
000 DIFFUSION-DFL: DECISION-FOCUSED DIFFUSION 001 MODELS FOR STOCHASTIC OPTIMIZATION 002

003 **Anonymous authors**

004 Paper under double-blind review

009 ABSTRACT

011 Decision-focused learning (DFL) integrates predictive modeling and optimization
012 by training predictors to optimize the downstream decision target rather than merely
013 minimizing prediction error. To date, existing DFL methods typically rely on de-
014 terministic point predictions, which are often insufficient to capture the intrinsic
015 stochasticity of real-world environments. To address this challenge, we propose the
016 first diffusion-based DFL approach, which trains a diffusion model to represent the
017 distribution of uncertain parameters and optimizes the decision by solving a stochas-
018 tic optimization with samples drawn from the diffusion model. Our contributions
019 are twofold. First, we formulate diffusion DFL using the reparameterization trick,
020 enabling end-to-end training through diffusion. While effective, it is memory and
021 compute-intensive due to the need to differentiate through the diffusion sampling
022 process. Second, we propose a lightweight score function estimator that uses only
023 several forward diffusion passes and avoids backpropagation through the sampling.
024 This follows from our results that backpropagating through stochastic optimization
025 can be approximated by a weighted score function formulation. We empirically
026 show that our diffusion DFL approach consistently outperforms strong baselines in
027 decision quality. The source code for all experiments is available [here](#).

028 1 INTRODUCTION

031 Many real-life decision-making tasks require selecting actions that minimize a cost function involving
032 unknown, context-dependent parameters. These parameters must often be predicted from observed
033 features. For example, in supply chain management, future product demand must be estimated before
034 deciding how much inventory to order (Tang & Nurmaya Musa, 2011). A common approach is the
035 predict-then-optimize pipeline, where a predictive model is first trained using a loss function such as
036 mean squared error (MSE), and the resulting predictions are then passed to an optimization solver to
037 guide decisions. While simple and widely adopted, this two-stage method can be misaligned with the
038 true objective: minimizing decision cost. In particular, lower prediction error does not always lead to
039 higher-quality decisions (Bertsimas & Kallus, 2020; Elmachtoub & Grigas, 2022).

040 Decision-focused learning (DFL) addresses this misalignment by integrating the prediction and
041 optimization stages into a single end-to-end framework (Donti et al., 2017; Wilder et al., 2019;
042 Mandi et al., 2024). Unlike the two-stage approach, DFL trains the prediction model specifically to
043 improve decision outcomes, often resulting in solutions with lower regret. However, most existing
044 DFL methods rely on point (deterministic) predictions as inputs to the optimization layer, despite
045 the fact that in many real-world scenarios, the underlying parameters are inherently uncertain and
046 may follow complex distributions. Ignoring this uncertainty can lead to overconfident models and
047 degraded decision quality (Kochenderfer et al., 2015).

048 In this work, we introduce a novel DFL approach that leverages diffusion probabilistic models to
049 capture the environment uncertainty in an end-to-end fashion. Here, we use a conditional diffusion
050 model (Tashiro et al., 2021) to represent the distribution of uncertain parameters given contextual
051 features. The advantage of integrating a diffusion model into DFL is that, unlike simple distribution
052 predictions (e.g., Gaussian), diffusion models can capture multi-modal or complex distributions.
053 However, the sequential sampling procedure of diffusion models introduces a challenge when training
a diffusion model end-to-end for stochastic optimization. To address this, we develop two algorithms:
reparameterization and score function. First, the reparameterization trick is a common approach that

054 expresses a random sample as a deterministic function of the model parameters and some noise, and
055 we can backpropagate through sampled prediction to solve the DFL problem.
056

057 However, this approach can be very costly in memory and computation because it requires differentiating
058 (and therefore tracking gradients) through the diffusion sampling process. To address this,
059 we introduce a lightweight score function estimator that avoids differentiating through the sampling
060 process. Specifically, we use a score function surrogate to approximate the gradient of the diffusion
061 predictor and plug it into the KKT (Karush-Kuhn-Tucker) implicit-differentiation approach to obtain
062 the total derivative of the decision objective. In addition, we further mitigate the high variance that
063 arises from using only score functions for a few steps by employing a tailored importance sampling
064 strategy.

065 We evaluate our proposed methods in various applications, including (synthetic) product allocation,
066 energy scheduling, and stock portfolio optimization. Experimental results show that our diffusion
067 DFL methods consistently outperform all baselines, with more improvements on larger problem
068 sizes. Moreover, the score function estimator achieves decision quality comparable to that of the
069 reparameterization method, while significantly reducing GPU memory usage from 60.75 GB to 0.13
070 GB. The contributions of this paper are the following:
071

- We introduce the first DFL method that uses diffusion models to capture the downstream
072 uncertainty and employs the reparameterization trick for end-to-end gradient estimation.
- We propose a lightweight score function estimator that avoids backpropagating the reversing
073 process in the reparameterization method, significantly reducing memory and computation cost.
- We evaluate our methods in three real-world optimization tasks and observe consistent improve-
074 ments over strong baselines.
075

076 2 RELATED WORKS 077

078 **Decision-focused learning** DFL is a growing and increasingly influential approach that trains
079 models end-to-end to directly optimize decision quality rather than minimize prediction error (Donti
080 et al., 2017; Wilder et al., 2019; Mandi et al., 2024). Despite the success in aligning learning
081 objectives with decision-making, a limitation of most existing DFL methods is that they typically
082 rely on **deterministic point predictions** of uncertain parameters (Wilder et al., 2019; Shah et al.,
083 2022). While it is possible to achieve optimal decisions using deterministic point predictions in very
084 limited settings (Elmachtoub & Grigas, 2022; Homem-de Mello et al., 2025), deterministic point
085 predictions cannot represent the full distribution of outcomes and thus lead to lower decision quality
086 in general (Wang et al., 2025; Schutte et al., 2025). Empirically, classic DFL has been observed to
087 struggle in high-dimensional and risk-sensitive real-world settings with significant uncertainty (Mandi
088 et al., 2022).
089

090 Despite the success in aligning learning objectives with decision-making, a limitation of most existing
091 DFL methods is that they typically rely on **deterministic point predictions** of uncertain parameters
092 (Wilder et al., 2019; Shah et al., 2022). By ignoring distributional uncertainty, deterministic point
093 predictions cannot represent the full outcomes and may lead to lower decision quality (Wang et al.,
094 2025). Empirically, classic DFL was observed to struggle in high-dimensional and risk-sensitive
095 real-world settings with significant uncertainty (Mandi et al., 2022).
096

097 Therefore, the gap in uncertainty modeling motivates the need for more comprehensive DFL with
098 *stochastic predictions*, where several works have started integrating uncertainty awareness into
099 the DFL pipeline (Silvestri et al., 2023; Wang et al., 2025; Shariatmadar et al., 2025; Jeon et al.,
100 2025). For instance, Wang et al. (2025) proposes a generative DFL approach (Gen-DFL) based on
101 normalizing flow models as the predictor. However, normalizing flows require a bijective network
102 architecture, which restricts the expressiveness of the stochastic predictor.
103

104 In this paper, we propose using diffusion models (Ho et al., 2020) as a more expressive predictor.
105 By leveraging diffusion models in the DFL paradigm, our approach extends DFL by predicting
106 an accurate full distribution of the unknown parameters, which addresses the overconfidence of
107 deterministic optimization and better aligns with downstream decision-making needs.
108

108 **Offline Contextual Bandits (OCB)** Offline contextual bandit approaches provide an alternative
 109 way to learn decisions from contextual features by directly optimizing a policy that maps each context
 110 to an action (Agarwal et al., 2020; Nguyen-Tang et al., 2021; Brandfonbrener et al., 2021; Gabbianelli
 111 et al., 2024; Sakhi et al., 2023). A key difficulty is that feedback is typically *partial*: the log reveals
 112 rewards only for actions taken by a behavior policy, so learning and evaluation rely on off-policy
 113 estimators and assumptions such as overlap between the learned and behavior policies. Recent
 114 OCB methods address this challenge via optimistic or pessimistic objectives (Nguyen-Tang et al.,
 115 2021; Wang et al., 2024a), variance control (Li et al., 2011; 2012; Wang et al., 2017), conservative
 116 regularization (Swaminathan & Joachims, 2015), and robust optimization (Yang et al., 2023) to
 117 avoid out-of-distribution actions. In all these methods, the policy is learned purely from logged data,
 118 without using the fact that the decision comes from solving a particular optimization problem. This is
 119 fundamentally different from DFL in terms of the prior knowledge and optimization structure. In
 120 DFL, the decision z is a solution of solving a known optimization problem, with explicit constraints
 121 and objectives. In this paper, we empirically show that Diffusion-DFL achieves better performance
 122 than the policy-based OCB method.

123 **Diffusion model in optimization** Diffusion probabilistic models have achieved great success in
 124 modeling high-dimensional data distributions in recent years (Sohl-Dickstein et al., 2015; Song &
 125 Ermon, 2019; Dhariwal & Nichol, 2021). Originally popularized for image generation and related
 126 structured outputs, its ability to capture multi-modal and high-variety distributions has made it
 127 attractive beyond vision tasks, such as combinatorial optimization (Sun & Yang, 2023; Sanokowski
 128 et al., 2025), black-box optimization (Krishnamoorthy et al., 2023; Kong et al., 2025). To our best
 129 knowledge, however, no prior work has integrated diffusion models into a predict-then-optimize
 130 learning pipeline for decision tasks. This paper is the first to harness diffusion models in an end-
 131 to-end DFL framework. By using a conditional diffusion model, we can learn a rich distribution
 132 over the uncertain inputs and then propagate this uncertainty through to the downstream decision
 133 via gradient-based training (score function and reparameterization). This approach combines the
 134 strengths of expressive generative modeling and DFL to improve decision quality under uncertainty.

135 3 PROBLEM STATEMENT

136 3.1 DECISION-FOCUSED LEARNING

139 We consider a general predict-then-optimize setting (Donti et al., 2017; Elmachtoub & Grigas, 2022),
 140 where the goal is to make decisions under uncertainty about a key problem parameter. Given a feature
 141 vector $x \in \mathcal{X}$ and a prediction of an unknown parameter $y^* \in \mathcal{Y}$, the decision-maker selects $z \in \mathbb{R}^d$
 142 to minimize a decision loss function $f : \mathcal{Y} \times \mathbb{R}^d \rightarrow \mathbb{R}$, which measures the cost of applying decision
 143 z when the true parameter is y^* . We assume a joint distribution \mathcal{D} over (x, y^*) pairs.

144 DFL integrates prediction and optimization into a unified framework. The goal is to learn a decision
 145 function $z_\theta^* : \mathcal{X} \rightarrow \mathbb{R}^d$, parameterized by θ , that minimizes the expected decision loss,
 146

$$147 \min_{\theta} F(\theta) := \mathbb{E}_{(x, y^*) \sim \mathcal{D}} [f(y^*, z_\theta^*(x))]. \quad (1)$$

149 The decision $z_\theta^*(x)$ is typically obtained by solving an optimization problem involving a prediction
 150 of the uncertainty parameter. Most DFL methods (Mandi et al., 2024) use a deterministic point
 151 prediction $y_\theta(x)$ of the uncertain parameter y^* :

$$152 \quad z_\theta^*(x) = \arg \min_z f(y_\theta(x), z), \quad \text{s.t. } Gz \leq h, \quad Az = b, \quad (2)$$

154 where $G \in \mathbb{R}^{n \times d}$, $h \in \mathbb{R}^n$, $A \in \mathbb{R}^{p \times d}$, $b \in \mathbb{R}^p$ are constraint problem coefficients¹.

156 In contrast, we consider a probabilistic model $P_\theta(\cdot | x)$ for the uncertain parameter y^* and let $z_\theta^*(x)$
 157 be the solution to a stochastic optimization problem:

$$158 \quad z_\theta^*(x) = \arg \min_z \mathbb{E}_{y \sim P_\theta(\cdot | x)} [f(y, z)], \quad \text{s.t. } Gz \leq h, \quad Az = b. \quad (3)$$

161 ¹We consider affine constraints in our main paper for simplicity. The extension from affine constraints to
 general convex constraints $h(x, z) \leq 0$ follows a similar derivation as in the linear case.

We aim to learn the model parameter θ such that z_θ^* minimizes the expected decision loss $F(\theta)$. By the chain rule, the derivative of F is

$$\frac{dF(\theta)}{d\theta} = \mathbb{E}_{(x, y^*) \sim \mathcal{D}} \left[\frac{\partial f(y^*, z_\theta^*(x))}{\partial z} \frac{dz_\theta^*(x)}{d\theta} \right].$$

However, computing this gradient (specifically, the $\frac{dz_\theta^*}{d\theta}$ term) is challenging because z_θ^* is implicitly defined by a nested optimization problem. A common solution is to differentiate the KKT system that implicitly defines z_θ^* w.r.t. θ (Amos & Kolter, 2017). Another crucial point is the selection of the stochastic predictor in DFL, which in the paper we choose to use diffusion models to represent P_θ .

3.2 DIFFUSION PROBABILISTIC MODEL

To generate complex multi-modal and high-dimensional distributions, diffusion probabilistic models (Ho et al., 2020) are a promising way. It couples a fixed noising chain with a learned reverse denoising chain. Let $y_0 \in \mathbb{R}^d$ denote a sample from the real data distribution $q(y_0)$ and $\{\beta_t \in (0, 1)\}_{t=1}^T$ denote the noise schedule. Define $\alpha_t = 1 - \beta_t$ and $\bar{\alpha}_t = \prod_{i=1}^t \alpha_i$. The *forward process* q adds Gaussian noise at each step t to y_1 through y_T :

$$q(y_t | y_{t-1}) = \mathcal{N}(y_t; \sqrt{1 - \beta_t} y_{t-1}, \beta_t I), \quad t = 1, \dots, T, \quad (4)$$

which guarantees that $q(y_T | y_0)$ becomes nearly standard normal distribution as $T \rightarrow \infty$ with common schedules ($\bar{\alpha}_T \rightarrow 0$). Note that y_t can be equivalently sampled without iterating through intermediate time steps: $y_t = \sqrt{\bar{\alpha}_t} y_0 - \sqrt{1 - \bar{\alpha}_t} \epsilon$, where $\epsilon \sim \mathcal{N}(0, I)$ is a Gaussian noise.

In the *reverse process* p , the diffusion model predicts the unknown added noise by

$$p_\theta(y_{t-1} | y_t) = \mathcal{N}(y_{t-1}; \mu_\theta(y_t, t), \sigma_t^2 I), \quad (5)$$

whose mean $\mu_\theta(\cdot, t)$ is parameterized by a neural network predictor and variance is either fixed ($\sigma_t^2 = \beta_t$) or learned. The combination of p and q is equivalent to a hierarchical variational auto-encoder (Vahdat & Kautz, 2020), and thus can be optimized by using the evidence lower bound (ELBO) as the loss function (Hoffman & Johnson, 2016).

Conditional Diffusion Model. Throughout this paper, x denotes contextual features, and every transition probability is conditioned on x (Tashiro et al., 2021). We use $P_\theta(\cdot | x)$ for the diffusion model's conditional distribution for generated data and $p_\theta(y_{t-1} | y_t, x)$ for its Markov transitions.

4 STOCHASTIC OPTIMIZATION AND REPARAMETERIZATION ESTIMATOR

Real-world decision problems often face significant uncertainty in their parameters. Optimizing with a stochastic predictor (e.g., diffusion model) yields better results than deterministic optimization, by explicitly modeling the uncertainty and optimizing the expected cost. Figure 1 illustrates a simple example: any deterministic solution ends up at an extreme decision with a higher expected cost, while the stochastic solution averages costs across likely outcomes and selects an interior decision with a lower expected cost.

