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ABSTRACT

Dense pixel-specific representation learning at scale has been bottlenecked due to
the unavailability of large-scale multi-view datasets. Current methods for building
effective pretraining datasets heavily rely on annotated 3D meshes, point clouds,
and camera parameters from simulated environments, preventing them from build-
ing datasets from real-world data sources where such metadata is lacking. We pro-
pose a pretraining dataset-curation approach that does not require any additional
annotations. Our method allows us to generate multi-view datasets from both real-
world videos and simulated environments at scale. Specifically, we experiment
with two scales: MIMIC-1M with 1.3M and MIMIC-3M with 3.1M multi-view
image pairs. We train multiple models with different masked image modeling
objectives to showcase the following findings: Representations trained on our
automatically generated MIMIC-3M outperform those learned from expensive
crowdsourced datasets (ImageNet-1K) and those learned from synthetic environ-
ments (MULTIVIEW-HABITAT) on two dense geometric tasks: depth estimation
on NYUv2 (↑1.7%), and surface normals estimation on Taskonomy (↓2.05%). For
dense tasks which also require object understanding, we outperform MULTIVIEW-
HABITAT, on semantic segmentation on ADE20K (↑3.89%), pose estimation on
MSCOCO (↑9.4%), and reduce the gap with models pre-trained on the object-
centric expensive ImageNet-1K. We outperform even when the representations are
frozen, and when downstream training data is limited to few-shot. Larger dataset
(MIMIC-3M) significantly improves performance, which is promising since our
curation method can arbitrarily scale to produce even larger datasets.

1 INTRODUCTION

Today, dense vision tasks—depth prediction, surface normal estimation, semantic segmentation,
and pose estimation— often rely on pretrained representations (He et al., 2022; Bachmann et al.,
2022). Naturally, self-supervised learning lends itself as a potential solution. Despite the impressive
performance on object recognition and other high-level tasks, self-supervised representations for
dense prediction tasks have not yet fully delivered (Weinzaepfel et al., 2022). The representations
trained on object-centric datasets such as ImageNet-1K (Deng et al., 2009) do not transfer well to
dense prediction datasets such as NYUv2 (Silberman et al., 2012), and KITTI (Geiger et al., 2012),
Cityscapes (Cordts et al., 2016), which contain indoor and outdoor scenes. Moreover, the joint-
embedding-based objectives (SimCLR (Chen et al., 2020), MoCo (He et al., 2020), DINO (Caron
et al., 2021)) that are often used on object-centric datasets utilize augmentations that do not pre-
serve geometric pixel-wise information. In response, the general purpose representation learning
method—masked image modeling and specifically masked autoencoders (MAE)—has become a
popular default mechanism for such tasks (He et al., 2022; Bachmann et al., 2022; Weinzaepfel
et al., 2022). Unfortunately, recent findings suggest that the representations learned by MAE are
devoid of sufficient local information for tasks like depth estimation (Weinzaepfel et al., 2022).

Based on these observations, we ask the following question: What data do we need to learn useful
representations for dense vision tasks? We find a potential answer in cognitive science: 3D under-
standing of the physical world is one of the first visual skills emergent in infants; it plays a critical
role in the development of other skills, like depth estimation, understanding surfaces, occlusions,
etc (Held & Hein, 1963). Scientists hypothesize that 3D understanding emerges from infants learn-
ing the relationship between changes in visual stimuli in response to their self-motion (Jayaraman
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Figure 1: We introduce a data-curation method that generates multi-view image datasets for self-
supervised learning. Our method identifies potential data sources, including videos of indoor scenes,
people, and objects, 3D indoor environments, outdoor street views, and stereo pairs to mine potential
multiview images. Next, we use classical computer vision methods such as SIFT keypoint detection
and homography transformation to locate corresponding patches. Finally, we filter pairs based on a
threshold for significant overlap, ensuring a substantial percentage of pixels match between a pair.

& Grauman, 2015), i.e. 3D awareness emerges by learning correspondences between appearances
as the infant’s vantage point changes (Rader et al., 1980).

Very recently, a machine learning paper proposed a variant of masked image modeling, named
cross-view completion (CroCo), which uses an objective that operationalizes learning representa-
tions in response to changes in self-motion (Weinzaepfel et al., 2022). Given a pair of multi-view
images, CroCo reconstructs a masked view using the second view as support. Unfortunately, CroCo
is a data-hungry objective. Its synthetic MULTIVIEW-HABITAT dataset of 1.8M multi-view im-
ages was curated using a method that requires ground truth 3D meshes to be annotated. Although
CroCo shows promise, the lack of datasets with 3D annotations is a severe limitation, preventing
its objective from scaling. If one could mine large-scale multi-view datasets, perhaps dense vision
tasks could enjoy the success that the field of natural language processing has welcomed due to the
availability of large-scale pretraining text (Brown et al., 2020).

In this work, we contribute MIMIC: a data-curation method for developing multi-view datasets that
scale. Our method does not require any 3D meshes and can generate multi-view datasets from unan-
notated videos and 3D simulated environments. We leverage classical computer vision techniques,
such as SIFT(Scale Invariant Feature Transform) keypoint detection (Lowe, 2004), RANSAC (Fis-
chler & Bolles, 1981), homography estimation (Hartley & Zisserman, 2003), etc. to extract cor-
respondences between frames in open-sourced unannotated videos (see Figure 1). In other words,
MIMIC produces a pretraining dataset for masked image modeling using image correspondences.

