi_\theta(\mathbf{z}'_{t+k})), \quad \mathbf{z}'_{t+1} = d(\mathbf{z}'_t, \pi_\theta(\mathbf{z}'_t)) \end{aligned} \quad (8)$$

Table 7: **TD-MPC2 hyperparameters.** We use the same hyperparameters across all tasks. Certain hyperparameters are set automatically using heuristics.

| Hyperparameter                 | Value                                |
|--------------------------------|--------------------------------------|
| <b>Planning</b>                |                                      |
| Horizon ( $H$ )                | 3                                    |
| Iterations                     | 6 (+2 if $\ \mathcal{A}\  \geq 20$ ) |
| Population size                | 512                                  |
| Policy prior samples           | 24                                   |
| Number of elites               | 64                                   |
| Minimum std.                   | 0.05                                 |
| Maximum std.                   | 2                                    |
| Temperature                    | 0.5                                  |
| Momentum                       | No                                   |
| <b>Policy prior</b>            |                                      |
| Log std. min.                  | -10                                  |
| Log std. max.                  | 2                                    |
| <b>Replay buffer</b>           |                                      |
| Capacity                       | 1,000,000                            |
| Sampling                       | Uniform                              |
| <b>Architecture (5M)</b>       |                                      |
| Encoder dim                    | 256                                  |
| MLP dim                        | 512                                  |
| Latent state dim               | 512                                  |
| Task embedding dim             | 96                                   |
| Task embedding norm            | 1                                    |
| Activation                     | LayerNorm + Mish                     |
| $Q$ -function dropout rate     | 1%                                   |
| Number of $Q$ -functions       | 5                                    |
| Number of reward/value bins    | 101                                  |
| SimNorm dim ( $V$ )            | 8                                    |
| SimNorm temperature ( $\tau$ ) | 1                                    |
| <b>Optimization</b>            |                                      |
| Update-to-data ratio           | 1                                    |
| Batch size                     | 256                                  |
| Joint-embedding coef.          | 20                                   |
| Reward prediction coef.        | 0.1                                  |
| Value prediction coef.         | 0.1                                  |
| Temporal coef. ( $\lambda$ )   | 0.5                                  |
| $Q$ -fn. momentum coef.        | 0.99                                 |
| Policy prior entropy coef.     | $1 \times 10^{-4}$                   |
| Policy prior loss norm.        | Moving (5%, 95%) percentiles         |
| Optimizer                      | Adam (Kingma & Ba, 2015)             |
| Learning rate                  | $3 \times 10^{-4}$                   |
| Encoder learning rate          | $1 \times 10^{-4}$                   |
| Gradient clip norm             | 20                                   |
| Discount factor                | Heuristic                            |
| Seed steps                     | Heuristic                            |

where  $N$  is the TD horizon,  $\mathbf{z}_{0:H}$  are latent vectors rolled out through the models  $h$  and  $d$ .  $\hat{V}$  is the TD-target computed using the model  $d$ ,  $R$  and the policy  $\pi_\theta$  in an on-policy manner. The authors use a fixed value of  $N = 1$  to keep compounding errors small.

1026  
 1027 **Lazy reanalyze.** BMPC stores imitation targets in the replay buffer and uses lazy reanalyze to avoid  
 1028 costly replanning for all samples during every update to compute the policy objective. For every  
 1029  $k$ -th network update,  $b$  samples are drawn from the batch and used to get new imitation targets, i.e.,  
 1030 the mean and standard deviation of the action distribution  $\pi_t = \pi_{\text{MPC}}(\cdot | h(\mathbf{s}_t), \pi_\theta)$  by replanning.  
 1031 These targets  $\pi_t$  are then placed back into the replay buffer. Since the replanning is performed  
 1032 independently of the training process, the replay buffer can be approximately seen as an expert  
 1033 dataset and used to sample state-action pairs from it for supervised learning. During replanning,  
 1034 additional noise is added to the policy prior to increase exploration in MPC planning. Thus, the  
 1035 resulting surrogate policy objective with lazy reanalyze can be defined as:

$$1036 \quad \mathcal{L}_\pi^{\text{lazy}}(\theta) \doteq \mathbb{E}_{(\mathbf{s}, \mathbf{a}, \pi)_{0:H} \sim B} \left[ \sum_{t=0}^H \lambda^t [\text{KL}(\pi_t, \pi_\theta(\cdot | \mathbf{z}_t)) / \max(1, S) - \beta \mathcal{H}(\pi_\theta(\cdot | \mathbf{z}_t))] \right] \quad (9)$$

1039 where  $\pi_t$  is the expert action distribution from the replay buffer.

1041 **Table 8: BMPC hyperparameters.** We use the same hyperparameters for all tasks. All other  
 1042 hyperparameters are the default TD-MPC2 values.

| 1044                | Hyperparameter                    | Value              |
|---------------------|-----------------------------------|--------------------|
| <b>Planning</b>     |                                   |                    |
| 1046                | Horizon                           | 3                  |
| 1047                | Replanning horizon                | 3                  |
| 1048                | Lazy reanalyze interval ( $k$ )   | 10                 |
| 1049                | Lazy reanalyze batch size ( $b$ ) | 20                 |
| <b>Policy prior</b> |                                   |                    |
| 1052                | Log std. min.                     | -3                 |
| 1053                | Log std. max.                     | 1                  |
| 1054                | Log std. min. (replanning)        | -2                 |
| 1055                | Log std. max. (replanning)        | 1                  |
| <b>Architecture</b> |                                   |                    |
| 1057                | Number of $V$ -functions          | 2                  |
| <b>Optimization</b> |                                   |                    |
| 1060                | Batch size                        | 256                |
| 1061                | TD horizon ( $N$ )                | 1                  |
| 1062                | Policy prior entropy coef.        | $1 \times 10^{-4}$ |

### 1065 B.3 DREAM-MPC

1067 **Hyperparameters.** We use the same hyperparameters across all tasks. The hyperparameters specific  
 1068 to our method are listed in Tab. 1.

## 1071 C ADDITIONAL RESULTS

1073 In this section, we provide the learning curves for all baselines as well as detailed evaluation results  
 1074 for all environments.