Solving stochastic DFL. Formally, in the stochastic case, the optimality condition for the decision problem must consider an expectation. The stationarity condition for decision problem Eq. 3 becomes

$$\nabla_z \mathcal{L}(\theta, z^*, \lambda^*, \nu^*; x) = \mathbb{E}_{y \sim P_\theta(\cdot | x)} [\nabla_z f(y, z)] + G^\top \lambda^* + A^\top \nu^* = 0, \quad (6)$$

where \mathcal{L} denotes the Lagrangian. Note that the dependency on θ in the stationarity condition is in the distribution. Therefore, we need to handle this dependency carefully while differentiating the KKT system with respect to θ :

$$\underbrace{\frac{\partial}{\partial \theta} (\nabla_z \mathcal{L}(\theta, z^*, \lambda^*, \nu^*; x))}_{\text{distributional gradient}} = \frac{\partial}{\partial \theta} (\mathbb{E}_{y \sim P_\theta(\cdot | x)} [\nabla_z f(y, z)] + G^\top \lambda^* + A^\top \nu^*) = 0. \quad (7)$$

To resolve the dependence of both the predictive distribution $P_\theta(y | x)$ and the decision z^* on θ , we first adopt the *reparameterization trick* (Kingma & Welling, 2014) for the diffusion model.

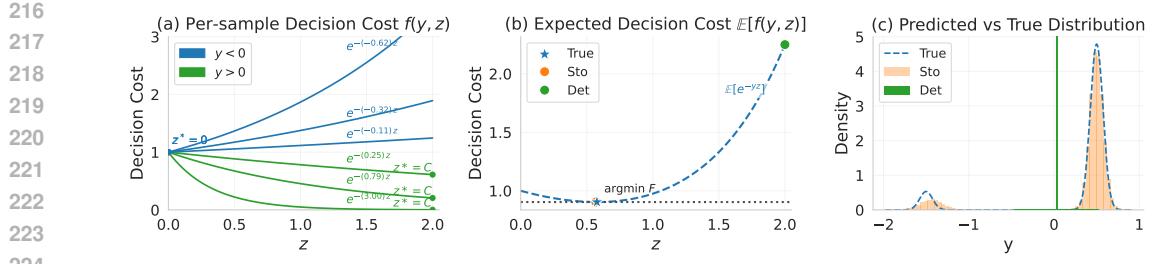


Figure 1: A comparison of deterministic vs. stochastic optimization with cost function $\exp(-yz)$, as described in Section 6.1. (a) Each curve represents a cost function given a sample y . For any fixed y , the deterministic optimization decision lies at one of the boundaries ($z^* = 0$ or $z^* = C$). (b) When averaging the cost function over many samples of y , the stochastic optimization decision lies in the interior of the feasible region instead of on the boundary. Thus, any deterministic optimization decision is suboptimal. (c) A probabilistic (diffusion) model captures a distribution over Y that closely resembles the true bimodal distribution.

From Section 3.2, recall that the diffusion sampling process introduces Gaussian noise at each step. Thus, we can reparameterize the reverse process by fixing all the random draws (Gaussian noises). Formally, a sample $y \sim P_\theta(y \mid x)$ can be expressed as a transformation $y = R(\epsilon, \theta \mid x)$ of a base Gaussian noise sample $\epsilon \sim P(\epsilon)$, where R is differentiable in θ . This makes the diffusion sampling a deterministic function of θ . Then we have

$$\nabla_\theta \mathbb{E}_{y \sim P_\theta(\cdot \mid x)}[f(y, z)] = \mathbb{E}_{\epsilon \sim P(\epsilon)}[(\nabla_\theta R(\epsilon, \theta \mid x))^\top \nabla_y f(y, z)]. \quad (8)$$

Next, we incorporate this into the optimization. Following Eq. 7, we can formalize a KKT system that contains derivatives of z_θ^* , λ^* , ν^* and $\nabla_\theta \mathbb{E}_{y \sim P_\theta(\cdot \mid x)}[f(y, z)]$. Plugging the reparameterized gradient estimator into the KKT system, we can solve for $\frac{dz_\theta^*}{d\theta}$ and then obtain the total derivative of the final objective F by multiplying $\frac{dF}{dz_\theta^*}$ (Donti et al., 2017) (proof can be found in Appendix A.1):

$$\frac{dF}{d\theta} = - \left[\begin{array}{c} \frac{dF}{dz_\theta^*} \\ 0 \\ 0 \end{array} \right]^\top \left[\begin{array}{ccc} H & G^\top & A^\top \\ D(\lambda^*)G & D(Gz_\theta^* - h) & 0 \\ A & 0 & 0 \end{array} \right]^{-1} \left[\begin{array}{c} \mathbb{E}_{\epsilon \sim P(\epsilon)}[(\nabla_\theta R(\epsilon, \theta \mid x))^\top \nabla_{zy}^2 f(y, z_\theta^*)] \\ 0 \\ 0 \end{array} \right], \quad (9)$$

where $H = \mathbb{E}_{y \sim P_\theta(\cdot \mid x)}[\nabla_{zy}^2 f(y, z_\theta^*)]$ is the Hessian of the Lagrangian with respect to z , and $D(v)$ denotes a diagonal matrix with v on its diagonal. In practice, one can sample ϵ from a certain distribution (e.g., Gaussian) multiple times to estimate the expectation and then obtain the gradient. This gives us reparameterization-based diffusion DFL using Eq. 9 to run stochastic DFL optimization.

5 SCORE FUNCTION ESTIMATOR

A major obstacle to implementing the total gradient (Eq. 9) is the need to backpropagate through the diffusion sampling process. In most cases, the diffusion model’s generative process is complex and multi-step (e.g., 1000 steps), which makes backpropagating through all those steps memory-intensive and prone to instability. To address this, we propose a **score function**² gradient estimator for the diffusion model, which circumvents explicit backpropagation through all sampling steps. The key idea is to rewrite the Jacobian $\nabla_\theta y$ in terms of the score $\nabla_\theta \log P_\theta(y \mid x)$, and then approximate the score with the diffusion model’s ELBO training loss.

5.1 TRANSFORM THE JACOBIAN INTO SCORE FUNCTION

We begin by rewriting the gradient of expectation as an expectation of a score function using the *log-trick* (Mohamed et al., 2020). Formally, if $y \sim P_\theta(\cdot \mid x)$ and $f(y)$ is any function not dependent

²In this paper, score function refers to the statistical score $\nabla_\theta \log P_\theta(y \mid x)$ (gradient of log-likelihood w.r.t. model parameters), as opposed to Stein’s score $\nabla_y p(y_t \mid y_{t-1}, x)$ often used in the diffusion literature.

270 on θ , then by the log-trick we have
271

$$272 \quad \nabla_{\theta} \mathbb{E}_{y \sim P_{\theta}(\cdot|x)}[f(y, z)] = \mathbb{E}_{y \sim P_{\theta}(\cdot|x)}[f(y, z) \cdot \nabla_{\theta} \log P_{\theta}(y|x)]. \quad (10)$$

273 Intuitively, instead of differentiating the output y through each diffusion step, we only need to
274 compute the gradient for the final log-likelihood, which avoids the need to differentiate through the
275 diffusion sampling process and yields an efficient estimator for the gradient.
276

277 Then, one remaining difficulty is that directly computing the exact $\nabla_{\theta} \log P_{\theta}(y|x)$ is complicated in
278 practice because $P_{\theta}(y|x)$ is defined as the marginal probability of y after integrating out the latent
279 diffusion trajectory. To obtain a computationally efficient estimator, we use the diffusion model's
280 training objective as a surrogate for the log-likelihood. Specifically, diffusion models are typically
281 trained by maximizing an ELBO that lower-bounds the log-likelihood:
282

$$\begin{aligned} 283 \quad \log P_{\theta}(y_0) &= \log \int p_{\theta}(y_0|y_1) p_{\theta}(y_1|y_2) \cdots p_{\theta}(y_{T-1}|y_T) p_{\theta}(y_T) dy_{1:T} \\ 284 \\ 285 \quad &= \log \mathbb{E}_{y_t \sim q(y_t|y_{t-1}) \forall t \in [T]} \left[\prod_{t=1}^T \frac{p_{\theta}(y_{t-1}|y_t)}{q(y_t|y_{t-1})} p_{\theta}(y_T) \right] \\ 286 \\ 287 \quad &\geq \mathbb{E}_{y_t \sim q(y_t|y_{t-1}) \forall t \in [T]} \left[\sum_{t=1}^T \log \frac{q(y_t|y_{t-1})}{p_{\theta}(y_{t-1}|y_t)} + \log p_{\theta}(y_T) \right] =: \text{ELBO}(y_0; \theta), \quad (11) \end{aligned}$$

290 where the inequality is due to Jensen's. To approximate $\nabla_{\theta} \log P_{\theta}(y_0|x)$ conditioned on x , we use
291 the gradient of the conditional ELBO loss as a surrogate:
292

$$293 \quad \nabla_{\theta} \log P_{\theta}(y_0|x) \approx \nabla_{\theta} \text{ELBO}(y_0|x; \theta). \quad (12)$$

294 In practice, we first sample a final output y from the
295 diffusion model given contextual features x . We then
296 sample a subset of k timesteps $\{t_1, t_2, \dots, t_k\}$ ($k \ll T$)
297 and run forward noising process q to generate the trajectory
298 $\{y_{t_1}, y_{t_2}, \dots, y_{t_k}\}$. As in DDPM (Ho et al.,
299 2020), we adopt the simplified form of $\text{ELBO} \approx \mathbb{E}_{t \sim [T], y_0, \epsilon_t} [\|\epsilon_t - \epsilon_{\theta}(y_t, t)\|^2]$. We evaluate the ELBO
300 on the sampled trajectories and compute its gradient
301 w.r.t. θ as an estimation of the true score.
302

303 Empirical evidence suggests that the ELBO gradient
304 closely tracks the true score, as shown in Figure 2, making
305 Eq. 12 a reliable proxy in practice.

306 Beyond empirical validation, we also provide a theoretical
307 justification for using the ELBO gradient as a surrogate. In Proposition A.7, we show that if
308 $\sup_w \|\nabla_{\theta} \log p_{\theta}(y_0, w)\| \leq B(\theta, y_0)$ for some upper bound $B(\theta, y_0)$, then

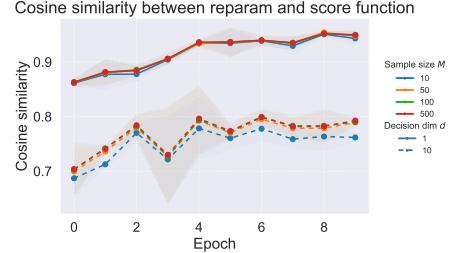
$$310 \quad \|\nabla_{\theta} \log P_{\theta}(y_0) - \nabla_{\theta} \text{ELBO}(y_0; \theta)\| \leq \sqrt{2}B(\theta, y_0) \sqrt{\text{KL}(q(y_{1:T}|y_0) \| p_{\theta}(y_{1:T}|y_0))}. \quad (13)$$

311 Consequently, whenever the variational posterior (diffusion reverse process) is a good approximation
312 of the target distribution (diffusion forward process), so that the KL divergence term is small, the
313 ELBO gradient is guaranteed to be close to the true score. This justifies our use of $\nabla_{\theta} \text{ELBO}$ as a
314 surrogate for $\nabla_{\theta} \log P_{\theta}(y_0)$.
315

316 5.2 OVERALL GRADIENT FOR SCORE FUNCTION 317

318 By plugging the ELBO gradient approximation from Eq. 12 into Eq. 10, we can express the KKT
319 conditions without using reparameterization and thus obtain the score function-based derivative:

$$\begin{aligned} 320 \quad \frac{dF}{d\theta} &\approx - \left[\frac{dF}{dz_{\theta}^*} \right]^{\top} \left[\begin{array}{ccc} H & G^{\top} & A^{\top} \\ D(\lambda^*)G & D(Gz_{\theta}^* - h) & 0 \\ A & 0 & 0 \end{array} \right]^{-1} \left[\begin{array}{c} \mathbb{E}_{y \sim P_{\theta}(\cdot|x)} [\nabla_z f(y, z_{\theta}^*) (\nabla_{\theta} \text{ELBO}(y|x; \theta))^{\top}] \\ 0 \\ 0 \end{array} \right] \\ 321 \\ 322 \\ 323 \end{aligned} \quad (14)$$



324 Figure 2: Cosine similarity between the
325 reparameterization and score function
326 gradient across different dimensions.

324 **Practical algorithm – weighted ELBO gradient.** To compute the score surrogate in practice, we
 325 found it convenient to treat the total gradient as an importance-weighted form:
 326

$$327 \quad \frac{dF}{d\theta} \approx \frac{d}{d\theta} \mathbb{E}_{y \sim P_\theta(\cdot|x)} \left[\underbrace{\text{detach}[w_\theta(y)]}_{\text{importance weight, no grad in } \theta} \cdot \underbrace{\text{ELBO}(y|x, \theta)}_{\text{1-step forward}} \right], \quad (15)$$

330 where $w_\theta(y)$ is the importance weight simplified from Eq. 14 (see Appendix A.3 for complete form).
 331 This yields a *weighted-ELBO* gradient estimator: we treat $w_\theta(y)$ as a stop-gradient weight and only
 332 differentiate the ELBO w.r.t. θ , greatly reducing computations. We implement the entire gradient
 333 computation as a user-friendly PyTorch autograd module: the forward pass returns the optimal
 334 decision z^* (and λ^*, ν^*), and the backward pass computes the gradient $\frac{dF}{d\theta}$ as derived above.
 335

336 **Variance-reduction strategy.** While the score-function estimator is effective, a naive implementa-
 337 tion of the weighted ELBO loss in Eq. 15 can suffer from high variance, leading to unstable training.
 338 In practice, we found that carefully designing the sampling strategy for the ELBO loss is crucial
 339 to obtaining low-variance and stable gradients. To reduce the variance, we utilize the method from
 340 Improved DDPM (Nichol & Dhariwal, 2021) for choosing diffusion steps. Specifically, instead of
 341 uniform sampling, we use *importance sampling* over timesteps with probability p_t and weights $1/p_t$:

$$342 \quad \nabla_\theta \text{ELBO}^{\text{IS}} = \mathbb{E}_{t \sim p_t} \left[\frac{\nabla_\theta(\text{ELBO}_t)}{p_t} \right], \text{ where } p_t \propto \sqrt{\mathbb{E}[\|\nabla_\theta(\text{ELBO}_t)\|^2]} \text{ and } \sum_t p_t = 1. \quad (16)$$

343 This method remains unbiased, but the variance is minimized. In essence, this approach gives less
 344 weight to the early timesteps that have large gradients and more weight to later timesteps.
 345

347 6 EXPERIMENTS

349 We evaluate the performance of our diffusion-based DFL approaches on a variety of tasks, comparing
 350 against several baseline methods. Specifically, we consider:

- 351 • **Two-stage predict-then-optimize baselines:** a deterministic MLP, a Gaussian probabilistic
 352 model, and a diffusion model trained to minimize prediction error (Elmachtoub & Grigas, 2022).
- 353 • **Deterministic DFL:** a deterministic MLP model with end-to-end DFL training (Donti et al.,
 354 2017).
- 355 • **Gaussian DFL** (both reparameterization and score function): a Gaussian probabilistic model with
 356 end-to-end stochastic DFL training; see details in Appendix A.6.
- 357 • **Offline Contextual Bandits:** solving the full-information contextual bandit using policy-based
 358 learning (Brandfonbrener et al., 2021). Note that this method ignores the constraints of the
 359 optimization. See details in Appendix A.7.
- 360 • **Diffusion DFL (ours):** our diffusion model predictor, trained with either reparameterization or
 361 score-function gradient estimators.