We experiment with two scales: MIMIC-1M and MIMIC-3M, and show that they effectively train
useful self-supervised (MAE and CroCo) representations when compared to MULTIVIEW-HABITAT.
Our experiments show the following: Most importantly, representations learned from MIMIC-
3M, our automatically generated dataset, outperform those trained using ImageNet-1K Deng
et al. (2009), an expensive human-labeled dataset on dense geometric tasks: depth estimation
(NYUv2 (Nathan Silberman & Fergus, 2012)) and surface normals (Taskonomy (Zamir et al.,
2018)); Second, MIMIC also trains better representations than MULTIVIEW-HABITAT Weinzaepfel
et al. (2022), a baseline automatically generated dataset, on both dense geometric tasks, such as
depth estimation (NYUv2) and surface normal prediction (Taskonomy), as well as on dense object-
related tasks, such as semantic segmentation (ADE20K (Zhou et al., 2019)) and pose estimation
(MSCOCO (Lin et al., 2014)). Third, larger pretraining dataset (MIMIC-3M > MIMIC-1M) sig-
nificantly improves performance, which is promising since our curation method can arbitrarily scale
to produce even larger datasets. Finally, our representations demonstrate better few-shot perfor-
mance on depth estimation (NYUv2) and semantic segmentation (ADE20K).

2 RELATED WORK

In this section, we discuss masked image modeling - a promising paradigm for self-supervised dense
representation learning at scale and data curation methods for large-scale visual learning.

Masked image modeling. Amongst masked image modeling, BEiT (Bao et al., 2021) proposes the
pre-training task of recovering the visual tokens from a corrupted image, MAE (He et al., 2022)
learns by masking patches of an image and inpainting the masked patches; MultiMAE extends
MAE to a multi-task formulation (Bachmann et al., 2022). Their approach uses pseudo-labels–
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hence, MultiMAE is not fully self-supervised. CroCo (Weinzaepfel et al., 2022) uses cross-view
completion and ingests multi-view images. Their data curation method, though, uses 3D metadata
and meshes of synthetic 3D environments; their dataset is also not publicly available. By contrast,
MIMIC neither needs any pseudo labels extracted using supervised methods nor it needs any 3D
meshes, point clouds, or camera parameters for dataset curation.

Data curation for large scale visual learning. Large-scale image datasets have incredibly acceler-
ated progress in visual learning. ImageNet-1K, with 1.2M images annotated by crowdsourcing led
to several breakthroughs and is still a standard dataset used for pretraining vision models. It was
manually designed to cover a diverse taxonomy of object categories with sufficient representation of
instances per category. Unfortunately, this approach is extremely costly, not scalable, and serves as
an upper bound for what is possible with manual curation instead of our automatic curation.

Moreover, the efforts so far have been focused on high-level semantic tasks like classification, and
large-scale pretraining datasets for dense prediction tasks such as MULTIVIEW-HABITAT with syn-
thetic image pairs mined using Habitat simulator Savva et al. (2019) are not available publicly.
MULTIVIEW-HABITAT uses annotations such as camera parameters and meshes to sample image
pairs with a co-visibility threshold of 0.5. The use of such metadata for mining image pairs is a lim-
iting factor as (1) it requires expensive sensors to obtain these annotations on real-world datasets (2)
it cannot be scaled up to mine web-scale data sources where this information is not readily available.

To address these challenges we propose a methodology for curating multi-view datasets using videos
and 3D environments. We demonstrate that it is possible to use our data collection strategy and
outperform on multiple dense vision tasks without making use of any explicit annotations.

3 MIMIC: CURATING MULTI-VIEW IMAGE DATASET FOR DENSE VISION
TASKS

While CroCo recently utilized MULTIVIEW-HABITAT, a multi-view dataset, their dataset creation
process requires the availability of 3D mesh, point cloud, or camera pose information for each scene.
This dependency imposes limitations on the range of data sources that can be used for crafting a
multi-view dataset. Unfortunately, there is currently no large-scale publicly available dataset to
address this void. To bridge this gap, we introduce MIMIC.

MIMIC can generate multi-view datasets from unannotated videos and 3D simulated environments.
Any data source that contains multi-view information with static objects or at least with minimal
object movement is a suitable data source. MIMIC works by cleverly combining traditional com-
puter vision methods (Figure 1). The only mechanism our curation process requires is a sampling
mechanism (I1, I2) ∼ g(S), where S is some data source from which g(·) samples two images I1
and I2. For example, S can be a video from which g(·) samples two image frames. Or S can be a
synthetic 3D environment from which g(·) navigates to random spatial locations and samples two
random image renderings of the same scene.

Identifying data sources. We generate our MIMIC dataset from both real as well as synthetic
data sources. We use DeMoN (Ummenhofer et al., 2017), ScanNet (Dai et al., 2017), Ark-
itScenes (Baruch et al., 2021), Objectron (Ahmadyan et al., 2021), CO3D (Reizenstein et al., 2021),
Mannequin (Li et al., 2019), and 3DStreetView (Zamir et al., 2016) as real data sources. DeMoN is
a dataset containing stereo image pairs. ScanNet and ArkitScenes contain videos from indoor envi-
ronments. Objectron and CO3D are collections of videos containing objects. Mannequin provides
a video dataset featuring individuals engaged in the mannequin challenge. 3DStreetView offers a
collection of street images from multiple urban areas.

We also source data from 3D indoor scenes in HM3D (Ramakrishnan et al., 2021a), Gibson (Xia
et al., 2018), and Matterport (Chang et al., 2017) datasets, using the Habitat simulator (Savva et al.,
2019). We initialize an agent randomly in the 3D environment and design g(·) to move the agent in
random steps and directions. For each scene, the agent moves to numerous locations and captures
various views. All our data sources with their distributions are visualized in Figure 2.