### 1076 C.1 LEARNING CURVES

1078 Figs. 9 to 11 show the episode returns and the success rates as a function of environment steps,  
 1079 respectively.



Figure 9: **Learning curves for the DeepMind Control Suite.** The line represents the mean episodic return and the shaded area the 95% confidence interval across 3 seeds.



Figure 10: **Learning curves for Meta-World.** The line represents the mean episodic return and the shaded area the 95% confidence interval across 3 seeds.



Figure 11: **Learning curves for HumanoidBench.** The line represents the mean episodic return and the shaded area the 95% confidence interval across 3 seeds.

1134  
1135 C.2 DETAILED EVALUATION RESULTS

1136 We find that having a good policy is important because it leads to better value estimates, which  
 1137 are crucial for gradient-based MPC. While Dream-MPC can improve the performance of the policy  
 1138 for TD-MPC2, it cannot consistently match the performance of MPPI. Since the performance of  
 1139 the policy is quite weak as shown in Tabs. 12 to 14, this fact favours MPPI, which has a higher  
 1140 diversity of the initial solutions due to the sampling procedure. While we can further improve the  
 1141 performance of Dream-MPC with TD-MPC2 as a basis, for example by increasing the number of  
 1142 optimization iterations, this also increases computational costs. This highlights the importance of a  
 1143 **good** initial solution to warm-start the MPC optimization process, especially for high-dimensional  
 1144 problems.

1145  
1146 Table 9: DeepMind Control Suite evaluation results of different algorithms.

| Task                    | SAC           | Dreamer-v3    | TD-MPC2                        | BMPC                            | Dream-MPC<br>(TD-MPC2) | Dream-MPC<br>(BMPC)             |
|-------------------------|---------------|---------------|--------------------------------|---------------------------------|------------------------|---------------------------------|
| Acrobot Swingup         | $176 \pm 21$  | $372 \pm 141$ | <b><math>595 \pm 34</math></b> | $587 \pm 25$                    | $590 \pm 40$           | <b><math>596 \pm 50</math></b>  |
| Cartpole Swingup Sparse | $788 \pm 10$  | $538 \pm 325$ | <b><math>848 \pm 0</math></b>  | $837 \pm 14$                    | $847 \pm 3$            | <b><math>849 \pm 1</math></b>   |
| Fish Swim               | $657 \pm 110$ | $729 \pm 98$  | $786 \pm 8$                    | <b><math>804 \pm 17</math></b>  | $764 \pm 56$           | <b><math>816 \pm 11</math></b>  |
| Hopper Hop              | $287 \pm 15$  | $198 \pm 111$ | <b><math>493 \pm 47</math></b> | $404 \pm 39$                    | $307 \pm 38$           | $423 \pm 54$                    |
| Dog Run                 | $15 \pm 6$    | $26 \pm 7$    | $358 \pm 228$                  | <b><math>678 \pm 27</math></b>  | $115 \pm 72$           | <b><math>703 \pm 19</math></b>  |
| Dog Walk                | $42 \pm 33$   | $47 \pm 20$   | $933 \pm 10$                   | <b><math>937 \pm 4</math></b>   | $389 \pm 22$           | <b><math>946 \pm 7</math></b>   |
| Humanoid Run            | $83 \pm 43$   | $1 \pm 1$     | $344 \pm 60$                   | <b><math>528 \pm 29</math></b>  | $110 \pm 10$           | <b><math>531 \pm 38</math></b>  |
| Humanoid Walk           | $364 \pm 95$  | $2 \pm 1$     | $899 \pm 10$                   | <b><math>917 \pm 6</math></b>   | $338 \pm 63$           | <b><math>937 \pm 4</math></b>   |
| <b>Mean</b>             | $302 \pm 269$ | $239 \pm 261$ | $657 \pm 225$                  | <b><math>711 \pm 181</math></b> | $433 \pm 259$          | <b><math>725 \pm 181</math></b> |

1147  
1148 The results are the mean episode returns and standard deviations for three random seeds and ten test episodes.  
 1149 **Best** and second best results are highlighted.

1150  
1151 Table 10: Meta-World evaluation results of different algorithms.

| Task            | SAC             | Dreamer-v3                        | TD-MPC2                           | BMPC                              | Dream-MPC<br>(TD-MPC2)            | Dream-MPC<br>(BMPC)               |
|-----------------|-----------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|
| Assembly        | $0.0 \pm 0.0$   | $0.0 \pm 0.0$                     | $1.0 \pm 0.0$                     | $1.0 \pm 0.0$                     | <u><math>1.0 \pm 0.0</math></u>   | <b><math>1.0 \pm 0.0</math></b>   |
| Button Press    | $0.27 \pm 0.31$ | <b><math>0.61 \pm 0.02</math></b> | $0.33 \pm 0.47$                   | $0.33 \pm 0.47$                   | $0.33 \pm 0.47$                   | <b><math>0.67 \pm 0.47</math></b> |
| Disassemble     | $0.03 \pm 0.05$ | $0.27 \pm 0.23$                   | $0.67 \pm 0.47$                   | <u><math>1.0 \pm 0.0</math></u>   | $0.67 \pm 0.47$                   | <b><math>1.0 \pm 0.0</math></b>   |
| Lever Pull      | $0.03 \pm 0.05$ | $0.52 \pm 0.1$                    | $0.0 \pm 0.0$                     | <u><math>0.67 \pm 0.47</math></u> | $0.0 \pm 0.0$                     | <b><math>0.67 \pm 0.47</math></b> |
| Pick Place Wall | $0.0 \pm 0.0$   | $0.21 \pm 0.24$                   | <b><math>1.0 \pm 0.0</math></b>   | <u><math>0.0 \pm 0.0</math></u>   | $0.67 \pm 0.47$                   | $0.67 \pm 0.47$                   |
| Push Back       | $0.67 \pm 0.47$ | $0.32 \pm 0.23$                   | <u><math>0.67 \pm 0.47</math></u> | $0.33 \pm 0.47$                   | <b><math>0.67 \pm 0.47</math></b> | $0.33 \pm 0.47$                   |
| Shelf Place     | $0.0 \pm 0.0$   | $0.27 \pm 0.21$                   | <u><math>0.67 \pm 0.47</math></u> | $0.67 \pm 0.47$                   | <u><math>1.0 \pm 0.0</math></u>   | <b><math>1.0 \pm 0.0</math></b>   |
| Window Open     | $1.0 \pm 0.0$   | $0.48 \pm 0.09$                   | <u><math>1.0 \pm 0.0</math></u>   | $0.67 \pm 0.47$                   | $0.67 \pm 0.47$                   | <b><math>1.0 \pm 0.0</math></b>   |
| <b>Mean</b>     | $0.25 \pm 0.36$ | $0.33 \pm 0.18$                   | <u><math>0.67 \pm 0.33</math></u> | $0.58 \pm 0.32$                   | $0.62 \pm 0.31$                   | <b><math>0.79 \pm 0.23</math></b> |

1152  
1153 The results are the mean episode successes and standard deviations for three random seeds and ten test  
 1154 episodes. **Best** and second best results are highlighted.