362 Architectural and training details for all methods are summarized in Appendix A.8.

363 6.1 SYNTHETIC EXAMPLE

365 In this example, we consider a factory that decides how much to manufacture for each of $d \in \mathbb{N}$
 366 products. The parameter $Y \in \mathbb{R}^d$ represents the *profit margin* for each product, i.e., Y_i is the profit
 367 per unit of product i ; due to uncertainty in market conditions, Y is uncertain. The factory’s decision
 368 $z \in [0, C]^d$ represents how much of each product to manufacture, where C is the maximum capacity
 369 for each product. For simplicity, we do not consider any contextual features x in this example. That
 370 means DFL learns a distribution that generates y that can minimize the decision objective.

371 Suppose that the factory has a risk-averse cost function $f(y, z) = \exp(-y^\top z)$ ³, which indicates that
 372 the factory wants to put a larger weight on the product with higher profit Y_i . Under uncertainty, the
 373 decision-maker seeks to minimize the **expected cost** by solving a stochastic optimization problem:

$$375 \quad z_{\text{sto}}^* \in \arg \min_{z \in [0, C]^d} \mathbb{E}_{y \sim P_\theta(\cdot|x)} [\exp(-y^\top z)]. \quad (17)$$

377 ³Here, we have ignored the degenerate case $y = 0$. To deal with the degenerate case, one could add a
 378 zero-centered bump function $c(y)$ to the objective $f(y, z)$.

378 In this stochastic case, the optimal investment z_{sto}^* typically lies in the interior of the feasible region,
 379 which balances the potential high reward of investing against the risk of losses.
 380

381 **Experimental setup.** We simulate the uncertain parameter Y drawn from a mixture of Gaussians,
 382

$$Y_i \stackrel{\text{iid}}{\sim} p \cdot \mathcal{N}(a, \sigma^2) + (1-p) \cdot \mathcal{N}(-b, \sigma^2). \quad (18)$$

383 Specifically, we set $p = 0.8, a = 1, b = 3, \sigma = 0.15, C = 2$. We train each model (deterministic,
 384 Gaussian, diffusion) on this distribution in a decision-focused manner (for DFL methods) or on pure
 385 regression (for two-stage), and evaluate the expected cost achieved by the resulting decision $z_\theta^*(x)$.
 386 We present the results of one product ($d = 1$) in Figure 1 and 10 products ($d = 10$) in Table 1.
 387

388 6.2 POWER SCHEDULE

389 In this experiment, we evaluate our method on a real-world energy scheduling problem from [Donti et al. \(2017\)](#). This task involves a 24-hour generation-scheduling problem in which the operator
 390 chooses $z \in \mathbb{R}^{24}$ (hourly generation). Given a realization y of demand, the decision loss penalizes
 391 shortage and excess with asymmetric linear costs (γ_s and γ_e) plus a quadratic tracking term; the
 392 decision must also satisfy a ramping bound c_r . Let $[v]_+ := \max(v, 0)$. We have the decision loss as
 393 the quadratic problem:
 394

$$\begin{aligned} \min_z \mathbb{E}_{y \sim P_\theta(\cdot|x)} [f(y, z)] &= \sum_{i=1}^{24} \mathbb{E}_{y \sim P_\theta(\cdot|x)} [\gamma_s[y_i - z_i]_+ + \gamma_e[z_i - y_i]_+ + \frac{1}{2}(z_i - y_i)^2], \\ \text{s.t. } |z_i - z_{i-1}| &\leq c_r \text{ for all } i \in \{1, 2, \dots, 24\}. \end{aligned} \quad (19)$$

395 **Experimental setup.** We use more than 8 years of historical data from a regional power grid ([PJM Interconnection, 2025](#)). Feature x includes the previous day's hourly load, temperature, next-day
 396 temperature forecasts, non-linear transforms (lags and rolling statistics), calendar indicators, and
 397 yearly sinusoidal features. Given x , the prediction model $P_\theta(\cdot|x)$ outputs a distribution over $y \in \mathbb{R}^{24}$.
 398 We report the test decision cost in Table 1 and a held-out horizon in Figure 7.
 399

400 6.3 STOCK MARKET PORTFOLIO OPTIMIZATION

401 In this experiment, we apply our diffusion DFL approach to a financial portfolio optimization problem
 402 under uncertain stock returns. Here, the random vector $y \in \mathbb{R}^n$ represents the returns for the assets n
 403 on the next day, and the decision $z \in \mathbb{R}^n$ represents the portfolio weights allocated to those assets.
 404 We consider a mean-variance trade-off decision loss: maximize expected return while keeping the
 405 risk (variance) low. This can be written as minimizing a loss that is a negative expected return plus a
 406 quadratic penalty on variance:
 407

$$\min_z \mathbb{E}_{y \sim P_\theta(\cdot|x)} [f(y, z)] = \mathbb{E}_{y \sim P_\theta(\cdot|x)} \left[\frac{\alpha}{2} z^\top y y^\top z - y^\top z \right], \quad \text{s.t. } z^\top \mathbf{1} = 1, 0 \leq z_i \leq 1, \quad (20)$$

408 where $\alpha > 0$ is a risk parameter and constraints enforce that z is a valid portfolio. In practice,
 409 the deterministic solution may concentrate heavily on a few assets and yield a low average return,
 410 whereas a stochastic approach can achieve higher returns by accounting for variance.
 411

412 **Experimental setup.** We have daily prices and volumes spanning 2004-2017 and evaluate on the
 413 S&P 500 index constituents ([Quandl WIKI dataset, 2025](#)). The features $x \in \mathbb{R}^{28}$ include recent
 414 historical return, trading volume windows, and rolling averages. The immediate-return predictor
 415 $P_\theta(\cdot|x)$ is to predict the next day's price. We report the performance of different DFL baselines with
 416 50 portfolios in Table 1 and other sizes of portfolios in Section 7.2.
 417

418 7 DISCUSSION OF EXPERIMENTAL RESULTS AND ABLATION STUDY

419 7.1 DISCUSSION OF RESULTS IN TABLE 1

420 **Two-stage vs DFL.** As shown in Table 1, across all three experiment tasks, we find that end-to-end
 421 DFL leads to better downstream decisions than the conventional two-stage approach. Conventional
 422 two-stage methods minimize RMSE during training, but this often leads to poor downstream decisions.
 423 In contrast, all variants of DFL directly minimize the decision cost during training and thus achieve
 424 lower decision costs.
 425

432
433 Table 1: Results for different optimization tasks. Our two diffusion DFL methods achieve the best and
434 second-best decision quality in all 3 tasks, significantly better than other baselines. **Bolded** values are
435 the best in test task losses; underlined values are the 2nd-best. Mean \pm standard error across 10 runs.

Label / Method	Synthetic Example		Power Schedule		Stock Portfolio	
	RMSE \downarrow	Task \downarrow	RMSE \downarrow	Task \downarrow	RMSE \downarrow	Task (%) \uparrow
<i>Two-stage (TS)</i>						
Deterministic TS	0.639 \pm 0.00	1.987 \pm 0.00	0.120 \pm 0.00	41.239 \pm 3.18	0.027 \pm 0.00	0.04% \pm 0.04
Gaussian TS	0.720 \pm 0.00	1.272 \pm 0.23	0.117 \pm 0.00	5.580 \pm 0.45	0.188 \pm 0.03	0.10% \pm 0.04
Diffusion TS	0.905 \pm 0.00	0.393 \pm 0.00	0.147 \pm 0.00	7.901 \pm 0.76	0.455 \pm 0.00	0.13% \pm 0.03
<i>Offline Contextual Bandits</i>						
Policy-based Learning	0.873 \pm 0.00	0.568 \pm 0.02	4.712 \pm 0.10	4.440 \pm 0.17	0.064 \pm 0.00	1.74% \pm 0.41
<i>Decision-focused learning (DFL)</i>						
Deterministic	0.640 \pm 0.00	1.987 \pm 0.00	4.997 \pm 0.10	4.324 \pm 0.25	0.032 \pm 0.00	0.07% \pm 0.00
Gaussian Reparameterization	0.707 \pm 0.00	1.169 \pm 0.03	4.525 \pm 0.12	3.724 \pm 0.05	0.189 \pm 0.03	0.08% \pm 0.03
Gaussian Score Function	0.708 \pm 0.00	1.132 \pm 0.00	4.713 \pm 0.15	4.087 \pm 0.06	0.187 \pm 0.03	0.14% \pm 0.05
Diffusion Reparameterization	0.852 \pm 0.01	<u>0.365</u> \pm 0.00	3.141 \pm 0.06	3.152 \pm 0.03	0.063 \pm 0.00	4.17% \pm 0.24
Diffusion Score Function	0.849 \pm 0.09	0.362 \pm 0.00	2.893 \pm 0.03	3.171 \pm 0.02	0.067 \pm 0.00	3.98% \pm 0.31

449
450 **Offline Contextual Bandits vs DFL.** Table 1 shows that the policy-based offline bandit method
451 can outperform two-stage approaches on tasks such as power scheduling and portfolio tasks, since
452 it directly optimizes the downstream task objective rather than training a predictor with a surrogate
453 loss. It is also competitive with deterministic and Gaussian DFL variants. One reason is that, in some
454 settings (such as the synthetic task), DFL with deterministic optimization (the Gaussian case can be
455 written in closed-form as a deterministic optimization) fails to represent multi-model distributions
456 on uncertain parameters and is therefore a fundamentally poor policy class that does not include
457 the optimal policy. An expressive enough OCB policy class, on the other hand, can learn a strong
458 context-to-action policy.

459 Nevertheless, Diffusion-DFL remains consistently superior to offline contextual bandits: by incorpo-
460 rating the known optimization structure and coupling a flexible generative model with the downstream
461 solver, it can better capture complex decision distributions and deliver higher-quality decisions.

462 **Deterministic vs Stochastic Optimization.** Our results show that stochastic DFL methods out-
463 perform deterministic DFL in terms of decision quality on every task. By modeling uncertainty,
464 stochastic predictors enable the decision optimization to account for risk and variability in outcomes.
465 For instance, in the portfolio experiment, the deterministic DFL yields only 0.07% return, whereas a
466 Gaussian DFL modestly improves that, and our diffusion DFL achieves nearly 4% average return.
467 These gains come from the stochastic models’ ability to predict uncertainty: instead of committing to
468 a point prediction of y , the stochastic DFL produces decisions for a range of possible outcomes.

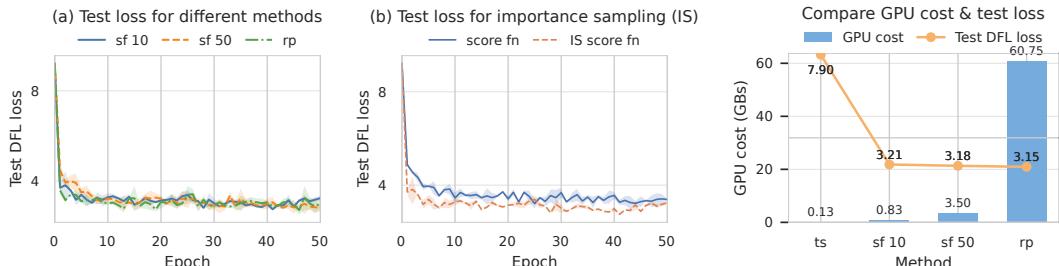
469 **Benefits of Diffusion DFL.** Among the stochastic approaches, including baselines using Gaussian
470 models, our diffusion DFL method consistently delivers the best decision performance. In particular,
471 the diffusion model’s strength is the capacity to capture complex, multi-modal outcome distributions
472 that a simple parametric Gaussian cannot represent. The Gaussian DFL sometimes falls short of
473 the optimal decision quality. The diffusion model, on the other hand, can represent more intricate
474 distributions of y , leading to decisions that better reflect complex scenarios.

476 7.2 ABLATION STUDY

478 **Comparison Cost for Reparameterization and Score function.** A key finding from our ablation
479 study is the computational advantage of score-function approach over the reparameterization. Here,
480 we measure the trade-off between training cost and the final decision performance for different
481 gradient estimators and sampling budgets.

482 In Figure 3 (a), we see that all variants reach similar final performance on the test set, indicating that
483 even using as few as 50 samples is sufficient to optimize the decision quality accurately. Figure 4 plots
484 the GPU memory cost alongside the final test loss. The reparameterization method is very computa-
485 tionally expensive, requiring about 60 GB of GPU memory for backpropagating through all diffusion
486 steps. In contrast, the score-function with 50 samples achieves virtually the same test loss as the

486 reparameterization method (difference within 0.02) while using an order of magnitude less memory.
 487 Even with 10 samples, though slightly worse in loss, it still outperforms the deterministic baseline
 488 and uses a tiny fraction of the compute. These results validate that the score-function approach retains
 489 the decision-quality benefits of diffusion DFL while dramatically cutting computational requirements,
 490 making diffusion DFL practical even for complex problems.
 491



501 Figure 3: Learning curves for (a) score function with 10 and 50
 502 samples (sf 10 and sf 50) and reparameterization (rp), (b) score
 503 function and importance-weighted score function with 10 samples.

Figure 4: Computation cost vs.
 504 performance trade-off for diffusion DFL training

505 **Gradient variance reduction.** As discussed in Section 5.2, using the score function estimator allows
 506 us to avoid backpropagating through the entire diffusion sampling process by only sampling a limited
 507 number of diffusion timesteps per update. The reason behind this is that a naive implementation,
 508 sampling timesteps uniformly at random, would yield a very high variance in the gradient estimates,
 509 which then leads to unstable training. Intuitively, early diffusion steps (large noise levels) dominate
 510 the ELBO loss and its gradients, so if they happen to be sampled, they contribute disproportionately
 511 and noisily. With a small random subset of timesteps, the gradient estimate can thus be highly
 512 imbalanced and noisy, which causes training divergence in practice.

513 To address this, we adopt an importance sampling strategy for choosing diffusion timesteps. Empirically,
 514 as shown in Figure 3 (b), the learning curves with the importance-weighted sampler are much
 515 smoother and more stable than with the uniform sampler. The score-function DFL training no longer
 516 diverges; instead, it converges cleanly, indicating that our variance reduction strategy successfully
 517 stabilizes the training process for diffusion DFL.

518 **Comparison on different problem sizes.** A
 519 key challenge for DFL is scalability: as the de-
 520 cision dimension grows, many methods degrade
 521 significantly [Mandi et al. \(2024\)](#). In this exper-
 522 iment, we investigate the performance of DFL
 523 methods under various decision dimensions in
 524 the stock portfolio. Specifically, we set the de-
 525 cision dimension range from 10 to 100 and report
 526 the test regrets. As summarized in Figure 5, the
 527 regret gap between diffusion-DFL and Gaussian
 528 and deterministic methods increases with the
 529 growth of dimensionality, which demonstrates
 530 that diffusion DFL scales effectively in more complex decision settings.

8 CONCLUSION

533 We propose the first diffusion-based DFL approach for stochastic optimization, which trains a
 534 diffusion model to capture complex uncertainty in problem parameters. We develop two end-to-
 535 end training techniques to integrate the diffusion model into decision-making: reparameterization
 536 and score function approximation. As demonstrated with empirical evidence, the score function
 537 method drastically reduces memory and computation cost while achieving similar performance to
 538 reparameterization and being easy to train. Empirically, diffusion DFL achieves state-of-the-art
 539 results on multiple benchmarks, consistently outperforming both traditional two-stage methods and
 prior DFL approaches.

540 REPRODUCIBILITY STATEMENT

541

542 We release an anonymized repository containing all code, configuration files, and scripts needed to
543 reproduce our results, including data generation and figure plotting. All proofs for the main paper are
544 stated in the appendix with explanations and proper assumptions.

546 REFERENCES

547

548 Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. An Optimistic Perspective on Offline
549 Reinforcement Learning. In *Proceedings of the 37th International Conference on Machine Learn-
550 ing*, pp. 104–114. PMLR, November 2020. URL <https://proceedings.mlr.press/v119/agarwal20c.html>. ISSN: 2640-3498.