Mining potential pairs. The primary characteristic of the image pairs in our dataset resides in their
ability to capture the same scene or object from varying viewpoints while exhibiting a substantial
degree of overlap. The dataset is designed to strike a balance: the overlap is not excessively large to
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the point of containing identical images, rendering the pre-training task trivial; nor is it excessively
small, resulting in disjoint image pairs that offer limited utility, making the task only self-completion.
Particularly, we discard the image pairs with a visual overlap of less than 50% and more than 70%.
We base this design decision on empirical ablations performed in CroCo. Their experiments suggest
that cross-view completion offers no advantage if the visual overlap is outside of this range.

In each video or scene, many image pairs can be generated. However, we focus on selecting a lim-
ited number of pairs that are more likely to meet our desired condition of having sufficient overlap.
Nonetheless, not all of these candidate pairs may ultimately be chosen. For instance, when dealing
with video data, a practical strategy involves creating a list of frames at regular time intervals, which
depends on the video’s speed. By selecting consecutive frames from this list, potential pairs are
generated. Conversely, collecting potential pairs in 3D scenes such as HM3D (Ramakrishnan et al.,
2021a) or Gibson (Xia et al., 2018) presents greater challenges. Therefore, inspired by CroCo, we
employ the habitat simulator (Savva et al., 2019) to capture comprehensive environment views. The
agent undergoes random rotations and movements, exploring the scene from various perspectives.
By capturing images during these random walks, we generate potential pairs for further analysis.
The selection process involves filtering based on a specified overlap range (50% to 70%) and ensur-
ing the inclusion of pairs with diverse viewpoints. However, our approach does not rely on additional
annotations and solely utilizes the available images.

Figure 2: Distribution of Data Sources (%). Real data
sources, including DeMoN, ScanNet, ArkitScenes, Objec-
tron, CO3D, Mannequin, and 3DStreetView, contribute to
32% of MIMIC. The remaining portion consists of syn-
thetic sources, namely HM3D, Gibson, and Matterport.

Matching and measuring overlap.
Given a potential image pair captur-
ing a scene, we employ the robust,
and widely used SIFT features to lo-
calize key points in both images.

After obtaining the key points and
descriptors, we apply a brute-force
matching technique to establish cor-
respondences between the key points
in the first image and those in the
second image. More efficient meth-
ods, such as FLANN matcher (Muja
& Lowe, 2009), may offer (≈ 1.24×)
speedups. However, our initial explo-
ration shows that brute-force match-
ing yields better matches; also, ex-
tracting pairs is a one-time process.
We further utilize these matches to
estimate the homography matrix, us-
ing the RANSAC (Random Sample Consensus) algorithm to eliminate outliers. Note that the ho-
mography transformation holds true in three scenarios–(1) when capturing planar surfaces, (2) when
capturing a distant scene, and (3) when a camera undergoes a pure rotation. In real-world videos,
these assumptions may not always hold true. Regardless, homography serves as an approximation
to the transformation. We further use this approximated matrix to filter out unwanted image pairs
with no visual overlap.

We then partition each image into non-overlapping patches of size N × N , where N is the patch
size of the image encoder. We use N = 16 for our experiments. For each patch in the first image,
we search for the corresponding patch in the second image with the highest overlap. We randomly
sample points within the first image and match them with their correspondences in the second im-
age. Next, we map each patch in the first image to the patch with the highest number of matched
correspondences in the second. Lastly, we measure visual overlap by calculating the total number
of matched patches divided by all patches. Refer to the Appendix for more details.

Filtering out degenerate matches. In our approach, the selection of image pairs is guided by the
objective of capturing shared 3D information while mitigating redundancy. Hence, the desired pairs
consist of images that depict the same objects or scenes from different perspectives. This charac-
teristic enables the learning model to acquire valuable insights about the underlying 3D structure.
However, it is crucial to avoid including pairs where one image is a zoomed-in version of the other,
as such pairs provide limited additional information.
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To address this concern, we modify the overlap metric used in the pair selection process. Specifi-
cally, we incorporate a criterion that prevents the inclusion of patches from the first image that have
exact correspondences in the second image. Therefore, in the counting, we consider all patches that
have the same corresponding patch in the second image as a single entity.

Overall statistics. To understand the effect of data size we experiment with two scales. MIMIC-
1M, comprises a total of 1, 316, 199 image pairs, each capturing different scenes or objects from
varying viewpoints. Among these pairs, 761, 751 are sourced from HM3D, 305, 197 from Gibson,
29, 658 from Matterport, 114, 729 from Mannequin, 22, 184 from DeMoN, 36, 433 from ScanNet,
and 46, 250 from Objectron. We further expand the dataset to create a larger version, MIMIC-3M,
to contain a total of 3, 163, 333 image pairs. This expansion involves augmenting the HM3D dataset
with an additional 699, 322 pairs, the Gibson dataset with 351, 828 pairs, and the inclusion of new
datasets such as ArkitScenes with 81, 189 pairs, CO3D with 133, 482 pairs, and 3DStreetViews with
579, 310 pairs. By incorporating these new datasets, we further enrich the diversity and quantity of
image pairs available in our dataset.

4 TRAINING WITH MIMIC

To measure the effectiveness of MIMIC, we train two models with masked image modeling objec-
tives and evaluate the utility of the learned representations on downstream dense prediction tasks.
We compare against existing pretraining dataset alternatives.

