
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

DIFFUSION-DFL: DECISION-FOCUSED DIFFUSION
MODELS FOR STOCHASTIC OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Decision-focused learning (DFL) integrates predictive modeling and optimization
by training predictors to optimize the downstream decision target rather than merely
minimizing prediction error. To date, existing DFL methods typically rely on de-
terministic point predictions, which are often insufficient to capture the intrinsic
stochasticity of real-world environments. To address this challenge, we propose the
first diffusion-based DFL approach, which trains a diffusion model to represent the
distribution of uncertain parameters and optimizes the decision by solving a stochas-
tic optimization with samples drawn from the diffusion model. Our contributions
are twofold. First, we formulate diffusion DFL using the reparameterization trick,
enabling end-to-end training through diffusion. While effective, it is memory and
compute-intensive due to the need to differentiate through the diffusion sampling
process. Second, we propose a lightweight score function estimator that uses only
several forward diffusion passes and avoids backpropagation through the sampling.
This follows from our results that backpropagating through stochastic optimization
can be approximated by a weighted score function formulation. We empirically
show that our diffusion DFL approach consistently outperforms strong baselines in
decision quality. The source code for all experiments is available here.

1 INTRODUCTION

Many real-life decision-making tasks require selecting actions that minimize a cost function involving
unknown, context-dependent parameters. These parameters must often be predicted from observed
features. For example, in supply chain management, future product demand must be estimated before
deciding how much inventory to order (Tang & Nurmaya Musa, 2011). A common approach is the
predict-then-optimize pipeline, where a predictive model is first trained using a loss function such as
mean squared error (MSE), and the resulting predictions are then passed to an optimization solver to
guide decisions. While simple and widely adopted, this two-stage method can be misaligned with the
true objective: minimizing decision cost. In particular, lower prediction error does not always lead to
higher-quality decisions (Bertsimas & Kallus, 2020; Elmachtoub & Grigas, 2022).

Decision-focused learning (DFL) addresses this misalignment by integrating the prediction and
optimization stages into a single end-to-end framework (Donti et al., 2017; Wilder et al., 2019;
Mandi et al., 2024). Unlike the two-stage approach, DFL trains the prediction model specifically to
improve decision outcomes, often resulting in solutions with lower regret. However, most existing
DFL methods rely on point (deterministic) predictions as inputs to the optimization layer, despite
the fact that in many real-world scenarios, the underlying parameters are inherently uncertain and
may follow complex distributions. Ignoring this uncertainty can lead to overconfident models and
degraded decision quality (Kochenderfer et al., 2015).

In this work, we introduce a novel DFL approach that leverages diffusion probabilistic models to
capture the environment uncertainty in an end-to-end fashion. Here, we use a conditional diffusion
model (Tashiro et al., 2021) to represent the distribution of uncertain parameters given contextual
features. The advantage of integrating a diffusion model into DFL is that, unlike simple distribution
predictions (e.g., Gaussian), diffusion models can capture multi-modal or complex distributions.
However, the sequential sampling procedure of diffusion models introduces a challenge when training
a diffusion model end-to-end for stochastic optimization. To address this, we develop two algorithms:
reparameterization and score function. First, the reparameterization trick is a common approach that

1

https://anonymous.4open.science/r/e2e-model-444D/README.md

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

expresses a random sample as a deterministic function of the model parameters and some noise, and
we can backpropagate through sampled prediction to solve the DFL problem.

However, this approach can be very costly in memory and computation because it requires differen-
tiating (and therefore tracking gradients) through the diffusion sampling process. To address this,
we introduce a lightweight score function estimator that avoids differentiating through the sampling
process. Specifically, we use a score function surrogate to approximate the gradient of the diffusion
predictor and plug it into the KKT (Karush-Kuhn-Tucker) implicit-differentiation approach to obtain
the total derivative of the decision objective. In addition, we further mitigate the high variance that
arises from using only score functions for a few steps by employing a tailored importance sampling
strategy.

We evaluate our proposed methods in various applications, including (synthetic) product allocation,
energy scheduling, and stock portfolio optimization. Experimental results show that our diffusion
DFL methods consistently outperform all baselines, with more improvements on larger problem
sizes. Moreover, the score function estimator achieves decision quality comparable to that of the
reparameterization method, while significantly reducing GPU memory usage from 60.75 GB to 0.13
GB. The contributions of this paper are the following:

• We introduce the first DFL method that uses diffusion models to capture the downstream
uncertainty and employs the reparameterization trick for end-to-end gradient estimation.

• We propose a lightweight score function estimator that avoids backpropagating the reversing
process in the reparameterization method, significantly reducing memory and computation cost.

• We evaluate our methods in three real-world optimization tasks and observe consistent improve-
ments over strong baselines.

2 RELATED WORKS

Decision-focused learning DFL is an emerging paradigm that trains models end-to-end to directly
optimize decision quality rather than minimizing prediction error (Donti et al., 2017; Wilder et al.,
2019; Mandi et al., 2024). Despite the success in aligning learning objectives with decision-making, a
limitation of most existing DFL methods is that they typically rely on deterministic point predictions
of uncertain parameters (Wilder et al., 2019; Shah et al., 2022). By ignoring distributional uncertainty,
deterministic point predictions cannot represent the full outcomes and may lead to lower decision
quality (Wang et al., 2025). Empirically, classic DFL was observed to struggle in high-dimensional
and risk-sensitive real-world settings with significant uncertainty (Mandi et al., 2022).

Therefore, the gap in uncertainty modeling motivates the need for more comprehensive DFL with
stochastic predictions, where several works have started integrating uncertainty awareness into
the DFL pipeline (Silvestri et al., 2023; Wang et al., 2025; Shariatmadar et al., 2025; Jeon et al.,
2025). For instance, Wang et al. (2025) proposes a generative DFL approach (Gen-DFL) based on
normalizing flow models as the predictor. However, normalizing flows require a bijective network
architecture, which restricts the expressiveness of the stochastic predictor.

In this paper, we propose using diffusion models (Ho et al., 2020) as a more expressive predictor.
By leveraging diffusion models in the DFL paradigm, our approach extends DFL by predicting
an accurate full distribution of the unknown parameters, which addresses the overconfidence of
deterministic optimization and better aligns with downstream decision-making needs.

Diffusion model in optimization Diffusion probabilistic models have achieved great success in
modeling high-dimensional data distributions in recent years (Sohl-Dickstein et al., 2015; Song &
Ermon, 2019; Dhariwal & Nichol, 2021). Originally popularized for image generation and related
structured outputs, its ability to capture multi-modal and high-variety distributions has made it
attractive beyond vision tasks, such as combinatorial optimization(Sun & Yang, 2023; Sanokowski
et al., 2025), black-box optimization(Krishnamoorthy et al., 2023; Kong et al., 2025). To our best
knowledge, however, no prior work has integrated diffusion models into a predict-then-optimize
learning pipeline for decision tasks. This paper is the first to harness diffusion models in an end-
to-end DFL framework. By using a conditional diffusion model, we can learn a rich distribution
over the uncertain inputs and then propagate this uncertainty through to the downstream decision
via gradient-based training (score function and reparameterization). This approach combines the
strengths of expressive generative modeling and DFL to improve decision quality under uncertainty.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

3 PROBLEM STATEMENT

3.1 DECISION-FOCUSED LEARNING

We consider a general predict-then-optimize setting (Donti et al., 2017; Elmachtoub & Grigas, 2022),
where the goal is to make decisions under uncertainty about a key problem parameter. Given a feature
vector x ∈ X and a prediction of an unknown parameter y∗ ∈ Y , the decision-maker selects z ∈ Rd

to minimize a decision loss function f : Y × Rd → R, which measures the cost of applying decision
z when the true parameter is y∗. We assume a joint distribution D over (x, y∗) pairs.

DFL integrates prediction and optimization into a unified framework. The goal is to learn a decision
function z∗θ : X → Rd, parameterized by θ, that minimizes the expected decision loss,

min
θ

F (θ) := E(x,y∗)∼D[f(y
∗, z∗θ (x))]. (1)

The decision z∗θ (x) is typically obtained by solving an optimization problem involving a prediction
of the uncertainty parameter. Most DFL methods (Mandi et al., 2024) use a deterministic point
prediction yθ(x) of the uncertain parameter y∗:

z∗θ (x) = argmin
z

f(yθ(x), z), s.t. Gz ≤ h, Az = b, (2)

where G ∈ Rn×d, h ∈ Rn, A ∈ Rp×d, b ∈ Rp are constraint problem coefficients1.

In contrast, we consider a probabilistic model Pθ(· | x) for the uncertain parameter y∗ and let z∗θ (x)
be the solution to a stochastic optimization problem:

z∗θ (x) = argmin
z

Ey∼Pθ(·|x)[f(y, z)], s.t. Gz ≤ h, Az = b. (3)

We aim to learn the model parameter θ such that z∗θ minimizes the expected decision loss F (θ). By
the chain rule, the derivative of F is

dF (θ)

dθ
= E(x,y∗)∼D

[
∂f(y∗, z∗θ (x))

∂z

dz∗θ (x)

dθ

]
.

However, computing this gradient (specifically, the dz∗
θ

dθ term) is challenging because z∗θ is implicitly
defined by a nested optimization problem. A common solution is to differentiate the KKT system
that implicitly defines z∗θ w.r.t. θ (Amos & Kolter, 2017). Another crucial point is the selection of the
stochastic predictor in DFL, which in the paper we choose to use diffusion models to represent Pθ.

3.2 DIFFUSION PROBABILISTIC MODEL

To generate complex multi-modal and high-dimensional distributions, diffusion probabilistic mod-
els (Ho et al., 2020) are a promising way. It couples a fixed noising chain with a learned reverse de-
noising chain. Let y0 ∈ Rd denote a sample from the real data distribution q(y0) and {βt ∈ (0, 1)}Tt=1

denote the noise schedule. Define αt = 1 − βt and ᾱt =
∏t

i=1 αi. The forward process q adds
Gaussian noise at each step t to y1 through yT :

q(yt | yt−1) = N (yt;
√
1− βtyt−1, βtI), t = 1, . . . , T, (4)

which guarantees that q(yT | y0) becomes nearly standard normal distribution as T → ∞ with
common schedules (ᾱT → 0). Note that yt can be equivalently sampled without iterating through
intermediate time steps: yt =

√
ᾱty0 −

√
1− ᾱtϵ, where ϵ ∼ N(0, I) is a Gaussian noise.

In the reverse process p, the diffusion model predicts the unknown added noise by
pθ(yt−1 | yt) = N (yt−1; µθ(yt, t), σ

2
t I), (5)

whose mean µθ(·, t) is parameterized by a neural network predictor and variance is either fixed
(σ2

t = βt) or learned. The combination of p and q is equivalent to a hierarchical variational auto-
encoder (Vahdat & Kautz, 2020), and thus can be optimized by using the evidence lower bound
(ELBO) as the loss function (Hoffman & Johnson, 2016).

