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ABSTRACT

Decision-focused learning (DFL) integrates predictive modeling and optimization
by training predictors to optimize the downstream decision target rather than merely
minimizing prediction error. To date, existing DFL methods typically rely on de-
terministic point predictions, which are often insufficient to capture the intrinsic
stochasticity of real-world environments. To address this challenge, we propose the
first diffusion-based DFL approach, which trains a diffusion model to represent the
distribution of uncertain parameters and optimizes the decision by solving a stochas-
tic optimization with samples drawn from the diffusion model. Our contributions
are twofold. First, we formulate diffusion DFL using the reparameterization trick,
enabling end-to-end training through diffusion. While effective, it is memory and
compute-intensive due to the need to differentiate through the diffusion sampling
process. Second, we propose a lightweight score function estimator that uses only
several forward diffusion passes and avoids backpropagation through the sampling.
This follows from our results that backpropagating through stochastic optimization
can be approximated by a weighted score function formulation. We empirically
show that our diffusion DFL approach consistently outperforms strong baselines in
decision quality. The source code for all experiments is available here.

1 INTRODUCTION

Many real-life decision-making tasks require selecting actions that minimize a cost function involving
unknown, context-dependent parameters. These parameters must often be predicted from observed
features. For example, in supply chain management, future product demand must be estimated before
deciding how much inventory to order (Tang & Nurmaya Musa, 2011). A common approach is the
predict-then-optimize pipeline, where a predictive model is first trained using a loss function such as
mean squared error (MSE), and the resulting predictions are then passed to an optimization solver to
guide decisions. While simple and widely adopted, this two-stage method can be misaligned with the
true objective: minimizing decision cost. In particular, lower prediction error does not always lead to
higher-quality decisions (Bertsimas & Kallus, 2020; Elmachtoub & Grigas, 2022).

Decision-focused learning (DFL) addresses this misalignment by integrating the prediction and
optimization stages into a single end-to-end framework (Donti et al., 2017; Wilder et al., 2019;
Mandi et al., 2024). Unlike the two-stage approach, DFL trains the prediction model specifically to
improve decision outcomes, often resulting in solutions with lower regret. However, most existing
DFL methods rely on point (deterministic) predictions as inputs to the optimization layer, despite
the fact that in many real-world scenarios, the underlying parameters are inherently uncertain and
may follow complex distributions. Ignoring this uncertainty can lead to overconfident models and
degraded decision quality (Kochenderfer et al., 2015).

In this work, we introduce a novel DFL approach that leverages diffusion probabilistic models to
capture the environment uncertainty in an end-to-end fashion. Here, we use a conditional diffusion
model (Tashiro et al., 2021) to represent the distribution of uncertain parameters given contextual
features. The advantage of integrating a diffusion model into DFL is that, unlike simple distribution
predictions (e.g., Gaussian), diffusion models can capture multi-modal or complex distributions.
However, the sequential sampling procedure of diffusion models introduces a challenge when training
a diffusion model end-to-end for stochastic optimization. To address this, we develop two algorithms:
reparameterization and score function. First, the reparameterization trick is a common approach that
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expresses a random sample as a deterministic function of the model parameters and some noise, and
we can backpropagate through sampled prediction to solve the DFL problem.

However, this approach can be very costly in memory and computation because it requires differen-
tiating (and therefore tracking gradients) through the diffusion sampling process. To address this,
we introduce a lightweight score function estimator that avoids differentiating through the sampling
process. Specifically, we use a score function surrogate to approximate the gradient of the diffusion
predictor and plug it into the KKT (Karush-Kuhn-Tucker) implicit-differentiation approach to obtain
the total derivative of the decision objective. In addition, we further mitigate the high variance that
arises from using only score functions for a few steps by employing a tailored importance sampling
strategy.

We evaluate our proposed methods in various applications, including (synthetic) product allocation,
energy scheduling, and stock portfolio optimization. Experimental results show that our diffusion
DFL methods consistently outperform all baselines, with more improvements on larger problem
sizes. Moreover, the score function estimator achieves decision quality comparable to that of the
reparameterization method, while significantly reducing GPU memory usage from 60.75 GB to 0.13
GB. The contributions of this paper are the following:

• We introduce the first DFL method that uses diffusion models to capture the downstream
uncertainty and employs the reparameterization trick for end-to-end gradient estimation.

• We propose a lightweight score function estimator that avoids backpropagating the reversing
process in the reparameterization method, significantly reducing memory and computation cost.

• We evaluate our methods in three real-world optimization tasks and observe consistent improve-
ments over strong baselines.

2 RELATED WORKS

Decision-focused learning DFL is an emerging paradigm that trains models end-to-end to directly
optimize decision quality rather than minimizing prediction error (Donti et al., 2017; Wilder et al.,
2019; Mandi et al., 2024). Despite the success in aligning learning objectives with decision-making, a
limitation of most existing DFL methods is that they typically rely on deterministic point predictions
of uncertain parameters (Wilder et al., 2019; Shah et al., 2022). By ignoring distributional uncertainty,
deterministic point predictions cannot represent the full outcomes and may lead to lower decision
quality (Wang et al., 2025). Empirically, classic DFL was observed to struggle in high-dimensional
and risk-sensitive real-world settings with significant uncertainty (Mandi et al., 2022).

Therefore, the gap in uncertainty modeling motivates the need for more comprehensive DFL with
stochastic predictions, where several works have started integrating uncertainty awareness into
the DFL pipeline (Silvestri et al., 2023; Wang et al., 2025; Shariatmadar et al., 2025; Jeon et al.,
2025). For instance, Wang et al. (2025) proposes a generative DFL approach (Gen-DFL) based on
normalizing flow models as the predictor. However, normalizing flows require a bijective network
architecture, which restricts the expressiveness of the stochastic predictor.

In this paper, we propose using diffusion models (Ho et al., 2020) as a more expressive predictor.
By leveraging diffusion models in the DFL paradigm, our approach extends DFL by predicting
an accurate full distribution of the unknown parameters, which addresses the overconfidence of
deterministic optimization and better aligns with downstream decision-making needs.

Diffusion model in optimization Diffusion probabilistic models have achieved great success in
modeling high-dimensional data distributions in recent years (Sohl-Dickstein et al., 2015; Song &
Ermon, 2019; Dhariwal & Nichol, 2021). Originally popularized for image generation and related
structured outputs, its ability to capture multi-modal and high-variety distributions has made it
attractive beyond vision tasks, such as combinatorial optimization(Sun & Yang, 2023; Sanokowski
et al., 2025), black-box optimization(Krishnamoorthy et al., 2023; Kong et al., 2025). To our best
knowledge, however, no prior work has integrated diffusion models into a predict-then-optimize
learning pipeline for decision tasks. This paper is the first to harness diffusion models in an end-
to-end DFL framework. By using a conditional diffusion model, we can learn a rich distribution
over the uncertain inputs and then propagate this uncertainty through to the downstream decision
via gradient-based training (score function and reparameterization). This approach combines the
strengths of expressive generative modeling and DFL to improve decision quality under uncertainty.
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3 PROBLEM STATEMENT

3.1 DECISION-FOCUSED LEARNING

We consider a general predict-then-optimize setting (Donti et al., 2017; Elmachtoub & Grigas, 2022),
where the goal is to make decisions under uncertainty about a key problem parameter. Given a feature
vector x ∈ X and a prediction of an unknown parameter y∗ ∈ Y , the decision-maker selects z ∈ Rd

to minimize a decision loss function f : Y × Rd → R, which measures the cost of applying decision
z when the true parameter is y∗. We assume a joint distribution D over (x, y∗) pairs.

DFL integrates prediction and optimization into a unified framework. The goal is to learn a decision
function z∗θ : X → Rd, parameterized by θ, that minimizes the expected decision loss,

min
θ

F (θ) := E(x,y∗)∼D[f(y
∗, z∗θ (x))]. (1)

The decision z∗θ (x) is typically obtained by solving an optimization problem involving a prediction
of the uncertainty parameter. Most DFL methods (Mandi et al., 2024) use a deterministic point
prediction yθ(x) of the uncertain parameter y∗:

z∗θ (x) = argmin
z

f(yθ(x), z), s.t. Gz ≤ h, Az = b, (2)

where G ∈ Rn×d, h ∈ Rn, A ∈ Rp×d, b ∈ Rp are constraint problem coefficients1.

In contrast, we consider a probabilistic model Pθ(· | x) for the uncertain parameter y∗ and let z∗θ (x)
be the solution to a stochastic optimization problem:

z∗θ (x) = argmin
z

Ey∼Pθ(·|x)[f(y, z)], s.t. Gz ≤ h, Az = b. (3)

We aim to learn the model parameter θ such that z∗θ minimizes the expected decision loss F (θ). By
the chain rule, the derivative of F is

dF (θ)

dθ
= E(x,y∗)∼D

[
∂f(y∗, z∗θ (x))

∂z

dz∗θ (x)

dθ

]
.