4.1 PRETRAINING

We use MAE (He et al., 2022) and CroCo (Weinzaepfel et al., 2022) for pretraining. We follow the
protocol from CroCo and use a ViT-B/16(Dosovitskiy et al., 2020) as a backbone for all our exper-
iments with input images sizes of 224× 224. We train our models on 8 RTX A6000 GPUs for 200
epochs with a warmup of 20 epochs with a base learning rate of 1.5×10−4, an AdamW (Loshchilov
& Hutter, 2017) optimizer with a cosine learning rate schedule, a weight decay of 0.05, and an
effective batch size of 4096. Lastly, we evaluate these pretrained representations on a series of
downstream dense prediction tasks.

MAE pretraining. To understand the importance of including correspondences in the pretraining
objective, we train MAE, which does not encode multi-view correspondences and treats each image
in our image pairs independently. MAE masks out a large portion (75%) of the input patches of an
image and uses an asymmetric encoder-decoder architecture to reconstruct the masked-out pixels.
Specifically, it uses a ViT-based encoder to extract the latent representations of the masked view.
Then it pads the output with the masked tokens and feeds it to a lightweight decoder. The decoder’s
output reconstruction is optimized with an L2 loss. The reconstruction pixel targets are normalized
by computing the mean and standard deviation of the image patches.

CroCo pretraining. Unlike MAE, CroCo aims to encode relationships between the two views of
the same scene from different viewpoints and learns to reason about the illumination and viewpoint
changes. CroCo reconstructs a masked image input similar to MAE but supports the reconstruction
process through an unmasked second reference view. CroCo masks 90% of the first image. CroCo
uses the same ViT encoder as MAE, with shared weights to encode both views. The decoding
cross-attends over the second view while reconstructing the first masked view.

4.2 BASELINE DATASETS.

We compare MIMIC with: ImageNet-1K (Deng et al., 2009) and MULTIVIEW-HABITAT (Weinza-
epfel et al., 2022).

ImageNet-1K is a widely used large-scale dataset with 1.2M training images. It was manually
designed to cover a diverse taxonomy of a thousand object categories. The images were chosen to
have sufficient instances per category. Therefore, ImageNet-1K serves almost as an upper bound for
what is possible with immense human data-curation effort.

MULTIVIEW-HABITAT comprises of synthetic renderings of indoor scenes collected using the 3D
meshes available in the Habitat simulator (Savva et al., 2019). It is derived from HM3D (Ramakrish-
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Table 1: For dense geometric tasks including depth estimation and surface normals estimation,
CroCo pretrained with MIMIC-3M outperforms MAE and DINO on ImageNet-1K as well as
MULTIVIEW-HABITAT. We report the results from the CroCo paper (marked with ∗) as well as
those with our task-specific fine-tuning setup adopted from MultiMAE.

Model Frozen Dataset NYUv2 Taskonomy
depth est. surface normal est.
δ1 (↑) L1 (↓)

DINO ImageNet-1K 81.45 65.64
MAE ImageNet-1K 85.1 59.20

MAE ✓ MV-HABITAT - -
MAE ✓ MIMIC-3M 80.65 68.97

MAE MV-HABITAT 79.00 59.76
MAE MIMIC-3M 85.32 58.72
CroCo ✓ MV-HABITAT 85.20∗ (84.66) 64.58
CroCo ✓ MIMIC-3M 85.81 61.7
CroCo MV-HABITAT 85.60∗ (90.19) 54.13
CroCo MIMIC-3M 91.79 53.02

+1.6 -1.11

nan et al., 2021b), ScanNet (Dai et al., 2017), Replica (Straub et al., 2019) and ReplicaCAD (Szot
et al., 2021). This dataset is not available publicly. So, we compare against the released models
trained on it. MULTIVIEW-HABITAT serves as our main baseline dataset since it is the only large-
scale multi-view dataset that has been used for training use representations for dense vision tasks.

4.3 DOWNSTREAM TASKS, DATASETS, EVALUATION PROTOCOLS

We evaluate our models on two dense geometric tasks: depth estimation and surface normal es-
timation. We also evaluate on two dense object-related tasks: semantic segmentation, and pose
estimation. Finally, we report object classification numbers for completion. We provide below the
details of the datasets, metrics, and protocols used for fine-tuning and evaluations.

Depth Estimation involves estimating the depth of each pixel of an input image from the camera.
For evaluation, we use the NYUv2 (Nathan Silberman & Fergus, 2012), a dataset of RGB images
and their corresponding ground truth depth maps. It consists of 795 training and 654 test images of
indoor scenes. We report the δ1 metric on the test images - which computes the percent of the pixels
with error max(

ypi

ygi
,
ygi

ypi
) less than 1.25, where ypi

is the depth prediction and ygi is the ground truth
of the ith pixel of an image. We use DPT (Ranftl et al., 2021) head as in MultiMAE for finetuning.

Surface Normals Estimation is a regression task that aims to estimate the orientation of a 3D
surface. We use a subset of Taskonomy (Zamir et al., 2018) with 800 training images, 200 validation
images, and 54, 514 test images. We use the L1 loss value on the test set as a metric for evaluations.

Semantic Segmentation entails assigning a class to each pixel of an image based on its semantic
category. We use ADE20K (Zhou et al., 2019), which consists of 20, 210 training images and 150
semantic categories. We report the mIOU which quantifies the percentage overlap between the
predictions and the ground truth annotations. For finetuning, we use a segmentation head based on
ConvNext (Liu et al., 2022) adapter.