1155  
1156 Table 11: HumanoidBench evaluation results of different algorithms.

| Task           | SAC            | Dreamer-v3      | TD-MPC2                           | BMPC                             | Dream-MPC<br>(TD-MPC2) | Dream-MPC<br>(BMPC)              |
|----------------|----------------|-----------------|-----------------------------------|----------------------------------|------------------------|----------------------------------|
| Balance Hard   | $55 \pm 3$     | $28 \pm 12$     | <b><math>92 \pm 12</math></b>     | $81 \pm 12$                      | $45 \pm 10$            | <u><math>82 \pm 12</math></u>    |
| Balance Simple | $70 \pm 10$    | $39 \pm 14$     | $240 \pm 37$                      | <u><math>489 \pm 84</math></u>   | $47 \pm 14$            | <b><math>654 \pm 89</math></b>   |
| Hurdle         | $5 \pm 3$      | $13 \pm 5$      | $78 \pm 24$                       | <u><math>120 \pm 43</math></u>   | $12 \pm 1$             | <b><math>249 \pm 34</math></b>   |
| Maze           | $140 \pm 7$    | $110 \pm 4$     | $169 \pm 47$                      | <b><math>349 \pm 2</math></b>    | $120 \pm 8$            | $266 \pm 33$                     |
| Reach          | $2048 \pm 212$ | $2151 \pm 1038$ | <b><math>5037 \pm 1436</math></b> | $4125 \pm 324$                   | $2751 \pm 444$         | <u><math>4348 \pm 215</math></u> |
| Run            | $8 \pm 3$      | $11 \pm 5$      | $136 \pm 110$                     | <u><math>139 \pm 81</math></u>   | $10 \pm 7$             | <b><math>302 \pm 11</math></b>   |
| Slide          | $11 \pm 5$     | $56 \pm 29$     | $237 \pm 54$                      | <u><math>442 \pm 36</math></u>   | $16 \pm 3$             | <b><math>632 \pm 114</math></b>  |
| Stair          | $15 \pm 15$    | $35 \pm 17$     | $100 \pm 18$                      | <u><math>403 \pm 145</math></u>  | $30 \pm 6$             | <b><math>456 \pm 145</math></b>  |
| <b>Mean</b>    | $294 \pm 664$  | $305 \pm 698$   | $761 \pm 1617$                    | <u><math>769 \pm 1277</math></u> | $379 \pm 897$          | <b><math>874 \pm 1326</math></b> |

1157  
1158 The results are the mean episode returns and standard deviations for three random seeds and ten test  
 1159 episodes. **Best** and second best results are highlighted.

1188 C.3 DETAILED TD-MPC2 AND BMPC RESULTS  
1189

1190 We include full results of TD-MPC2 and BMPC for all environments in Tabs. 12 to 14, including the  
1191 performance of using the underlying policy network only. We also conduct experiments in which we  
1192 apply the test-time regularization defined in Eq. (5) with a regularization coefficient of  $\lambda_{\text{unc}} = 0.01$   
1193 to TD-MPC2 and BMPC. While the regularization can improve the performance of BMPC in some  
1194 cases, it causes a significant performance decrease for TD-MPC2, especially for high-dimensional  
1195 problems.

1197 Table 12: DeepMind Control Suite evaluation results of different TD-MPC2 and BMPC variants.  
1198

| Environment             | TD-MPC2         | TD-MPC2<br>(policy only) | TD-MPC2 (w/ test-time<br>regularization) | BMPC             | BMPC (policy<br>only) | BMPC (w/ test-time<br>regularization) |
|-------------------------|-----------------|--------------------------|------------------------------------------|------------------|-----------------------|---------------------------------------|
| Acrobot Swingup         | <b>595 ± 34</b> | 551 ± 21                 | <u>594 ± 32</u>                          | 587 ± 25         | 564 ± 52              | 573 ± 11                              |
| Cartpole Swingup Sparse | <u>848 ± 0</u>  | 760 ± 114                | <u>848 ± 0</u>                           | 837 ± 14         | <b>848 ± 1</b>        | 845 ± 3                               |
| Fish Swim               | 786 ± 8         | 645 ± 83                 | 783 ± 13                                 | <u>804 ± 17</u>  | <b>804 ± 14</b>       | 776 ± 9                               |
| Hopper Hop              | <b>493 ± 47</b> | 383 ± 154                | <u>465 ± 79</u>                          | 404 ± 39         | 445 ± 106             | 440 ± 87                              |
| Dog Run                 | 358 ± 228       | 89 ± 52                  | 376 ± 231                                | <u>678 ± 27</u>  | 670 ± 13              | <b>678 ± 23</b>                       |
| Dog Walk                | 933 ± 10        | 298 ± 20                 | 926 ± 9                                  | <u>937 ± 4</u>   | 930 ± 5               | <b>940 ± 4</b>                        |
| Humanoid Run            | 344 ± 60        | 65 ± 2                   | 345 ± 55                                 | <u>528 ± 29</u>  | 458 ± 15              | <u>514 ± 31</u>                       |
| Humanoid Walk           | 899 ± 10        | 142 ± 36                 | 881 ± 9                                  | 917 ± 6          | <u>930 ± 7</u>        | <b>931 ± 3</b>                        |
| <b>Mean</b>             | 657 ± 225       | 367 ± 247                | 652 ± 221                                | <u>711 ± 181</u> | 706 ± 187             | <b>712 ± 179</b>                      |