Conditional Diffusion Model. Throughout this paper, x denotes contextual features, and every
transition probability is conditioned on x (Tashiro et al., 2021). We use Pθ(·|x) for the diffusion
model’s conditional distribution for generated data and pθ(yt−1 | yt, x) for its Markov transitions.

1We consider affine constraints in our main paper for simplicity. The extension from affine constraints to
general convex constraints h(x, z) ≤ 0 follows a similar derivation as in the linear case.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

4 STOCHASTIC OPTIMIZATION AND REPARAMETERIZATION ESTIMATOR

Real-world decision problems often face significant uncertainty in their parameters. Optimizing with
a stochastic predictor (e.g., diffusion model) yields better results than deterministic optimization, by
explicitly modeling the uncertainty and optimizing the expected cost. Figure 1 illustrates a simple
example: any deterministic solution ends up at an extreme decision with a higher expected cost, while
the stochastic solution averages costs across likely outcomes and selects an interior decision with a
lower expected cost.

0.0 0.5 1.0 1.5 2.0
z

0

1

2

3

De
cis

io
n

Co
st

 z * = Ce (3.00) z z * = C
e (0.79) z

 z * = C
e (0.25) z

 z * = 0

e (0.62) z

 z * = 0

e (0.32) z

 z * = 0 e (0.11) z

(a) Per-sample Decision Cost f(y, z)
y < 0
y > 0

0.0 0.5 1.0 1.5 2.0
z

1.0

1.5

2.0

De
cis

io
n

Co
st

[e yz]

 argmin F

(b) Expected Decision Cost [f(y, z)]
True
Sto
Det

2 1 0 1
y

0

1

2

3

4

5

De
ns

ity

(c) Predicted vs True Distribution
True
Sto
Det

Figure 1: A comparison of deterministic vs. stochastic optimization with cost function exp(−yz),
as described in Section 6.1. (a) Each curve represents a cost function given a sample y. For any
fixed y, the deterministic optimization decision lies at one of the boundaries (z∗ = 0 or z∗ = C). (b)
When averaging the cost function over many samples of y, the stochastic optimization decision lies
in the interior of the feasible region instead of on the boundary. Thus, any deterministic optimization
decision is suboptimal. (c) A probabilistic (diffusion) model captures a distribution over Y that
closely resembles the true bimodal distribution.

Solving stochastic DFL. Formally, in the stochastic case, the optimality condition for the decision
problem must consider an expectation. The stationarity condition for decision problem Eq. 3 becomes:

∇zL(θ, z∗, λ∗, ν∗;x) = Ey∼Pθ(·|x)[∇zf(y, z)] +G⊤λ∗ +A⊤ν∗ = 0, (6)

where L denotes the Lagrangian. Note that the dependency on θ in the stationarity condition is in the
distribution. Therefore, we need to handle this dependency carefully while differentiating the KKT
system with respect to θ:

∂

∂θ
(∇zL(θ, z∗, λ∗, ν∗;x))︸ ︷︷ ︸

distributional gradient

=
∂

∂θ
(Ey∼Pθ(·|x)[∇zf(y, z)] +G⊤λ∗ +A⊤ν∗) = 0. (7)

To resolve the dependence of both the predictive distribution Pθ(y|x) and the decision z∗ on θ, we
first adopt the reparameterization trick (Kingma & Welling, 2014) for the diffusion model. From
Section 3.2, recall that the diffusion sampling process introduces Gaussian noise at each step. Thus,
we can reparameterize the reverse process by fixing all the random draws (Gaussian noises). Formally,
a sample y ∼ Pθ(y | x) can be expressed as a transformation y = R(ϵ, θ | x) of a base Gaussian noise
sample ϵ ∼ P (ϵ), where R is differentiable in θ. This makes the diffusion sampling a deterministic
function of θ. Then we have

∇θEy∼Pθ(·|x)[f(y, z)] = Eϵ∼P (ϵ)[(∇θR(ϵ, θ|x))⊤∇yf(y, z)]. (8)

Next, we incorporate this into the optimization. Following Eq. 7, we can formalize a KKT system that
contains derivatives of z∗θ , λ

∗, ν∗ and ∇θEy∼Pθ(·|x)[f(y, z)]. Plugging the reparameterized gradient
estimator into the KKT system, we can solve for dz∗

θ

dθ and then obtain the total derivative of the final
objective F by multiplying dF

dz∗
θ

(Donti et al., 2017) (proof can be found in Appendix A.1):

dF

dθ
= −

 dF
dz∗

θ

0
0

⊤  H G⊤ A⊤

D(λ∗)G D(Gz∗θ − h) 0
A 0 0

−1 Eϵ∼P (ϵ)[(∇θR(ϵ, θ|x))⊤∇2
zyf(y, z

∗
θ)]

0
0

 ,

(9)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

where H = Ey∼Pθ(·|x)[∇2
zzf(y, z

∗
θ)] is the Hessian of the Lagrangian with respect to z, and D(v)

denotes a diagonal matrix with v on its diagonal. In practice, one can sample ϵ from a certain
distribution (e.g., Gaussian) multiple times to estimate the expectation and then obtain the gradient.
This gives us reparameterization-based diffusion DFL using Eq. 9 to run stochastic DFL optimization.

5 SCORE FUNCTION ESTIMATOR

A major obstacle to implementing the total gradient (Eq. 9) is the need to backpropagate through the
diffusion sampling process. In most cases, the diffusion model’s generative process is complex and
multi-step (e.g., 1000 steps), which makes backpropagating through all those steps memory-intensive
and prone to instability. To address this, we propose a score function2 gradient estimator for the
diffusion model, which circumvents explicit backpropagation through all sampling steps. The key
idea is to rewrite the Jacobian ∇θy in terms of the score ∇θ logPθ(y | x), and then approximate the
score with the diffusion model’s ELBO training loss.

5.1 TRANSFORM THE JACOBIAN INTO SCORE FUNCTION

We begin by rewriting the gradient of expectation as an expectation of a score function using the
log-trick (Mohamed et al., 2020). Formally, if y ∼ Pθ(·|x) and f(y) is any function not dependent
on θ, then by the log-trick we have

∇θ Ey∼Pθ(·|x)[f(y, z)] = Ey∼Pθ(·|x)[f(y, z) · ∇θ logPθ(y | x)]. (10)

Intuitively, instead of differentiating the output y through each diffusion step, we only need to
compute the gradient for the final log-likelihood, which avoids the need to differentiate through the
diffusion sampling process and yields an efficient estimator for the gradient.

Then, one remaining difficulty is that directly computing the exact ∇θ logPθ(y|x) is complicated in
practice because Pθ(y|x) is defined as the marginal probability of y after integrating out the latent
diffusion trajectory. To obtain a computationally efficient estimator, we use the diffusion model’s
training objective as a surrogate for the log-likelihood. Specifically, diffusion models are typically
trained by maximizing an ELBO that lower-bounds the log-likelihood:

logPθ(y0) = log

∫
pθ(y0|y1) pθ(y1|y2) · · · pθ(yT−1|yT) pθ(yT) dy1:T

= logEyt∼q(yt|yt−1)∀t∈[T]

[
T∏

t=1

pθ(yt−1|yt)
q(yt|yt−1)

pθ(yT)

]

≥ Eyt∼q(yt|yt−1)∀t∈[T]

[
T∑

t=1

log
q(yt|yt−1)

pθ(yt−1|yt)
+ log pθ(yT)

]
:= ELBO(y0; θ),

where the inequality is due to Jensen’s. To approximate ∇θ logPθ(y0|x) conditioned on x, we use
the gradient of the conditional ELBO loss as a surrogate:

∇θ logPθ(y0|x) ≈ ∇θ ELBO(y0|x; θ). (11)

0 2 4 6 8
Epoch

0.7

0.8

0.9

C
os

in
e

si
m

ila
rit

y

Cosine similarity between reparam and score function

Sample size M
10
50
100
500

Decision dim d
1
10

Figure 2: Cosine similarity between the
reparameterization and score function gra-
dient across different dimensions.

In practice, we first sample a final output y from the
diffusion model given contextual features x. We then
sample a subset of k timesteps {t1, t2, . . . , tk} (k ≪ T)
and run forward noising process q to generate the tra-
jectory {yt1 , yt2 , . . . , ytk}. As in DDPM (Ho et al.,
2020), we adopt the simplified form of ELBO ≈
Et∼[T],y0,ϵt [|∥ϵt − ϵθ(yt, t)∥2]. We evaluate the ELBO
on the sampled trajectories and compute its gradient
w.r.t. θ as an estimation to the true score.

Empirical evidence suggests that the ELBO gradient
closely tracks the true score, as shown in Figure 2, mak-
ing Eq. 11 a reliable proxy in practice.

2In this paper, score function refers to the statistical score ∇θ logPθ(y|x) (gradient of log-likelihood w.r.t.
model parameters), as opposed to Stein’s score ∇yp(yt|yt−1, x) often used in diffusion literature.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

5.2 OVERALL GRADIENT FOR SCORE FUNCTION

By plugging the ELBO gradient approximation from Eq. 11 into Eq. 10, we can express the KKT
conditions without using reparameterization and thus obtain the score function-based derivative:

dF

dθ
≈ −

 dF
dz∗

θ

0
0

⊤  H G⊤ A⊤

D(λ∗)G D(Gz∗θ − h) 0
A 0 0

−1 Ey∼Pθ(·|x)[∇zf(y, z
∗
θ)(∇θELBO(y|x; θ)⊤]
0
0

 .

(12)

Practical algorithm – weighted ELBO gradient. To compute the score surrogate in practice, we
found it convenient to treat the total gradient as an importance-weighted form:

dF

dθ
≈ d

dθ
Ey∼Pθ(·|x)[detach[wθ(y)]︸ ︷︷ ︸

importance weight, no grad in θ

· ELBO(y|x, θ)︸ ︷︷ ︸
1-step forward

], (13)

where wθ(y) is the importance weight simplified from Eq. 12 (see Appendix A.3 for complete form).
This yields a weighted-ELBO gradient estimator: we treat wθ(y) as a stop-gradient weight and only
differentiate the ELBO w.r.t. θ, greatly reducing computations. We implement the entire gradient
computation as a user-friendly PyTorch autograd module: the forward pass returns the optimal
decision z∗ (and λ∗, ν∗), and the backward pass computes the gradient dF

dθ as derived above.