Classification is a high-level semantic task that involves assigning a category to an image based on
its content. We use ImageNet-1K(Deng et al., 2009) which contains 1.28M training images and 50K
validation images. This task allows us to measure how large the gap is when models are pretrained
for dense tasks in mind. We follow the linear probing protocol from MAE and report accuracy.

Pose Estimation involves detecting keypoints and their connections in an image. We use the
MSCOCO (Lin et al., 2014) dataset for finetuning and report Average Precision and Average Recall
on the validation set. Specifically, we adopt ViTPose-B (Xu et al., 2022) for finetuning.
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5 EXPERIMENTS

We evaluate our pre-trained models on two dense geometric vision tasks – depth estimation and sur-
face normal prediction. MIMIC-3M’s dense representations outperform both tasks (§ 5.1). Next,
we finetune our encoders for pixel-level tasks that also require object understanding – semantic seg-
mentation, and pose estimation and high-level semantic tasks – image classification. For these three
tasks, our experiments demonstrate that models trained using our automatically generated data close
the gap with models trained on ImageNet-1K (§ 5.2). We further experiment with the data size used
for pretraining and showcase that more data leads to improvements on depth estimation and seman-
tic segmentation tasks (§ 5.3). Unlike CroCo trained on MULTIVIEW-HABITAT, our pre-trained
models do not saturate or degrade over time on depth estimation and semantic segmentation (§ 5.4).
Our performance benefits also hold as we vary the number of fine-tuning data points available for
both depth estimation and semantic segmentation (§ 5.5) Finally, we find that our models produce
higher-quality reconstructions using the pretraining decoder (§ 5.6).

5.1 MIMIC-3M OUTPERFORMS MULTIVIEW-HABITAT AND IMAGENET-1K ON DENSE
GEOMETRIC TASKS

We finetune our trained models on two dense geometric tasks: NYUv2 depth estimation and Taskon-
omy surface normal prediction. We also finetune the CroCo models trained on MULTIVIEW-
HABITAT using task-specific decoders adopted from MultiMAE and report their improved results.

Even though MIMIC-3M was generated automatically, without manual intervention, and uses no
3D annotations, representations pretrained on MIMIC-3M perform better on both dense geometric
tasks (Table 1). These gains can be attributed to the inclusion of real sources–thanks to the flexibility
of our method which allows us to use real-world videos of complex scenes as a data source.

We also validate the utility of multi-view correspondences by comparing MAE with CroCo mod-
els. CroCo offers significant gains over MAE on MIMIC-3M demonstrating the benefits of using
correspondences during pretraining (Table 1) . In fact, CroCo when trained on MIMIC-3M leads
to the state-of-the-art δ1 of 91.79 NYUv2 depth and L1 of 53.02 on surface normals using masked
image modeling methods.

5.2 MIMIC-3M OUTPERFORMS THE MULTIVIEW-HABITAT AND REDUCES THE GAP TO
IMAGENET-1K ON DENSE OBJECT TASKS.

To understand the potential of MIMIC for dense tasks which also require object-level understand-
ing, we evaluate MAE and CroCo pretrained with MIMIC-3M on ADE20K semantic segmenta-
tion and MSCOCO pose estimation (Table 2). We observe consistent gains in comparison to the
MULTIVIEW-HABITAT. We hypothesize that these improvements come from the real-world object-
centric data from Objectron and Co3D. When compared to MULTIVIEW-HABITAT, MIMIC-3M
reduces the performance gap by 7.36% with MAE and 2.64% with CroCo on manually curated,
object-centric, and human-annotated ImageNet-1K.

5.3 SCALING UP MIMIC LEADS TO PERFORMANCE GAINS

We study the scaling trends of MIMIC by varying the data size. We experiment with two scales: the
first MIMIC-1M with 1.3M image pairs and the second MIMIC-3M with 3.1M image pairs. We
train CroCo with these two training sets and evaluate the performance on depth estimation (NYUv2),
semantic segmentation (ADE20K), and surface normals (Taskonomy) (Table 3). We observe consis-
tent improvements: δ1 by 2.33, mIOU on ADE20K by 3.73, and L1 loss by 4.10. We conjecture that
the improvements occur because of the additional 1.8M image pairs added from three real datasets:
CO3D, ArkitScenes, 3DStreetViews.

5.4 MIMIC REPRENSETATIONS IMPROVE WITH MORE PRETRAINING ITERATIONS

In contrast to models trained on MULTIVIEW-HABITAT, we do not observe performance saturation
or degradation with pretraining iterations (see Figure 6 in their paper (Weinzaepfel et al., 2022)).
Instead, the performance of both MIMIC-1M and MIMIC-3M improves on depth estimation and
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Table 2: MIMIC-3M, our automatically generated dataset shows improvements over MULTIVIEW-
HABITAT on dense object-related tasks such as ADE20K semantic segmentation and MSCOCO
pose estimation. It even improves on ImageNet-1K classification and further closes the gap with
models pre-trained on ImageNet-1K, curated with expensive crowdsourcing.