1201 The results are the mean episode returns and standard deviations for three random seeds and ten test episodes.  
1202 Best and second best results are highlighted.  
1203

1211 Table 13: Meta-World evaluation results of different TD-MPC2 and BMPC variants.  
1212

| Environment     | TD-MPC2            | TD-MPC2<br>(policy only) | TD-MPC2 (w/ test-time<br>regularization) | BMPC               | BMPC (policy<br>only) | BMPC (w/ test-time<br>regularization) |
|-----------------|--------------------|--------------------------|------------------------------------------|--------------------|-----------------------|---------------------------------------|
| Assembly        | 1.0 ± 0.0          | 1.0 ± 0.0                | 0.67 ± 0.47                              | 1.0 ± 0.0          | <u>1.0 ± 0.0</u>      | <b>1.0 ± 0.0</b>                      |
| Button Press    | 0.33 ± 0.47        | 0.0 ± 0.0                | <u>0.67 ± 0.47</u>                       | 0.33 ± 0.47        | <b>1.0 ± 0.0</b>      | 0.33 ± 0.47                           |
| Disassemble     | 0.67 ± 0.47        | 0.67 ± 0.47              | 0.67 ± 0.47                              | <u>1.0 ± 0.0</u>   | 0.67 ± 0.47           | <b>1.0 ± 0.0</b>                      |
| Lever Pull      | 0.0 ± 0.0          | 0.0 ± 0.0                | 0.0 ± 0.0                                | <u>0.67 ± 0.47</u> | <b>1.0 ± 0.0</b>      | <u>0.67 ± 0.47</u>                    |
| Pick Place Wall | <b>1.0 ± 0.0</b>   | 0.0 ± 0.0                | 0.33 ± 0.47                              | 0.0 ± 0.0          | <u>0.67 ± 0.47</u>    | 0.33 ± 0.47                           |
| Push Back       | <u>0.67 ± 0.47</u> | 0.33 ± 0.47              | <b>0.67 ± 0.47</b>                       | 0.33 ± 0.47        | 0.33 ± 0.47           | 0.33 ± 0.47                           |
| Shelf Place     | 0.67 ± 0.47        | 0.67 ± 0.47              | 1.0 ± 0.0                                | <u>0.67 ± 0.47</u> | <u>1.0 ± 0.0</u>      | <b>1.0 ± 0.0</b>                      |
| Window Open     | 1.0 ± 0.0          | 0.33 ± 0.47              | <u>1.0 ± 0.0</u>                         | 0.67 ± 0.47        | <b>1.0 ± 0.0</b>      | 0.67 ± 0.47                           |
| <b>Mean</b>     | <u>0.67 ± 0.33</u> | 0.38 ± 0.35              | 0.62 ± 0.31                              | 0.58 ± 0.32        | <b>0.83 ± 0.24</b>    | 0.67 ± 0.29                           |

1224 The results are the mean episode returns and standard deviations for three random seeds and ten test  
1225 episodes. Best and second best results are highlighted.  
1226

1227 Table 14: HumanoidBench evaluation results of different TD-MPC2 and BMPC variants.  
1228

| Environment    | TD-MPC2            | TD-MPC2<br>(policy only) | TD-MPC2 (w/ test-time<br>regularization) | BMPC              | BMPC (policy<br>only) | BMPC (w/ test-time<br>regularization) |
|----------------|--------------------|--------------------------|------------------------------------------|-------------------|-----------------------|---------------------------------------|
| Balance Hard   | <u>92 ± 12</u>     | 34 ± 3                   | <b>94 ± 22</b>                           | 81 ± 12           | 78 ± 8                | 80 ± 9                                |
| Balance Simple | 240 ± 37           | 33 ± 16                  | 208 ± 34                                 | <u>489 ± 84</u>   | 414 ± 45              | <b>778 ± 77</b>                       |
| Hurdle         | 78 ± 24            | 14 ± 3                   | 73 ± 27                                  | 120 ± 43          | <u>147 ± 40</u>       | <b>175 ± 51</b>                       |
| Maze           | 169 ± 47           | 111 ± 3                  | 115 ± 4                                  | <b>349 ± 2</b>    | 121 ± 7               | <u>347 ± 4</u>                        |
| Reach          | <b>5037 ± 1436</b> | 1558 ± 368               | 399 ± 208                                | <u>4125 ± 324</u> | 2117 ± 309            | 2279 ± 376                            |
| Run            | 136 ± 110          | 8 ± 4                    | 99 ± 72                                  | <u>139 ± 81</u>   | 91 ± 25               | <b>222 ± 56</b>                       |
| Slide          | 237 ± 54           | 14 ± 2                   | 248 ± 77                                 | <u>442 ± 36</u>   | 250 ± 26              | <b>553 ± 100</b>                      |
| Stair          | 100 ± 18           | 24 ± 8                   | 91 ± 23                                  | <u>403 ± 145</u>  | 208 ± 46              | <b>432 ± 199</b>                      |
| <b>Mean</b>    | <u>761 ± 1617</u>  | 224 ± 505                | 166 ± 106                                | <b>769 ± 1277</b> | 428 ± 646             | 608 ± 665                             |

1240 The results are the mean episode returns and standard deviations for three random seeds and ten test  
1241 episodes. Best and second best results are highlighted.  
1242

1242 **D INTEGRATION INTO DREAMER**  
 1243

1244 We further integrate our base method (without uncertainty regularization) into Dreamer (Hafner  
 1245 et al., 2020) to show that it also works with other model-based RL algorithms. Dreamer learns a  
 1246 latent dynamics model, often referred to as a world model, consisting of the following components:  
 1247

- 1248 • Representation model:  $p_\theta(s_t|s_{t-1}, a_{t-1}, o_t)$   
 1249
- 1250 • Transition model:  $q_\theta(s_t|s_{t-1}, a_{t-1})$   
 1251
- 1252 • Reward model:  $q_\theta(r_t|s_t)$   
 1253
- 1254 • Observation model (only used as an additional learning signal):  $q_\theta(o_t|s_t)$   
 1255