Variance-reduction strategy. While the score-function estimator is effective, a naive implementa-
tion of the weighted ELBO loss in Eq. 13 can suffer from high variance, leading to unstable training.
In practice, we found that carefully designing the sampling strategy for the ELBO loss is crucial
to obtaining low-variance and stable gradients. To reduce the variance, we utilize the method from
Improved DDPM (Nichol & Dhariwal, 2021) for choosing diffusion steps. Specifically, instead of
uniform sampling, we use importance sampling over timesteps with probability pt and weights 1/pt:

∇θELBOIS = Et∼pt

[
∇θ(ELBOt)

pt

]
, where pt ∝

√
E[∥∇θ(ELBOt)∥2] and

∑
t

pt = 1. (14)

This method remains unbiased, but the variance is minimized. In essence, this approach gives less
weight to the early timesteps that have large gradients and more weight to later timesteps.

6 EXPERIMENTS

We evaluate the performance of our diffusion-based DFL approaches on a variety of tasks, comparing
against several baseline methods. Specifically, we consider:

• Two-stage predict-then-optimize baselines: a deterministic MLP, a Gaussian probabilistic
model, and a diffusion model trained to minimize prediction error (Elmachtoub & Grigas, 2022).

• Deterministic DFL: a deterministic MLP model with end-to-end DFL training (Donti et al.,
2017).

• Gaussian DFL (both reparameterization and score function): a Gaussian probabilistic model with
end-to-end stochastic DFL training (Silvestri et al., 2023); see details in Appendix A.5.

• Diffusion DFL (ours): our diffusion model predictor, trained with either reparameterization or
score-function gradient estimators.

6.1 SYNTHETIC EXAMPLE

In this example, we consider a factory that decides how much to manufacture for each of d ∈ N
products. The parameter Y ∈ Rd represents the profit margin for each product, i.e., Yi is the profit
per unit of product i; due to uncertainty in market conditions, Y is uncertain. The factory’s decision
z ∈ [0, C]d represents how much of each product to manufacture, where C is the maximum capacity
for each product. For simplicity, we do not consider any contextual features x in this example. That
means DFL learns a distribution that generates y that can minimize the decision objective.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Suppose that the factory has a risk-averse cost function f(y, z) = exp(−y⊤z)3, which indicates that
the factory wants to put a larger weight on the product with higher profit Yi. Under uncertainty, the
decision-maker seeks to minimize the expected cost by solving a stochastic optimization problem:

z∗sto ∈ argmin
z∈[0,C]d

Ey∼Pθ(·|x)[exp(−y⊤z)]. (15)

In this stochastic case, the optimal investment z∗sto typically lies in the interior of the feasible region,
which balances the potential high reward of investing against the risk of losses.

Experimental setup. We simulate the uncertain parameter Y drawn from a mixture of Gaussians,

Yi
iid∼ p · N (a, σ2) + (1− p) · N (−b, σ2). (16)

Specifically, we set p = 0.8, a = 1, b = 3, σ = 0.15, C = 2. We train each model (deterministic,
Gaussian, diffusion) on this distribution in a decision-focused manner (for DFL methods) or on pure
regression (for two-stage), and evaluate the expected cost achieved by the resulting decision z∗θ (x).
We present the results of one product (d = 1) in Figure 1 and 10 products (d = 10) in Table 1.

6.2 POWER SCHEDULE

In this experiment, we evaluate our method on a real-world energy scheduling problem from Donti
et al. (2017). This task involves a 24-hour generation-scheduling problem in which the operator
chooses z ∈ R24 (hourly generation). Given a realization y of demand, the decision loss penalizes
shortage and excess with asymmetric linear costs (γs and γe) plus a quadratic tracking term; the
decision must also satisfy a ramping bound cr. Let [v]+ := max(v, 0). We have the decision loss as
the quadratic problem:

min
z

Ey∼Pθ(·|x)[f(y, z)] =

24∑
i=1

Ey∼Pθ(·|x)[γs[yi − zi]+ + γe[zi − yi]+ +
1

2
(zi − yi)

2],

s.t. |zi − zi−1| ≤ cr for all i ∈ {1, 2, . . . , 24}. (17)

Experimental setup. We use more than 8 years of historical data from a regional power grid (PJM
Interconnection, 2025). Feature x includes the previous day’s hourly load, temperature, next-day
temperature forecasts, non-linear transforms (lags and rolling statistics), calendar indicators, and
yearly sinusoidal features. Given x, the prediction model Pθ(·|x) outputs a distribution over y ∈ R24.
We report the test decision cost in Table 1 and a held-out horizon in Figure 7.

6.3 STOCK MARKET PORTFOLIO OPTIMIZATION

In this experiment, we apply our diffusion DFL approach to a financial portfolio optimization problem
under uncertain stock returns. Here, the random vector y ∈ Rn represents the returns for the assets n
on the next day, and the decision z ∈ Rn represents the portfolio weights allocated to those assets.
We consider a mean-variance trade-off decision loss: maximize expected return while keeping the
risk (variance) low. This can be written as minimizing a loss that is a negative expected return plus a
quadratic penalty on variance:

min
z

Ey∼Pθ(·|x)[f(y, z)] = Ey∼Pθ(·|x)

[α
2
z⊤yy⊤z − y⊤z

]
, s.t. z⊤1 = 1, 0 ≤ zi ≤ 1, (18)

where α > 0 is a risk parameter and constraints enforce that z is a valid portfolio. In practice,
the deterministic solution may concentrate heavily on a few assets and yield a low average return,
whereas a stochastic approach can achieve higher returns by accounting for variance.

Experimental setup. We have daily prices and volumes spanning 2004-2017 and evaluate on the
S&P 500 index constituents (Quandl WIKI dataset, 2025). The features x ∈ R28 include recent
historical return, trading volume windows, and rolling averages. The immediate-return predictor
Pθ(·|x) is to predict the next day’s price. We report the performance of different DFL baselines with
50 portfolios in Table 1 and other sizes of portfolios in Section 7.2.

3Here, we have ignored the degenerate case y = 0. To deal with the degenerate case, one could add a
zero-centered bump function c(y) to the objective f(y, z).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Table 1: Results for different optimization tasks. Our two diffusion DFL methods achieve the best and
second-best decision quality in all 3 tasks, significantly better than other baselines. Bolded values are
the best in test task losses; underlined values are the 2nd-best. Mean ± standard error across 10 runs.

Synthetic Example Power Schedule Stock Portfolio

Label / Method RMSE↓ Task↓ RMSE↓ Task↓ RMSE↓ Task (%)↑
Two-stage (TS)
Deterministic TS 0.639±0.00 1.987±0.00 0.120±0.00 41.239±3.18 0.027±0.00 0.04%±0.04

Gaussian TS 0.720±0.00 1.272±0.23 0.117±0.00 5.580±0.45 0.188±0.03 0.10%±0.04

Diffusion TS 0.905±0.00 0.393±0.00 0.147±0.00 7.901±0.76 0.455±0.00 0.13%±0.03

Decision-focused learning (DFL)
Deterministic 0.640±0.00 1.987±0.00 4.997±0.10 4.324±0.25 0.032±0.00 0.07%±0.00

Gaussian Reparameterization 0.707±0.00 1.169±0.03 4.525±0.12 3.724±0.05 0.189±0.03 0.08%±0.03

Gaussian Score Function 0.708±0.00 1.132±0.00 4.713±0.15 4.087±0.06 0.187±0.03 0.14%±0.05

Diffusion Reparameterization 0.852±0.01 0.365±0.00 3.141±0.06 3.152±0.03 0.063±0.00 4.17%±0.24

Diffusion Score Function 0.849±0.09 0.362±0.00 2.893±0.03 3.171±0.02 0.067±0.00 3.98%±0.31

7 DISCUSSION OF EXPERIMENTAL RESULTS AND ABLATION STUDY

7.1 DISCUSSION OF RESULTS IN TABLE 1

Two-stage vs DFL. As shown in Table 1, across all three experiment tasks, we find that end-to-end
DFL leads to better downstream decisions than the conventional two-stage approach. Conventional
two-stage methods minimize RMSE during training, but this often leads to poor downstream decisions.
In contrast, all variants of DFL directly minimize the decision cost during training and thus achieve
lower decision costs.

Deterministic vs Stochastic Optimization. Our results show that stochastic DFL methods out-
perform deterministic DFL in terms of decision quality on every task. By modeling uncertainty,
stochastic predictors enable the decision optimization to account for risk and variability in outcomes.
For instance, in the portfolio experiment, the deterministic DFL yields only 0.07% return, whereas a
Gaussian DFL modestly improves that, and our diffusion DFL achieves nearly 4% average return.
These gains come from the stochastic models’ ability to predict uncertainty: instead of committing to
a point prediction of y, the stochastic DFL produces decisions for a range of possible outcomes.

Benefits of Diffusion DFL. Among the stochastic approaches, including baselines using Gaussian
models, our diffusion DFL method consistently delivers the best decision performance. In particular,
the diffusion model’s strength is the capacity to capture complex, multi-modal outcome distributions
that a simple parametric Gaussian cannot represent. The Gaussian DFL sometimes falls short of
the optimal decision quality. The diffusion model, on the other hand, can represent more intricate
distributions of y, leading to decisions that better reflect complex scenarios.

7.2 ABLATION STUDY

Comparison Cost for Reparameterization and Score function. A key finding from our ablation
study is the computational advantage of score-function approach over the reparameterization. Here,
we measure the trade-off between training cost and the final decision performance for different
gradient estimators and sampling budgets.

In Figure 3 (a), we see that all variants reach similar final performance on the test set, indicating that
even using as few as 50 samples is sufficient to optimize the decision quality accurately. Figure 4 plots
the GPU memory cost alongside the final test loss. The reparameterization method is very computa-
tionally expensive, requiring about 60 GB of GPU memory for backpropagating through all diffusion
steps. In contrast, the score-function with 50 samples achieves virtually the same test loss as the
reparameterization method (difference within 0.02) while using an order of magnitude less memory.
Even with 10 samples, though slightly worse in loss, it still outperforms the deterministic baseline
and uses a tiny fraction of the compute. These results validate that the score-function approach retains
the decision-quality benefits of diffusion DFL while dramatically cutting computational requirements,
making diffusion DFL practical even for complex problems.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

� 	�
� �� ��
�
�('�"

�

�
�
*+
��
��
�$'
**

����� *+�$'**�!')��#!!) &+�% +"'�*
*!�	� *!�
�)(

+* *!�	� *!�
�)(
� +"'�

�

�

��

��

��
��
�'
*+
���

�*
�

��	� ���� ��
�

����

�'%(�) ������'*+���+ *+�$'**
�����'*+ � *+�����$'**

�

�

�
*+
��
��
�$'
**

����

��
	 ��	� ��	

����

��
	 ��	� ��	

� �� 	�
� �� ��
�"!��

���

��	�

����

����

�#
��
 �
��

��
�!
$$

������$%��!$$��!#���"!#%� ���$��"�� ������
$�!#��� ���$�!#���

� �� 	�
� �� ��
�"!��

�

�

��
$%
��
��
��!
$$

������$%��!$$��!#���"!#%� ���$��"�� ������
$�!#��� ���$�!#���

Figure 3: Learning curves for (a) score function with 10 and 50
samples (sf 10 and sf 50) and reparameterization (rp), (b) score
function and importance-weighted score function with 10 samples.