Model Pretraining dataset ADE-20K(↑) MSCOCO(↑) ImageNet-1K (↑)
mIOU AP AR % accuracy

MAE MV-HABITAT 40.30 - - 32.50
MAE MIMIC-3M 40.54 69.13 75.22 39.86
CroCo MV-HABITAT 40.60 66.50 73.20 37.00
CroCo MIMIC-3M 42.18 72.80 78.40 39.64

+1.58 +6.30 +5.20 +2.64

MAE ImageNet-1K 46.10 74.90 80.40 67.45

Table 3: MIMIC-3M shows improvements over MIMIC-1M on depth estimation (NYUV2), Se-
mantic Segmentation (ADE20K), Surface Normals Estimation (L1)

Dataset Frozen NYUv2(↑) ADE20K(↑) Taskonomy(↓)
δ1 mIOU L1

MIMIC-1M ✓ 82.67 27.47 67.23
MIMIC-3M ✓ 85.81 30.25 61.70

+3.14 +2.78 -5.53

MIMIC-1M 89.46 38.45 57.12
MIMIC-3M 91.79 42.18 53.02

+2.33 +3.73 -4.10

semantic segmentation (Figure 3(a)) for an iterations-matched training run. This trend holds regard-
less of whether the representations are fine-tuned or kept frozen.

5.5 MIMIC-3M OUTPERFORMS MULTIVIEW-HABITAT WITH FEW-SHOT FINETUNING

We measure the label efficiency of the learned representations trained on MIMIC-3M by evaluating
its few-shot performance on NYUv2 depth estimation and ADE20K semantic segmentation. We
freeze the image encoder and fine-tune the task-specific decoders by varying the number of training
images. We run each k-shot finetuning at least 5 times and report the mean and the standard deviation
of the runs. For depth estimation, we also experimented with k-shot regimes where k is less than 10.
Overall the representations trained on our MIMIC-3M show better labeling efficiency than those
trained using MULTIVIEW-HABITAT (Figure 3(b)). These gains can be attributed to the diverse, and
real world training data during pretraining.

5.6 MIMIC ACHIEVES HIGHER FID SCORE AND LOWER RECONSTRUCTION ERROR

We analyze the quality of the reconstructions trained on MIMIC-3M versus MULTIVIEW-
HABITAT. We use FID scores (Heusel et al., 2017), which indicate how realistic the reconstructions
are and the reconstruction error (L2 loss) in the original masked image modeling objective. We
sample a test set of 500 images from the Gibson dataset. We ensure that these images are sampled
from the scenes that are exclusive of MULTIVIEW-HABITAT and MIMIC-3M pretraining datasets.
We mask 90% of each test image and then compare the quality of the reconstructions (Table 4). Our
analysis shows that CroCo trained on MIMIC-3M improves the FID by 12.65 points and reduces
the reconstruction loss on the test set (see Appendix for visualizations).
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Figure 3: (a) CroCo pretrained on MIMIC shows an increasing trend with the number of training
epochs. The figure on the left shows the trends for the fine-tuned and frozen versions of the encoder
on NYUv2 depth estimation. The figure on the right shows the trend on the ADE20K dataset.
(b) CroCo pretrained on MIMIC-3M achieves better few shot performance on CroCo pretrained
on MULTIVIEW-HABITAT. The figure on the left shows the few shot performance on the NYUv2
dataset and the figure on the right shows the few shot performance on ADE20K.

Table 4: MIMIC-3M achieves better FID score and reduces the reconstruction loss on 500 test
images from the Gibson dataset compared to MULTIVIEW-HABITAT

Model Dataset Reconst. loss (↓) FID score (↓)

CroCo MV-HABITAT 0.357 85.77
CroCo MIMIC-3M 0.292 73.12

6 DISCUSSION

We present MIMIC, an approach to curate large-scale pretraining datasets from real-world videos
and synthetic environments, geared towards dense vision tasks. Our work aims to provide a holistic
solution that requires no manual intervention and domain knowledge about the data sources. We dis-
cuss below the limitations and safety considerations regarding our dataset and lay out opportunities
for future work.

Limitations. There are several limitations of our work. First, we pretrain CroCo on MIMIC-3M
using a fixed-sized architecture ViT-B/16; model scaling experiments are outside the scope of this
work. Second, our curated dataset primarily consists of static objects and does not involve dynamic
scenes. Lastly, MIMIC-3M has a small amount of object-centric data, and its suitability for object-
related tasks is limited. Including more object-centric sources may help bridge this gap.

Safety and ethical considerations. While our method uses publicly available datasets for data
curation, we acknowledge that the algorithm can be scaled up to scrape videos in the wild. We are
aware of the privacy, and ethical issues caused by models trained on large-scale datasets and the
amplification of the biases these models may result in. As such, we ensure to limit our data sources
to only open-sourced video datasets. Lastly, we recommend the use of face blurring and NSFW
filtering before scraping internet videos.

Future work. We would like to design methodologies to mine dynamic videos where epipolar
geometric constraints do not apply, design new objectives for pretraining on image pairs curated
using MIMIC, and evaluate representations on more diverse tasks. The flexibility of MIMIC makes
it suitable for further scaling it up to even larger pretraining datasets.

9
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A APPENDIX

B DATASET, RESOURCES, ASSETS

B.1 DATASET USAGE

The code and instructions to download, access, and use MIMIC-3M can be found here. The primary
use case of this dataset is to train a 3D-aware ViT in a self-supervised manner.
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B.2 COMPUTE RESOURCES

As mentioned in Section 4.1 (Pretraining) we train CroCo (Weinzaepfel et al., 2022) for 200 epochs,
each epoch taking about 1 hour 40 minutes using 8 NVIDIA RTX A6000 GPUs. The cost for one
training run is about 111 GPU days.

B.3 ASSETS

We provide the details of the dataset and code licenses used in our study in Table5. We bear all
responsibility in case of violation of rights. Our code is primarily based on MAE (He et al., 2020),
MultiMAE (Bachmann et al., 2022) and CroCo (Weinzaepfel et al., 2022) and our work is licensed
under CC BY-NC-SA 4.0.