1255 All components are jointly optimized to increase the variational lower bound (ELBO), including  
 1256 reconstruction terms for observations and rewards as well as a KL regularizer:  
 1257

$$1258 \mathcal{L}_{\text{Rec}} = \mathbb{E} \left[ \sum_t (\mathcal{L}_O^t + \mathcal{L}_R^t + \mathcal{L}_D^t) \right] + \text{const}, \quad (10)$$

1261 where

$$1262 \mathcal{L}_O^t = \ln q(o_t|s_t), \\ 1263 \mathcal{L}_R^t = \ln q(r_t|s_t), \\ 1264 \mathcal{L}_D^t = -\beta \text{KL}(p(s_t|s_{t-1}, a_{t-1}, o_t) || q(s_t|s_{t-1}, a_{t-1})). \quad (11)$$

1266 The expected values are calculated based on the dataset and representation model. Please refer to  
 1267 Hafner et al. (2020) for the derivation of the variational bound.  
 1268

1269 Following the original Dreamer implementation, we estimate state values using  $V_\lambda$ , an  
 1270 exponentially-weighted average of the reward estimates for a different number of steps beyond the  
 1271 horizon with the learned value model to balance bias and variance:  
 1272

$$1273 V_R(s_\tau) = \mathbb{E}_{q_\theta, \pi_\phi} \left[ \sum_{n=\tau}^{t+H} r_n \right], \quad (12)$$

$$1277 V_N^k(s_\tau) = \mathbb{E}_{q_\theta, \pi_\phi} \left[ \sum_{n=\tau}^{h-1} \gamma^{n-\tau} r_n + \gamma^{h-\tau} v_\psi(s_h) \right] \quad \text{with } h = \min(\tau + k, t + H), \quad (13)$$

$$1281 V_\lambda(s_\tau) = (1 - \lambda) \sum_{n=1}^{H-1} \lambda^{n-1} V_N^n(s_\tau) + \lambda^{H-1} V_N^H(s_\tau). \quad (14)$$

1284 For each time step  $t$ , Dream-MPC creates an initial sequence of actions by performing an imaginary  
 1285 rollout of the policy  $\pi_\phi$  and generates  $N$  candidate trajectories adding small perturbations to the  
 1286 initial action sequence:  
 1287

$$1288 \{\hat{a}^{(n)}\}_{n=1}^N = \{\pi_\phi(a_{\tau-1}|s_{\tau-1}) + \epsilon_\tau^{(n)} | \tau = t+1, \dots, t+H+1\}_{n=1}^N, \quad \text{where } \epsilon_\tau^{(n)} \sim \mathcal{N}(0, \sigma_a^2). \quad (15)$$

1290 The imaginary rollout is done by encoding observations and actions into latent space using the rep-  
 1291 resentation model  $p_\theta$  and repeatedly calling the one-step transition model  $q_\theta$  to generate a sequence  
 1292 of predicted states  $\{s_\tau\}_{\tau=t+1}^{t+H+1}$  for each candidate trajectory.  
 1293

$$1294 s_t^{(n)} \sim p_\theta(s_t^{(n)}|s_{t-1}^{(n)}, a_{t-1}^{(n)}, o_t), \quad s_{t+1:t+H+1}^{(n)} \sim \prod_{\tau=t+1}^{t+H+1} q_\theta(s_\tau^{(n)}|s_{\tau-1}^{(n)}, a_{\tau-1}^{(n)}) \quad (16)$$

1296 We integrate our gradient-based MPC method into Dreamer as shown in Alg. 2.

---

1297 **Algorithm 2: Dream-MPC integration into Dreamer**

1298 **Input:** Representation model  $p_\theta(s_t|s_{t-1}, a_{t-1}, o_t)$ , transition model  $q_\theta(s_t|s_{t-1}, a_{t-1})$ , reward model  
 1299  $q_\theta(r_t|s_t)$ , value function model  $v_\psi(s_t)$ , policy model  $\pi_\phi(a_t|s_t)$ , exploration noise  $p(\epsilon)$ , action  
 1300 repeat  $R$ , seed episodes  $S$ , collect interval  $C$ , batch size  $B$ , chunk length  $L$ , learning rate  $\eta$

1301 Initialize dataset  $\mathcal{D}$  with  $S$  random seed episodes.

1302 Initialize model parameters  $\theta, \phi, \psi$  randomly.

1303 **while** not converged **do**

1304   **for** update step  $s = 1..C$  **do**

1305     // Dynamics model learning

1306     Draw sequences  $\{(o_t, a_t, r_t)\}_{t=k}^{L+k} \}_{i=1}^B \sim \mathcal{D}$  uniformly at random from the dataset.

1307     Compute loss  $\mathcal{L}(\theta)$  from Eq. (10).

1308     Update model parameters  $\theta \leftarrow \theta - \eta \nabla_\theta \mathcal{L}(\theta)$ .

1309     // Policy learning

1310     Imagine trajectories  $\{(s_\tau, a_\tau)\}_{\tau=t}^{t+H}$  from each  $s_t$ .

1311     Predict rewards  $\mathbb{E}[q_\theta(r_\tau|s_\tau)]$  and values  $v_\psi(s_\tau)$ .

1312     Compute value estimates  $V_\lambda(s_\tau)$  via Eq. (14).

1313     Update  $\phi \leftarrow \phi + \eta \nabla_\phi \sum_{\tau=t}^{t+H} V_\lambda(s_\tau)$ .

1314     Update  $\psi \leftarrow \psi - \eta \nabla_\psi \sum_{\tau=t}^{t+H} \frac{1}{2} \|v_\psi(s_\tau) - V_\lambda(s_\tau)\|^2$ .

1315     // Data collection

1316      $o_1 \leftarrow \text{env.reset}()$

1317     **for** time step  $t = 1..[\frac{T}{R}]$  **do**

1318       Infer current state  $s_t \sim p_\theta(s_t|s_{t-1}, a_{t-1}, o_t)$  from the history.

1319        $a_t \leftarrow \text{planner}(s_t)$ , see Alg. 3 for details.