However, computing this gradient (specifically, the dz∗
θ

dθ term) is challenging because z∗θ is implicitly
defined by a nested optimization problem. A common solution is to differentiate the KKT system
that implicitly defines z∗θ w.r.t. θ (Amos & Kolter, 2017). Another crucial point is the selection of the
stochastic predictor in DFL, which in the paper we choose to use diffusion models to represent Pθ.

3.2 DIFFUSION PROBABILISTIC MODEL

To generate complex multi-modal and high-dimensional distributions, diffusion probabilistic mod-
els (Ho et al., 2020) are a promising way. It couples a fixed noising chain with a learned reverse de-
noising chain. Let y0 ∈ Rd denote a sample from the real data distribution q(y0) and {βt ∈ (0, 1)}Tt=1

denote the noise schedule. Define αt = 1 − βt and ᾱt =
∏t

i=1 αi. The forward process q adds
Gaussian noise at each step t to y1 through yT :

q(yt | yt−1) = N (yt;
√
1− βtyt−1, βtI), t = 1, . . . , T, (4)

which guarantees that q(yT | y0) becomes nearly standard normal distribution as T → ∞ with
common schedules (ᾱT → 0). Note that yt can be equivalently sampled without iterating through
intermediate time steps: yt =

√
ᾱty0 −

√
1− ᾱtϵ, where ϵ ∼ N(0, I) is a Gaussian noise.

In the reverse process p, the diffusion model predicts the unknown added noise by
pθ(yt−1 | yt) = N (yt−1; µθ(yt, t), σ

2
t I), (5)

whose mean µθ(·, t) is parameterized by a neural network predictor and variance is either fixed
(σ2

t = βt) or learned. The combination of p and q is equivalent to a hierarchical variational auto-
encoder (Vahdat & Kautz, 2020), and thus can be optimized by using the evidence lower bound
(ELBO) as the loss function (Hoffman & Johnson, 2016).

Conditional Diffusion Model. Throughout this paper, x denotes contextual features, and every
transition probability is conditioned on x (Tashiro et al., 2021). We use Pθ(·|x) for the diffusion
model’s conditional distribution for generated data and pθ(yt−1 | yt, x) for its Markov transitions.

1We consider affine constraints in our main paper for simplicity. The extension from affine constraints to
general convex constraints h(x, z) ≤ 0 follows a similar derivation as in the linear case.
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4 STOCHASTIC OPTIMIZATION AND REPARAMETERIZATION ESTIMATOR

Real-world decision problems often face significant uncertainty in their parameters. Optimizing with
a stochastic predictor (e.g., diffusion model) yields better results than deterministic optimization, by
explicitly modeling the uncertainty and optimizing the expected cost. Figure 1 illustrates a simple
example: any deterministic solution ends up at an extreme decision with a higher expected cost, while
the stochastic solution averages costs across likely outcomes and selects an interior decision with a
lower expected cost.
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Figure 1: A comparison of deterministic vs. stochastic optimization with cost function exp(−yz),
as described in Section 6.1. (a) Each curve represents a cost function given a sample y. For any
fixed y, the deterministic optimization decision lies at one of the boundaries (z∗ = 0 or z∗ = C). (b)
When averaging the cost function over many samples of y, the stochastic optimization decision lies
in the interior of the feasible region instead of on the boundary. Thus, any deterministic optimization
decision is suboptimal. (c) A probabilistic (diffusion) model captures a distribution over Y that
closely resembles the true bimodal distribution.

Solving stochastic DFL. Formally, in the stochastic case, the optimality condition for the decision
problem must consider an expectation. The stationarity condition for decision problem Eq. 3 becomes:

∇zL(θ, z∗, λ∗, ν∗;x) = Ey∼Pθ(·|x)[∇zf(y, z)] +G⊤λ∗ +A⊤ν∗ = 0, (6)

where L denotes the Lagrangian. Note that the dependency on θ in the stationarity condition is in the
distribution. Therefore, we need to handle this dependency carefully while differentiating the KKT
system with respect to θ:

∂

∂θ
(∇zL(θ, z∗, λ∗, ν∗;x))︸ ︷︷ ︸

distributional gradient

=
∂

∂θ
(Ey∼Pθ(·|x)[∇zf(y, z)] +G⊤λ∗ +A⊤ν∗) = 0. (7)

To resolve the dependence of both the predictive distribution Pθ(y|x) and the decision z∗ on θ, we
first adopt the reparameterization trick (Kingma & Welling, 2014) for the diffusion model. From
Section 3.2, recall that the diffusion sampling process introduces Gaussian noise at each step. Thus,
we can reparameterize the reverse process by fixing all the random draws (Gaussian noises). Formally,
a sample y ∼ Pθ(y | x) can be expressed as a transformation y = R(ϵ, θ | x) of a base Gaussian noise
sample ϵ ∼ P (ϵ), where R is differentiable in θ. This makes the diffusion sampling a deterministic
function of θ. Then we have

∇θEy∼Pθ(·|x)[f(y, z)] = Eϵ∼P (ϵ)[(∇θR(ϵ, θ|x))⊤∇yf(y, z)]. (8)

Next, we incorporate this into the optimization. Following Eq. 7, we can formalize a KKT system that
contains derivatives of z∗θ , λ

∗, ν∗ and ∇θEy∼Pθ(·|x)[f(y, z)]. Plugging the reparameterized gradient
estimator into the KKT system, we can solve for dz∗

θ

dθ and then obtain the total derivative of the final
objective F by multiplying dF

dz∗
θ

(Donti et al., 2017) (proof can be found in Appendix A.1):

dF

dθ
= −

 dF
dz∗

θ

0
0

⊤  H G⊤ A⊤

D(λ∗)G D(Gz∗θ − h) 0
A 0 0

−1 Eϵ∼P (ϵ)[(∇θR(ϵ, θ|x))⊤∇2
zyf(y, z

∗
θ )]

0
0

 ,

(9)
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where H = Ey∼Pθ(·|x)[∇2
zzf(y, z

∗
θ )] is the Hessian of the Lagrangian with respect to z, and D(v)

denotes a diagonal matrix with v on its diagonal. In practice, one can sample ϵ from a certain
distribution (e.g., Gaussian) multiple times to estimate the expectation and then obtain the gradient.
This gives us reparameterization-based diffusion DFL using Eq. 9 to run stochastic DFL optimization.

5 SCORE FUNCTION ESTIMATOR

A major obstacle to implementing the total gradient (Eq. 9) is the need to backpropagate through the
diffusion sampling process. In most cases, the diffusion model’s generative process is complex and
multi-step (e.g., 1000 steps), which makes backpropagating through all those steps memory-intensive
and prone to instability. To address this, we propose a score function2 gradient estimator for the
diffusion model, which circumvents explicit backpropagation through all sampling steps. The key
idea is to rewrite the Jacobian ∇θy in terms of the score ∇θ logPθ(y | x), and then approximate the
score with the diffusion model’s ELBO training loss.

5.1 TRANSFORM THE JACOBIAN INTO SCORE FUNCTION

We begin by rewriting the gradient of expectation as an expectation of a score function using the
log-trick (Mohamed et al., 2020). Formally, if y ∼ Pθ(·|x) and f(y) is any function not dependent
on θ, then by the log-trick we have

∇θ Ey∼Pθ(·|x)[f(y, z)] = Ey∼Pθ(·|x)[f(y, z) · ∇θ logPθ(y | x)]. (10)

Intuitively, instead of differentiating the output y through each diffusion step, we only need to
compute the gradient for the final log-likelihood, which avoids the need to differentiate through the
diffusion sampling process and yields an efficient estimator for the gradient.

Then, one remaining difficulty is that directly computing the exact ∇θ logPθ(y|x) is complicated in
practice because Pθ(y|x) is defined as the marginal probability of y after integrating out the latent
diffusion trajectory. To obtain a computationally efficient estimator, we use the diffusion model’s
training objective as a surrogate for the log-likelihood. Specifically, diffusion models are typically
trained by maximizing an ELBO that lower-bounds the log-likelihood:

logPθ(y0) = log

∫
pθ(y0|y1) pθ(y1|y2) · · · pθ(yT−1|yT ) pθ(yT ) dy1:T

= logEyt∼q(yt|yt−1)∀t∈[T ]

[
T∏

t=1

pθ(yt−1|yt)
q(yt|yt−1)

pθ(yT )

]

≥ Eyt∼q(yt|yt−1)∀t∈[T ]

[
T∑

t=1

log
q(yt|yt−1)

pθ(yt−1|yt)
+ log pθ(yT )

]
:= ELBO(y0; θ),

where the inequality is due to Jensen’s. To approximate ∇θ logPθ(y0|x) conditioned on x, we use
the gradient of the conditional ELBO loss as a surrogate:

∇θ logPθ(y0|x) ≈ ∇θ ELBO(y0|x; θ). (11)
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Figure 2: Cosine similarity between the
reparameterization and score function gra-
dient across different dimensions.