552 Brandon Amos and J. Zico Kolter. OptNet: Differentiable Optimization as a Layer in Neural
553 Networks. In *Proceedings of the 34th International Conference on Machine Learning*, pp. 136–145.
554 PMLR, July 2017. URL <https://proceedings.mlr.press/v70/amos17a.html>.
555 ISSN: 2640-3498.

556 Yossi Arjevani, Yair Carmon, John C. Duchi, Dylan J. Foster, Ayush Sekhari, and Karthik Sridharan.
557 Second-Order Information in Non-Convex Stochastic Optimization: Power and Limitations. In
558 *Proceedings of Twenty Second Conference on Learning Theory*, pp. 242–299. PMLR, July 2020.
559 URL <https://proceedings.mlr.press/v125/arjevani20a.html>. ISSN: 2640-
560 3498.

562 Dimitris Bertsimas and Nathan Kallus. From Predictive to Prescriptive Analytics. *Management
563 Science*, 66(3):1025–1044, March 2020. ISSN 0025-1909, 1526-5501. doi: 10.1287/mnsc.
564 2018.3253. URL [https://pubsonline.informs.org/doi/10.1287/mnsc.2018.
565 3253](https://pubsonline.informs.org/doi/10.1287/mnsc.2018.3253).

566 David Brandfonbrener, William Whitney, Rajesh Ranganath, and Joan Bruna. Offline Contextual
567 Bandits with Overparameterized Models. In *Proceedings of the 38th International Conference on
568 Machine Learning*, pp. 1049–1058. PMLR, July 2021. URL [https://proceedings.mlr.press/v139/brandfonbrener21a.html](https://proceedings.mlr.
569 press/v139/brandfonbrener21a.html). ISSN: 2640-3498.

571 Prafulla Dhariwal and Alexander Nichol. Diffusion Models Beat GANs on Image Synthesis. In
572 *Advances in Neural Information Processing Systems*, volume 34, pp. 8780–8794. Curran Asso-
573 ciates, Inc., 2021. URL [https://proceedings.neurips.cc/paper/2021/hash/49ad23d1ec9fa4bd8d77d02681df5cfa-Abstract.html](https://proceedings.neurips.cc/paper_files/paper/2021/hash/49ad23d1ec9fa4bd8d77d02681df5cfa-Abstract.html).

575 Priya L. Donti, Brandon Amos, and J. Zico Kolter. Task-based End-to-end
576 Model Learning in Stochastic Optimization. In *Advances in Neural Infor-
577 mation Processing Systems*, volume 30, Long Beach, CA, USA, December
578 2017. Curran Associates, Inc. URL <http://papers.nips.cc/paper/7132-task-based-end-to-end-model-learning-in-stochastic-optimization>.

580 Adam N. Elmachtoub and Paul Grigas. Smart “Predict, then Optimize”. *Management Science*,
581 68(1):9–26, January 2022. ISSN 0025-1909. doi: 10.1287/mnsc.2020.3922. URL <https://pubsonline.informs.org/doi/10.1287/mnsc.2020.3922>. Publisher: INFORMS.

584 Germano Gabbianelli, Gergely Neu, and Matteo Papini. Importance-Weighted Offline Learning
585 Done Right. In *Proceedings of The 35th International Conference on Algorithmic Learning
586 Theory*, pp. 614–634. PMLR, March 2024. URL <https://proceedings.mlr.press/v237/gabbianelli24a.html>. ISSN: 2640-3498.

588 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic Models. In *Ad-
589 vances in Neural Information Processing Systems*, volume 33, pp. 6840–6851. Curran Asso-
590 ciates, Inc., 2020. URL <https://proceedings.neurips.cc/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html>.

592 593 Matthew D Hoffman and Matthew J Johnson. ELBO surgery: yet another way to carve up the
594 variational evidence lower bound. In *NIPS 2016 workshop*, 2016.

594 Tito Homem-de Mello, Juan Valencia, Felipe Lagos, and Guido Lagos. Forecasting Outside the Box:
595 Application-Driven Optimal Pointwise Forecasts for Stochastic Optimization, October 2025. URL
596 <http://arxiv.org/abs/2411.03520>. arXiv:2411.03520 [math].
597

598 Haeun Jeon, Hyunglip Bae, Minsu Park, Chanyeong Kim, and Woo Chang Kim. Locally Convex
599 Global Loss Network for Decision-Focused Learning. *Proceedings of the AAAI Conference on Ar-
600 tificial Intelligence*, 39(25):26805–26812, April 2025. ISSN 2374-3468. doi: 10.1609/aaai.v39i25.
601 34884. URL <https://ojs.aaai.org/index.php/AAAI/article/view/34884>.

602 Sujin Kim, Raghu Pasupathy, and Shane G. Henderson. A Guide to Sample Average Approximation.
603 In Michael C Fu (ed.), *Handbook of Simulation Optimization*, pp. 207–243. Springer, New
604 York, NY, 2015. ISBN 978-1-4939-1384-8. doi: 10.1007/978-1-4939-1384-8_8. URL https://doi.org/10.1007/978-1-4939-1384-8_8.

605 Diederik P Kingma and Max Welling. Auto-Encoding Variational Bayes. In *International Conference
606 on Learning Representations*, April 2014. URL <http://arxiv.org/abs/1312.6114>.

607 Anton J. Kleywegt, Alexander Shapiro, and Tito Homem-de Mello. The Sample Average Approx-
608 imation Method for Stochastic Discrete Optimization. *SIAM Journal on Optimization*, 12(2):
609 479–502, January 2002. ISSN 1052-6234, 1095-7189. doi: 10.1137/S1052623499363220. URL
610 <http://pubs.siam.org/doi/10.1137/S1052623499363220>.

611 Mykel J. Kochenderfer, Christopher Amato, Girish Chowdhary, Jonathan P. How, Hayley J. Davison
612 Reynolds, Jason R. Thornton, Pedro A. Torres-Carrasquillo, N. Kemal Üre, and John Vian. *Decision
613 Making Under Uncertainty: Theory and Application*. The MIT Press, 1st edition, June 2015. ISBN
978-0-262-02925-4.

614 Lingkai Kong, Yuanqi Du, Wenhao Mu, Kirill Neklyudov, Valentin De Bortoli, Dongxia Wu, Haorui
615 Wang, Aaron M. Ferber, Yian Ma, Carla P. Gomes, and Chao Zhang. Diffusion Models as
616 Constrained Samplers for Optimization with Unknown Constraints. In *Proceedings of The 28th
617 International Conference on Artificial Intelligence and Statistics*, pp. 4582–4590. PMLR, April
618 2025. URL <https://proceedings.mlr.press/v258/kong25b.html>. ISSN: 2640-
619 3498.

620 Siddarth Krishnamoorthy, Satvik Mehul Mashkaria, and Aditya Grover. Diffusion Models for Black-
621 Box Optimization. In *Proceedings of the 40th International Conference on Machine Learning*,
622 pp. 17842–17857. PMLR, July 2023. URL <https://proceedings.mlr.press/v202/krishnamoorthy23a.html>. ISSN: 2640-3498.

623 Lihong Li, Wei Chu, John Langford, and Xuanhui Wang. Unbiased offline evaluation of contextual-
624 bandit-based news article recommendation algorithms. In *Proceedings of the fourth ACM inter-
625 national conference on Web search and data mining*, WSDM ’11, pp. 297–306, New York, NY,
626 USA, February 2011. Association for Computing Machinery. ISBN 978-1-4503-0493-1. doi:
627 10.1145/1935826.1935878. URL <https://doi.org/10.1145/1935826.1935878>.

628 Lihong Li, Wei Chu, John Langford, Taesup Moon, and Xuanhui Wang. An Unbiased Offline
629 Evaluation of Contextual Bandit Algorithms with Generalized Linear Models. In *Proceedings of
630 the Workshop on On-line Trading of Exploration and Exploitation 2*, pp. 19–36. JMLR Workshop
631 and Conference Proceedings, May 2012. URL <https://proceedings.mlr.press/v26/li12a.html>. ISSN: 1938-7228.

632 Jayanta Mandi, Victor Bucarey, Maxime Mulamba Ke Tchomba, and Tias Guns. Decision-
633 Focused Learning: Through the Lens of Learning to Rank. In *Proceedings of the 39th In-
634 ternational Conference on Machine Learning*, pp. 14935–14947. PMLR, June 2022. URL
635 <https://proceedings.mlr.press/v162/mandi22a.html>. ISSN: 2640-3498.

636 Jayanta Mandi, James Kotary, Senne Berden, Maxime Mulamba, Victor Bucarey, Tias Guns, and
637 Ferdinando Fioretto. Decision-Focused Learning: Foundations, State of the Art, Benchmark and
638 Future Opportunities. *Journal of Artificial Intelligence Research*, 80:1623–1701, August 2024.
639 ISSN 1076-9757. doi: 10.1613/jair.1.15320. URL <https://www.jair.org/index.php/jair/article/view/15320>.

648 Shakir Mohamed, Mihaela Rosca, Michael Figurnov, and Andriy Mnih. Monte Carlo Gradient
649 Estimation in Machine Learning. *Journal of Machine Learning Research*, 21(132):1–62, 2020.
650 ISSN 1533-7928. URL <http://jmlr.org/papers/v21/19-346.html>.

651 Thanh Nguyen-Tang, Sunil Gupta, A. Tuan Nguyen, and Svetha Venkatesh. Offline Neural
652 Contextual Bandits: Pessimism, Optimization and Generalization. October 2021. URL
653 <https://openreview.net/forum?id=sPIFuucA3F>.

654 Alexander Quinn Nichol and Prafulla Dhariwal. Improved Denoising Diffusion Probabilistic Models.
655 In *Proceedings of the 38th International Conference on Machine Learning*, pp. 8162–8171. PMLR,
656 July 2021. URL <https://proceedings.mlr.press/v139/nichol21a.html>. ISSN:
657 2640-3498.

658 PJM Interconnection. Data Miner, 2025. URL <https://dataminer2.pjm.com/list>.

659 Quandl WIKI dataset. Nasdaq Data Link, 2025. URL <https://data.nasdaq.com>.

660 Otmane Sakhi, Pierre Alquier, and Nicolas Chopin. PAC-Bayesian Offline Contextual Bandits
661 With Guarantees. In *Proceedings of the 40th International Conference on Machine Learning*,
662 pp. 29777–29799. PMLR, July 2023. URL <https://proceedings.mlr.press/v202/sakhi23a.html>. ISSN: 2640-3498.

663 Sebastian Sanokowski, Sepp Hochreiter, and Sebastian Lehner. A Diffusion Model Framework for
664 Unsupervised Neural Combinatorial Optimization, August 2025. URL <http://arxiv.org/abs/2406.01661>. arXiv:2406.01661 [cs].

665 Noah Schutte, Grigorii Veviurko, Krzysztof Postek, and Neil Yorke-Smith. Sufficient Decision Proxies
666 for Decision-Focused Learning, May 2025. URL <http://arxiv.org/abs/2505.03953>.
667 arXiv:2505.03953 [cs].

668 Sanket Shah, Kai Wang, Bryan Wilder, Andrew Perrault, and Milind Tambe. Decision-
669 Focused Learning without Decision-Making: Learning Locally Optimized Decision
670 Losses. *Advances in Neural Information Processing Systems*, 35:1320–1332, December
671 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/hash/0904c7edde20d7134a77fc7f9cd86ea2-Abstract-Conference.html.

672 Shai Shalev-Shwartz, Ohad Shamir, Nathan Srebro, and Karthik Sridharan. Stochastic Convex
673 Optimization. In *Proceedings of Thirty Third Conference on Learning Theory*. PMLR, 2009.

674 Keivan Shariatmadar, Neil Yorke-Smith, Ahmad Osman, Fabio Cuzzolin, Hans Hallez, and David
675 Moens. Generalized Decision Focused Learning under Imprecise Uncertainty—Theoretical Study,
676 March 2025. URL <http://arxiv.org/abs/2502.17984>. arXiv:2502.17984 [cs].

677 Mattia Silvestri, Senne Berden, Jayanta Mandi, Ali İrfan Mahmutoğulları, Maxime Mulamba,
678 Allegra De Filippo, Tias Guns, and Michele Lombardi. Score Function Gradient Estimation
679 to Widen the Applicability of Decision-Focused Learning. September 2023. URL <https://openreview.net/forum?id=ty046JU11Z>.

680 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep Unsuper-
681 vised Learning using Nonequilibrium Thermodynamics. In *Proceedings of the 32nd Interna-*
682 *tional Conference on Machine Learning*, pp. 2256–2265. PMLR, June 2015. URL <https://proceedings.mlr.press/v37/sohl-dickstein15.html>. ISSN: 1938-7228.

683 Yang Song and Stefano Ermon. Generative Modeling by Estimating Gradients of the Data Dis-
684 tribution. In *Advances in Neural Information Processing Systems*, volume 32. Curran Asso-
685 ciates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/hash/3001ef257407d5a371a96dcd947c7d93-Abstract.html.

686 Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
687 Poole. Score-Based Generative Modeling through Stochastic Differential Equations. October 2020.
688 URL https://openreview.net/forum?id=PxTIG12RRHS&utm_campaign=NLP%20News&utm_medium=email&utm_source=Revue%20newsletter.

702 Zhiqing Sun and Yiming Yang. DIFUSCO: Graph-based Diffusion Solvers for Combinatorial Opti-
703 mization. November 2023. URL <https://openreview.net/forum?id=JV8FF0lgVV>.
704

705 Adith Swaminathan and Thorsten Joachims. Counterfactual Risk Minimization: Learning from
706 Logged Bandit Feedback. In *Proceedings of the 24th International Conference on World Wide*
707 *Web*, pp. 939–941, Florence Italy, May 2015. ACM. ISBN 978-1-4503-3473-0. doi: 10.1145/
708 2740908.2742564. URL <https://dl.acm.org/doi/10.1145/2740908.2742564>.

709 Ou Tang and S. Nurmaya Musa. Identifying risk issues and research advancements in supply chain
710 risk management. *International Journal of Production Economics*, 133(1):25–34, September 2011.
711 ISSN 0925-5273. doi: 10.1016/j.ijpe.2010.06.013. URL <https://www.sciencedirect.com/science/article/pii/S0925527310002215>.

713 Yusuke Tashiro, Jiaming Song, Yang Song, and Stefano Ermon. CSDI: Conditional Score-
714 based Diffusion Models for Probabilistic Time Series Imputation. In *Advances in Neu-*
715 *ral Information Processing Systems*, volume 34, pp. 24804–24816. Curran Associates, Inc.,
716 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/hash/cfe8504bda37b575c70ee1a8276f3486-Abstract.html.

718 Arash Vahdat and Jan Kautz. NVAE: A Deep Hierarchical Variational Autoencoder. In *Ad-*
719 *vances in Neural Information Processing Systems*, volume 33, pp. 19667–19679. Curran As-
720 sociates, Inc., 2020. URL <https://proceedings.neurips.cc/paper/2020/hash/e3b21256183cf7c2c7a66be163579d37-Abstract.html>.

723 Lequn Wang, Akshay Krishnamurthy, and Alex Slivkins. Oracle-Efficient Pessimism: Offline
724 Policy Optimization In Contextual Bandits. In *Proceedings of The 27th International Conference*
725 *on Artificial Intelligence and Statistics*, pp. 766–774. PMLR, April 2024a. URL <https://proceedings.mlr.press/v238/wang24a.html>. ISSN: 2640-3498.

727 Prince Zizhuang Wang, Jinhao Liang, Shuyi Chen, Ferdinando Fioretto, and Shixiang Zhu. Gen-
728 DFL: Decision-Focused Generative Learning for Robust Decision Making, February 2025. URL
729 <http://arxiv.org/abs/2502.05468>. arXiv:2502.05468 [cs].