1320       Add exploration noise  $\epsilon \sim p(\epsilon)$  to the action.

1321       **for** action repeat  $k = 1..R$  **do**

1322          $r_t^k, o_{t+1}^k \leftarrow \text{env.step}(a_t)$

1323          $r_t, o_{t+1} \leftarrow \sum_{k=1}^R r_t^k, o_{t+1}^k$

1324          $\mathcal{D} \leftarrow \mathcal{D} \cup \{(o_t, a_t, r_t)\}_{t=1}^T\}$

---

1325 **Algorithm 3: Dream-MPC planner for Dreamer**

1326 **Input:** Representation model  $p_\theta(s_t|s_{t-1}, a_{t-1}, o_t)$ , transition model  $q_\theta(s_t|s_{t-1}, a_{t-1})$ , reward model  
 1327  $q_\theta(r_t|s_t)$ , value function model  $v_\psi(s_t)$ , policy model  $\pi_\phi(a_t|s_t)$ , planning horizon  $H$ ,  
 1328 optimization iterations  $I$ , candidates per iteration  $J$ , action noise  $\sigma_a^2$ , action optimization rate  $\alpha$

1329 Initialize proposal by rolling out the policy  $\pi_\phi$  with the transition model  $\hat{a}_{t:t+H} \sim \pi_\phi(s_{t:t+H})$ .

1330 Generate  $N$  candidates by adding noise  $\mathcal{N}(0, \sigma_a^2)$  to the proposal via Eq. (15).

1331 Initialize candidate action sequences  $a_{t:t+H}$  via Eq. (3).

1332 **for** optimization iteration  $i = 1, 2, \dots, I$  **do**

1333     **for** candidate action sequence  $n = 1, 2, \dots, N$  **do**

1334       Predict imagined states  $s_\tau^{(n)} = s_{t:t+H+1}^{(n)}$  via Eq. (16)

1335       Predict rewards  $\mathbb{E}[q_\theta(r_\tau^{(n)}|s_\tau^{(n)})]$  and values  $v_\psi(s_\tau^{(n)})$

1336       Compute value estimates  $V_\lambda(s_\tau^{(n)})$  via Eq. (14)

1337       Optimize action sequence via  $a_\tau^{(n)} \leftarrow \{a_\tau^{(n)} + \alpha \nabla_{a_\tau^{(n)}} V_\lambda(s_\tau^{(n)}) | \tau = t, \dots, t+H\}$

---

1340 **Output:** First optimized action  $a_t^{(k)}$  with  $k = \arg \max_n \{V_\lambda^{(n)}\}_{n=1}^N$ .

1341

1342

1343

1344 **D.1 EXPERIMENTS**

1345

1346 We evaluate our method on four different environments from the DeepMind Control Suite and compare our method with PlaNet (Hafner et al., 2019), Dreamer (Hafner et al., 2020), SAC+AE (Yarats et al., 2021), a variant of the model-free Soft Actor Critic (SAC) (Haarnoja et al., 2018) algorithm for image-based observations and the (hybrid) Grad-MPC method proposed in (S V et al., 2023). Note that hybrid Grad-MPC and Dream-MPC both share the general idea of using a policy network



Figure 12: **Learning curves for four tasks from the DeepMind Control Suite.** The line represents the mean episodic return and the shaded area the 95% confidence interval across 3 seeds.

to warm-start gradient-based MPC. We provide a summary of the main differences in Appendix E. All experiments are performed with only RGB visual observations with a resolution of  $64 \times 64$ .

We evaluate the performance of our method when enabling planning already during training. The learning curves are shown in Fig. 12 and the evaluation results are presented in Tab. 15. We find that our method can not only outperform the baselines, but also that planning during training can improve the sample efficiency without leading to premature convergence. In contrast to PlaNet (CEM) and Grad-MPC, which both use  $1000 \times 10 \times 12 = 120\,000$  evaluations of the world model at each time step, our method only requires  $5 \times 1 \times 15 = 75$  evaluations. These results are not only promising since Dreamer uses a recurrent dynamics model and a relatively long planning horizon, but also in particular for Acrobot Swingup, which is a non-linear system with chaotic dynamics. All aspects usually affect gradient quality negatively, especially since first order gradient estimators can accumulate significant variance over long-horizon rollouts, which makes them in particular ineffective in chaotic systems (Suh et al., 2022).

Table 15: **Performance comparison of different algorithms.**

| Method              | Acrobot Swingup                 | Cheetah Run                    | Hopper Hop                     | Walker Run                     |
|---------------------|---------------------------------|--------------------------------|--------------------------------|--------------------------------|
| SAC+AE              | $7 \pm 19$                      | $495 \pm 100$                  | $86 \pm 75$                    | $453 \pm 69$                   |
| PlaNet              | $7 \pm 18$                      | $535 \pm 70$                   | $1 \pm 4$                      | $228 \pm 149$                  |
| Dreamer             | $134 \pm 91$                    | $751 \pm 111$                  | $182 \pm 43$                   | $575 \pm 33$                   |
| Grad-MPC            | $7 \pm 18$                      | $438 \pm 81$                   | $3 \pm 5$                      | $382 \pm 35$                   |
| Hybrid Grad-MPC     | $144 \pm 7$                     | $591 \pm 131$                  | $158 \pm 47$                   | $556 \pm 33$                   |
| CEM + policy        | $12 \pm 26$                     | $674 \pm 20$                   | $43 \pm 42$                    | $638 \pm 21$                   |
| Dream-MPC (Dreamer) | <b><math>147 \pm 101</math></b> | <b><math>836 \pm 49</math></b> | <b><math>298 \pm 86</math></b> | <b><math>632 \pm 52</math></b> |

The results are the mean episode returns and standard deviations for three random seeds and ten test episodes. **Best** and second best results are highlighted.

We benchmark inference times of the different methods on a single Nvidia GeForce RTX 4090 GPU. The results in Tab. 16 show that Dream-MPC is significantly faster as Grad-MPC, which uses a much higher number of candidate trajectories. While hybrid Grad-MPC is faster than Dream-MPC due to using a horizon of one, the overall performance is worse compared to using the policy only because such a myopic optimization is most likely unsuitable for many problems. Note that at the moment a batched version of one operation in the recurrent world model is missing in PyTorch, which slows the parallelized gradient computation down. While this can potentially be further improved, it affects all gradient-based MPC methods in the same way, thus leading to a fair comparison.