In practice, we first sample a final output y from the
diffusion model given contextual features x. We then
sample a subset of k timesteps {t1, t2, . . . , tk} (k ≪ T )
and run forward noising process q to generate the tra-
jectory {yt1 , yt2 , . . . , ytk}. As in DDPM (Ho et al.,
2020), we adopt the simplified form of ELBO ≈
Et∼[T ],y0,ϵt [|∥ϵt − ϵθ(yt, t)∥2]. We evaluate the ELBO
on the sampled trajectories and compute its gradient
w.r.t. θ as an estimation to the true score.

Empirical evidence suggests that the ELBO gradient
closely tracks the true score, as shown in Figure 2, mak-
ing Eq. 11 a reliable proxy in practice.

2In this paper, score function refers to the statistical score ∇θ logPθ(y|x) (gradient of log-likelihood w.r.t.
model parameters), as opposed to Stein’s score ∇yp(yt|yt−1, x) often used in diffusion literature.
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5.2 OVERALL GRADIENT FOR SCORE FUNCTION

By plugging the ELBO gradient approximation from Eq. 11 into Eq. 10, we can express the KKT
conditions without using reparameterization and thus obtain the score function-based derivative:

dF

dθ
≈ −

 dF
dz∗

θ

0
0

⊤  H G⊤ A⊤

D(λ∗)G D(Gz∗θ − h) 0
A 0 0

−1 Ey∼Pθ(·|x)[∇zf(y, z
∗
θ )(∇θELBO(y|x; θ)⊤]
0
0

 .

(12)

Practical algorithm – weighted ELBO gradient. To compute the score surrogate in practice, we
found it convenient to treat the total gradient as an importance-weighted form:

dF

dθ
≈ d

dθ
Ey∼Pθ(·|x)[ detach[wθ(y)]︸ ︷︷ ︸

importance weight, no grad in θ

· ELBO(y|x, θ)︸ ︷︷ ︸
1-step forward

], (13)

where wθ(y) is the importance weight simplified from Eq. 12 (see Appendix A.3 for complete form).
This yields a weighted-ELBO gradient estimator: we treat wθ(y) as a stop-gradient weight and only
differentiate the ELBO w.r.t. θ, greatly reducing computations. We implement the entire gradient
computation as a user-friendly PyTorch autograd module: the forward pass returns the optimal
decision z∗ (and λ∗, ν∗), and the backward pass computes the gradient dF

dθ as derived above.

Variance-reduction strategy. While the score-function estimator is effective, a naive implementa-
tion of the weighted ELBO loss in Eq. 13 can suffer from high variance, leading to unstable training.
In practice, we found that carefully designing the sampling strategy for the ELBO loss is crucial
to obtaining low-variance and stable gradients. To reduce the variance, we utilize the method from
Improved DDPM (Nichol & Dhariwal, 2021) for choosing diffusion steps. Specifically, instead of
uniform sampling, we use importance sampling over timesteps with probability pt and weights 1/pt:

∇θELBOIS = Et∼pt

[
∇θ(ELBOt)

pt

]
, where pt ∝

√
E[∥∇θ(ELBOt)∥2] and

∑
t

pt = 1. (14)

This method remains unbiased, but the variance is minimized. In essence, this approach gives less
weight to the early timesteps that have large gradients and more weight to later timesteps.

6 EXPERIMENTS

We evaluate the performance of our diffusion-based DFL approaches on a variety of tasks, comparing
against several baseline methods. Specifically, we consider:

• Two-stage predict-then-optimize baselines: a deterministic MLP, a Gaussian probabilistic
model, and a diffusion model trained to minimize prediction error (Elmachtoub & Grigas, 2022).

• Deterministic DFL: a deterministic MLP model with end-to-end DFL training (Donti et al.,
2017).

• Gaussian DFL (both reparameterization and score function): a Gaussian probabilistic model with
end-to-end stochastic DFL training (Silvestri et al., 2023); see details in Appendix A.5.

• Diffusion DFL (ours): our diffusion model predictor, trained with either reparameterization or
score-function gradient estimators.

6.1 SYNTHETIC EXAMPLE

In this example, we consider a factory that decides how much to manufacture for each of d ∈ N
products. The parameter Y ∈ Rd represents the profit margin for each product, i.e., Yi is the profit
per unit of product i; due to uncertainty in market conditions, Y is uncertain. The factory’s decision
z ∈ [0, C]d represents how much of each product to manufacture, where C is the maximum capacity
for each product. For simplicity, we do not consider any contextual features x in this example. That
means DFL learns a distribution that generates y that can minimize the decision objective.

6
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Suppose that the factory has a risk-averse cost function f(y, z) = exp(−y⊤z)3, which indicates that
the factory wants to put a larger weight on the product with higher profit Yi. Under uncertainty, the
decision-maker seeks to minimize the expected cost by solving a stochastic optimization problem:

z∗sto ∈ argmin
z∈[0,C]d

Ey∼Pθ(·|x)[exp(−y⊤z)]. (15)

In this stochastic case, the optimal investment z∗sto typically lies in the interior of the feasible region,
which balances the potential high reward of investing against the risk of losses.

Experimental setup. We simulate the uncertain parameter Y drawn from a mixture of Gaussians,

Yi
iid∼ p · N (a, σ2) + (1− p) · N (−b, σ2). (16)

Specifically, we set p = 0.8, a = 1, b = 3, σ = 0.15, C = 2. We train each model (deterministic,
Gaussian, diffusion) on this distribution in a decision-focused manner (for DFL methods) or on pure
regression (for two-stage), and evaluate the expected cost achieved by the resulting decision z∗θ (x).
We present the results of one product (d = 1) in Figure 1 and 10 products (d = 10) in Table 1.

6.2 POWER SCHEDULE

In this experiment, we evaluate our method on a real-world energy scheduling problem from Donti
et al. (2017). This task involves a 24-hour generation-scheduling problem in which the operator
chooses z ∈ R24 (hourly generation). Given a realization y of demand, the decision loss penalizes
shortage and excess with asymmetric linear costs (γs and γe) plus a quadratic tracking term; the
decision must also satisfy a ramping bound cr. Let [v]+ := max(v, 0). We have the decision loss as
the quadratic problem:

min
z

Ey∼Pθ(·|x)[f(y, z)] =

24∑
i=1

Ey∼Pθ(·|x)[γs[yi − zi]+ + γe[zi − yi]+ +
1

2
(zi − yi)

2],

s.t. |zi − zi−1| ≤ cr for all i ∈ {1, 2, . . . , 24}. (17)

Experimental setup. We use more than 8 years of historical data from a regional power grid (PJM
Interconnection, 2025). Feature x includes the previous day’s hourly load, temperature, next-day
temperature forecasts, non-linear transforms (lags and rolling statistics), calendar indicators, and
yearly sinusoidal features. Given x, the prediction model Pθ(·|x) outputs a distribution over y ∈ R24.
We report the test decision cost in Table 1 and a held-out horizon in Figure 7.

6.3 STOCK MARKET PORTFOLIO OPTIMIZATION

In this experiment, we apply our diffusion DFL approach to a financial portfolio optimization problem
under uncertain stock returns. Here, the random vector y ∈ Rn represents the returns for the assets n
on the next day, and the decision z ∈ Rn represents the portfolio weights allocated to those assets.
We consider a mean-variance trade-off decision loss: maximize expected return while keeping the
risk (variance) low. This can be written as minimizing a loss that is a negative expected return plus a
quadratic penalty on variance:

min
z

Ey∼Pθ(·|x)[f(y, z)] = Ey∼Pθ(·|x)

[α
2
z⊤yy⊤z − y⊤z

]
, s.t. z⊤1 = 1, 0 ≤ zi ≤ 1, (18)

where α > 0 is a risk parameter and constraints enforce that z is a valid portfolio. In practice,
the deterministic solution may concentrate heavily on a few assets and yield a low average return,
whereas a stochastic approach can achieve higher returns by accounting for variance.

Experimental setup. We have daily prices and volumes spanning 2004-2017 and evaluate on the
S&P 500 index constituents (Quandl WIKI dataset, 2025). The features x ∈ R28 include recent
historical return, trading volume windows, and rolling averages. The immediate-return predictor
Pθ(·|x) is to predict the next day’s price. We report the performance of different DFL baselines with
50 portfolios in Table 1 and other sizes of portfolios in Section 7.2.

3Here, we have ignored the degenerate case y = 0. To deal with the degenerate case, one could add a
zero-centered bump function c(y) to the objective f(y, z).
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Table 1: Results for different optimization tasks. Our two diffusion DFL methods achieve the best and
second-best decision quality in all 3 tasks, significantly better than other baselines. Bolded values are
the best in test task losses; underlined values are the 2nd-best. Mean ± standard error across 10 runs.