Table 5: List of the assets and licenses

Asset License

Pretraining datasets
HM3D (Ramakrishnan et al., 2021a) [link]
Gibson (Xia et al., 2018) [link]
3DStreetView (Zamir et al., 2016) [link]
CO3D (Reizenstein et al., 2021) [link]
Mannequin (Li et al., 2019) [link]
ArkitScenes (Baruch et al., 2021) [link]
Objectron (Ahmadyan et al., 2021) [link]
ScanNet (Dai et al., 2017) [link]
Matterport (Chang et al., 2017) [link]
DeMoN (Ummenhofer et al., 2017) [link]

Downstream datasets
ImageNet-1K (Deng et al., 2009) [link]
NYUv2 (Nathan Silberman & Fergus, 2012) [link]
ADE20K (Zhou et al., 2019) [link]
Taskonomy (Zamir et al., 2018) [link]
MSCOCO (Lin et al., 2014) [link]

Code/Pretrained models
MAE (He et al., 2022) [link]
CroCo (Weinzaepfel et al., 2022) [link]
MultiMAE (Bachmann et al., 2022) [link]

C DATA CURATION DETAILS

C.1 DETAILS ON MINING POTENTIAL PAIRS

We utilized different data types within our datasets, including videos, 3D scenes, and street views.
Consequently, the process of mining potential pairs for each data type varied. For street views (Zamir
et al., 2016), we adopted a strategy where we grouped images based on their target id (images that
have the same target id in their name, show the same physical point in their center). Subsequently,
among all possible combinations of images in a group, we selected the pair with minimal overlap
ranging from 50% to 70%.

When dealing with video data, a practical approach involved creating a list of frames at regular time
intervals, determined by the speed of the video. Then, we generated pairs of consecutive frames
from this list. In cases where substantial overlap between consecutive frames was observed, we
specifically chose the second consecutive frame and evaluated its overlap with the preceding frame.
We implemented this step to ensure that the selected frame pair exhibits an appropriate level of
dissimilarity and minimized redundancy.

To tackle the challenges associated with handling 3D scenes, we employed the habitat simula-
tor (Savva et al., 2019) to sample locations within the navigable area of the scene. We initialized an
agent with a random sensor height and rotated it eight times at 45◦ intervals, capturing a compre-
hensive view of the surroundings to form the first list of eight images. Subsequently, we sampled
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a random rotation degree from multiples of 60◦ (excluding 180◦ and 360◦), and rotated the agent
accordingly before moving in the current direction for a random step ranging from 0.5 to 1 meter.
We repeated the process of rotating eight times at 45◦ intervals, capturing the second list of eight
images. Likewise, we randomly rotated and moved the agent to generate the third list of eight im-
ages. From these lists, we selected an optimal pair (img1, img2) from a pool of 8 × 16 potential
pairs. img1 belonged to the first list, while img2 was chosen from the combined pool of the second
and third lists, with a minimal overlap ranging from 50% to 70%, if applicable.

The selection of a 45◦ rotation aimed to capture a comprehensive view of the environment while
minimizing redundancy. Furthermore, the choice of rotation degrees as multiples of 60◦ prevented
capturing images in directions already covered by those obtained with the 45◦ rotation, effectively
avoiding the capture of zoomed-in versions of previously acquired images.

C.2 DETAILS ON MEASURING THE OVERLAP

Given a pair of images or views from a scene (we call it a potential pair), we checked whether these
two are sufficiently overlapped during the six steps. If they had enough overlap, we saved this pair
along with other metadata for the next phase, which was the model pretraining. The six steps are
listed below:
Keypoint localization using SIFT (Lowe, 2004). We used SIFT (Scale-Invariant Feature Trans-
form) as a feature detector to localize the two views’ key points separately. SIFT has been shown to
perform well compared to other traditional methods. Figure 4a provides an example pair with key
points.

(a) (b)

Figure 4: (a) A pair of images with SIFT key points. (b) Matching key points of images with a brute
force matcher.

(a) (b)

Figure 5: (a) Inlier matches after finding the homography matrix. (b) Dividing each image to non-
overlapping patches.

Brute force matching. Having obtained both key point features and their descriptors from the
previous step, we performed a brute-force matching process to match the key points in the first view
(source points) with the key points in the second view (destination points). We present matches
between two views in Figure 4b.
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(a) (b)

Figure 6: (a) Sampling random points from a patch in the first view. (b) Blue points are the corre-
sponding points of the green points in the second view.

(a) (b)

Figure 7: (a) The green patch from the view 1 is matched with the blue patch in view 2. (b) Two
views with their matching patches (matching patches have the same color).
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Finding homography transformation (Hartley & Zisserman, 2003). We leveraged the homogra-
phy (Hartley & Zisserman, 2003) matrix to translate the transformation among the views with pro-
vided source and destination points matches from the previous step. However, we know the found
transformation is not thoroughly accurate and free of errors. Therefore, to overcome this issue, we
used RANSAC (Fischler & Bolles, 1981) to conclude with better estimations of the transformation.
As a result, only some of the matches was categorized as inliers. Inlier matches are shown in Figure
5a

Creating non-overlapping patches. After finding the homography matrix, we divided each view
into non-overlapping patches (16× 16 here) and matched patches from view 1 to view 2, see Figure
5b.