731 Yafei Wang, Bo Pan, Mei Li, Jianya Lu, Lingchen Kong, Bei Jiang, and Linglong Kong. Sample
732 Average Approximation for Conditional Stochastic Optimization with Dependent Data. June
733 2024b. URL <https://openreview.net/forum?id=YuGnRORkJm>.

734 Yu-Xiang Wang, Alekh Agarwal, and Miroslav Dudik. Optimal and Adaptive Off-policy Evaluation
735 in Contextual Bandits. In *Proceedings of the 34th International Conference on Machine Learn-*
736 *ing*, pp. 3589–3597. PMLR, July 2017. URL <https://proceedings.mlr.press/v70/wang17a.html>. ISSN: 2640-3498.

739 Bryan Wilder, Bistra Dilkina, and Milind Tambe. Melding the Data-Decisions Pipeline: Decision-
740 Focused Learning for Combinatorial Optimization. *Proceedings of the AAAI Conference on*
741 *Artificial Intelligence*, 33(01):1658–1665, July 2019. ISSN 2374-3468. doi: 10.1609/aaai.v33i01.
742 33011658. URL <https://ojs.aaai.org/index.php/AAAI/article/view/3982>.

743 Zhouhao Yang, Yihong Guo, Pan Xu, Anqi Liu, and Animashree Anandkumar. Distributionally
744 Robust Policy Gradient for Offline Contextual Bandits. In *Proceedings of The 26th Interna-*
745 *tional Conference on Artificial Intelligence and Statistics*, pp. 6443–6462. PMLR, April 2023. URL
746 <https://proceedings.mlr.press/v206/yang23f.html>. ISSN: 2640-3498.

747
748
749
750
751
752
753
754
755

756 A APPENDIX

758 **Notation.** We let $\frac{\partial f}{\partial x}$ denote the Jacobian matrix where $(\frac{\partial f}{\partial x})_{i,j} := \frac{\partial f_i}{\partial x_j}$ and $\nabla_x f := (\frac{\partial f}{\partial x})^\top$ denote
 759 the gradient. For a vector v , $D(v)$ denotes a diagonal matrix with v on its diagonal. Let $P(\cdot)$ denote
 760 a probability distribution and $p(\cdot)$ denote a probability density; in particular, for diffusion models we
 761 use P_θ for the model's output distribution and p_θ for transition densities.

762 In this appendix, we derive the decision optimization problem with **general convex constraints**
 763 rather than merely linear constraints. Assume the optimization problem is

$$765 z_\theta^*(x) = \arg \min_z \mathbb{E}_{y \sim P_\theta(\cdot|x)} [f(y, z)], \quad \text{s.t. } h(x, z) \leq 0, \quad g(x, z) = 0, \quad (21)$$

766 where $h(x, z) \leq 0$ denotes the convex inequalities constraints and $g(x, z) = 0$ denotes the equality
 767 constraints.

769 A.1 PROOFS FOR SECTION 4

771 **Proposition A.1** (Reparameterization trick in diffusion models). *Let $T \in \mathbb{N}^+$, and suppose the
 772 reverse diffusion model defines a Gaussian distribution in Eq. 5 with fixed scalars $\sigma_t \geq 0$ and a
 773 standard normal prior $y_T \sim \mathcal{N}(0, I)$. Let $\{\epsilon_t\}_{t=0}^T$ be i.i.d. $\mathcal{N}(0, I)$. Then the model output y can be
 774 expressed as a transformation $y = R(\epsilon_{0:T}, \theta | x)$ of a base noise distribution $\epsilon \sim P(\epsilon)$, where R is
 775 differentiable in θ . Also assume $\mathbb{E}_{y \sim P_\theta(\cdot|x)} [f(y, z)]$ is continuously differentiable. Then we have*

$$777 \nabla_\theta \mathbb{E}_{y \sim P_\theta(\cdot|x)} [f(y, z)] = \mathbb{E}_{\epsilon \sim P(\epsilon)} \left[\left(\sum_{s=1}^T \left(\prod_{u=1}^{s-1} J_u \right) A_s \right)^\top \nabla_y f(R(\epsilon, \theta | x), z) \right], \quad (22)$$

780 where $A_t := \frac{\partial \mu_\theta(y_t, t, x)}{\partial \theta}$, $J_t := \frac{\partial \mu_\theta(y_t, t, x)}{\partial y_t}$, and we define $\prod_{u=1}^0 J_u := I$.

782 *Proof.* The conditional diffusion reverse process is defined as

$$783 \quad y_{t-1} = \mu_\theta(y_t, t, x) + \sigma_t \epsilon_{t-1}, \quad y_T = \epsilon_T,$$

785 where the noise term $\sigma_t \epsilon_{t-1}$ is θ -independent. Differentiating both sides w.r.t. θ gives

$$786 \quad \frac{\partial y_{t-1}}{\partial \theta} = \frac{\partial \mu_\theta(y_t, t, x)}{\partial \theta} + \frac{\partial \mu_\theta(y_t, t, x)}{\partial y_t} \frac{\partial y_t}{\partial \theta}.$$

788 Denote

$$789 \quad A_t := \frac{\partial \mu_\theta(y_t, t, x)}{\partial \theta}, \quad J_t := \frac{\partial \mu_\theta(y_t, t, x)}{\partial y_t}, \quad G_t := \frac{\partial y_t}{\partial \theta}.$$

791 Thus, we have

$$792 \quad G_{t-1} = A_t + J_t G_t, \quad G_T = 0.$$

793 Our final goal is:

$$795 \quad \nabla_\theta R(\epsilon_{0:T}, \theta | x) = \frac{\partial y_0}{\partial \theta} = G_0 \quad (23)$$

$$796 \quad = A_1 + J_1 A_2 + J_1 J_2 A_3 + \cdots + J_1 \cdots J_{T_1} A_t \quad (24)$$

$$798 \quad = \sum_{s=1}^T \left(\prod_{u=1}^{s-1} J_u \right) A_s, \quad (25)$$

801 where we define $\prod_{u=1}^0 J_u := I$. Then, we have

$$802 \quad \nabla_\theta \mathbb{E}_{y \sim P_\theta(\cdot|x)} [f(y, z)] = \nabla_\theta \mathbb{E}_{\epsilon \sim P(\epsilon)} [f(R(\epsilon, \theta | x), z)] \quad (26)$$

$$803 \quad = \mathbb{E}_{\epsilon \sim P(\epsilon)} [\nabla_\theta f(R(\epsilon, \theta | x), z)] \quad (27)$$

$$805 \quad = \mathbb{E}_{\epsilon \sim P(\epsilon)} [\nabla_\theta R(\epsilon, \theta | x)^\top \nabla_y f(R(\epsilon, \theta | x), z)] \quad (28)$$

$$807 \quad = \mathbb{E}_{\epsilon \sim P(\epsilon)} \left[\left(\sum_{s=1}^T \left(\prod_{u=1}^{s-1} J_u \right) A_s \right)^\top \nabla_y f(R(\epsilon, \theta | x), z) \right] \quad (29)$$

809 \square

810 **Lemma A.2** (Gradient of Reparameterization method). *Assume the model prediction y can be
 811 expressed as a transformation $y = T(\epsilon, \theta \mid x)$, $\epsilon \sim P(\epsilon)$. The total derivative of the decision
 812 objective F w.r.t. θ can be computed as*

813

$$814 \quad \frac{dF}{d\theta} = - \begin{bmatrix} \frac{dF}{dz^*} \\ 0 \\ 0 \end{bmatrix}^\top \begin{bmatrix} H & G^\top & Q^\top \\ D(\lambda^*)G & D(h(x, z^*)) & 0 \\ Q & 0 & 0 \end{bmatrix}^{-1} \begin{bmatrix} \mathbb{E}_{\epsilon \sim P(\epsilon)}[(\nabla_\theta T(\epsilon, \theta \mid x))^\top \nabla_{zy}^2 f(z^*, y)] \\ 0 \\ 0 \end{bmatrix},$$

815 (30)

816 where $H = \mathbb{E}_{y \sim P_\theta(\cdot \mid x)}[\nabla_{zz}^2 f(y, z^*)] + \nabla_{zz}^2(\lambda^{*\top} h(x, z^*))$ is the Hessian of the Lagrangian with
 817 respect to z , $G = \nabla_z h(x, z^*)$ is the Jacobian of the inequality constraints in z^* , and $Q = \nabla_z g(x, z^*)$
 818 is the Jacobian of the equality constraints in z^* .

819 *Proof.* At the primal-dual optimal solution $(z_\theta^*, \lambda_\theta^*, \nu_\theta^*)$ to Eq. 3, the following KKT conditions must
 820 hold:

821

$$\begin{aligned} \nabla_z \mathcal{L}(\theta, z_\theta^*, \lambda_\theta, \nu_\theta; x) &= 0, \\ \lambda_\theta \odot h(x, z_\theta^*) &= 0, \\ g(x, z_\theta^*) &= 0 \\ \lambda_\theta &\geq 0, \nu_\theta \geq 0, \\ h(x, z_\theta^*) &\leq 0. \end{aligned}$$

822 Since h does not depend on θ here, we can apply Proposition A.1 to the KKT conditions to get

823

$$\begin{aligned} 824 \quad & \frac{\partial \nabla_z \mathcal{L}}{\partial \theta} + \frac{\partial \nabla_z \mathcal{L}}{\partial z} \frac{\partial z^*}{\partial \theta} + \frac{\partial \nabla_z \mathcal{L}}{\partial \lambda^*} \frac{\partial \lambda^*}{\partial \theta} + \frac{\partial \nabla_z \mathcal{L}}{\partial \nu^*} \frac{\partial \nu^*}{\partial \theta} \\ 825 \quad &= \mathbb{E}_{\epsilon \sim P(\epsilon)}[(\nabla_\theta T(\epsilon, \theta \mid x))^\top \nabla_y (\nabla_z f(z^*, y))] + (\mathbb{E}_{y \sim P_\theta(\cdot \mid x)}[\nabla_{zz}^2 f(z^*, y)] + \nabla_{zz}^2 h(x, z^*)) \frac{\partial z^*}{\partial \theta} \\ 826 \quad &+ \nabla_z h(x, z^*) \frac{\partial \lambda^*}{\partial \theta} + \nabla_z g(x, z^*) \frac{\partial \lambda^*}{\partial \theta} \\ 827 \quad &= 0. \end{aligned} \tag{31}$$

828

$$\frac{\partial \lambda^* \odot h(x, z^*)}{\partial z^*} \frac{\partial z^*}{\partial \theta} + \frac{\partial \lambda^* \odot h(x, z^*)}{\partial \lambda^*} \frac{\partial \lambda^*}{\partial \theta} = D(\lambda^*) \nabla_z h(x, z^*) \frac{\partial z^*}{\partial \theta} + D(h(x, z^*)) \frac{\partial \lambda^*}{\partial \theta} = 0. \tag{32}$$

829 In matrix form, we have

830

$$\begin{bmatrix} H & G^\top & Q^\top \\ D(\lambda^*)G & D(h(x, z^*)) & 0 \\ Q & 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{\partial z^*}{\partial \theta} \\ \frac{\partial \lambda^*}{\partial \theta} \\ \frac{\partial \nu^*}{\partial \theta} \end{bmatrix} = - \begin{bmatrix} \mathbb{E}_{\epsilon \sim P(\epsilon)}[(\nabla_\theta T(\epsilon, \theta \mid x))^\top \nabla_{zy}^2 f(z^*, y)] \\ 0 \\ 0 \end{bmatrix}, \tag{33}$$

831 where $H = \mathbb{E}_{y \sim P_\theta(\cdot \mid x)}[\nabla_{zz}^2 f(z^*, y)] + \nabla_{zz}^2(\lambda^{*\top} h(x, z^*)) + \nabla_{zz}^2(\nu^{*\top} g(x, z^*))$, $G = \nabla_z h(x, z^*)$,
 832 and $Q = \nabla_z g(x, z^*)$. Furthermore, if equalities and inequalities are affine (as in main paper), H
 833 reduces to $\mathbb{E}_{y \sim P_\theta(\cdot \mid x)}[\nabla_{zz}^2 f(y, z^*)]$ since $\nabla_{zz}^2 h = \nabla_{zz}^2 g = 0$.

834 By chain rule, we have

835

$$\begin{aligned} 836 \quad & \frac{dF}{d\theta} = \begin{bmatrix} \frac{dF}{dz^*} \\ 0 \\ 0 \end{bmatrix}^\top \begin{bmatrix} \frac{\partial z^*}{\partial \theta} \\ \frac{\partial \theta}{\partial \lambda^*} \\ \frac{\partial \lambda^*}{\partial \theta} \end{bmatrix} \\ 837 \quad &= - \begin{bmatrix} \frac{dF}{dz^*} \\ 0 \\ 0 \end{bmatrix}^\top \begin{bmatrix} H & G^\top & Q^\top \\ D(\lambda^*)G & D(h(x, z^*)) & 0 \\ Q & 0 & 0 \end{bmatrix}^{-1} \begin{bmatrix} \mathbb{E}_{\epsilon \sim P(\epsilon)}[(\nabla_\theta T(\epsilon, \theta \mid x))^\top \nabla_{zy}^2 f(z^*, y)] \\ 0 \\ 0 \end{bmatrix}. \end{aligned}$$

838 \square

864 A.2 PROOFS FOR SECTION 5
865

866 **Proposition A.3.** *Let $f : \mathcal{Y} \times \mathbb{R}^d \rightarrow \mathbb{R}$ be any function that does not depend on θ . If $y \sim P_\theta(\cdot | x)$, then*
867

868
$$\nabla_\theta \mathbb{E}_{y \sim P_\theta(\cdot | x)}[f(y, z)] = \mathbb{E}_{y \sim P_\theta(\cdot | x)}[f(y, z) \frac{d \log P_\theta(y | x)}{d\theta}]. \quad (34)$$
869

870 *Proof.*

871
$$\nabla_\theta \mathbb{E}_{y \sim P_\theta(\cdot | x)}[f(y, z)] = \frac{d}{d\theta} \mathbb{E}_{y \sim P_\theta(\cdot | x)}[f(y, z)] \quad (35)$$
872

873
$$= \frac{d}{d\theta} \int f(y, z) P_\theta(y | x) dy \quad (36)$$
874

875
$$= \int P_\theta(y | x) \frac{d}{d\theta} f(y, z) + f(y, z) \frac{d}{d\theta} P_\theta(y | x) dy \quad (37)$$
876

877
$$= \int P_\theta(y | x) \frac{d}{d\theta} f(y, z) + f(y, z) \frac{d}{d\theta} \log P_\theta(y | x) * P_\theta(y | x) dy \quad (38)$$
878

879
$$= \mathbb{E}_{y \sim P_\theta(\cdot | x)}[\frac{d}{d\theta} f(y, z)] + \mathbb{E}_{y \sim P_\theta(\cdot | x)}[f(y, z) \frac{d \log P_\theta(y | x)}{d\theta}]. \quad (39)$$
880

881 This immediately implies the results by noticing f does not depend on θ . \square
882

883 **Proposition A.4.** *Let $P_\theta(y | x)$ be a probability density parameterized by $\theta \in \Theta$, and let $f : \mathcal{Y} \times \mathbb{R}^d \rightarrow \mathbb{R}$ be a scalar-valued function that does not depend on θ . Fix any $z \in \mathbb{R}^d$. Suppose that there exists some neighborhood $N(\theta_0) \subseteq \Theta$ around $\theta_0 \in \Theta$ such that the following 3 assumptions are satisfied:*
884