Synthetic Example Power Schedule Stock Portfolio

Label / Method RMSE↓ Task↓ RMSE↓ Task↓ RMSE↓ Task (%)↑
Two-stage (TS)
Deterministic TS 0.639±0.00 1.987±0.00 0.120±0.00 41.239±3.18 0.027±0.00 0.04%±0.04

Gaussian TS 0.720±0.00 1.272±0.23 0.117±0.00 5.580±0.45 0.188±0.03 0.10%±0.04

Diffusion TS 0.905±0.00 0.393±0.00 0.147±0.00 7.901±0.76 0.455±0.00 0.13%±0.03

Decision-focused learning (DFL)
Deterministic 0.640±0.00 1.987±0.00 4.997±0.10 4.324±0.25 0.032±0.00 0.07%±0.00

Gaussian Reparameterization 0.707±0.00 1.169±0.03 4.525±0.12 3.724±0.05 0.189±0.03 0.08%±0.03

Gaussian Score Function 0.708±0.00 1.132±0.00 4.713±0.15 4.087±0.06 0.187±0.03 0.14%±0.05

Diffusion Reparameterization 0.852±0.01 0.365±0.00 3.141±0.06 3.152±0.03 0.063±0.00 4.17%±0.24

Diffusion Score Function 0.849±0.09 0.362±0.00 2.893±0.03 3.171±0.02 0.067±0.00 3.98%±0.31

7 DISCUSSION OF EXPERIMENTAL RESULTS AND ABLATION STUDY

7.1 DISCUSSION OF RESULTS IN TABLE 1

Two-stage vs DFL. As shown in Table 1, across all three experiment tasks, we find that end-to-end
DFL leads to better downstream decisions than the conventional two-stage approach. Conventional
two-stage methods minimize RMSE during training, but this often leads to poor downstream decisions.
In contrast, all variants of DFL directly minimize the decision cost during training and thus achieve
lower decision costs.

Deterministic vs Stochastic Optimization. Our results show that stochastic DFL methods out-
perform deterministic DFL in terms of decision quality on every task. By modeling uncertainty,
stochastic predictors enable the decision optimization to account for risk and variability in outcomes.
For instance, in the portfolio experiment, the deterministic DFL yields only 0.07% return, whereas a
Gaussian DFL modestly improves that, and our diffusion DFL achieves nearly 4% average return.
These gains come from the stochastic models’ ability to predict uncertainty: instead of committing to
a point prediction of y, the stochastic DFL produces decisions for a range of possible outcomes.

Benefits of Diffusion DFL. Among the stochastic approaches, including baselines using Gaussian
models, our diffusion DFL method consistently delivers the best decision performance. In particular,
the diffusion model’s strength is the capacity to capture complex, multi-modal outcome distributions
that a simple parametric Gaussian cannot represent. The Gaussian DFL sometimes falls short of
the optimal decision quality. The diffusion model, on the other hand, can represent more intricate
distributions of y, leading to decisions that better reflect complex scenarios.

7.2 ABLATION STUDY

Comparison Cost for Reparameterization and Score function. A key finding from our ablation
study is the computational advantage of score-function approach over the reparameterization. Here,
we measure the trade-off between training cost and the final decision performance for different
gradient estimators and sampling budgets.

In Figure 3 (a), we see that all variants reach similar final performance on the test set, indicating that
even using as few as 50 samples is sufficient to optimize the decision quality accurately. Figure 4 plots
the GPU memory cost alongside the final test loss. The reparameterization method is very computa-
tionally expensive, requiring about 60 GB of GPU memory for backpropagating through all diffusion
steps. In contrast, the score-function with 50 samples achieves virtually the same test loss as the
reparameterization method (difference within 0.02) while using an order of magnitude less memory.
Even with 10 samples, though slightly worse in loss, it still outperforms the deterministic baseline
and uses a tiny fraction of the compute. These results validate that the score-function approach retains
the decision-quality benefits of diffusion DFL while dramatically cutting computational requirements,
making diffusion DFL practical even for complex problems.
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Figure 3: Learning curves for (a) score function with 10 and 50
samples (sf 10 and sf 50) and reparameterization (rp), (b) score
function and importance-weighted score function with 10 samples.
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Figure 4: Computation cost vs.
performance trade-off for diffu-
sion DFL training

Gradient variance reduction. As discussed in Section 5.2, using the score function estimator allows
us to avoid backpropagating through the entire diffusion sampling process by only sampling a limited
number of diffusion timesteps per update. The reason behind this is that a naive implementation,
sampling timesteps uniformly at random, would yield a very high variance in the gradient estimates,
which then leads to unstable training. Intuitively, early diffusion steps (large noise levels) dominate
the ELBO loss and its gradients, so if they happen to be sampled, they contribute disproportionately
and noisily. With a small random subset of timesteps, the gradient estimate can thus be highly
imbalanced and noisy, which causes training divergence in practice.

To address this, we adopt an importance sampling strategy for choosing diffusion timesteps. Empiri-
cally, as shown in Figure 3 (b), the learning curves with the importance-weighted sampler are much
smoother and more stable than with the uniform sampler. The score-function DFL training no longer
diverges; instead, it converges cleanly, indicating that our variance reduction strategy successfully
stabilizes the training process for diffusion DFL.
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Figure 5: Test regret vs. decision dimension d in
the stock portfolio task.

Comparison on different problem sizes. A key
challenge for DFL is scalability: as the decision
dimension grows, many methods degrade signif-
icantly Mandi et al. (2024). In this experiment,
we investigate the performance of DFL methods
under various decision dimensions in the stock
portfolio. Specifically, we set the decision di-
mension range from 10 to 100 and report the test
regrets. As summarized in Figure 5, the regret
gap between DFL diffusion and Gaussian and
deterministic methods increases with increasing
dimension, which demonstrates that DFL diffu-
sion scales effectively in more complex decision
settings.

8 CONCLUSION

We propose the first diffusion-based DFL approach for stochastic optimization, which trains a dif-
fusion model to capture complex uncertainty in problem parameters. We develop two end-to-end
training techniques to integrate the diffusion model into decision-making: reparameterization and
score function. As demonstrated with empirical evidence, the score function method drastically
reduces memory and computation cost while having similar performance to reparameterization and be-
ing easy to train. Empirically, diffusion DFL achieves state-of-the-art results on multiple benchmarks,
consistently outperforming both traditional two-stage methods and prior DFL approaches.

REPRODUCIBILITY STATEMENT

We release an anonymized repository containing all code, configuration files, and scripts needed to
reproduce our results, including data generation and figure plotting. All proofs for the main paper are
stated in the appendix with explanations and proper assumptions.
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Making Under Uncertainty: Theory and Application. The MIT Press, 1st edition, June 2015. ISBN
978-0-262-02925-4.

10

https://proceedings.mlr.press/v70/amos17a.html
https://proceedings.mlr.press/v125/arjevani20a.html
https://pubsonline.informs.org/doi/10.1287/mnsc.2018.3253
https://pubsonline.informs.org/doi/10.1287/mnsc.2018.3253
https://proceedings.neurips.cc/paper_files/paper/2021/hash/49ad23d1ec9fa4bd8d77d02681df5cfa-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2021/hash/49ad23d1ec9fa4bd8d77d02681df5cfa-Abstract.html
http://papers.nips.cc/paper/7132-task-based-end-to-end-model-learning-in-stochastic-optimization
http://papers.nips.cc/paper/7132-task-based-end-to-end-model-learning-in-stochastic-optimization
https://pubsonline.informs.org/doi/10.1287/mnsc.2020.3922
https://pubsonline.informs.org/doi/10.1287/mnsc.2020.3922
https://proceedings.neurips.cc/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html
https://ojs.aaai.org/index.php/AAAI/article/view/34884
https://doi.org/10.1007/978-1-4939-1384-8_8
https://doi.org/10.1007/978-1-4939-1384-8_8
http://arxiv.org/abs/1312.6114
http://epubs.siam.org/doi/10.1137/S1052623499363220


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Lingkai Kong, Yuanqi Du, Wenhao Mu, Kirill Neklyudov, Valentin De Bortoli, Dongxia Wu, Haorui
Wang, Aaron M. Ferber, Yian Ma, Carla P. Gomes, and Chao Zhang. Diffusion Models as
Constrained Samplers for Optimization with Unknown Constraints. In Proceedings of The 28th
International Conference on Artificial Intelligence and Statistics, pp. 4582–4590. PMLR, April
2025. URL https://proceedings.mlr.press/v258/kong25b.html. ISSN: 2640-
3498.

Siddarth Krishnamoorthy, Satvik Mehul Mashkaria, and Aditya Grover. Diffusion Models for Black-
Box Optimization. In Proceedings of the 40th International Conference on Machine Learning,
pp. 17842–17857. PMLR, July 2023. URL https://proceedings.mlr.press/v202/
krishnamoorthy23a.html. ISSN: 2640-3498.