0 10 20 30 40 50
Epoch

4

8

Te
st

 D
FL

 lo
ss

(a) Test loss for different methods
sf 10 sf 50 rp

ts sf 10 sf 50 rp
Method

0

20

40

60

GP
U

co
st

 (G
Bs

)

0.13 0.83 3.50

60.75

Compare GPU cost & test loss
GPU cost Test DFL loss

2

4

8

Te
st

 D
FL

 lo
ss

7.90

3.21 3.18 3.15

7.90

3.21 3.18 3.15

Figure 4: Computation cost vs.
performance trade-off for diffu-
sion DFL training

Gradient variance reduction. As discussed in Section 5.2, using the score function estimator allows
us to avoid backpropagating through the entire diffusion sampling process by only sampling a limited
number of diffusion timesteps per update. The reason behind this is that a naive implementation,
sampling timesteps uniformly at random, would yield a very high variance in the gradient estimates,
which then leads to unstable training. Intuitively, early diffusion steps (large noise levels) dominate
the ELBO loss and its gradients, so if they happen to be sampled, they contribute disproportionately
and noisily. With a small random subset of timesteps, the gradient estimate can thus be highly
imbalanced and noisy, which causes training divergence in practice.

To address this, we adopt an importance sampling strategy for choosing diffusion timesteps. Empiri-
cally, as shown in Figure 3 (b), the learning curves with the importance-weighted sampler are much
smoother and more stable than with the uniform sampler. The score-function DFL training no longer
diverges; instead, it converges cleanly, indicating that our variance reduction strategy successfully
stabilizes the training process for diffusion DFL.

10 25 50 75 100
Decision dimension d (# securities)

0

1

2

3

4

5

6

7

Re
gr

et

3.01 2.99

1.85

4.32
4.03

1.78

5.35 5.37

1.57

6.10 5.98

1.72

6.63 6.74

1.81

Stock Portfolio Performance in Regret
Deterministic
Gaussian
Diffusion

Figure 5: Test regret vs. decision dimension d in
the stock portfolio task.

Comparison on different problem sizes. A key
challenge for DFL is scalability: as the decision
dimension grows, many methods degrade signif-
icantly Mandi et al. (2024). In this experiment,
we investigate the performance of DFL methods
under various decision dimensions in the stock
portfolio. Specifically, we set the decision di-
mension range from 10 to 100 and report the test
regrets. As summarized in Figure 5, the regret
gap between DFL diffusion and Gaussian and
deterministic methods increases with increasing
dimension, which demonstrates that DFL diffu-
sion scales effectively in more complex decision
settings.

8 CONCLUSION

We propose the first diffusion-based DFL approach for stochastic optimization, which trains a dif-
fusion model to capture complex uncertainty in problem parameters. We develop two end-to-end
training techniques to integrate the diffusion model into decision-making: reparameterization and
score function. As demonstrated with empirical evidence, the score function method drastically
reduces memory and computation cost while having similar performance to reparameterization and be-
ing easy to train. Empirically, diffusion DFL achieves state-of-the-art results on multiple benchmarks,
consistently outperforming both traditional two-stage methods and prior DFL approaches.

REPRODUCIBILITY STATEMENT

We release an anonymized repository containing all code, configuration files, and scripts needed to
reproduce our results, including data generation and figure plotting. All proofs for the main paper are
stated in the appendix with explanations and proper assumptions.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

REFERENCES

Brandon Amos and J. Zico Kolter. OptNet: Differentiable Optimization as a Layer in Neural
Networks. In Proceedings of the 34th International Conference on Machine Learning, pp. 136–145.
PMLR, July 2017. URL https://proceedings.mlr.press/v70/amos17a.html.
ISSN: 2640-3498.

Yossi Arjevani, Yair Carmon, John C. Duchi, Dylan J. Foster, Ayush Sekhari, and Karthik Sridharan.
Second-Order Information in Non-Convex Stochastic Optimization: Power and Limitations. In
Proceedings of Twenty Second Conference on Learning Theory, pp. 242–299. PMLR, July 2020.
URL https://proceedings.mlr.press/v125/arjevani20a.html. ISSN: 2640-
3498.

Dimitris Bertsimas and Nathan Kallus. From Predictive to Prescriptive Analytics. Management
Science, 66(3):1025–1044, March 2020. ISSN 0025-1909, 1526-5501. doi: 10.1287/mnsc.
2018.3253. URL https://pubsonline.informs.org/doi/10.1287/mnsc.2018.
3253.

Prafulla Dhariwal and Alexander Nichol. Diffusion Models Beat GANs on Image Synthesis. In
Advances in Neural Information Processing Systems, volume 34, pp. 8780–8794. Curran Asso-
ciates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/
2021/hash/49ad23d1ec9fa4bd8d77d02681df5cfa-Abstract.html.

Priya L. Donti, Brandon Amos, and J. Zico Kolter. Task-based End-to-end
Model Learning in Stochastic Optimization. In Advances in Neural Infor-
mation Processing Systems, volume 30, Long Beach, CA, USA, December
2017. Curran Associates, Inc. URL http://papers.nips.cc/paper/
7132-task-based-end-to-end-model-learning-in-stochastic-optimization.

Adam N. Elmachtoub and Paul Grigas. Smart “Predict, then Optimize”. Management Science,
68(1):9–26, January 2022. ISSN 0025-1909. doi: 10.1287/mnsc.2020.3922. URL https://
pubsonline.informs.org/doi/10.1287/mnsc.2020.3922. Publisher: INFORMS.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic Models. In Ad-
vances in Neural Information Processing Systems, volume 33, pp. 6840–6851. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html.

Matthew D Hoffman and Matthew J Johnson. ELBO surgery: yet another way to carve up the
variational evidence lower bound. In NIPS 2016 workshop, 2016.

Haeun Jeon, Hyunglip Bae, Minsu Park, Chanyeong Kim, and Woo Chang Kim. Locally Convex
Global Loss Network for Decision-Focused Learning. Proceedings of the AAAI Conference on Ar-
tificial Intelligence, 39(25):26805–26812, April 2025. ISSN 2374-3468. doi: 10.1609/aaai.v39i25.
34884. URL https://ojs.aaai.org/index.php/AAAI/article/view/34884.

Sujin Kim, Raghu Pasupathy, and Shane G. Henderson. A Guide to Sample Average Approximation.
In Michael C Fu (ed.), Handbook of Simulation Optimization, pp. 207–243. Springer, New
York, NY, 2015. ISBN 978-1-4939-1384-8. doi: 10.1007/978-1-4939-1384-8 8. URL https:
//doi.org/10.1007/978-1-4939-1384-8_8.

Diederik P Kingma and Max Welling. Auto-Encoding Variational Bayes. In International Conference
on Learning Representations, April 2014. URL http://arxiv.org/abs/1312.6114.

Anton J. Kleywegt, Alexander Shapiro, and Tito Homem-de Mello. The Sample Average Approx-
imation Method for Stochastic Discrete Optimization. SIAM Journal on Optimization, 12(2):
479–502, January 2002. ISSN 1052-6234, 1095-7189. doi: 10.1137/S1052623499363220. URL
http://epubs.siam.org/doi/10.1137/S1052623499363220.

Mykel J. Kochenderfer, Christopher Amato, Girish Chowdhary, Jonathan P. How, Hayley J. Davison
Reynolds, Jason R. Thornton, Pedro A. Torres-Carrasquillo, N. Kemal Üre, and John Vian. Decision
Making Under Uncertainty: Theory and Application. The MIT Press, 1st edition, June 2015. ISBN
978-0-262-02925-4.

10

https://proceedings.mlr.press/v70/amos17a.html
https://proceedings.mlr.press/v125/arjevani20a.html
https://pubsonline.informs.org/doi/10.1287/mnsc.2018.3253
https://pubsonline.informs.org/doi/10.1287/mnsc.2018.3253
https://proceedings.neurips.cc/paper_files/paper/2021/hash/49ad23d1ec9fa4bd8d77d02681df5cfa-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2021/hash/49ad23d1ec9fa4bd8d77d02681df5cfa-Abstract.html
http://papers.nips.cc/paper/7132-task-based-end-to-end-model-learning-in-stochastic-optimization
http://papers.nips.cc/paper/7132-task-based-end-to-end-model-learning-in-stochastic-optimization
https://pubsonline.informs.org/doi/10.1287/mnsc.2020.3922
https://pubsonline.informs.org/doi/10.1287/mnsc.2020.3922
https://proceedings.neurips.cc/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html
https://ojs.aaai.org/index.php/AAAI/article/view/34884
https://doi.org/10.1007/978-1-4939-1384-8_8
https://doi.org/10.1007/978-1-4939-1384-8_8
http://arxiv.org/abs/1312.6114
http://epubs.siam.org/doi/10.1137/S1052623499363220

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Lingkai Kong, Yuanqi Du, Wenhao Mu, Kirill Neklyudov, Valentin De Bortoli, Dongxia Wu, Haorui
Wang, Aaron M. Ferber, Yian Ma, Carla P. Gomes, and Chao Zhang. Diffusion Models as
Constrained Samplers for Optimization with Unknown Constraints. In Proceedings of The 28th
International Conference on Artificial Intelligence and Statistics, pp. 4582–4590. PMLR, April
2025. URL https://proceedings.mlr.press/v258/kong25b.html. ISSN: 2640-
3498.

Siddarth Krishnamoorthy, Satvik Mehul Mashkaria, and Aditya Grover. Diffusion Models for Black-
Box Optimization. In Proceedings of the 40th International Conference on Machine Learning,
pp. 17842–17857. PMLR, July 2023. URL https://proceedings.mlr.press/v202/
krishnamoorthy23a.html. ISSN: 2640-3498.

Jayanta Mandi, Victor Bucarey, Maxime Mulamba Ke Tchomba, and Tias Guns. Decision-
Focused Learning: Through the Lens of Learning to Rank. In Proceedings of the 39th In-
ternational Conference on Machine Learning, pp. 14935–14947. PMLR, June 2022. URL
https://proceedings.mlr.press/v162/mandi22a.html. ISSN: 2640-3498.

Jayanta Mandi, James Kotary, Senne Berden, Maxime Mulamba, Victor Bucarey, Tias Guns, and
Ferdinando Fioretto. Decision-Focused Learning: Foundations, State of the Art, Benchmark and
Future Opportunities. Journal of Artificial Intelligence Research, 80:1623–1701, August 2024.
ISSN 1076-9757. doi: 10.1613/jair.1.15320. URL https://www.jair.org/index.php/
jair/article/view/15320.