885 1. For all $\theta \in N(\theta_0)$, the function $h(y) := P_\theta(y | x) f(y, z)$ is integrable;
886 2. For all $\theta \in N(\theta_0)$ and almost all $y \in \mathcal{Y}$, the gradient $\nabla_\theta P_\theta(y | x)$ exists; and
887 3. There exists an integrable function $g : \mathcal{Y} \rightarrow \mathbb{R}$ that dominates $\nabla_\theta P_\theta(y | x)$. That is, for all
888 $\theta \in N(\theta_0)$ and almost all $y \in \mathcal{Y}$, $\|\nabla_\theta P_\theta(y | x)\|_1 \leq |g(y)|$.
889

890 *Then,*
891

892
$$\nabla_\theta \mathbb{E}_{y \sim P_\theta(\cdot | x)}[f(y, z)] = \mathbb{E}_{y \sim P_{\theta_0}(\cdot | x)}[f(y, z) \cdot \nabla_\theta \log P_{\theta_0}(y | x)].$$
893

894 *Proof.* We make use of the log-derivative trick:
895

896
$$P_{\theta_0}(y | x) \cdot \nabla_\theta \log P_{\theta_0}(y | x) = \frac{P_{\theta_0}(y | x)}{P_{\theta_0}(y | x)} \cdot \nabla_\theta P_{\theta_0}(y | x) = \nabla_\theta P_{\theta_0}(y | x).$$
897

898 *Then*
899

900
$$\begin{aligned} \nabla_\theta \mathbb{E}_{y \sim P_{\theta_0}(\cdot | x)}[f(y, z)] &= \nabla_\theta \int_{\mathcal{Y}} f(y, z) P_{\theta_0}(y | x) dy \\ &= \int_{\mathcal{Y}} \nabla_\theta [f(y, z) P_{\theta_0}(y | x)] dy && \text{Leibniz integral rule} \\ &= \int_{\mathcal{Y}} f(y, z) P_{\theta_0}(y | x) \nabla_\theta \log P_{\theta_0}(y | x) dy && \text{log-derivative trick} \\ &= \mathbb{E}_{y \sim P_{\theta_0}(\cdot | x)}[f(y, z) \nabla_\theta \log P_{\theta_0}(y | x)]. \end{aligned}$$
901

902 \square
903

904 **Lemma A.5** (Gradient of Score Function). *The total derivative of the decision objective F w.r.t. θ can be computed as*
905

906
$$\frac{dF}{d\theta} = - \begin{bmatrix} \frac{dF}{d\tilde{z}^*} \\ 0 \\ 0 \end{bmatrix}^\top \begin{bmatrix} H & G^\top & Q^\top \\ D(\lambda^*)G & D(h(x, z^*)) & 0 \\ Q & 0 & 0 \end{bmatrix}^{-1} \begin{bmatrix} \mathbb{E}_{y \sim P_\theta(\cdot | x)}[\nabla_z f(z^*, y) (\frac{dELBO}{d\theta})^\top] \\ 0 \\ 0 \end{bmatrix}. \quad (40)$$
907

918 *Proof.* Differentiate this KKT system w.r.t. θ and applying Proposition A.4 yields
919

$$\begin{aligned}
920 \quad & \frac{\partial \nabla_z \mathcal{L}}{\partial \theta} + \frac{\partial \nabla_z \mathcal{L}}{\partial z} \frac{\partial z^*}{\partial \theta} + \frac{\partial \nabla_z \mathcal{L}}{\partial \lambda^*} \frac{\partial \lambda^*}{\partial \theta} + \frac{\partial \nabla_z \mathcal{L}}{\partial \nu^*} \frac{\partial \nu^*}{\partial \theta} \\
921 \quad & = \mathbb{E}_{y \sim P_\theta(\cdot|x)} [\nabla_z f(z^*, y) (\nabla_\theta \log P_\theta(y|x))^\top] + (\mathbb{E}_{y \sim P_\theta(\cdot|x)} [\nabla_{zz}^2 f(z^*, y)] + \nabla_{zz}^2 (\lambda^{*\top} h(x, z^*))) \frac{\partial z^*}{\partial \theta} \\
922 \quad & \quad + \nabla_z h(x, z^*) \frac{\partial \lambda^*}{\partial \theta} + \nabla_z g(x, z^*) \frac{\partial \nu^*}{\partial \theta} \\
923 \quad & = 0. \\
924 \quad & \\
925 \quad & \\
926 \quad & \\
927 \quad & \tag{41}
\end{aligned}$$

$$\begin{aligned}
928 \quad & \frac{\partial \lambda^* \odot h(x, z^*)}{\partial z^*} \frac{\partial z^*}{\partial \theta} + \frac{\partial \lambda^* \odot h(x, z^*)}{\partial \lambda^*} \frac{\partial \lambda^*}{\partial \theta} \\
929 \quad & = D(\lambda^*) \nabla_z h(x, z^*) \frac{\partial z^*}{\partial \theta} + D(h(x, z^*)) \frac{\partial \lambda^*}{\partial \theta} = 0. \\
930 \quad & \\
931 \quad & \\
932 \quad & \\
933 \quad & \\
934 \quad & \tag{42}
\end{aligned}$$

935 In matrix form, this becomes
936

$$\begin{bmatrix} H & G^\top & Q^\top \\ D(\lambda^*)G & D(h(x, z^*)) & 0 \\ Q & 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{\partial z^*}{\partial \theta} \\ \frac{\partial \lambda^*}{\partial \theta} \\ \frac{\partial \nu^*}{\partial \theta} \end{bmatrix} = - \begin{bmatrix} \mathbb{E}_y [\nabla_z f(z^*, y) (\nabla_\theta \log P_\theta(y|x))^\top] \\ 0 \\ 0 \end{bmatrix}, \tag{43}$$

941 where $H = \mathbb{E}_{y \sim P_\theta(\cdot|x)} [\nabla_{zz}^2 f(z^*, y)] + \nabla_{zz}^2 (\lambda^{*\top} h(x, z^*))$, $G = \nabla_z h(x, z^*)$.
942

943 Applying the chain rule to F now gives
944

$$\frac{dF}{d\theta} = \begin{bmatrix} \frac{dF}{dz^*} \\ 0 \\ 0 \end{bmatrix}^\top \begin{bmatrix} \frac{\partial z^*}{\partial \theta} \\ \frac{\partial \lambda^*}{\partial \theta} \\ \frac{\partial \nu^*}{\partial \theta} \end{bmatrix} \tag{44}$$

$$= - \begin{bmatrix} \frac{dF}{dz^*} \\ 0 \\ 0 \end{bmatrix}^\top \begin{bmatrix} H & G^\top & Q^\top \\ D(\lambda^*)G & D(h(x, z^*)) & 0 \\ Q & 0 & 0 \end{bmatrix}^{-1} \begin{bmatrix} \mathbb{E}_{y \sim P_\theta(\cdot|x)} [\nabla_z f(z^*, y) (\nabla_\theta \log P_\theta(y|x))^\top] \\ 0 \\ 0 \end{bmatrix}. \tag{45}$$

954 Then, we replace $\nabla_\theta \log P_\theta(y|x)$ with the gradient of ELBO score for sample y and have
955

$$\frac{dF}{d\theta} = - \begin{bmatrix} \frac{dF}{dz^*} \\ 0 \\ 0 \end{bmatrix}^\top \begin{bmatrix} H & G^\top & Q^\top \\ D(\lambda^*)G & D(h(x, z^*)) & 0 \\ Q & 0 & 0 \end{bmatrix}^{-1} \begin{bmatrix} \mathbb{E}_{y \sim P_\theta(\cdot|x)} [\nabla_z f(z^*, y) \cdot (\nabla_\theta \text{ELBO}(\theta; y))^\top] \\ 0 \\ 0 \end{bmatrix}. \tag{46}$$

961 \square
962
963
964
965

966 **Remark A.6** (Why we cannot compute the gradient using score-matching). *One may attempt to*
967 *apply the chain rule* $\nabla_\theta \log P_\theta(y|x) = \nabla_\theta y \nabla_y \log P_\theta(y|x)$, *and then estimate* $\nabla_y \log P_\theta(y_{t+1}|x) \approx$
968 *$\nabla_y \log P_\theta(y_{t+1}|y_t, x) \approx s_\theta(y_t, t, x)$ via score-matching (Song et al., 2020) (using the learned score*
969 *$s_\theta(y_t, t, x)$ of the diffusion model). However, this approach is invalid in our setting: Under the*
970 *log-trick, y is treated as a free variable and θ enters only through $P_\theta(y|x)$, so the pathwise term $\nabla_\theta y$*
971 *does not exist (see Appendix A.2 for derivation). Our ELBO-based surrogate (Eq. (12)) avoids this*
obstacle entirely.

972 A.3 PROOF FOR EQ. 15
973

974 Based on the results in Lemma A.5, we have
975

976
$$\frac{dF}{d\theta} = - \begin{bmatrix} \frac{dF}{dz^*} \\ 0 \\ 0 \end{bmatrix}^\top \begin{bmatrix} H & G^\top & Q^\top \\ D(\lambda^*)G & D(h(x, z^*)) & 0 \\ Q & 0 & 0 \end{bmatrix}^{-1} \begin{bmatrix} \mathbb{E}_{y \sim P_\theta(\cdot|x)} [\nabla_z f(z^*, y) \cdot (\nabla_\theta \text{ELBO}(\theta; y))^\top] \\ 0 \\ 0 \end{bmatrix} \quad (47)$$
977
978
979
980
981
982
983
984

982
$$= - \underbrace{\begin{bmatrix} \frac{dF}{dz^*} \\ 0 \\ 0 \end{bmatrix}^\top \begin{bmatrix} H & G^\top & Q^\top \\ D(\lambda^*)G & D(h(x, z^*)) & 0 \\ Q & 0 & 0 \end{bmatrix}^{-1}}_{:= u(\theta)^\top} \frac{d}{d\theta} \begin{bmatrix} \mathbb{E}_{y \sim P_\theta(\cdot|x)} [\nabla_z f(z^*, y) \text{ELBO}] \\ 0 \\ 0 \end{bmatrix} \quad (48)$$
985
986
987
988
989
990

987
$$= \frac{d}{d\theta} \mathbb{E}_{y \sim P_\theta(\cdot|x)} [u(\theta)^\top \underbrace{\begin{bmatrix} [\nabla_z f(z^*, y)] \\ 0 \\ 0 \end{bmatrix}}_{:= w_\theta(y)} \text{ELBO}] \quad (49)$$
988
989
990
991
992

991
$$= \frac{d}{d\theta} \mathbb{E}_{y \sim P_\theta(\cdot|x)} [\text{detach}[w_\theta(y)] \text{ELBO}]. \quad (50)$$
992
993
994

995 A.4 GRADIENT ERROR OF ELBO VS. LOG-LIKELIHOOD 996

997 Under mild assumptions, we can prove an upper bound for the error of our ELBO gradient approximation. Recall from Eq. 11, we define ELBO as a lower bound for log-likelihood. Here, we can actually write an equality relationship between them:
998
999
1000
1001

1000
$$\log P_\theta(y_0) = \text{ELBO}(y_0; \theta) + \text{KL}(q(z) || p_\theta(z|y_0)), \quad (51)$$
1001
1002
1003
1004

1002 where z denotes a latent variable and $\text{ELBO}(y_0, \theta) := \mathbb{E}_{q(z)} [\log p_\theta(x, z)] - \mathbb{E}_{q(z)} [\log q(z)]$. Let
1003 denote the score function as $s_\theta(z; y_0) := \nabla_\theta \log p_\theta(y_0, z)$. We immediately have the following two
1004 results:
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1006
$$\nabla_\theta \log P_\theta(y_0) = \nabla_\theta \log \int p_\theta(y_0, z) dz \quad (52)$$
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1008
$$= \frac{1}{p_\theta(y_0)} \int \nabla_\theta p_\theta(y_0, z) dz \quad (53)$$
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1010
$$= \frac{1}{p_\theta(y_0)} \int p_\theta(y_0, z) \nabla_\theta \log p_\theta(y_0, z) dz \quad (54)$$
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1012
$$= \int \nabla_\theta \log p_\theta(y_0, z) \frac{p_\theta(y_0, z)}{p_\theta(y_0)} dz \quad (55)$$
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1013
$$= \mathbb{E}_{p_\theta(z|y_0)} [\nabla_\theta \log p_\theta(y_0, z)] \quad (56)$$
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1014
$$= \mathbb{E}_{p_\theta(z|y_0)} [s_\theta(z; y_0)]. \quad (57)$$
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1017 Similarly,
1018
1019
1020
1021
1022
1023
1024
1025

1019
$$\nabla_\theta \text{ELBO}(y_0; \theta) = \nabla_\theta \mathbb{E}_{q(z)} [\log p_\theta(y_0, z)] \quad (58)$$
1020
1021
1022
1023
1024
1025

1020
$$= \mathbb{E}_{q(z)} [\nabla_\theta \log p_\theta(y_0, z)] \quad (59)$$
1021
1022
1023
1024
1025

1021
$$= \mathbb{E}_{q(z)} [s_\theta(z; y_0)]. \quad (60)$$
1022
1023
1024
1025

1022 Then we are ready to state the following proposition:
1023
1024
1025

1024 **Proposition A.7.** Assume $\sup_z \|s_\theta(z; y_0)\| \leq B(\theta, y_0)$. Then
1025

1025
$$\|\nabla_\theta \log P_\theta(y_0) - \nabla_\theta \text{ELBO}(y_0; \theta)\| \leq \sqrt{2} B(\theta, y_0) \sqrt{\text{KL}(q(z) || p_\theta(z|y_0))} \quad (61)$$

1026 *Proof.*

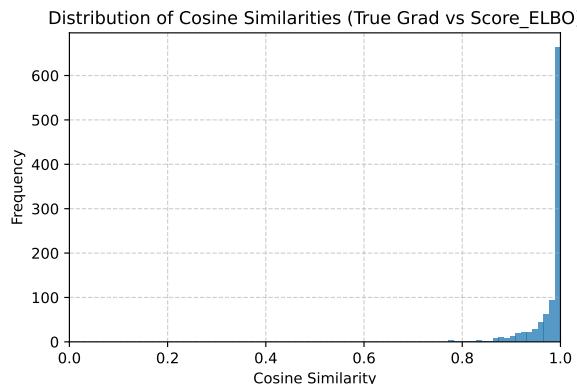
$$\begin{aligned}
 1028 \quad \|\nabla_{\theta} \log P_{\theta}(y_0) - \nabla_{\theta} \text{ELBO}(y_0; \theta)\| &= \|\mathbb{E}_{p_{\theta}(z|y_0)}[s_{\theta}(z; y_0)] - \mathbb{E}_{q(z)}[s_{\theta}(z; y_0)]\| \quad (62) \\
 1029 \quad &= \left\| \int s_{\theta}(z; y_0)(p_{\theta}(z|y_0) - q(z)) dz \right\| \quad (63) \\
 1030 \quad &\leq \int \|s_{\theta}(z; y_0)(p_{\theta}(z|y_0) - q(z))\| dz \quad (64) \\
 1031 \quad &= \int \|s_{\theta}(z; y_0)\| |p_{\theta}(z|y_0) - q(z)| dz \quad (65) \\
 1032 \quad &\leq B(\theta, y_0) \int |p_{\theta}(z|y_0) - q(z)| dz \quad (66) \\
 1033 \quad &= B(\theta, y_0) \cdot 2\text{TV}(q(z), p_{\theta}(z|y_0)) \quad (67) \\
 1034 \quad &\leq \sqrt{2}B(\theta, y_0) \sqrt{\text{KL}(q(z)\|p_{\theta}(z|y_0))}, \quad (68)
 \end{aligned}$$

1041 where TV denotes the total variation distance of probability measures: $\text{TV}(p, q) = \frac{1}{2} \int |q(x) - p(x)| dx$, and the last inequality is due to $\text{TV}(q, p) \leq \sqrt{\frac{1}{2}\text{KL}(q\|p)}$. \square

1045 In the context of the diffusion model, the latent variable $z = y_{1:T}$ is the diffusion trajectory, $q(y_{1:T})$ is the distribution over the diffusion trajectory $y_{1:T}$, and $p_{\theta}(y_{1:T}|y_0)$ is the corresponding diffusion 1046 reverse process. Thus, whenever the variational approximation is good (small KL), the ELBO gradient 1047 is provably close to the true score.