Table 16: **Inference times of different methods for Acrobot Swingup.** Mean and standard deviation for three random seeds and ten test episodes per seed.

| Method              | Inference time       |
|---------------------|----------------------|
| PlaNet              | $31.10 \pm 0.65$ ms  |
| Grad-MPC            | $195.75 \pm 1.33$ ms |
| Hybrid Grad-MPC     | $23.16 \pm 0.55$ ms  |
| Dream-MPC (Dreamer) | $44.86 \pm 0.60$ ms  |

1404  
1405 D.2 GRADIENT ANALYSIS

1406 We evaluate the planner gradients of Grad-MPC and of our method for the ground truth dynamics  
 1407 (simulator) and the learned dynamics model for different planning horizons on the Pendulum-v1 en-  
 1408 vironment with state observations. As Fig. 13 shows, the magnitudes of the gradients are in rea-  
 1409 sonable orders when using the ground truth dynamics. While the variance increases for longer horizons  
 1410 and might also do for more complex problems, the gradients do not explode or vanish in this case.  
 1411 However, the variance increases significantly for longer planning horizons when using the learned  
 1412 dynamics model. In contrast to Grad-MPC, the variance increases much less for Dream-MPC and  
 1413 although relatively large remains bounded, suggesting that the performance issues of gradient-based  
 1414 planning should not solely be attributed to issues with the gradients caused by the architecture of  
 1415 the world model. Our work shows that there are more aspects that need to be considered such as the  
 1416 quality of the initial proposal for MPC and the learned world model, advocating that further research  
 1417 on gradient-based planning is needed.



1433 **Figure 13: Planner gradients of Grad-MPC and Dream-MPC.** For different planning horizons  
 1434 on the Pendulum-v1 environment using the ground truth (simulator) and learned dynamics model  
 1435 respectively and state observations. The values are represented by their mean and standard deviation  
 1436 for three different random seeds. The default hyperparameters provided in Tab. 17 are used unless  
 1437 otherwise specified.

1438  
 1439 As pointed out in Parmas et al. (2023), simply evaluating the gradient quality based on variance  
 1440 alone is insufficient. Thus, we follow the proposal of the authors and analyze the gradients using  
 1441 their Expected Signal-to-Noise Ratio (ESNR), which is defined as

$$1442 \quad \text{ESNR}(\nabla R) = \mathbb{E} \left[ \frac{\sum \mathbb{E}[\nabla R]^2}{\sum \text{Var}[\nabla R]} \right], \quad (17)$$

1443 where  $R = \sum_{\tau=t+1}^{t+H+1} r_\tau$  is the return, i.e., the undiscounted sum of rewards.

1444 Fig. 14 shows the ESNRs of Grad-MPC and Dream-MPC using the ground truth dynamics or learned  
 1445 dynamics model. While the ESNR remains stable when using the ground truth dynamics, especially  
 1446 for longer horizons the ESNR drops when using the learned model. Recent findings (Georgiev et al.,  
 1447 2025) suggest that learned models can improve ESNR compared to using the ground truth dynamics  
 1448 for some problems, indicating the possibility of further improvement. While the ESNR significantly  
 1449 suffers for horizons greater than ten for Grad-MPC using the learned dynamics model, the ESNR for  
 1450 Dream-MPC remains much more stable for increasing horizons. Together with the variance which  
 1451 increases but does not explode, this suggests that our method is more robust compared to Grad-MPC.

## 1452 D.3 MODEL EXPLOITATION

1453 We further analyze the problem of model exploitation, a general challenge in model-based rein-  
 1454 forcement learning, where policies tend to exploit inaccuracies in high-capacity dynamics models,



Figure 14: **Expected Signal-to-Noise Ratio (ESNR) of the planner gradients of Grad-MPC and Dream-MPC.** Calculated via Eq. (17) for different planning horizons on the Pendulum-v1 environment using the ground truth (simulator) and learned dynamics model respectively and state observations. The values are represented by their mean and standard deviation for three different random seeds. The default hyperparameters provided in Tab. 17 are used unless otherwise specified.

potentially leading to poor real-world performance despite high predicted returns (Clavera et al., 2018). Since our method optimizes actions to maximize expected returns, we rely on accurate predictions. Fig. 15 shows the mean difference between the actual returns and the predicted returns of a trained policy on the Acrobot Swingup task in for three different seeds and ten test episodes per seed. We find that the differences are quite small, which indicates that the policy may not exploit the learned model. This is probably because the prediction horizon is sufficiently short and MPC may also help to compensate for model inaccuracies by replanning at each step. While the models for other environments might not necessarily be as accurate as for Acrobot Swingup, we empirically find that the learned model tends to estimate the reward quite accurately. Using an ensemble of models to consider uncertainty as for TD-MPC2 can further help to reduce model exploitation.



(a) Mean difference between actual and predicted returns and standard deviation for three different seeds and ten test episodes per seed.

(b) Actual and predicted return for five exemplary evaluation episodes.

Figure 15: **Analysis of predicted returns over the number of environment steps for Acrobot Swingup.**

1512 D.4 IMPLEMENTATION DETAILS  
15131514 We use PyTorch (Paszke et al., 2019) implementations of SAC+AE<sup>3</sup>, PlaNet and Dreamer<sup>4</sup> that are  
1515 distributed under MIT license and also base the implementations of hybrid Grad-MPC and of our  
1516 method on the latter. The hyperparameters are listed in Tab. 17.1517 We use the default hyperparameters for SAC+AE as described in Yarats et al. (2021), except for the  
1518 action repeat, which we set to two for a fair comparison.  
15191520 Table 17: Hyperparameters and their values used for the experiments.  
1521