Shakir Mohamed, Mihaela Rosca, Michael Figurnov, and Andriy Mnih. Monte Carlo Gradient
Estimation in Machine Learning. Journal of Machine Learning Research, 21(132):1–62, 2020.
ISSN 1533-7928. URL http://jmlr.org/papers/v21/19-346.html.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved Denoising Diffusion Probabilistic Models.
In Proceedings of the 38th International Conference on Machine Learning, pp. 8162–8171. PMLR,
July 2021. URL https://proceedings.mlr.press/v139/nichol21a.html. ISSN:
2640-3498.

PJM Interconnection. Data Miner, 2025. URL https://dataminer2.pjm.com/list.

Quandl WIKI dataset. Nasdaq Data Link, 2025. URL https://data.nasdaq.com.

Sebastian Sanokowski, Sepp Hochreiter, and Sebastian Lehner. A Diffusion Model Framework for
Unsupervised Neural Combinatorial Optimization, August 2025. URL http://arxiv.org/
abs/2406.01661. arXiv:2406.01661 [cs].

Sanket Shah, Kai Wang, Bryan Wilder, Andrew Perrault, and Milind Tambe. Decision-
Focused Learning without Decision-Making: Learning Locally Optimized Decision
Losses. Advances in Neural Information Processing Systems, 35:1320–1332, December
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
hash/0904c7edde20d7134a77fc7f9cd86ea2-Abstract-Conference.html.

Shai Shalev-Shwartz, Ohad Shamir, Nathan Srebro, and Karthik Sridharan. Stochastic Convex
Optimization. In Proceedings of Thirty Third Conference on Learning Theory. PMLR, 2009.

Keivan Shariatmadar, Neil Yorke-Smith, Ahmad Osman, Fabio Cuzzolin, Hans Hallez, and David
Moens. Generalized Decision Focused Learning under Imprecise Uncertainty–Theoretical Study,
March 2025. URL http://arxiv.org/abs/2502.17984. arXiv:2502.17984 [cs].

Mattia Silvestri, Senne Berden, Jayanta Mandi, Ali İrfan Mahmutoğulları, Maxime Mulamba,
Allegra De Filippo, Tias Guns, and Michele Lombardi. Score Function Gradient Estimation
to Widen the Applicability of Decision-Focused Learning. September 2023. URL https:
//openreview.net/forum?id=ty046JUllZ.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep Unsuper-
vised Learning using Nonequilibrium Thermodynamics. In Proceedings of the 32nd Interna-
tional Conference on Machine Learning, pp. 2256–2265. PMLR, June 2015. URL https:
//proceedings.mlr.press/v37/sohl-dickstein15.html. ISSN: 1938-7228.

11

https://proceedings.mlr.press/v258/kong25b.html
https://proceedings.mlr.press/v202/krishnamoorthy23a.html
https://proceedings.mlr.press/v202/krishnamoorthy23a.html
https://proceedings.mlr.press/v162/mandi22a.html
https://www.jair.org/index.php/jair/article/view/15320
https://www.jair.org/index.php/jair/article/view/15320
http://jmlr.org/papers/v21/19-346.html
https://proceedings.mlr.press/v139/nichol21a.html
https://dataminer2.pjm.com/list
https://data.nasdaq.com
http://arxiv.org/abs/2406.01661
http://arxiv.org/abs/2406.01661
https://proceedings.neurips.cc/paper_files/paper/2022/hash/0904c7edde20d7134a77fc7f9cd86ea2-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/0904c7edde20d7134a77fc7f9cd86ea2-Abstract-Conference.html
http://arxiv.org/abs/2502.17984
https://openreview.net/forum?id=ty046JUllZ
https://openreview.net/forum?id=ty046JUllZ
https://proceedings.mlr.press/v37/sohl-dickstein15.html
https://proceedings.mlr.press/v37/sohl-dickstein15.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Yang Song and Stefano Ermon. Generative Modeling by Estimating Gradients of the Data Dis-
tribution. In Advances in Neural Information Processing Systems, volume 32. Curran Asso-
ciates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/
2019/hash/3001ef257407d5a371a96dcd947c7d93-Abstract.html.

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-Based Generative Modeling through Stochastic Differential Equations. October 2020.
URL https://openreview.net/forum?id=PxTIG12RRHS&utm_campaign=NLP%
20News&utm_medium=email&utm_source=Revue%20newsletter.

Zhiqing Sun and Yiming Yang. DIFUSCO: Graph-based Diffusion Solvers for Combinatorial Opti-
mization. November 2023. URL https://openreview.net/forum?id=JV8Ff0lgVV.

Ou Tang and S. Nurmaya Musa. Identifying risk issues and research advancements in supply chain
risk management. International Journal of Production Economics, 133(1):25–34, September 2011.
ISSN 0925-5273. doi: 10.1016/j.ijpe.2010.06.013. URL https://www.sciencedirect.
com/science/article/pii/S0925527310002215.

Yusuke Tashiro, Jiaming Song, Yang Song, and Stefano Ermon. CSDI: Conditional Score-
based Diffusion Models for Probabilistic Time Series Imputation. In Advances in Neu-
ral Information Processing Systems, volume 34, pp. 24804–24816. Curran Associates, Inc.,
2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/
hash/cfe8504bda37b575c70ee1a8276f3486-Abstract.html.

Arash Vahdat and Jan Kautz. NVAE: A Deep Hierarchical Variational Autoencoder. In Ad-
vances in Neural Information Processing Systems, volume 33, pp. 19667–19679. Curran As-
sociates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
e3b21256183cf7c2c7a66be163579d37-Abstract.html.

Prince Zizhuang Wang, Jinhao Liang, Shuyi Chen, Ferdinando Fioretto, and Shixiang Zhu. Gen-
DFL: Decision-Focused Generative Learning for Robust Decision Making, February 2025. URL
http://arxiv.org/abs/2502.05468. arXiv:2502.05468 [cs].

Yafei Wang, Bo Pan, Mei Li, Jianya Lu, Lingchen Kong, Bei Jiang, and Linglong Kong. Sample
Average Approximation for Conditional Stochastic Optimization with Dependent Data. June 2024.
URL https://openreview.net/forum?id=YuGnRORkJm.

Bryan Wilder, Bistra Dilkina, and Milind Tambe. Melding the Data-Decisions Pipeline: Decision-
Focused Learning for Combinatorial Optimization. Proceedings of the AAAI Conference on
Artificial Intelligence, 33(01):1658–1665, July 2019. ISSN 2374-3468. doi: 10.1609/aaai.v33i01.
33011658. URL https://ojs.aaai.org/index.php/AAAI/article/view/3982.

12

https://proceedings.neurips.cc/paper_files/paper/2019/hash/3001ef257407d5a371a96dcd947c7d93-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2019/hash/3001ef257407d5a371a96dcd947c7d93-Abstract.html
https://openreview.net/forum?id=PxTIG12RRHS&utm_campaign=NLP%20News&utm_medium=email&utm_source=Revue%20newsletter
https://openreview.net/forum?id=PxTIG12RRHS&utm_campaign=NLP%20News&utm_medium=email&utm_source=Revue%20newsletter
https://openreview.net/forum?id=JV8Ff0lgVV
https://www.sciencedirect.com/science/article/pii/S0925527310002215
https://www.sciencedirect.com/science/article/pii/S0925527310002215
https://proceedings.neurips.cc/paper_files/paper/2021/hash/cfe8504bda37b575c70ee1a8276f3486-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2021/hash/cfe8504bda37b575c70ee1a8276f3486-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/e3b21256183cf7c2c7a66be163579d37-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/e3b21256183cf7c2c7a66be163579d37-Abstract.html
http://arxiv.org/abs/2502.05468
https://openreview.net/forum?id=YuGnRORkJm
https://ojs.aaai.org/index.php/AAAI/article/view/3982

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

A APPENDIX

Notation. We let ∂f
∂x denote the Jacobian matrix where

(
∂f
∂x

)
i,j

:= ∂fi
∂xj

and ∇xf :=
(
∂f
∂x

)⊤
denote

the gradient. For a vector v, D(v) denotes a diagonal matrix with v on its diagonal. Let P (·) denote
a probability distribution and p(·) denote a probability density; in particular, for diffusion models we
use Pθ for the model’s output distribution and pθ for transition densities.

In this appendix, we derive the decision optimization problem with general convex constraints
rather than merely linear constraints. Assume the optimization problem is

z∗θ (x) = argmin
z

Ey∼Pθ(·|x)[f(y, z)], s.t. h(x, z) ≤ 0, g(x, z) = 0, (19)

where h(x, z) ≤ 0 denotes the convex inequalities constraints and g(x, z) = 0 denotes the equality
constraints.

A.1 PROOFS FOR SECTION 4

Proposition A.1 (Reparameterization trick in diffusion models). Let T ∈ N+, and suppose the
reverse diffusion model defines a Gaussian distribution in Eq. 5 with fixed scalars σt ≥ 0 and a
standard normal prior yT ∼ N (0, I). Let {ϵt}Tt=0 be i.i.d. N (0, I). Then the model output y can be
expressed as a transformation y = R(ϵ0:T , θ | x) of a base noise distribution ϵ ∼ P (ϵ), where R is
differentiable in θ. Also assume Ey∼Pθ(·|x)[f(y, z)] is continuously differentiable. Then we have

∇θEy∼Pθ(·|x)[f(y, z)] = Eϵ∼P (ϵ)

(T∑
s=1

(
s−1∏
u=1

Ju

)
As

)⊤

∇yf(R(ϵ, θ | x), z)

 , (20)

where At :=
∂µθ(yt,t,x)

∂θ , Jt :=
∂µθ(yt,t,x)

∂yt
, and we define

∏0
u=1 Ju := I .

Proof. The conditional diffusion reverse process is defined as

yt−1 = µθ(yt, t, x) + σtϵt−1, yT = ϵT ,

where the noise term σtϵt−1 is θ-independent. Differentiating both sides w.r.t. θ gives

∂yt−1

∂θ
=

∂µθ(yt, t, x)

∂θ
+

∂µθ(yt, t, x)

∂yt

∂yt
∂θ

.

Denote

At :=
∂µθ(yt, t, x)

∂θ
, Jt :=

∂µθ(yt, t, x)

∂yt
, Gt :=

∂yt
∂θ

.

Thus, we have
Gt−1 = At + JtGt, GT = 0.