1050 A.5 EMPIRICAL EVIDENCE FOR ELBO GRADIENT APPROXIMATION

1052 Assume our model is $\theta = (A, B, c)$, and the noise is predicted by $\epsilon_{\theta}(y_t, t, x) = A_t y_t + B_t x + c_t$.
 1053 True data $y \sim \mathcal{N}(Wx, I)$. In this way, there is a closed-form solution for true $\nabla_{\theta} \log p(y_0|x)$ since
 1054 y_0 is a Gaussian and $y_t = \sqrt{\bar{\alpha}_t} y_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon$.



1069 Figure 6: Cosine similarity between the true gradient and the estimated gradient using a linear model.
 1070

1072 A.6 DETERMINISTIC OPTIMIZATION AND GAUSSIAN MODEL IN STOCHASTIC OPTIMIZATION

1074 **Deterministic Optimization** Since deterministic can also be viewed as a reparameterization trick
 1075 without any randomness ϵ , we can reuse our derivation in Section 4 and compute the gradient $\nabla_x F(x)$
 1076 by Eq. 9.

1078 **Gaussian Model in Stochastic Optimization** Since there are many recent papers that use the
 1079 Gaussian model as a predictor for stochastic DFL, we also claim that it has the reparameterization
 and score function form.

1080 1. Reparameterization with Gaussian Model. Also using reparameterization trick:
 1081

$$\nabla_{\theta} \mathbb{E}_{y \sim P_{\theta}(\cdot|x)}[f(y, z)] = \mathbb{E}_{\epsilon \sim P(\epsilon)}[(\nabla_{\theta} y \nabla_y f(y, z))]. \quad (69)$$

1083 But with the predictor instantiated as a Gaussian model, i.e., y is computed by $y = R(\epsilon, \theta|x))^{\top}$ and R is a Gaussian model.
 1084

1085 2. Score Function with Gaussian Model. Recall that we need to approximate the term
 1086 $\log P_{\theta}(y|x)$ for the diffusion model. However, this term has a closed-form for a Gaus-
 1087 sian model. Assume our Gaussian model is $\mathcal{N}(\mu_{\theta}, \Sigma_{\theta})$, then the negative log-likelihood
 1088 is

$$1090 \log P_{\theta}(y|x) = -\frac{1}{2}[(y - \mu_{\theta})^{\top} \Sigma_{\theta}^{-1} (y - \mu_{\theta}) + \log \det \Sigma_{\theta} + d \log(2\pi)]. \quad (70)$$

1092 Then, the gradient for the score function can be calculated using $\nabla_{\theta} \log P_{\theta}(y|x)$. Gaussian
 1093 models are powerful tools for many DFL tasks. However, we want to claim that the diffusion
 1094 model is more general and requires less model tuning and model assumptions.
 1095
 1096

1097 A.7 CONNECTIONS WITH OFFLINE CONTEXTUAL BANDIT METHODS

1099 DFL and offline contextual bandits both involve learning from contextual features to make decisions,
 1100 but they differ in key assumptions and objectives. Specifically, in DFL, the decision z is a solution
 1101 of solving a known optimization problem, with explicit constraints and objective (e.g., quadratic
 1102 objective with convex constraints). In other words, DFL explicitly incorporates the known structure
 1103 of the decision task into the learning problem. Predict-then-optimize methods specifically aim to
 1104 leverage this structure of the optimization problem to learn better predictions under fewer samples.
 1105 This incorporation of task structure is the key motivation for predict-then-optimize methods.

1106 In an offline bandit view, each decision (action) z is obtained by a policy that is learned directly
 1107 without using the fact that z comes from solving a particular optimization problem. In theory, if the
 1108 model is expressive enough, an offline bandit algorithm can learn the decision with enough samples,
 1109 but it may ignore the underlying optimization structure and thus require more samples.

1110 Here, we implement an offline full-information (the true cost function is revealed) contextual bandit
 1111 method using policy-based learning methods. Specifically, we first sample a batch B from the offline
 1112 dataset, and then compute the decisions (actions) by a policy network ϕ . Our goal is to train the
 1113 policy network ϕ to minimize the following loss function:

$$1114 L(\phi) = \frac{1}{|B|} \sum_{(x, y) \in B} f(\phi(x), y). \quad (71)$$

1115 After training T epochs, we evaluate ϕ in a test set and report the results.
 1116

1120 A.8 TRAINING DETAILS AND HYPERPARAMETERS

1122 We summarize our model settings for the deterministic DFL, Gaussian DFL, and diffusion DFL
 1123 in Table 2.

1124 For all experiments, we perform 10 random seeds to evaluate variability.
 1125

1127 A.9 IMPLEMENTATION DETAILS

1129 Stochastic optimization introduces two main computational bottlenecks: (i) sampling multiple Monte
 1130 Carlo instances from the diffusion model, and (ii) repeatedly solving the downstream optimization
 1131 problem. We address both in our implementation:
 1132

- 1133 • **Parallel diffusion sampling.** We sample in parallel across many noise realizations, which
 1134 makes efficient use of hardware and reduces the per-sample overhead. In our supplementary

1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148

Parameter	Deterministic MLP	Gaussian MLP	Diffusion Model
Model Architecture			
Trunk (layers \times width)	2×1024	2×1024	2×1024
Activation	ReLU / SiLU	ReLU / SiLU	SiLU
Inputs	$x \in \mathbb{R}^{d_x}$	$x \in \mathbb{R}^{d_x}$	$[y_t, t, x]$
Time embedding	—	—	Sinusoidal t (16-d) \rightarrow 2 FC + SiLU
Output head	$\hat{y} \in \mathbb{R}^{d_y}$	$\mu(x), \log \sigma^2(x)$	$\epsilon_\theta(y_t, t, x)$
Uncertainty	None (point)	Gaussian $\mathcal{N}(\mu, \text{diag}(\sigma^2))$	Diffusion process $P_\theta(y x)$
Training			
Loss	$\text{MSE}(y)$	Gaussian NLL	Weighted MSE denoising
DFL gradient	Implicit diff. via KKT	(1) Reparam (Gaussian) (2) Gaussian score	(1) Reparam (Diffusion) (2) Weighted-ELBO score
Sample size M (synthetic/power/portfolio)	—	10/25/50	10/25/50
Learning rate	1×10^{-4} (typical)	Reparam: 1×10^{-5} Score-fn: 8×10^{-6}	Reparam: 1×10^{-5} Score-fn: 8×10^{-6}
Inference			
Procedure	Use \hat{y} directly	Sample M outputs $y^{(m)}$	Reverse diffusion to get M samples $y^{(m)}$

1173
 1174 Table 2: Architectural and training differences among deterministic, Gaussian, and diffusion-based
 1175 DFL methods.

1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187

1188 material, for each task (`power_sched`, `stock_portfolio`, `synthetic_example`),
 1189 the file `{task}/diffusion_opt.py` implements the function `sample_elbo`, which
 1190 accepts batched inputs and runs the diffusion sampler for the entire batch in parallel. This
 1191 allows us to draw many Monte Carlo samples in *one single forward pass*.

1192 • **Parallel optimization solving.** The downstream optimization solver is also executed
 1193 in parallel across different samples. In `{task}/cvxpy_{task}.py`, the function
 1194 `cvxpy_{task}_parallel_kkt` constructs a batched KKT system for the Monte Carlo
 1195 samples and *solves these batched KKT systems in parallel* (across CVXPY worker jobs).

1197 **A.10 DETAILS OF SYNTHETIC EXAMPLE**

1199 In this example, we consider a factory that decides how much to manufacture for each of $d \in \mathbb{N}$
 1200 products. The parameter $Y \in \mathbb{R}^d$ represents the *profit margin* for each product, i.e., Y_i is the profit
 1201 per unit of product i ; due to uncertainty in market conditions, Y is uncertain. The factory's decision
 1202 $z \in [0, C]^d$ represents how much of each product to manufacture, where C is the maximum capacity
 1203 for each product. For simplicity, we do not consider any contextual features x in this example. That
 1204 means DFL learns a distribution that generates y that can minimize the decision objective.

1205 Suppose that the factory has a risk-averse cost function $f(y, z) = \exp(-y^\top z)$, which indicates that
 1206 the factory wants to put a larger weight on the product with higher profit Y_i . Intuitively, if the factory
 1207 knew Y exactly, then the optimal strategy would be all-or-nothing: set $z_i = C$ if $Y_i > 0$, or $z_i = 0$
 1208 if $Y_i < 0$. Likewise, with respect to a point prediction of Y , the optimal deterministic decision
 1209 $z_{\text{det}}^* \in \{0, C\}^d$ is attained on the boundary of the feasible set.

1210 Under uncertainty, the decision-maker seeks to minimize the **expected cost** by solving a stochastic
 1211 optimization problem:

$$z_{\text{sto}}^* \in \arg \min_{z \in [0, C]^d} \mathbb{E}_{y \sim P_\theta(\cdot|x)} [\exp(-y^\top z)]. \quad (72)$$

1214 In this stochastic case, the optimal investment z_{sto}^* typically lies in the interior of the feasible region,
 1215 which balances the potential high reward of investing against the risk of losses.

1217 Then, we compute the necessities for diffusion DFL:

$$H = \mathbb{E}_{y \sim P_\theta(\cdot|x)} [\nabla_{zz}^2 g(z^*, y)] + (\lambda^*)^\top \nabla_{zz}^2 h(x, z^*) = \exp(-y^\top z) y y^\top \quad (73)$$

$$G = \nabla_z h(x, z^*) = -\exp(-y^\top z) y. \quad (74)$$

1221 For reparameterization, we have

$$\begin{aligned} \left(\frac{d\text{loss}}{d\theta} \right)^\top &= \begin{bmatrix} \frac{d\text{loss}}{dz^*} \\ 0 \end{bmatrix}^\top \begin{bmatrix} \frac{\partial z^*}{\partial \theta} \\ \frac{\partial \lambda^*}{\partial \theta} \end{bmatrix} \\ &= - \begin{bmatrix} \frac{d\text{loss}}{dz^*} \\ 0 \end{bmatrix}^\top \begin{bmatrix} H & G^\top \\ D(\lambda^*)G & D(h(x, z^*)) \end{bmatrix}^{-1} \begin{bmatrix} \frac{1}{M} \sum_{i=1}^M (\nabla_\theta y_i)^\top \nabla_{zy}^2 g(z^*, y_i) \\ 0 \end{bmatrix} \end{aligned}$$

1228 where $\nabla_{zy}^2 g(z^*, y) = \exp(-y^\top z) (y z^\top - I_d)$ in this case.

1229 For the score function, we have

$$\begin{aligned} \left(\frac{d\text{loss}}{d\theta} \right)^\top &= - \begin{bmatrix} \frac{d\text{loss}}{dz^*} \\ 0 \end{bmatrix}^\top \begin{bmatrix} H & G^\top \\ D(\lambda^*)G & D(h(x, z^*)) \end{bmatrix}^{-1} \begin{bmatrix} \mathbb{E}_y [\nabla_z g(z^*, y) (\frac{d\text{ELBO}}{d\theta})^\top] \\ 0 \end{bmatrix} \\ &\approx - \begin{bmatrix} \frac{d\text{loss}}{dz^*} \\ 0 \end{bmatrix}^\top \begin{bmatrix} H & G^\top \\ D(\lambda^*)G & D(h(x, z^*)) \end{bmatrix}^{-1} \begin{bmatrix} \frac{1}{M} \sum_{i=1}^M \nabla_z g(z^*, y_i) (\frac{d\text{ELBO}_i}{d\theta})^\top \\ 0 \end{bmatrix}. \end{aligned}$$

1236 **A.11 DETAILS ON POWER SCHEDULE TASK**

1238 This task involves a 24-hour electricity generation scheduling problem with uncertain demand. The
 1239 decision $z \in \mathbb{R}^{24}$ represents the electricity output to schedule for each hour of the next day. The
 1240 uncertainty $y \in \mathbb{R}^{24}$ represents the actual power demand for each of the 24 hours. The goal is to
 1241 meet demand as closely as possible at minimum cost. We also consider a decision cost function that
 penalizes storage, excess generation, and ramping following [Donti et al. \(2017\)](#):

1242 1. Let γ_s and γ_a be the per-unit costs of shortage (not meeting demand) and excess (over-generation), respectively. We use $\gamma_s = 50$ and $\gamma_e = 0.5$ in our experiment.
 1243 2. Let c_r be a penalty on hour-to-hour changes in generation. We use $c_r = 0.4$ in appropriate
 1244 units.
 1245

1246 Formally, if $z = (z_1, \dots, z_{24})$ and $y = (y_1, \dots, y_{24})$, the loss for a single day is

1247
$$\min_z \mathbb{E}_{y \sim P_\theta(\cdot|x)}[f(y, z)] = \sum_{i=1}^{24} \mathbb{E}_{y \sim P_\theta(\cdot|x)}[\gamma_s[y_i - z_i]_+ + \gamma_e[z_i - y_i]_+ + \frac{1}{2}(z_i - y_i)^2]$$

 1248 s.t. $|z_i - z_{i-1}| \leq c_r$ for all $i \in \{1, 2, \dots, 24\}$.
 1249 (75)

1250 Then, we compute the necessities for diffusion DFL:

1251
$$H = \mathbb{E}_{y \sim P_\theta(\cdot|x)}[\nabla_{zz}^2 g(z^*, y)] + (\lambda^*)^\top \nabla_{zz}^2 h(x, z^*) = I_n$$

 1252 (76)

1253
$$G = \nabla_z h(x, z^*) = \begin{bmatrix} -1 & 1 & 0 & \cdots & 0 \\ 0 & -1 & 1 & \cdots & 0 \\ \vdots & & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & -1 & 1 \end{bmatrix}.$$

 1254 (77)

1255 For reparameterization, we have

1256
$$\left(\frac{d\text{loss}}{d\theta}\right)^\top = \begin{bmatrix} \frac{d\text{loss}}{dz^*} \\ 0 \end{bmatrix}^\top \begin{bmatrix} \frac{\partial z^*}{\partial \theta} \\ \frac{\partial \lambda^*}{\partial \theta} \end{bmatrix}$$

 1257
$$= -\begin{bmatrix} \frac{d\text{loss}}{dz^*} \\ 0 \end{bmatrix}^\top \begin{bmatrix} H & G^\top \\ D(\lambda^*)G & D(h(x, z^*)) \end{bmatrix}^{-1} \begin{bmatrix} \frac{1}{M} \sum_{i=1}^M (\nabla_\theta y_i)^\top \nabla_{zy}^2 g(z^*, y_i) \\ 0 \end{bmatrix}$$

 1258

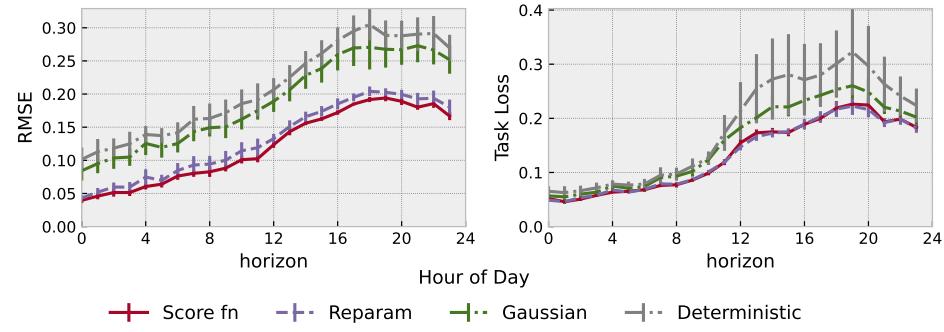
1259 where $\nabla_{zy}^2 g(z^*, y) = -I$ in this case.