Jayanta Mandi, Victor Bucarey, Maxime Mulamba Ke Tchomba, and Tias Guns. Decision-
Focused Learning: Through the Lens of Learning to Rank. In Proceedings of the 39th In-
ternational Conference on Machine Learning, pp. 14935–14947. PMLR, June 2022. URL
https://proceedings.mlr.press/v162/mandi22a.html. ISSN: 2640-3498.

Jayanta Mandi, James Kotary, Senne Berden, Maxime Mulamba, Victor Bucarey, Tias Guns, and
Ferdinando Fioretto. Decision-Focused Learning: Foundations, State of the Art, Benchmark and
Future Opportunities. Journal of Artificial Intelligence Research, 80:1623–1701, August 2024.
ISSN 1076-9757. doi: 10.1613/jair.1.15320. URL https://www.jair.org/index.php/
jair/article/view/15320.

Shakir Mohamed, Mihaela Rosca, Michael Figurnov, and Andriy Mnih. Monte Carlo Gradient
Estimation in Machine Learning. Journal of Machine Learning Research, 21(132):1–62, 2020.
ISSN 1533-7928. URL http://jmlr.org/papers/v21/19-346.html.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved Denoising Diffusion Probabilistic Models.
In Proceedings of the 38th International Conference on Machine Learning, pp. 8162–8171. PMLR,
July 2021. URL https://proceedings.mlr.press/v139/nichol21a.html. ISSN:
2640-3498.

PJM Interconnection. Data Miner, 2025. URL https://dataminer2.pjm.com/list.

Quandl WIKI dataset. Nasdaq Data Link, 2025. URL https://data.nasdaq.com.

Sebastian Sanokowski, Sepp Hochreiter, and Sebastian Lehner. A Diffusion Model Framework for
Unsupervised Neural Combinatorial Optimization, August 2025. URL http://arxiv.org/
abs/2406.01661. arXiv:2406.01661 [cs].

Sanket Shah, Kai Wang, Bryan Wilder, Andrew Perrault, and Milind Tambe. Decision-
Focused Learning without Decision-Making: Learning Locally Optimized Decision
Losses. Advances in Neural Information Processing Systems, 35:1320–1332, December
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
hash/0904c7edde20d7134a77fc7f9cd86ea2-Abstract-Conference.html.

Shai Shalev-Shwartz, Ohad Shamir, Nathan Srebro, and Karthik Sridharan. Stochastic Convex
Optimization. In Proceedings of Thirty Third Conference on Learning Theory. PMLR, 2009.

Keivan Shariatmadar, Neil Yorke-Smith, Ahmad Osman, Fabio Cuzzolin, Hans Hallez, and David
Moens. Generalized Decision Focused Learning under Imprecise Uncertainty–Theoretical Study,
March 2025. URL http://arxiv.org/abs/2502.17984. arXiv:2502.17984 [cs].

Mattia Silvestri, Senne Berden, Jayanta Mandi, Ali İrfan Mahmutoğulları, Maxime Mulamba,
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A APPENDIX

Notation. We let ∂f
∂x denote the Jacobian matrix where

(
∂f
∂x

)
i,j

:= ∂fi
∂xj

and ∇xf :=
(
∂f
∂x

)⊤
denote

the gradient. For a vector v, D(v) denotes a diagonal matrix with v on its diagonal. Let P (·) denote
a probability distribution and p(·) denote a probability density; in particular, for diffusion models we
use Pθ for the model’s output distribution and pθ for transition densities.

In this appendix, we derive the decision optimization problem with general convex constraints
rather than merely linear constraints. Assume the optimization problem is

z∗θ (x) = argmin
z

Ey∼Pθ(·|x)[f(y, z)], s.t. h(x, z) ≤ 0, g(x, z) = 0, (19)

where h(x, z) ≤ 0 denotes the convex inequalities constraints and g(x, z) = 0 denotes the equality
constraints.

A.1 PROOFS FOR SECTION 4

Proposition A.1 (Reparameterization trick in diffusion models). Let T ∈ N+, and suppose the
reverse diffusion model defines a Gaussian distribution in Eq. 5 with fixed scalars σt ≥ 0 and a
standard normal prior yT ∼ N (0, I). Let {ϵt}Tt=0 be i.i.d. N (0, I). Then the model output y can be
expressed as a transformation y = R(ϵ0:T , θ | x) of a base noise distribution ϵ ∼ P (ϵ), where R is
differentiable in θ. Also assume Ey∼Pθ(·|x)[f(y, z)] is continuously differentiable. Then we have

∇θEy∼Pθ(·|x)[f(y, z)] = Eϵ∼P (ϵ)

( T∑
s=1

(
s−1∏
u=1

Ju

)
As

)⊤

∇yf(R(ϵ, θ | x), z)

 , (20)

where At :=
∂µθ(yt,t,x)

∂θ , Jt :=
∂µθ(yt,t,x)

∂yt
, and we define

∏0
u=1 Ju := I .

Proof. The conditional diffusion reverse process is defined as

yt−1 = µθ(yt, t, x) + σtϵt−1, yT = ϵT ,

where the noise term σtϵt−1 is θ-independent. Differentiating both sides w.r.t. θ gives

∂yt−1

∂θ
=

∂µθ(yt, t, x)

∂θ
+

∂µθ(yt, t, x)

∂yt

∂yt
∂θ

.

Denote

At :=
∂µθ(yt, t, x)

∂θ
, Jt :=

∂µθ(yt, t, x)

∂yt
, Gt :=

∂yt
∂θ

.

Thus, we have
Gt−1 = At + JtGt, GT = 0.

Our final goal is:

∇θR(ϵ0:T , θ|x) =
∂y0
∂θ

= G0 (21)

= A1 + J1A2 + J1J2A3 + · · ·+ J1 · · · JT1
At (22)

=

T∑
s=1

(
s−1∏
u=1

Ju

)
As, (23)

where we define
∏0

u=1 Ju := I . Then, we have

∇θEy∼Pθ(·|x)[f(y, z)] = ∇θ Eϵ∼P (ϵ)[f(R(ϵ, θ|x), z)] (24)

= Eϵ∼P (ϵ)[∇θf(R(ϵ, θ|x), z)] (25)

= Eϵ∼P (ϵ)

[
∇θR(ϵ, θ | x)⊤∇yf(R(ϵ, θ|x), z)

]
(26)

= Eϵ∼P (ϵ)

( T∑
s=1

(
s−1∏
u=1

Ju

)
As

)⊤

∇yf(R(ϵ, θ|x), z)

 (27)
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Lemma A.2 (Gradient of Reparameterization method). Assume the model prediction y can be
expressed as a transformation y = T (ϵ, θ | x), ϵ ∼ P (ϵ). The total derivative of the decision
objective F w.r.t. θ can be computed as

dF

dθ
= −

 dF
dz∗

0
0

⊤  H G⊤ Q⊤

D(λ∗)G D(h(x, z∗)) 0
Q 0 0

−1 Eϵ∼P (ϵ)[(∇θT (ϵ, θ|x))⊤∇2
zyf(z

∗, y)]
0
0

 ,

(28)

where H = Ey∼Pθ(·|x)[∇2
zzf(y, z

∗)] + ∇2
zz(λ

∗⊤h(x, z∗)) is the Hessian of the Lagrangian with
respect to z, G = ∇zh(x, z

∗) is the Jacobian of the inequality constraints in z∗, and Q = ∇zg(x, z
∗)

is the Jacobian of the equality constraints in z∗.

Proof. At the primal-dual optimal solution (z∗θ , λ
∗
θ, ν

∗
θ ) to Eq. 3, the following KKT conditions must

hold:

∇zL(θ, z∗θ , λθ, νθ;x) = 0,

λθ ⊙ h(x, z∗θ ) = 0,

g(x, z∗θ ) = 0

λθ ≥ 0, νθ ≥ 0,

h(x, z∗θ ) ≤ 0.

Since h does not depend on θ here, we can combine the KKT conditions and Proposition A.1 and
yield

∂∇zL
∂θ

+
∂∇zL
∂z

∂z∗

∂θ
+

∂∇zL
∂λ∗

∂λ∗

∂θ
+

∂∇zL
∂ν∗

∂ν∗

∂θ

= Eϵ∼P (ϵ)[(∇θT (ϵ, θ|x))⊤∇y(∇zf(z
∗, y))] +

(
Ey∼Pθ(·|x)[∇

2
zzf(z

∗, y)] +∇2
zzh(x, z

∗)
)∂z∗
∂θ

+∇zh(x, z
∗)
∂λ∗

∂θ
+∇zg(x, z

∗)
∂λ∗

∂θ
= 0. (29)

∂λ∗ ⊙ h(x, z∗)

∂z∗
∂z∗

∂θ
+

∂λ∗ ⊙ h(x, z∗)

∂λ∗
∂λ∗

∂θ
= D(λ∗)∇zh(x, z

∗)
∂z∗

∂θ
+D(h(x, z∗))

∂λ∗

∂θ
= 0.