Our final goal is:

∇θR(ϵ0:T , θ|x) =
∂y0
∂θ

= G0 (21)

= A1 + J1A2 + J1J2A3 + · · ·+ J1 · · · JT1
At (22)

=

T∑
s=1

(
s−1∏
u=1

Ju

)
As, (23)

where we define
∏0

u=1 Ju := I . Then, we have

∇θEy∼Pθ(·|x)[f(y, z)] = ∇θ Eϵ∼P (ϵ)[f(R(ϵ, θ|x), z)] (24)

= Eϵ∼P (ϵ)[∇θf(R(ϵ, θ|x), z)] (25)

= Eϵ∼P (ϵ)

[
∇θR(ϵ, θ | x)⊤∇yf(R(ϵ, θ|x), z)

]
(26)

= Eϵ∼P (ϵ)

(T∑
s=1

(
s−1∏
u=1

Ju

)
As

)⊤

∇yf(R(ϵ, θ|x), z)

 (27)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Lemma A.2 (Gradient of Reparameterization method). Assume the model prediction y can be
expressed as a transformation y = T (ϵ, θ | x), ϵ ∼ P (ϵ). The total derivative of the decision
objective F w.r.t. θ can be computed as

dF

dθ
= −

 dF
dz∗

0
0

⊤  H G⊤ Q⊤

D(λ∗)G D(h(x, z∗)) 0
Q 0 0

−1 Eϵ∼P (ϵ)[(∇θT (ϵ, θ|x))⊤∇2
zyf(z

∗, y)]
0
0

 ,

(28)

where H = Ey∼Pθ(·|x)[∇2
zzf(y, z

∗)] + ∇2
zz(λ

∗⊤h(x, z∗)) is the Hessian of the Lagrangian with
respect to z, G = ∇zh(x, z

∗) is the Jacobian of the inequality constraints in z∗, and Q = ∇zg(x, z
∗)

is the Jacobian of the equality constraints in z∗.

Proof. At the primal-dual optimal solution (z∗θ , λ
∗
θ, ν

∗
θ) to Eq. 3, the following KKT conditions must

hold:

∇zL(θ, z∗θ , λθ, νθ;x) = 0,

λθ ⊙ h(x, z∗θ) = 0,

g(x, z∗θ) = 0

λθ ≥ 0, νθ ≥ 0,

h(x, z∗θ) ≤ 0.

Since h does not depend on θ here, we can combine the KKT conditions and Proposition A.1 and
yield

∂∇zL
∂θ

+
∂∇zL
∂z

∂z∗

∂θ
+

∂∇zL
∂λ∗

∂λ∗

∂θ
+

∂∇zL
∂ν∗

∂ν∗

∂θ

= Eϵ∼P (ϵ)[(∇θT (ϵ, θ|x))⊤∇y(∇zf(z
∗, y))] +

(
Ey∼Pθ(·|x)[∇

2
zzf(z

∗, y)] +∇2
zzh(x, z

∗)
)∂z∗
∂θ

+∇zh(x, z
∗)
∂λ∗

∂θ
+∇zg(x, z

∗)
∂λ∗

∂θ
= 0. (29)

∂λ∗ ⊙ h(x, z∗)

∂z∗
∂z∗

∂θ
+

∂λ∗ ⊙ h(x, z∗)

∂λ∗
∂λ∗

∂θ
= D(λ∗)∇zh(x, z

∗)
∂z∗

∂θ
+D(h(x, z∗))

∂λ∗

∂θ
= 0.

(30)

Transform them into matrix form and get H G⊤ Q⊤

D(λ∗)G D(h(x, z∗)) 0
Q 0 0

 ∂z∗

∂θ
∂λ∗

∂θ
∂ν∗

∂θ

 = −

Eϵ∼P (ϵ)[(∇θT (ϵ, θ|x))⊤∇2
zyf(z

∗, y)]
0
0

 , (31)

where H = Ey∼Pθ(·|x)[∇2
zzf(z

∗, y)] +∇2
zz(λ

∗⊤h(x, z∗)) +∇2
zz(ν

∗⊤g(x, z∗)), G = ∇zh(x, z
∗),

and Q = ∇zg(x, z
∗). Furthermore, if equalities and inequalities are affine (as in main paper), H

reduces to Ey∼Pθ(·|x)[∇2
zzf(y, z

∗)] since ∇2
zzh = ∇2

zzg = 0.

By chain rule, we have

dF

dθ
=

[
dF
dz∗

0

]⊤ [∂z∗

∂θ
∂λ∗

∂θ

]

= −

 dF
dz∗

0
0

⊤  H G⊤ Q⊤

D(λ∗)G D(h(x, z∗)) 0
Q 0 0

−1 Eϵ∼P (ϵ)[(∇θT (ϵ, θ|x))⊤∇2
zyf(z

∗, y)]
0
0

 .

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

A.2 PROOFS FOR SECTION 5

Proposition A.3. Let f : Y × Rd → R be any function that does not depend on θ. If y ∼ Pθ(· | x),
then

∇θEy∼Pθ(·|x)[f(y, z)] = Ey∼Pθ(·|x)[f(y, z)
d logPθ(y | x)

dθ
]. (32)

Proof.

∇θEy∼Pθ(·|x)[f(y, z)] =
d

dθ
Ey∼Pθ(·|x)[f(y, z)] (33)

=
d

dθ

∫
f(y, z)Pθ(y | x) dy (34)

=

∫
Pθ(y | x) d

dθ
f(y, z) + f(y, z)

d

dθ
Pθ(y | x)dy (35)

=

∫
Pθ(y | x) d

dθ
f(y, z) + f(y, z)

d

dθ
logPθ(y | x) ∗ Pθ(y | x)dy (36)

= Ey∼Pθ(·|x)[
d

dθ
f(y, z)] + Ey∼Pθ(·|x)[f(y, z)

d logPθ(y | x)
dθ

]. (37)

This immediately implies the results by noticing f does not depend on θ.

Proposition A.4. Let Pθ(y | x) be a probability density parameterized by θ ∈ Θ, and let f :
Y × Rd → R be a scalar-valued function that does not depend on θ. Fix any z ∈ Rd. Suppose that
there exists some neighborhood N(θ0) ⊆ Θ around θ0 ∈ Θ such that the following 3 assumptions
are satisfied:

1. For all θ ∈ N(θ0), the function h(y) := Pθ(y | x) f(y, z) is integrable;
2. For all θ ∈ N(θ0) and almost all y ∈ Y , the gradient ∇θPθ(y | x) exists; and
3. There exists an integrable function g : Y → R that dominates ∇θPθ(y | x). That is, for all

θ ∈ N(θ0) and almost all y ∈ Y , ∥∇θPθ(y | x)∥1 ≤ |g(y)|.
Then,

∇θEy∼Pθ(·|x)[f(y, z)] = Ey∼Pθ0
(·|x)[f(y, z) · ∇θ logPθ0(y | x)].

Proof. We make use of the log-derivative trick:

Pθ0(y | x) · ∇θ logPθ0(y | x) = Pθ0(y | x)
Pθ0(y | x)

· ∇θPθ0(y | x) = ∇θPθ0(y | x).

Then

∇θ Ey∼Pθ0
(·|x)[f(y, z)] = ∇θ

∫
Y
f(y, z)Pθ0(y | x) dy

=

∫
Y
∇θ [f(y, z)Pθ0(y | x)] dy Leibniz integral rule

=

∫
Y
f(y, z)Pθ0(y | x)∇θ logPθ0(y | x) dy log-derivative trick

= Ey∼Pθ0
(·|x) [f(y, z)∇θ logPθ0(y | x)] .

Lemma A.5 (Gradient of Score Function). The total derivative of the decision objective F w.r.t. θ
can be computed as

dF

dθ
= −

 dF
dz∗

0
0

⊤  H G⊤ Q⊤

D(λ∗)G D(h(x, z∗)) 0
Q 0 0

−1 Ey∼Pθ(·|x)[∇zf(z
∗, y)(dELBO

dθ)⊤]
0
0

 .

(38)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Proof. Differentiate this KKT system w.r.t. θ and applying Proposition A.4 yields

∂∇zL
∂θ

+
∂∇zL
∂z

∂z∗

∂θ
+

∂∇zL
∂λ∗

∂λ∗

∂θ
+

∂∇zL
∂ν∗

∂ν∗

∂θ

= Ey∼Pθ(·|x)[∇zf(z
∗, y)(∇θ logPθ(y|x))⊤] + (Ey∼Pθ(·|x)[∇

2
zzf(z

∗, y)] +∇2
zz(λ

⋆⊤h(x, z∗)))
∂z∗

∂θ

+∇zh(x, z
∗)
∂λ∗

∂θ
+∇zg(x, z

∗)
∂ν∗

∂θ
= 0. (39)

∂λ∗ ⊙ h(x, z∗)

∂z∗
∂z∗

∂θ
+

∂λ∗ ⊙ h(x, z∗)

∂λ∗
∂λ∗

∂θ

=D(λ∗)∇zh(x, z
∗)
∂z∗

∂θ
+D(h(x, z∗))

∂λ∗

∂θ
= 0. (40)

In matrix form, this becomes H G⊤ Q⊤

D(λ∗)G D(h(x, z∗)) 0
Q 0 0

 ∂z∗

∂θ
∂λ∗

∂θ
∂ν∗

∂θ

 = −

Ey[∇zf(z
∗, y)(∇θ logPθ(y | x))⊤]

0
0

 , (41)

where H = Ey∼Pθ(·|x)[∇2
zzf(z

∗, y)] +∇2
zz(λ

∗⊤h(x, z∗)), G = ∇zh(x, z
∗).

Applying the chain rule to F now gives

dF

dθ
=

 dF
dz∗

0
0

⊤  ∂z∗

∂θ
∂λ∗

∂θ
∂ν∗

∂θ

 (42)

= −

 dF
dz∗

0
0

⊤  H G⊤ Q⊤

D(λ∗)G D(h(x, z∗)) 0
Q 0 0

−1 Ey∼Pθ(·|x)[∇zf(z
∗, y)(∇θ logPθ(y | x))⊤]

0
0

 .

(43)

Then, we replace ∇θ logPθ(y | x) with the gradient of ELBO score for sample y and have

dF

dθ
= −

 dF
dz∗

0
0

⊤  H G⊤ Q⊤

D(λ∗)G D(h(x, z∗)) 0
Q 0 0

−1 Ey∼Pθ(·|x)[∇zf(z
∗, y)(dELBO

dθ)⊤]
0
0

 .