1260 For the score function, we have

1261
$$\left(\frac{d\text{loss}}{d\theta}\right)^\top = -\begin{bmatrix} \frac{d\text{loss}}{dz^*} \\ 0 \end{bmatrix}^\top \begin{bmatrix} H & G^\top \\ D(\lambda^*)G & D(h(x, z^*)) \end{bmatrix}^{-1} \left[\mathbb{E}_y [\nabla_z g(z^*, y) \left(\frac{d\text{ELBO}}{d\theta}\right)^\top] \right]$$

 1262
$$\approx -\begin{bmatrix} \frac{d\text{loss}}{dz^*} \\ 0 \end{bmatrix}^\top \begin{bmatrix} H & G^\top \\ D(\lambda^*)G & D(h(x, z^*)) \end{bmatrix}^{-1} \left[\frac{1}{M} \sum_{i=1}^M \nabla_z g(z^*, y_i) \left(\frac{d\text{ELBO}_i}{d\theta}\right)^\top \right].$$

 1263



1264 Figure 7: Results on the 24-hour power grid scheduling task.
 1265

1266 **Dataset.** We use real, public historical electricity load data from the PJM regional grid (PJM
 1267 Interconnection, 2025). The features x for each day include: the previous day’s 24-hour load profile,
 1268 the previous day’s temperature profile, calendar features, and seasonal sinusoidal features. In total,
 1269 $d_x = 150$ features for each day were constructed. We normalized all input features for training. The
 1270 target label y is the next day’s 24-hour load vector.
 1271

1272 For completeness, we include an extended comparison of different sample sizes in Figure 9, which
 1273 further highlights that additional samples yield diminishing returns in accuracy while linearly in-
 1274 creasing compute cost. We also find that adding a small regularizer during DFL training can help the
 1275 model learning the data distribution and avoid some bad local minima, leading to a stable training
 1276 process.
 1277

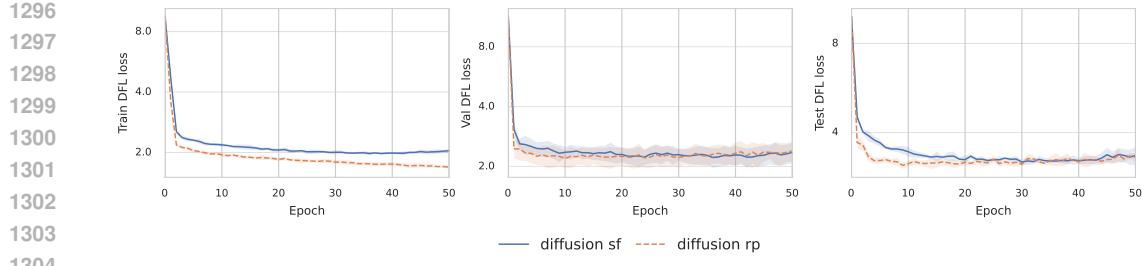


Figure 8: Train, validation, and test DFL loss for diffusion DFL using score function vs. reparameterization. Solid lines show the mean loss over multiple runs with different random seeds; shaded regions indicate standard deviation across runs.

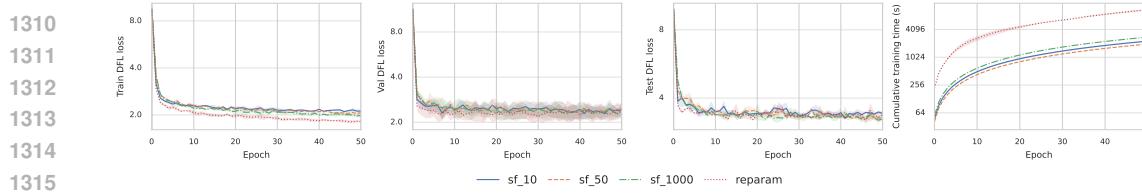


Figure 9: Comparison between different sample sizes for score function and reparameterization.

A.12 DETAILS ON STOCK PORTFOLIO TASK

We consider a mean-variance portfolio optimization problem with uncertain returns. Here $y \in \mathbb{R}^n$ represents the random next-day returns of n assets (stocks), and $z \in \mathbb{R}^n$ are the portfolio weights we assign to each asset (the fraction of our capital invested in each stock). Our goal is to maximize expected return while keeping the risk (variance) low. This can be written as minimizing a loss that is a negative expected return plus a quadratic penalty on variance:

$$\min_z \mathbb{E}_{y \sim P_\theta(\cdot|x)} [f(y, z)] = \mathbb{E}_{y \sim P_\theta(\cdot|x)} \left[\frac{\alpha}{2} z^\top y y^\top z - y^\top z \right], \quad \text{s.t.} \quad z^\top \mathbf{1} = 1, 0 \leq z_i \leq 1. \quad (78)$$

Then, we compute the necessities for diffusion DFL:

$$H = \mathbb{E}_{y \sim P_\theta(\cdot|x)} [\nabla_{zz}^2 f(z^*, y)] + (\lambda^*)^\top \nabla_{zz}^2 h(x, z^*) + \nabla_{zz}^2 (\nu^{*\top} g(x, z^*)) = \alpha \mathbb{E}_{y \sim P_\theta(y|x)} [yy^\top], \quad (79)$$

$$G = \nabla_z h(x, z^*) = \begin{bmatrix} I_n, \\ -I_n \end{bmatrix} \quad (80)$$

$$Q = \nabla_z g(x, z^*) = \mathbf{1}^\top. \quad (81)$$

For reparameterization, we have

$$\begin{aligned} \left(\frac{dloss}{d\theta} \right)^\top &= \begin{bmatrix} \frac{dloss}{dz^*} \\ 0 \\ 0 \end{bmatrix}^\top \begin{bmatrix} \frac{\partial z^*}{\partial \theta} \\ \frac{\partial \lambda^*}{\partial \theta} \\ \frac{\partial \nu^*}{\partial \theta} \end{bmatrix} \\ &\approx - \begin{bmatrix} \frac{dloss}{d\tilde{z}^*} \\ 0 \\ 0 \end{bmatrix}^\top \begin{bmatrix} H & G^\top & Q^\top \\ D(\lambda^*)G & D(h(x, z^*)) & 0 \\ Q & 0 & 0 \end{bmatrix}^{-1} \begin{bmatrix} \frac{1}{M} \sum_{i=1}^M (\nabla_\theta y_i)^\top \nabla_{zy}^2 g(z^*, y_i) \\ 0 \\ 0 \end{bmatrix} \end{aligned}$$

where $\nabla_{zy}^2 f(z^*, y) = \mathbb{E}_y [2\alpha y^\top z - 1]$ in this case.

1350 For the score function, we have
1351

$$\begin{aligned}
1352 \quad & \left(\frac{d\text{loss}}{d\theta} \right)^\top = \begin{bmatrix} \frac{d\text{loss}}{dz^*} \\ 0 \\ 0 \end{bmatrix}^\top \begin{bmatrix} H & G^\top & Q^\top \\ D(\lambda^*)G & D(h(x, z^*)) & 0 \\ Q & 0 & 0 \end{bmatrix}^{-1} \begin{bmatrix} \mathbb{E}_y[\nabla_z g(z^*, y)(\frac{d\text{ELBO}}{d\theta})^\top] \\ 0 \\ 0 \end{bmatrix} \\
1353 \quad & \approx - \begin{bmatrix} \frac{d\text{loss}}{dz^*} \\ 0 \\ 0 \end{bmatrix}^\top \begin{bmatrix} H & G^\top & Q^\top \\ D(\lambda^*)G & D(h(x, z^*)) & 0 \\ Q & 0 & 0 \end{bmatrix}^{-1} \begin{bmatrix} \frac{1}{M} \sum_{i=1}^M \nabla_z g(z^*, y_i)(\frac{d\text{ELBO}_i}{d\theta})^\top \\ 0 \\ 0 \end{bmatrix},
\end{aligned}$$

1359 where $\nabla_z g(z^*, y_i) = \alpha y_i y_i^\top z^* - y_i$.
1360

1361 **Dataset.** We use daily stock prices from 2004–2017 for constituents of the S&P 500 index ([Quandl WIKI dataset, 2025](#)). We obtained this data via Quandl’s API (specifically WIKI pricing data; the user
1362 will need a Quandl API key to replicate). We compute daily returns for each stock (percentage change).
1363 To construct features x , we use a rolling window of recent history for each asset. Specifically, for
1364 each day, a data point is for predicting next day’s returns: we include the past 5 days of returns for
1365 each of the n assets, past 5 days of trading volume for each asset, plus some aggregate features. To
1366 avoid an explosion of dimension with large n , we also include PCA-compressed features: we take
1367 the top principal components of the last 5-day return matrix to summarize cross-asset trends. In the
1368 end, for $n = 50$ assets, we ended up with $d_x = 28$ features. All features are normalized and we use a
1369 time-series split: first 70% of days for training (2004–2013), next 10% for validation (2014), last 20%
1370 for test (2015–2017). We evaluate performance on the test set by simulating the portfolio selection
1371 every day and computing the average return achieved.
1372

1373 A.13 (ADDITIONAL TASK) DETAILS ON INVENTORY STOCK PROBLEM 1374

1375 We also validate our approaches on a toy inventory control problem. In this task, the uncertain
1376 demand y is drawn from a multi-modal distribution (a mixture of Gaussians), where we vary the
1377 number of mixture components K to control the distribution complexity:
1378

$$1379 \quad p(x) = \sum_{j=1}^K \pi_j \phi(x; \mu_j, \Sigma_j), \quad (82)$$

1380 where π_j is the probability of choosing component j and $\phi(x; \mu_j, \Sigma_j)$ is a multivariate Gaussian
1381 density with parameter (μ_j, Σ_j) . The cost function follows the standard newsvendor formulation
1382 with piecewise penalties for under-stock and over-stock:
1383

$$1384 \quad f(y, z) = c_0 z + \frac{1}{2} q_0 z^2 + c_b [y - z]_+ + \frac{1}{3} r_b ([y - z]_+^3) + c_h [z - y]_+ + \frac{1}{3} r_h ([z - y]_+^3). \quad (83)$$

1385 Our learning objective is to minimize the expected cost over this stochastic demand, i.e., a stochastic
1386 optimization problem:
1387

$$1388 \quad \min_z L(\theta) = \mathbb{E}_{y \sim P(\cdot|x)}[f(y, z)] \quad \text{s.t. } 0 \leq z \leq z_{max}. \quad (84)$$

1389 We compare a deterministic DFL model against our diffusion DFL model on this toy task. Figure 10
1390 summarizes the results, where the diffusion model (stochastic DFL) achieves substantially lower
1391 regret on average than the deterministic model. Besides, we observe that the decision z obtained
1392 by our diffusion method closely tracks the true optimal decisions z^* by capturing the multi-modal
1393 demand uncertainty, whereas the deterministic predictor’s decisions deviate more. In Figure 10 (c),
1394 we directly compare the decision outcomes via a win-rate: the fraction of test instances where one
1395 method achieves lower cost than the other. The diffusion DFL method attains a win-rate of about
1396 75% against the deterministic baseline, which confirms that modeling uncertainty leads to better
1397 downstream decisions
1398

1399 For data generation, we set $\mu = [-4, 0, 4]$, $\Sigma = [0.15, 0.25, 0.15]^\top \mathbf{1}$ for
1400 $K = 3$, $\mu = [-6, -3, 0, 3, 6]$, $\Sigma = [0.15, 0.25, 0.35, 0.25, 0.15]^\top \mathbf{1}$ for
1401 $K = 5$, and $\mu = [-8.0, -6.0, -4.0, -2.0, -1.0, 0.0, 1.2, 2.8, 4.5, 7.5]$, $\Sigma = [0.30, 0.75, 0.25, 0.40, 0.22, 0.20, 0.22, 0.35, 0.70, 1.25]^\top \mathbf{1}$.
1402

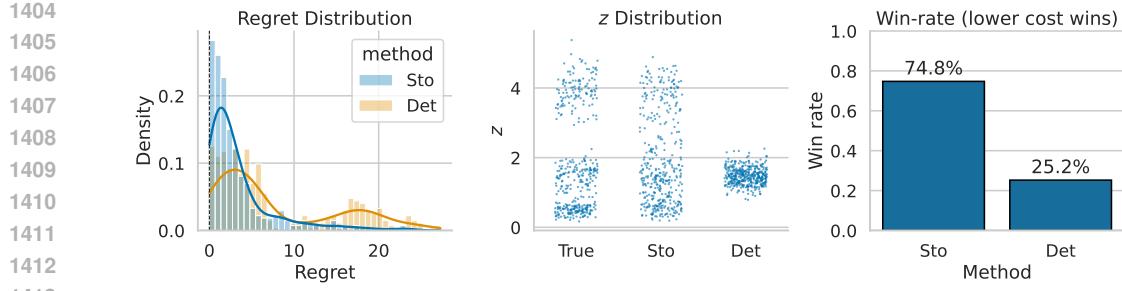


Figure 10: Toy decision task comparing deterministic and diffusion DFL. *Left*: distribution of per-instance regret (lower is better). *Middle*: distribution of chosen decision z in the lower-level; the stochastic method tracks the true distribution z^* more closely. *Right*: pairwise win-rate on test set; a large fraction of costs from the stochastic method are lower than the deterministic one, indicating that modeling uncertainty yields better decisions.

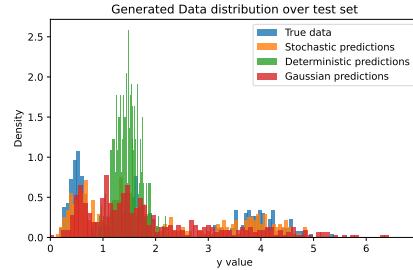


Figure 11: Prediction distribution for inventory stock problem.

Following our previous derivation, we can compute the necessities for diffusion DFL by

$$H = \mathbb{E}_{y \sim P_\theta(\cdot|x)} [\nabla_{zz}^2 f(z^*, y)] + (\lambda^*)^\top \nabla_{zz}^2 h(x, z^*) = \text{diag}(q_0) + q_b I_{(y>z)} + q_h I_{z>y} \quad (85)$$

$$G = \nabla_z h(x, z^*) = \begin{bmatrix} -I \\ I \end{bmatrix}, \quad (86)$$

$$D(h(x, z^*)) = 0. \quad (87)$$

A.14 ADDITIONAL RELATED WORKS AND DISCUSSIONS

Stochastic optimization Making decisions under uncertainty is a classic topic in operations research and machine learning (Shalev-Shwartz et al., 2009). Stochastic optimization formulations explicitly consider uncertainty by optimizing the expected objective over a distribution of unknown parameters. A common approach is the Sample Average Approximation (SAA) (Kleywegt et al., 2002; Arjevani et al., 2020; Wang et al., 2024b), which draws many samples from the estimated distribution and solves an approximated deterministic problem minimizing the average cost. While SAA can handle arbitrary uncertainty distributions in theory, it becomes very computationally expensive and still does not consider the distribution during optimization (Kim et al., 2015). It will lead to optimizing the *sample mean*, which may yield a decision that performs poorly if reality often falls into one of several distinct models far from the mean (Kim et al., 2015; Elmachtoub & Grigas, 2022).

When is Diffusion-DFL useful? Our experiments suggest that Diffusion DFL will be especially useful in decision-making settings where the uncertain parameter in the objective is high-dimensional, has a multimodal distribution, and limited training data is available. We believe that promising directions of future work include accommodating uncertainty in constraints in addition to the objective function, investigating the trade-off between model calibration and decision-making quality, and adapting Diffusion DFL to online decision-making settings.