Obtaining the patch correpondences To find a corresponding patch in the second view for a par-
ticular patch in the first view, we performed the following steps: 1. Randomly sampled a suitable
number of points within the specific patch in the first view (e.g., 100 points). In Figure 6a, random
green points are sampled within the green patch of the first view. 2. Applied the homography matrix
H to the sampled points to determine their corresponding positions in the second view. 3. Deter-
mined the patch number in which each corresponding point falls, such as patch(x = 17, y = 0) = 1.
4. Identified the patch that contains the maximum number of corresponding points as the match for
the specific patch in the first image. In Figure 6b, the blue points represent the positions of the
corresponding points in the second view that fall within nearby patches. It can be observed that the
majority of the blue points cluster within a specific patch, which is marked as the matched patch for
the green patch. This match is illustrated in Figure 7a.

Measuring the visual overlap We repeated the procedure from the previous step for all patches in
the first view to determine their matches in the second view. We computed the count of patches in
the first view that have a matching patch within the boundaries of the second view, provided that the
matching patch has not been previously matched with another patch from the first view. Then, we
divided this count by the total number of patches, serving as a metric to measure the overlap.

To ensure a comprehensive evaluation, we performed the mentioned algorithm both for finding
overlap(view1, view2) and its inverse, overlap(view2, view1). We chose the minimum value
between these two overlap metrics as the final overlap measure.

Subsequently, we retained pairs with an overlap ranging from 50% to 75% along with corresponding
patches information. Figure 7b showcases all patches from the first view that have their matches
falling within the second view. Additionally, Figure 8 provides an illustrative example of a retained
pair of images from each dataset, along with their corresponding patches.

D DOWNSTREAM TASKS

D.1 FINETUNING DETAILS

For fine-tuning depth estimation, semantic segmentation, and surface normal estimation we adopt
the task-specific decoders from MultiMAE Bachmann et al. (2022). For pose estimation, we
use the ViTPose Xu et al. (2022) decoders. In Table 6 , we provide the details of the hyper-
parameters used for finetuning CroCo (Weinzaepfel et al., 2022) pretrained on MIMIC-3M on
NYUv2 (Nathan Silberman & Fergus, 2012), ADE20K (Zhou et al., 2019), Taskonomy (Zamir
et al., 2018), MSCOCO (Lin et al., 2014).

D.2 ERROR ESTIMATES

To estimate the variability associated with our fine-tuned models we compute the error estimates for
each of our fine-tuned models. Specifically, we create 100 test sets from each of the downstream
(val/test) datasets by sampling with replacement and then report the minimum, maximum, mean,
and standard deviation of the metric in Table 7. Overall we observe that the mean values are close
to the numbers reported in the main paper and the standard deviation is small.
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Figure 8: Visualizations of the patchwise correspondences (matching patches have the same color).

Table 6: Hyperparameters used for fine-tuning NYUv2 (depth estimation), ADE20K (semantic seg-
mentation), Taskonomy (surface normals)

Hyperparameter NYUv2(depth) ADE20K(sem.seg.) Taxonomy (surf.norm.) MSCOCO(pos.est.)

Optimizer AdamW AdamW AdamW AdamW
Learning rate 0.0001 0.0005 0.0003 0.0005
Layer-wise lr decay 0.75 0.75 0.75 0.75
Weight decay 0.0003 0.05 0.05 0.1
Adam β (0.9, 0.999) (0.9, 0.999) (0.9, 0.999) (0.9, 0.999)
Batch size 64 16 8 512
Learning rate schedule. Cosine decay Cosine decay Cosine decay Linear Decay
Training epochs 2000 64 100 210
Warmup learning rate - 0.000001 0.000001 0.001
Warmup epochs 100 1 5 500

Input resolution 256 × 256 512 × 512 384 × 384 224 × 224
Augmentation ColorJitter, RandomCrop HorizontalFlip, ColorJitter - TopDownAffine
Drop path 0.0 0.1 0.1 0.30

D.3 VISUALIZATIONS OF THE FINE-TUNED MODELS

In this section, we provide the visualizations of the depth maps, semantic segmentation masks,
surface normal predictions, and pose regression outputs after finetuning CroCo pretrained using
MIMIC-3M. For finetuning NYUv2 for depth, ADE20K for semantic segmentation, and Taskon-
omy for surface normals, we followed MultiMAE (Bachmann et al., 2022) and used the settings
from D.1. For finetuning on MS COCO we used ViTPose (Xu et al., 2022).
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Table 7: Error estimates for fine-tuning NYUv2 depth, ADE20K semantic segmentation, Taskonomy
surface normal prediction

Task(metric) Dataset (Val/Test) Min Max Standard Deviation Mean Reported value

Depth Estimation (δ1) NYUv2 (Silberman et al., 2012) 90.17 92.91 0.56 91.70 91.79
Semantic Segmentation (mIOU) ADE20K (Zhou et al., 2019) 39.75 43.36 0.75 41.71 42.18
Surface Normal Estimation (L1) Taxonomy (Zamir et al., 2018) 48.28 54.09 1.24 50.78 53.02

Depth Estimation. Figure 9 shows the input RGB file, predicted depth maps, and ground truth
depth maps from the validation set after finetuning on NYUv2.

Semantic Segmentation. Figure 10 shows the RGB images, predicted semantic segmentations,
and the ground truth labels from the ADE20K validation set after finetuning.

Surface Normals. Figure 11 shows predicted surface normals from the Taskonomy test set after
finetuning.

Pose estimation. Figure 12 shows the predicted keypoints from MS COCO validation set after
finetuning.
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Figure 9: Visualizations of the depth maps
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Figure 10: Visualizations of the segmentation maps
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Figure 11: Visualizations of the surface normal predictions
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Figure 12: Visualizations of the pose estimation
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