(44)

Remark A.6 (Why we cannot compute the gradient using score-matching). One may attempt to
apply the chain rule ∇θ logPθ(y|x) = ∇θy∇y logPθ(y|x), and then estimate ∇y logPθ(yt+1|x) ≈
∇y logPθ(yt+1|yt, x) ≈ sθ(yt, t, x) via score-matching (Song et al., 2020) (using the learned score
sθ(yt, t, x) of the diffusion model). However, this approach is invalid in our setting: Under the
log-trick, y is treated as a free variable and θ enters only through Pθ(y|x), so the pathwise term ∇θy
does not exist (see Appendix A.2 for derivation). Our ELBO-based surrogate (Eq. (11)) avoids this
obstacle entirely.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

A.3 PROOF FOR EQ. 13

Based on the results in Lemma A.5, we have

dF

dθ
= −

 dF
dz∗

0
0

⊤  H G⊤ Q⊤

D(λ∗)G D(h(x, z∗)) 0
Q 0 0

−1 Ey∼Pθ(·|x)[∇zf(z
∗, y)(dELBO

dθ)⊤]
0
0

 (45)

= −

 dF
dz∗

0
0

⊤  H G⊤ Q⊤

D(λ∗)G D(h(x, z∗)) 0
Q 0 0

−1

︸ ︷︷ ︸
:=u(θ)⊤

d

dθ

[Ey∼Pθ(·|x)[∇zf(z
∗, y) ELBO]

0
0

]
(46)

=
d

dθ
Ey∼Pθ(·|x)[u(θ)

⊤

[
[∇zf(z

∗, y)]
0
0

]
︸ ︷︷ ︸

:=wθ(y)

ELBO] (47)

=
d

dθ
Ey∼Pθ(·|x)[detach[wθ(y)]ELBO] (48)

A.4 EMPIRICAL EVIDENCE FOR ELBO GRADIENT APPROXIMATION

Assume our model is θ = (A,B, c), and the noise is predicted by ϵθ(yt, t, x) = Atyt + Btx + ct.
True data y ∼ N (Wx, I). In this way, there is a closed-form solution for true ∇θ log p(y0|x) since
y0 is a Gaussian and yt =

√
ᾱty0 +

√
1− ᾱtϵ.

0.0 0.2 0.4 0.6 0.8 1.0
Cosine Similarity

0

100

200

300

400

500

600

Fr
eq

ue
nc

y

Distribution of Cosine Similarities (True Grad vs Score_ELBO)

Figure 6: Compare the cosine similarity between the true gradient and the estimated gradient using a
linear model.

A.5 DETERMINISTIC OPTIMIZATION AND GAUSSIAN MODEL IN STOCHASTIC OPTIMIZATION

Deterministic Optimization Since deterministic can also be viewed as a reparameterization trick
without any randomness ϵ, we can reuse our derivation in Section 4 and compute the gradient ∇xF (x)
by Eq. 9.

Gaussian Model in Stochastic Optimization Since there are many recent papers that use the
Gaussian model as a predictor for stochastic DFL, we also claim that it has the reparameterization
and score function form.

1. Reparameterization with Gaussian Model. Also using reparameterization trick:

∇θEy∼Pθ(·|x)[f(y, z)] = Eϵ∼P (ϵ)[(∇θy∇yf(y, z)]. (49)

But with the predictor instantiated as a Gaussian model, i.e., y is computed by y =
R(ϵ, θ|x))⊤ and R is a Gaussian model.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

2. Score Function with Gaussian Model. Recall that we need to approximate the term
logPθ(y|x) for the diffusion model. However, this term has a closed-form for a Gaus-
sian model. Assume our Gaussian model is N (µθ,Σθ), then the negative log-likelihood
is

logPθ(y | x) = −1

2
[(y − µθ)

⊤Σ−1
θ (y − µθ) + log detΣθ + d log(2π)]. (50)

Then, the gradient for the score function can be calculated using ∇θ logPθ(y | x). Gaussian
models are powerful tools for many DFL tasks. However, we want to claim that the diffusion
model is more general and requires less model tuning and model assumptions.

A.6 TRAINING DETAILS

We summarize our model settings for the deterministic model, Gaussian model, and diffusion model
in Table 2.

Parameter Deterministic MLP Gaussian MLP Diffusion

Trunk (layers × width) 2× 1024 2× 1024 2× 1024

Activation ReLU / Swish (SiLU) ReLU / Swish (SiLU) Swish (SiLU)
Inputs to network x ∈ Rdx x ∈ Rdx [yt ∈ Rdy , t, x]

Time embedding — — Sinusoidal t (16-d) → 2
FC + SiLU

Output head ŷ ∈ Rdy µθ(x), log σ
2
θ(x) ∈ Rdy ϵ̂ = ϵθ(yt, t, x) ∈ Rdy

Uncertainty form None (point) Gaussian
N (µ, diag(σ2))

Non-parametric
(learned Pθ(y | x))

Two-stage training loss MSE on y Gaussian NLL Weighted denoising
MSE (ELBO-equiv.)

DFL gradient computation Implicit differentiation
through KKT

(1) Reparam: y =
µ + σ ⊙ ϵ + implicit
diff; (2) Gaussian score-
function

(1) Pathwise (backprop
through sampler, T
steps) + implicit diff;
(2) Weighted-ELBO
score-function

Sample size M — 10 (synthetic), 25
(power), 50 (portfolio)

10 (synthetic), 25
(power), 50 (portfolio)

Learning rate (lr) Task-specific, mostly
1× 10−4

Task-specific, mostly
1× 10−4

reparam: 1 × 10−5;
score-fn: 8× 10−6

Inference Use one ŷ in optimizer Draw M samples y(m)

from Gaussian model
Reverse diffusion to
sample M samples
y(m)

Table 2: Comparison of deterministic, Gaussian, and diffusion model architectures.

For all experiments, we perform 10 random seeds to evaluate variability. We also find that adding a
small regularizer during DFL training can help the model learning the data distribution and avoid
some bad local minima, leading to a stable training process.

A.7 DETAILS OF SYNTHETIC EXAMPLE

In this example, we consider a factory that decides how much to manufacture for each of d ∈ N
products. The parameter Y ∈ Rd represents the profit margin for each product, i.e., Yi is the profit
per unit of product i; due to uncertainty in market conditions, Y is uncertain. The factory’s decision
z ∈ [0, C]d represents how much of each product to manufacture, where C is the maximum capacity
for each product. For simplicity, we do not consider any contextual features x in this example. That
means DFL learns a distribution that generates y that can minimize the decision objective.

Suppose that the factory has a risk-averse cost function f(y, z) = exp(−y⊤z), which indicates that
the factory wants to put a larger weight on the product with higher profit Yi. Intuitively, if the factory
knew Y exactly, then the optimal strategy would be all-or-nothing: set zi = C if Yi > 0, or zi = 0

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

if Yi < 0. Likewise, with respect to a point prediction of Y , the optimal deterministic decision
z∗det ∈ {0, C}d is attained on the boundary of the feasible set.

Under uncertainty, the decision-maker seeks to minimize the expected cost by solving a stochastic
optimization problem:

z∗sto ∈ argmin
z∈[0,C]d

Ey∼Pθ(·|x)[exp(−y⊤z)]. (51)

In this stochastic case, the optimal investment z∗sto typically lies in the interior of the feasible region,
which balances the potential high reward of investing against the risk of losses.

Then, we compute the necessities for diffusion DFL:

H = Ey∼Pθ(·|x)[∇
2
zzg(z

∗, y)] + (λ∗)⊤∇2
zzh(x, z

∗) = exp(−y⊤z)yy⊤ (52)

G = ∇zh(x, z
∗) = − exp(−y⊤z)y. (53)

For reparameterization, we have

(
dloss

dθ
)⊤ =

[
dloss
dz∗

0

]⊤ [∂z∗

∂θ
∂λ∗

∂θ

]
= −

[
dloss
dz∗

0

]⊤ [
H G⊤

D(λ∗)G D(h(x, z∗))

]−1 [1
M

∑M
i=1(∇θyi)

⊤∇2
zyg(z

∗, yi)
0

]
where ∇2

zyg(z
∗, y) = exp(−y⊤z)(yz⊤ − Id) in this case.

For the score function, we have

(
dloss

dθ
)⊤ = −

[
dloss
dz∗

0

]⊤ [
H G⊤

D(λ∗)G D(h(x, z∗))

]−1 [
Ey[∇zg(z

∗, y)(dELBO
dθ)⊤]

0

]
≈ −

[
dloss
dz∗

0

]⊤ [
H G⊤

D(λ∗)G D(h(x, z∗))

]−1 [1
M

∑M
i=1 ∇zg(z

∗, yi)(
dELBOi

dθ)⊤

0

]
.

A.8 DETAILS ON POWER SCHEDULE TASK

This task involves a 24-hour electricity generation scheduling problem with uncertain demand. The
decision z ∈ R24 represents the electricity output to schedule for each hour of the next day. The
uncertainty y ∈ R24 represents the actual power demand for each of the 24 hours. The goal is to
meet demand as closely as possible at minimum cost. We also consider a decision cost function that
penalizes storage, excess generation, and ramping following Donti et al. (2017):

1. Let γs and γa be the per-unit costs of shortage (not meeting demand) and excess (over-
generation), respectively. We use γs = 50 and γe = 0.5 in our experiment.

2. Let cr be a penalty on hour-to-hour changes in generation. We use cr = 0.4 in appropriate
units.

Formally, if z = (z1, . . . , z24) and y = (y1, . . . , y24), the loss for a single day is

min
z

Ey∼Pθ(·|x)[f(y, z)] =

24∑
i=1

Ey∼Pθ(·|x)[γs[yi − zi]+ + γe[zi − yi]+ +
1

2
(zi − yi)

2]

s.t. |zi − zi−1| ≤ cr for all i ∈ {1, 2, . . . , 24}. (54)

Then, we compute the necessities for diffusion DFL:

H = Ey∼Pθ(·|x)[∇
2
zzg(z

∗, y)] + (λ∗)⊤∇2
zzh(x, z

∗) = In (55)

G = ∇zh(x, z
∗) =


−1 1 0 · · · 0
0 −1 1 · · · 0
...

.
...

0 · · · 0 −1 1

 . (56)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

For reparameterization, we have

(
dloss

dθ
)⊤ =

[
dloss
dz∗

0

]⊤ [∂z∗

∂θ
∂λ∗

∂θ

]
= −

[
dloss
dz∗

0

]⊤ [
H G⊤

D(λ∗)G D(h(x, z∗))

]−1 [1
M

∑M
i=1(∇θyi)

⊤∇2
zyg(z

∗, yi)
0

]
where ∇2

zyg(z
∗, y) = −I in this case.

For the score function, we have

(
dloss

dθ
)⊤ = −

[
dloss
dz∗

0

]⊤ [
H G⊤

D(λ∗)G D(h(x, z∗))

]−1 [
Ey[∇zg(z

∗, y)(dELBO
dθ)⊤]

0

]
≈ −

[
dloss
dz∗

0

]⊤ [
H G⊤

D(λ∗)G D(h(x, z∗))

]−1 [1
M

∑M
i=1 ∇zg(z

∗, yi)(
dELBOi

dθ)⊤

0

]
.