(30)

Transform them into matrix form and get H G⊤ Q⊤

D(λ∗)G D(h(x, z∗)) 0
Q 0 0

 ∂z∗

∂θ
∂λ∗

∂θ
∂ν∗

∂θ

 = −

Eϵ∼P (ϵ)[(∇θT (ϵ, θ|x))⊤∇2
zyf(z

∗, y)]
0
0

 , (31)

where H = Ey∼Pθ(·|x)[∇2
zzf(z

∗, y)] +∇2
zz(λ

∗⊤h(x, z∗)) +∇2
zz(ν

∗⊤g(x, z∗)), G = ∇zh(x, z
∗),

and Q = ∇zg(x, z
∗). Furthermore, if equalities and inequalities are affine (as in main paper), H

reduces to Ey∼Pθ(·|x)[∇2
zzf(y, z

∗)] since ∇2
zzh = ∇2

zzg = 0.

By chain rule, we have

dF

dθ
=

[
dF
dz∗

0

]⊤ [ ∂z∗

∂θ
∂λ∗

∂θ

]

= −

 dF
dz∗

0
0

⊤  H G⊤ Q⊤

D(λ∗)G D(h(x, z∗)) 0
Q 0 0

−1 Eϵ∼P (ϵ)[(∇θT (ϵ, θ|x))⊤∇2
zyf(z

∗, y)]
0
0

 .
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A.2 PROOFS FOR SECTION 5

Proposition A.3. Let f : Y × Rd → R be any function that does not depend on θ. If y ∼ Pθ(· | x),
then

∇θEy∼Pθ(·|x)[f(y, z)] = Ey∼Pθ(·|x)[f(y, z)
d logPθ(y | x)

dθ
]. (32)

Proof.

∇θEy∼Pθ(·|x)[f(y, z)] =
d

dθ
Ey∼Pθ(·|x)[f(y, z)] (33)

=
d

dθ

∫
f(y, z)Pθ(y | x) dy (34)

=

∫
Pθ(y | x) d

dθ
f(y, z) + f(y, z)

d

dθ
Pθ(y | x)dy (35)

=

∫
Pθ(y | x) d

dθ
f(y, z) + f(y, z)

d

dθ
logPθ(y | x) ∗ Pθ(y | x)dy (36)

= Ey∼Pθ(·|x)[
d

dθ
f(y, z)] + Ey∼Pθ(·|x)[f(y, z)

d logPθ(y | x)
dθ

]. (37)

This immediately implies the results by noticing f does not depend on θ.

Proposition A.4. Let Pθ(y | x) be a probability density parameterized by θ ∈ Θ, and let f :
Y × Rd → R be a scalar-valued function that does not depend on θ. Fix any z ∈ Rd. Suppose that
there exists some neighborhood N(θ0) ⊆ Θ around θ0 ∈ Θ such that the following 3 assumptions
are satisfied:

1. For all θ ∈ N(θ0), the function h(y) := Pθ(y | x) f(y, z) is integrable;
2. For all θ ∈ N(θ0) and almost all y ∈ Y , the gradient ∇θPθ(y | x) exists; and
3. There exists an integrable function g : Y → R that dominates ∇θPθ(y | x). That is, for all

θ ∈ N(θ0) and almost all y ∈ Y , ∥∇θPθ(y | x)∥1 ≤ |g(y)|.
Then,

∇θEy∼Pθ(·|x)[f(y, z)] = Ey∼Pθ0
(·|x)[f(y, z) · ∇θ logPθ0(y | x)].

Proof. We make use of the log-derivative trick:

Pθ0(y | x) · ∇θ logPθ0(y | x) = Pθ0(y | x)
Pθ0(y | x)

· ∇θPθ0(y | x) = ∇θPθ0(y | x).

Then

∇θ Ey∼Pθ0
(·|x)[f(y, z)] = ∇θ

∫
Y
f(y, z)Pθ0(y | x) dy

=

∫
Y
∇θ [f(y, z)Pθ0(y | x)] dy Leibniz integral rule

=

∫
Y
f(y, z)Pθ0(y | x)∇θ logPθ0(y | x) dy log-derivative trick

= Ey∼Pθ0
(·|x) [f(y, z)∇θ logPθ0(y | x)] .

Lemma A.5 (Gradient of Score Function). The total derivative of the decision objective F w.r.t. θ
can be computed as

dF

dθ
= −

 dF
dz∗

0
0

⊤  H G⊤ Q⊤

D(λ∗)G D(h(x, z∗)) 0
Q 0 0

−1 Ey∼Pθ(·|x)[∇zf(z
∗, y)(dELBO

dθ )⊤]
0
0

 .

(38)
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Proof. Differentiate this KKT system w.r.t. θ and applying Proposition A.4 yields

∂∇zL
∂θ

+
∂∇zL
∂z

∂z∗

∂θ
+

∂∇zL
∂λ∗

∂λ∗

∂θ
+

∂∇zL
∂ν∗

∂ν∗

∂θ

= Ey∼Pθ(·|x)[∇zf(z
∗, y)(∇θ logPθ(y|x))⊤] + (Ey∼Pθ(·|x)[∇

2
zzf(z

∗, y)] +∇2
zz(λ

⋆⊤h(x, z∗)))
∂z∗

∂θ

+∇zh(x, z
∗)
∂λ∗

∂θ
+∇zg(x, z

∗)
∂ν∗

∂θ
= 0. (39)

∂λ∗ ⊙ h(x, z∗)

∂z∗
∂z∗

∂θ
+

∂λ∗ ⊙ h(x, z∗)

∂λ∗
∂λ∗

∂θ

=D(λ∗)∇zh(x, z
∗)
∂z∗

∂θ
+D(h(x, z∗))

∂λ∗

∂θ
= 0. (40)

In matrix form, this becomes H G⊤ Q⊤

D(λ∗)G D(h(x, z∗)) 0
Q 0 0

 ∂z∗

∂θ
∂λ∗

∂θ
∂ν∗

∂θ

 = −

Ey[∇zf(z
∗, y)(∇θ logPθ(y | x))⊤]

0
0

 , (41)

where H = Ey∼Pθ(·|x)[∇2
zzf(z

∗, y)] +∇2
zz(λ

∗⊤h(x, z∗)), G = ∇zh(x, z
∗).

Applying the chain rule to F now gives

dF

dθ
=

 dF
dz∗

0
0

⊤  ∂z∗

∂θ
∂λ∗

∂θ
∂ν∗

∂θ

 (42)

= −

 dF
dz∗

0
0

⊤  H G⊤ Q⊤

D(λ∗)G D(h(x, z∗)) 0
Q 0 0

−1 Ey∼Pθ(·|x)[∇zf(z
∗, y)(∇θ logPθ(y | x))⊤]

0
0

 .

(43)

Then, we replace ∇θ logPθ(y | x) with the gradient of ELBO score for sample y and have

dF

dθ
= −

 dF
dz∗

0
0

⊤  H G⊤ Q⊤

D(λ∗)G D(h(x, z∗)) 0
Q 0 0

−1 Ey∼Pθ(·|x)[∇zf(z
∗, y)(dELBO

dθ )⊤]
0
0

 .

(44)

Remark A.6 (Why we cannot compute the gradient using score-matching). One may attempt to
apply the chain rule ∇θ logPθ(y|x) = ∇θy∇y logPθ(y|x), and then estimate ∇y logPθ(yt+1|x) ≈
∇y logPθ(yt+1|yt, x) ≈ sθ(yt, t, x) via score-matching (Song et al., 2020) (using the learned score
sθ(yt, t, x) of the diffusion model). However, this approach is invalid in our setting: Under the
log-trick, y is treated as a free variable and θ enters only through Pθ(y|x), so the pathwise term ∇θy
does not exist (see Appendix A.2 for derivation). Our ELBO-based surrogate (Eq. (11)) avoids this
obstacle entirely.
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A.3 PROOF FOR EQ. 13

Based on the results in Lemma A.5, we have

dF

dθ
= −

 dF
dz∗

0
0

⊤  H G⊤ Q⊤

D(λ∗)G D(h(x, z∗)) 0
Q 0 0

−1 Ey∼Pθ(·|x)[∇zf(z
∗, y)(dELBO

dθ )⊤]
0
0

 (45)

= −

 dF
dz∗

0
0

⊤  H G⊤ Q⊤

D(λ∗)G D(h(x, z∗)) 0
Q 0 0

−1

︸ ︷︷ ︸
:=u(θ)⊤

d

dθ

[Ey∼Pθ(·|x)[∇zf(z
∗, y) ELBO]

0
0

]
(46)

=
d

dθ
Ey∼Pθ(·|x)[u(θ)

⊤

[
[∇zf(z

∗, y)]
0
0

]
︸ ︷︷ ︸

:=wθ(y)

ELBO] (47)

=
d

dθ
Ey∼Pθ(·|x)[detach[wθ(y)]ELBO] (48)

A.4 EMPIRICAL EVIDENCE FOR ELBO GRADIENT APPROXIMATION

Assume our model is θ = (A,B, c), and the noise is predicted by ϵθ(yt, t, x) = Atyt + Btx + ct.
True data y ∼ N (Wx, I). In this way, there is a closed-form solution for true ∇θ log p(y0|x) since
y0 is a Gaussian and yt =

√
ᾱty0 +

√
1− ᾱtϵ.
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Figure 6: Compare the cosine similarity between the true gradient and the estimated gradient using a
linear model.