| 1522 | Algorithm                               | Hyperparameter            | Value                    |
|------|-----------------------------------------|---------------------------|--------------------------|
| 1523 | All                                     | Optimizer                 | Adam (Kingma & Ba, 2015) |
| 1524 |                                         | Max. episode length       | 1000                     |
| 1525 |                                         | Action repeat             | 2                        |
| 1526 |                                         | Experience size           | 1000000                  |
| 1527 |                                         | Embedding size            | 1024                     |
| 1528 |                                         | Hidden size               | 200                      |
| 1529 |                                         | Belief size               | 200                      |
| 1530 |                                         | State size                | 30                       |
| 1531 |                                         | Exploration noise         | 0.3                      |
| 1532 |                                         | Seed episodes             | 5                        |
| 1533 |                                         | Collect interval          | 100                      |
| 1534 |                                         | Batch size                | 50                       |
| 1535 |                                         | Overshooting distance     | 0                        |
| 1536 |                                         | Overshooting KL beta      | 0                        |
| 1537 |                                         | Overshooting reward scale | 0                        |
| 1538 |                                         | Global KL beta            | 0                        |
| 1539 | Dreamer, Dream-MPC<br>& hybrid Grad-MPC | Free nats                 | 3                        |
| 1540 |                                         | Bit depth                 | 5                        |
| 1541 |                                         | Planning horizon          | 15                       |
| 1542 |                                         | Activation function       | ReLU / ELU               |
| 1543 |                                         | Model learning rate       | 6e-4                     |
| 1544 |                                         | Actor learning rate       | 8e-5                     |
| 1545 |                                         | Critic learning rate      | 8e-5                     |
| 1546 | Dream-MPC                               | Adam epsilon              | 1e-7                     |
| 1547 |                                         | Grad clip norm            | 100                      |
| 1548 |                                         | Discount factor           | 0.99                     |
| 1549 |                                         | Horizon discount factor   | 0.95                     |
| 1550 | Hybrid Grad-MPC                         | Action optimization rate  | 0.1                      |
| 1551 |                                         | Action noise              | 0.2                      |
| 1552 |                                         | Action reuse coefficient  | 0.1                      |
| 1553 |                                         | Candidates                | 5                        |
| 1554 |                                         | Optimization iterations   | 1                        |
| 1555 | PlaNet                                  | Action optimization rate  | 0.05                     |
| 1556 |                                         | Planning horizon          | 1                        |
| 1557 |                                         | Optimization iterations   | 10                       |
| 1558 |                                         | Activation function       | ReLU                     |
| 1559 |                                         | Candidates                | 1000                     |
| 1560 |                                         | Elite candidates          | 100                      |
| 1561 |                                         | Grad clip norm            | 1000                     |
| 1562 |                                         | Model learning rate       | 1e-3                     |
| 1563 |                                         | Adam epsilon              | 1e-4                     |
| 1564 |                                         | Planning horizon          | 12                       |
| 1565 |                                         |                           |                          |

1558 — Appendices continue on next page —  
15591560 <sup>3</sup>[https://github.com/denisyarats/pytorch\\_sac\\_ae](https://github.com/denisyarats/pytorch_sac_ae)  
15611562 <sup>4</sup><https://github.com/yusukeurakami/dreamer-pytorch>  
1563

1566 E SUMMARY OF DIFFERENCES TO HYBRID GRAD-MPC  
15671568 We summarize the main differences between Dream-MPC and hybrid Grad-MPC (S V et al., 2023)  
1569 (also referred to as policy + Grad-MPC by the original authors) as follows:  
1570

- 1571 • **Trajectory optimization.** While the general idea of using a policy to initialize gradient-  
1572 based MPC is shared by both methods, there are important differences. Dream-MPC uses  
1573 not just a single trajectory but samples few trajectories from the policy and optimizes each  
1574 trajectory independently. Additionally, rollout and optimization is performed using longer  
1575 horizons than just a horizon of one, which is used by hybrid Grad-MPC. While these values  
1576 can be parameterized, they have a significant impact on the behavior and performance  
1577 of the optimization. For example, using a horizon of one time step leads to a myopic  
1578 optimization, which is unsuitable for most problems as outlined in Appendix D. Longer  
1579 rollouts with learned world models are also more challenging due to imperfect models as  
1580 shown in Appendix D.2.
- 1581 • **Uncertainty regularization.** We propose to incorporate uncertainty regularization into the  
1582 MPC objective, which we find to be particularly important for high-dimensional problems.
- 1583 • **Action reuse.** We further propose to reuse previously optimized actions instead of com-  
1584 pletely discarding them to reduce the number of optimization iterations and improve com-  
1585 putational efficiency.
- 1586 • **Extensive experiments and thorough ablations.** Grad-MPC (S V et al., 2023) provides  
1587 only limited experimental results and lacks in-depth implementation details. While it shows  
1588 that gradient-based MPC with a policy network is promising for two sparse-reward tasks  
1589 from the DeepMind Control Suite, it does not provide a full evaluation of the method in  
1590 diverse settings such as different benchmarks, different world models or types of obser-  
1591 vations, nor does it address high-dimensional problems, efficiency of gradient-based MPC  
1592 or analyzes why the performance of gradient-based MPC is usually worse, compared to  
1593 gradient-free methods. In contrast, Dream-MPC offers a comprehensive set of experiments  
1594 that systematically analyze the performance of our method across a wide range of condi-  
1595 tions, providing new insights into its applicability and efficiency to enable further research.
- 1596 • **Training with gradient-based MPC.** We also evaluate Dream-MPC when enabling  
1597 gradient-based MPC already during training and not just during inference. In contrast,  
1598 hybrid Grad-MPC is only evaluated using pretrained Dreamer models. Our results show  
1599 that our method is also competitive to gradient-free MPC methods such as MPPI in this  
1600 setting. In contrast, our experiments with hybrid Grad-MPC showed that it prematurely  
1601 converges due to the horizon of just one time step.
- 1602 • **Different world models.** We integrate our method into different types of world mod-  
1603 els, i.e., Dreamer (generative) and TD-MPC2 (implicit, control-centric) to show that our  
1604 method is not targeted to a specific world model architecture while (hybrid) Grad-MPC  
1605 only evaluates their method using Dreamer.
- 1606 • **Implementation.** Furthermore, we were not able to reproduce the results shown in S V  
1607 et al. (2023) with the given information because it lacks in-depth implementation details  
1608 and there is no official implementation available. In contrast, we provide implementation  
1609 details and will open-source our implementation so that future work can replicate and build  
1610 upon.

1611  
1612  
1613  
1614  
1615  
1616  
1617  
1618  
1619