Dataset. We use real historical electricity load data from the PJM regional grid (a standard public
dataset) PJM Interconnection (2025). The features x for each day include: the previous day’s 24-hour
load profile, the previous day’s temperature profile, calendar features, and seasonal sinusoidal features.
In total, dx = 28 features for each day were constructed. We normalized all input features for training.
The target label y is the next day’s 24-hour load vector.

For completeness, we include an extended comparison of different sample sizes in Figure 9, which fur-
ther highlights that additional samples yield diminishing returns in accuracy while linearly increasing
compute cost.

0 4 8 12 16 20 24
horizon

0.00

0.05

0.10

0.15

0.20

0.25

0.30

RM
SE

Score fn Reparam Gaussian Deterministic

0 4 8 12 16 20 24
horizon

0.0

0.1

0.2

0.3

0.4

Ta
sk

 L
os

s

Hour of Day

Figure 7: Results on the 24-hour power grid scheduling task.

0 10 20 30 40 50
Epoch

2.0

4.0

8.0

Tr
ai

n
DF

L
lo

ss

0 10 20 30 40 50
Epoch

2.0

4.0

8.0

Va
l D

FL
 lo

ss

0 10 20 30 40 50
Epoch

4

8

Te
st

 D
FL

 lo
ss

diffusion sf diffusion rp

Figure 8: Score function vs. Reparameterization

A.9 DETAILS ON STOCK PORTFOLIO TASK

We consider a mean-variance portfolio optimization problem with uncertain returns. Here y ∈ Rn

represents the random next-day returns of n assets (stocks), and z ∈ Rn are the portfolio weights

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

0 10 20 30 40 50
Epoch

2.0

4.0

8.0

Tr
ai

n
DF

L
lo

ss

0 10 20 30 40 50
Epoch

2.0

4.0

8.0

Va
l D

FL
 lo

ss

0 10 20 30 40 50
Epoch

4

8

Te
st

 D
FL

 lo
ss

0 10 20 30 40
Epoch

64

256

1024

4096

Cu
m

ul
at

iv
e

tra
in

in
g

tim
e

(s
)

sf_10 sf_50 sf_1000 reparam

Figure 9: Comparison between different sample sizes for score function and reparameterization.

we assign to each asset (the fraction of our capital invested in each stock). Our goal is to maximize
expected return while keeping the risk (variance) low. This can be written as minimizing a loss that is
a negative expected return plus a quadratic penalty on variance:

min
z

Ey∼Pθ(·|x)[f(y, z)] = Ey∼Pθ(·|x)

[α
2
z⊤yy⊤z − y⊤z

]
, s.t. z⊤1 = 1, 0 ≤ zi ≤ 1. (57)

Then, we compute the necessities for diffusion DFL:

H = Ey∼Pθ(·|x)[∇
2
zzf(z

∗, y)] + (λ∗)⊤∇2
zzh(x, z

∗) +∇2
zz(ν

∗⊤g(x, z∗)) = αEy∼Pθ(y|x)[yy
⊤],

(58)

G = ∇zh(x, z
∗) =

[
In,
−In

]
(59)

Q = ∇zg(x, z
∗) = 1⊤. (60)

For reparameterization, we have

(
dloss

dθ
)⊤ =

dloss
dz∗

0
0

⊤  ∂z∗

∂θ
∂λ∗

∂θ
∂ν∗

∂θ


≈ −

dloss
dz∗

0
0

⊤  H G⊤ Q⊤

D(λ∗)G D(h(x, z∗)) 0
Q 0 0

−1  1
M

∑M
i=1(∇θyi)

⊤∇2
zyg(z

∗, yi)
0
0


where ∇2

zyf(z
∗, y) = Ey[2αy

⊤z − 1] in this case.

For the score function, we have

(
dloss

dθ
)⊤ =

dloss
dz∗

0
0

⊤  H G⊤ Q⊤

D(λ∗)G D(h(x, z∗)) 0
Q 0 0

−1 Ey[∇zg(z
∗, y)(dELBO

dθ)⊤]
0
0


≈ −

dloss
dz∗

0
0

⊤  H G⊤ Q⊤

D(λ∗)G D(h(x, z∗)) 0
Q 0 0

−1  1
M

∑M
i=1 ∇zg(z

∗, yi)(
dELBOi

dθ)⊤

0
0

 ,

where ∇zg(z
∗, yi) = αyiy

⊤
i z

∗ − yi.

Dataset. We use daily stock prices from 2004–2017 for constituents of the S&P 500 index (Quandl
WIKI dataset, 2025). We obtained this data via Quandl’s API (specifically WIKI pricing data; the user
will need a Quandl API key to replicate. We compute daily returns for each stock (percentage change).
To construct features x, we use a rolling window of recent history for each asset. Specifically, for
each day, a data point is for predicting next day’s returns: we include the past 5 days of returns for
each of the n assets, past 5 days of trading volume for each asset, plus some aggregate features. To
avoid an explosion of dimension with large n, we also include PCA-compressed features: we take
the top principal components of the last 5-day return matrix to summarize cross-asset trends. In the
end, for n = 50 assets, we ended up with dx = 28 features. All features are normalized and we use a
time-series split: first 70% of days for training (2004–2013), next 10% for validation (2014), last 20%
for test (2015–2017). We evaluate performance on the test set by simulating the portfolio selection
every day and computing the average return achieved.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

A.10 (ADDITIONAL TASK) DETAILS ON INVENTORY STOCK PROBLEM

We also validate our approaches on a toy inventory control problem. In this task, the uncertain
demand y is drawn from a multi-modal distribution (a mixture of Gaussians), where we vary the
number of mixture components K to control the distribution complexity:

p(x) =

K∑
j=1

πjϕ(x;µj ,Σj), (61)

where πj is the probability of choosing component j and ϕ(x;µj ,Σj) is a multivariate Gaussian
density with parameter (µj ,Σj). The cost function follows the standard newsvendor formulation
with piecewise penalties for under-stock and over-stock:

f(y, z) = c0z +
1

2
q0z

2 + cb[y − z]+ +
1

3
rb([y − z]3+) + ch[z − y]+ +

1

3
rh([z − y]3+). (62)

Our learning objective is to minimize the expected cost over this stochastic demand, i.e., a stochastic
optimization problem:

min
z

L(θ) = Ey∼P (·|x)[f(y, z)] s.t. 0 ≤ z ≤ zmax. (63)

0 10 20
Regret

0.0

0.1

0.2

De
ns

ity

Regret Distribution
method

Sto
Det

True Sto Det
0

2

4

z

z Distribution

Sto Det
Method

0.0

0.2

0.4

0.6

0.8

1.0

W
in

 ra
te

74.8%

25.2%

Win-rate (lower cost wins)

Figure 10: Toy decision task comparing deterministic and diffusion DFL. Left: distribution of per-
instance regret (lower is better). Middle: distribution of chosen decision z in the lower-level; the
stochastic method tracks the true distribution z∗ more closely. Right: pairwise win-rate on test set; a
large fraction of costs from the stochastic method are lower than the deterministic one, indicating that
modeling uncertainty yields better decisions.

0 1 2 3 4 5 6 7
y value

0.0

0.5

1.0

1.5

2.0

2.5

De
ns

ity

Generated Data distribution over test set
True data
Stochastic predictions
Deterministic predictions
Gaussian predictions

Figure 11: Prediction distribution for inventory stock problem.

We compare a deterministic DFL model against our diffusion DFL model on this toy task. Figure 10
summarizes the results, where the diffusion model (stochastic DFL) achieves substantially lower
regret on average than the deterministic model. Besides, we observe that the decision z obtained
by our diffusion method closely tracks the true optimal decisions z∗ by capturing the multi-modal
demand uncertainty, whereas the deterministic predictor’s decisions deviate more. In Figure 10 (c),
we directly compare the decision outcomes via a win-rate: the fraction of test instances where one

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

method achieves lower cost than the other. The diffusion DFL method attains a win-rate of about
75% against the deterministic baseline, which confirms that modeling uncertainty leads to better
downstream decisions

For data generation, we set µ = [−4, 0, 4],Σ = [0.15, 0.25, 0.15]⊤1 for
K = 3, µ = [−6.,−3., 0., 3., 6.],Σ = [0.15, 0.25, 0.35, 0.25, 0.15]⊤1 for
K = 5, and µ = [−8.0,−6.0,−4.0,−2.0,−1.0, 0.0, 1.2, 2.8, 4.5, 7.5],Σ =
[0.30, 0.75, 0.25, 0.40, 0.22, 0.20, 0.22, 0.35, 0.70, 1.25]⊤1.

Following our previous derivation, we can compute the necessities for diffusion DFL by

H = Ey∼Pθ(·|x)[∇
2
zzf(z

∗, y)] + (λ∗)⊤∇2
zzh(x, z

∗) = diag(q0) + qbI(y>z) + qhIz>y (64)

G = ∇zh(x, z
∗) =

[
−I
I

]
, (65)

D(h(x, z∗)) = 0. (66)

A.11 ADDITIONAL RELATED WORKS

Stochastic optimization Making decisions under uncertainty is a classic topic in operations research
and machine learning (Shalev-Shwartz et al., 2009). Stochastic optimization formulations explicitly
consider uncertainty by optimizing the expected objective over a distribution of unknown parameters.
A common approach is the Sample Average Approximation (SAA) (Kleywegt et al., 2002; Arjevani
et al., 2020; Wang et al., 2024), which draws many samples from the estimated distribution and
solves an approximated deterministic problem minimizing the average cost. While SAA can handle
arbitrary uncertainty distributions in theory, it becomes very computationally expensive and still does
not consider the distribution during optimization (Kim et al., 2015). It will lead to optimizing the
sample mean, which may yield a decision that performs poorly if reality often falls into one of several
distinct models far from the mean (Kim et al., 2015; Elmachtoub & Grigas, 2022).

23

	Introduction
	Related Works
	Problem Statement
	Decision-focused learning
	Diffusion probabilistic model

	Stochastic Optimization and Reparameterization estimator
	Score function estimator
	Transform the Jacobian into Score Function
	Overall Gradient for Score Function

	Experiments
	Synthetic Example
	Power Schedule
	Stock Market Portfolio Optimization

	Discussion of Experimental Results and Ablation Study
	Discussion of Results in tab:expallmethods
	Ablation Study

	Conclusion
	Appendix
	Proofs for Section 4
	Proofs for Section 5
	Proof for Eq. 13
	Empirical evidence for ELBO gradient approximation
	Deterministic Optimization and Gaussian Model in Stochastic Optimization
	Training details
	Details of synthetic example
	Details on power schedule task
	Details on stock portfolio task
	(Additional task) Details on inventory stock problem
	Additional Related Works