A.5 DETERMINISTIC OPTIMIZATION AND GAUSSIAN MODEL IN STOCHASTIC OPTIMIZATION

Deterministic Optimization Since deterministic can also be viewed as a reparameterization trick
without any randomness ϵ, we can reuse our derivation in Section 4 and compute the gradient ∇xF (x)
by Eq. 9.

Gaussian Model in Stochastic Optimization Since there are many recent papers that use the
Gaussian model as a predictor for stochastic DFL, we also claim that it has the reparameterization
and score function form.

1. Reparameterization with Gaussian Model. Also using reparameterization trick:

∇θEy∼Pθ(·|x)[f(y, z)] = Eϵ∼P (ϵ)[(∇θy∇yf(y, z)]. (49)

But with the predictor instantiated as a Gaussian model, i.e., y is computed by y =
R(ϵ, θ|x))⊤ and R is a Gaussian model.
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2. Score Function with Gaussian Model. Recall that we need to approximate the term
logPθ(y|x) for the diffusion model. However, this term has a closed-form for a Gaus-
sian model. Assume our Gaussian model is N (µθ,Σθ), then the negative log-likelihood
is

logPθ(y | x) = −1

2
[(y − µθ)

⊤Σ−1
θ (y − µθ) + log detΣθ + d log(2π)]. (50)

Then, the gradient for the score function can be calculated using ∇θ logPθ(y | x). Gaussian
models are powerful tools for many DFL tasks. However, we want to claim that the diffusion
model is more general and requires less model tuning and model assumptions.

A.6 TRAINING DETAILS

We summarize our model settings for the deterministic model, Gaussian model, and diffusion model
in Table 2.

Parameter Deterministic MLP Gaussian MLP Diffusion

Trunk (layers × width) 2× 1024 2× 1024 2× 1024

Activation ReLU / Swish (SiLU) ReLU / Swish (SiLU) Swish (SiLU)
Inputs to network x ∈ Rdx x ∈ Rdx [ yt ∈ Rdy , t, x ]

Time embedding — — Sinusoidal t (16-d) → 2
FC + SiLU

Output head ŷ ∈ Rdy µθ(x), log σ
2
θ(x) ∈ Rdy ϵ̂ = ϵθ(yt, t, x) ∈ Rdy

Uncertainty form None (point) Gaussian
N (µ, diag(σ2))

Non-parametric
(learned Pθ(y | x))

Two-stage training loss MSE on y Gaussian NLL Weighted denoising
MSE (ELBO-equiv.)

DFL gradient computation Implicit differentiation
through KKT

(1) Reparam: y =
µ + σ ⊙ ϵ + implicit
diff; (2) Gaussian score-
function

(1) Pathwise (backprop
through sampler, T
steps) + implicit diff;
(2) Weighted-ELBO
score-function

Sample size M — 10 (synthetic), 25
(power), 50 (portfolio)

10 (synthetic), 25
(power), 50 (portfolio)

Learning rate (lr) Task-specific, mostly
1× 10−4

Task-specific, mostly
1× 10−4

reparam: 1 × 10−5;
score-fn: 8× 10−6

Inference Use one ŷ in optimizer Draw M samples y(m)

from Gaussian model
Reverse diffusion to
sample M samples
y(m)

Table 2: Comparison of deterministic, Gaussian, and diffusion model architectures.

For all experiments, we perform 10 random seeds to evaluate variability. We also find that adding a
small regularizer during DFL training can help the model learning the data distribution and avoid
some bad local minima, leading to a stable training process.

A.7 DETAILS OF SYNTHETIC EXAMPLE

In this example, we consider a factory that decides how much to manufacture for each of d ∈ N
products. The parameter Y ∈ Rd represents the profit margin for each product, i.e., Yi is the profit
per unit of product i; due to uncertainty in market conditions, Y is uncertain. The factory’s decision
z ∈ [0, C]d represents how much of each product to manufacture, where C is the maximum capacity
for each product. For simplicity, we do not consider any contextual features x in this example. That
means DFL learns a distribution that generates y that can minimize the decision objective.

Suppose that the factory has a risk-averse cost function f(y, z) = exp(−y⊤z), which indicates that
the factory wants to put a larger weight on the product with higher profit Yi. Intuitively, if the factory
knew Y exactly, then the optimal strategy would be all-or-nothing: set zi = C if Yi > 0, or zi = 0

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

if Yi < 0. Likewise, with respect to a point prediction of Y , the optimal deterministic decision
z∗det ∈ {0, C}d is attained on the boundary of the feasible set.

Under uncertainty, the decision-maker seeks to minimize the expected cost by solving a stochastic
optimization problem:

z∗sto ∈ argmin
z∈[0,C]d

Ey∼Pθ(·|x)[exp(−y⊤z)]. (51)

In this stochastic case, the optimal investment z∗sto typically lies in the interior of the feasible region,
which balances the potential high reward of investing against the risk of losses.

Then, we compute the necessities for diffusion DFL:

H = Ey∼Pθ(·|x)[∇
2
zzg(z

∗, y)] + (λ∗)⊤∇2
zzh(x, z

∗) = exp(−y⊤z)yy⊤ (52)

G = ∇zh(x, z
∗) = − exp(−y⊤z)y. (53)

For reparameterization, we have

(
dloss

dθ
)⊤ =

[
dloss
dz∗

0

]⊤ [ ∂z∗

∂θ
∂λ∗

∂θ

]
= −

[
dloss
dz∗

0

]⊤ [
H G⊤

D(λ∗)G D(h(x, z∗))

]−1 [ 1
M

∑M
i=1(∇θyi)

⊤∇2
zyg(z

∗, yi)
0

]
where ∇2

zyg(z
∗, y) = exp(−y⊤z)(yz⊤ − Id) in this case.

For the score function, we have

(
dloss

dθ
)⊤ = −

[
dloss
dz∗

0

]⊤ [
H G⊤

D(λ∗)G D(h(x, z∗))

]−1 [
Ey[∇zg(z

∗, y)(dELBO
dθ )⊤]

0

]
≈ −

[
dloss
dz∗

0

]⊤ [
H G⊤

D(λ∗)G D(h(x, z∗))

]−1 [ 1
M

∑M
i=1 ∇zg(z

∗, yi)(
dELBOi

dθ )⊤

0

]
.

A.8 DETAILS ON POWER SCHEDULE TASK

This task involves a 24-hour electricity generation scheduling problem with uncertain demand. The
decision z ∈ R24 represents the electricity output to schedule for each hour of the next day. The
uncertainty y ∈ R24 represents the actual power demand for each of the 24 hours. The goal is to
meet demand as closely as possible at minimum cost. We also consider a decision cost function that
penalizes storage, excess generation, and ramping following Donti et al. (2017):

1. Let γs and γa be the per-unit costs of shortage (not meeting demand) and excess (over-
generation), respectively. We use γs = 50 and γe = 0.5 in our experiment.

2. Let cr be a penalty on hour-to-hour changes in generation. We use cr = 0.4 in appropriate
units.

Formally, if z = (z1, . . . , z24) and y = (y1, . . . , y24), the loss for a single day is

min
z

Ey∼Pθ(·|x)[f(y, z)] =

24∑
i=1

Ey∼Pθ(·|x)[γs[yi − zi]+ + γe[zi − yi]+ +
1

2
(zi − yi)

2]

s.t. |zi − zi−1| ≤ cr for all i ∈ {1, 2, . . . , 24}. (54)

Then, we compute the necessities for diffusion DFL:

H = Ey∼Pθ(·|x)[∇
2
zzg(z

∗, y)] + (λ∗)⊤∇2
zzh(x, z

∗) = In (55)

G = ∇zh(x, z
∗) =


−1 1 0 · · · 0
0 −1 1 · · · 0
...

. . . . . .
...

0 · · · 0 −1 1

 . (56)
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For reparameterization, we have

(
dloss

dθ
)⊤ =

[
dloss
dz∗

0

]⊤ [ ∂z∗

∂θ
∂λ∗

∂θ

]
= −

[
dloss
dz∗

0

]⊤ [
H G⊤

D(λ∗)G D(h(x, z∗))

]−1 [ 1
M

∑M
i=1(∇θyi)

⊤∇2
zyg(z

∗, yi)
0

]
where ∇2

zyg(z
∗, y) = −I in this case.

For the score function, we have

(
dloss

dθ
)⊤ = −

[
dloss
dz∗

0

]⊤ [
H G⊤

D(λ∗)G D(h(x, z∗))

]−1 [
Ey[∇zg(z

∗, y)(dELBO
dθ )⊤]

0

]
≈ −

[
dloss
dz∗

0

]⊤ [
H G⊤

D(λ∗)G D(h(x, z∗))

]−1 [ 1
M

∑M
i=1 ∇zg(z

∗, yi)(
dELBOi

dθ )⊤

0

]
.

Dataset. We use real historical electricity load data from the PJM regional grid (a standard public
dataset) PJM Interconnection (2025). The features x for each day include: the previous day’s 24-hour
load profile, the previous day’s temperature profile, calendar features, and seasonal sinusoidal features.
In total, dx = 28 features for each day were constructed. We normalized all input features for training.
The target label y is the next day’s 24-hour load vector.

For completeness, we include an extended comparison of different sample sizes in Figure 9, which fur-
ther highlights that additional samples yield diminishing returns in accuracy while linearly increasing
compute cost.
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Figure 7: Results on the 24-hour power grid scheduling task.
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Figure 8: Score function vs. Reparameterization

A.9 DETAILS ON STOCK PORTFOLIO TASK

We consider a mean-variance portfolio optimization problem with uncertain returns. Here y ∈ Rn

represents the random next-day returns of n assets (stocks), and z ∈ Rn are the portfolio weights
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Figure 9: Comparison between different sample sizes for score function and reparameterization.

we assign to each asset (the fraction of our capital invested in each stock). Our goal is to maximize
expected return while keeping the risk (variance) low. This can be written as minimizing a loss that is
a negative expected return plus a quadratic penalty on variance:

min
z

Ey∼Pθ(·|x)[f(y, z)] = Ey∼Pθ(·|x)

[α
2
z⊤yy⊤z − y⊤z

]
, s.t. z⊤1 = 1, 0 ≤ zi ≤ 1. (57)

Then, we compute the necessities for diffusion DFL:

H = Ey∼Pθ(·|x)[∇
2
zzf(z

∗, y)] + (λ∗)⊤∇2
zzh(x, z

∗) +∇2
zz(ν

∗⊤g(x, z∗)) = αEy∼Pθ(y|x)[yy
⊤],

(58)

G = ∇zh(x, z
∗) =

[
In,
−In

]
(59)

Q = ∇zg(x, z
∗) = 1⊤. (60)

For reparameterization, we have

(
dloss

dθ
)⊤ =

dloss
dz∗

0
0

⊤  ∂z∗

∂θ
∂λ∗

∂θ
∂ν∗

∂θ


≈ −

dloss
dz∗

0
0

⊤  H G⊤ Q⊤

D(λ∗)G D(h(x, z∗)) 0
Q 0 0

−1  1
M

∑M
i=1(∇θyi)

⊤∇2
zyg(z

∗, yi)
0
0


where ∇2

zyf(z
∗, y) = Ey[2αy

⊤z − 1] in this case.

For the score function, we have

(
dloss

dθ
)⊤ =

dloss
dz∗

0
0

⊤  H G⊤ Q⊤

D(λ∗)G D(h(x, z∗)) 0
Q 0 0

−1 Ey[∇zg(z
∗, y)(dELBO

dθ )⊤]
0
0


≈ −

dloss
dz∗

0
0

⊤  H G⊤ Q⊤

D(λ∗)G D(h(x, z∗)) 0
Q 0 0

−1  1
M

∑M
i=1 ∇zg(z

∗, yi)(
dELBOi

dθ )⊤

0
0

 ,

where ∇zg(z
∗, yi) = αyiy

⊤
i z

∗ − yi.

Dataset. We use daily stock prices from 2004–2017 for constituents of the S&P 500 index (Quandl
WIKI dataset, 2025). We obtained this data via Quandl’s API (specifically WIKI pricing data; the user
will need a Quandl API key to replicate. We compute daily returns for each stock (percentage change).
To construct features x, we use a rolling window of recent history for each asset. Specifically, for
each day, a data point is for predicting next day’s returns: we include the past 5 days of returns for
each of the n assets, past 5 days of trading volume for each asset, plus some aggregate features. To
avoid an explosion of dimension with large n, we also include PCA-compressed features: we take
the top principal components of the last 5-day return matrix to summarize cross-asset trends. In the
end, for n = 50 assets, we ended up with dx = 28 features. All features are normalized and we use a
time-series split: first 70% of days for training (2004–2013), next 10% for validation (2014), last 20%
for test (2015–2017). We evaluate performance on the test set by simulating the portfolio selection
every day and computing the average return achieved.
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A.10 (ADDITIONAL TASK) DETAILS ON INVENTORY STOCK PROBLEM

We also validate our approaches on a toy inventory control problem. In this task, the uncertain
demand y is drawn from a multi-modal distribution (a mixture of Gaussians), where we vary the
number of mixture components K to control the distribution complexity:

p(x) =

K∑
j=1

πjϕ(x;µj ,Σj), (61)

where πj is the probability of choosing component j and ϕ(x;µj ,Σj) is a multivariate Gaussian
density with parameter (µj ,Σj). The cost function follows the standard newsvendor formulation
with piecewise penalties for under-stock and over-stock:

f(y, z) = c0z +
1

2
q0z

2 + cb[y − z]+ +
1

3
rb([y − z]3+) + ch[z − y]+ +

1

3
rh([z − y]3+). (62)

Our learning objective is to minimize the expected cost over this stochastic demand, i.e., a stochastic
optimization problem:

min
z

L(θ) = Ey∼P (·|x)[f(y, z)] s.t. 0 ≤ z ≤ zmax. (63)
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Figure 10: Toy decision task comparing deterministic and diffusion DFL. Left: distribution of per-
instance regret (lower is better). Middle: distribution of chosen decision z in the lower-level; the
stochastic method tracks the true distribution z∗ more closely. Right: pairwise win-rate on test set; a
large fraction of costs from the stochastic method are lower than the deterministic one, indicating that
modeling uncertainty yields better decisions.
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Figure 11: Prediction distribution for inventory stock problem.

We compare a deterministic DFL model against our diffusion DFL model on this toy task. Figure 10
summarizes the results, where the diffusion model (stochastic DFL) achieves substantially lower
regret on average than the deterministic model. Besides, we observe that the decision z obtained
by our diffusion method closely tracks the true optimal decisions z∗ by capturing the multi-modal
demand uncertainty, whereas the deterministic predictor’s decisions deviate more. In Figure 10 (c),
we directly compare the decision outcomes via a win-rate: the fraction of test instances where one
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method achieves lower cost than the other. The diffusion DFL method attains a win-rate of about
75% against the deterministic baseline, which confirms that modeling uncertainty leads to better
downstream decisions

For data generation, we set µ = [−4, 0, 4],Σ = [0.15, 0.25, 0.15]⊤1 for
K = 3, µ = [−6.,−3., 0., 3., 6.],Σ = [0.15, 0.25, 0.35, 0.25, 0.15]⊤1 for
K = 5, and µ = [−8.0,−6.0,−4.0,−2.0,−1.0, 0.0, 1.2, 2.8, 4.5, 7.5],Σ =
[0.30, 0.75, 0.25, 0.40, 0.22, 0.20, 0.22, 0.35, 0.70, 1.25]⊤1.

Following our previous derivation, we can compute the necessities for diffusion DFL by

H = Ey∼Pθ(·|x)[∇
2
zzf(z

∗, y)] + (λ∗)⊤∇2
zzh(x, z

∗) = diag(q0) + qbI(y>z) + qhIz>y (64)

G = ∇zh(x, z
∗) =

[
−I
I

]
, (65)

D(h(x, z∗)) = 0. (66)

A.11 ADDITIONAL RELATED WORKS

Stochastic optimization Making decisions under uncertainty is a classic topic in operations research
and machine learning (Shalev-Shwartz et al., 2009). Stochastic optimization formulations explicitly
consider uncertainty by optimizing the expected objective over a distribution of unknown parameters.
A common approach is the Sample Average Approximation (SAA) (Kleywegt et al., 2002; Arjevani
et al., 2020; Wang et al., 2024), which draws many samples from the estimated distribution and
solves an approximated deterministic problem minimizing the average cost. While SAA can handle
arbitrary uncertainty distributions in theory, it becomes very computationally expensive and still does
not consider the distribution during optimization (Kim et al., 2015). It will lead to optimizing the
sample mean, which may yield a decision that performs poorly if reality often falls into one of several
distinct models far from the mean (Kim et al., 2015; Elmachtoub & Grigas, 2022).
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