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Abstract

We propose and analyze a stochastic Newton algorithm for homogeneous dis-
tributed stochastic convex optimization, where each machine can calculate stochas-
tic gradients of the same population objective, as well as stochastic Hessian-vector
products (products of an independent unbiased estimator of the Hessian of the
population objective with arbitrary vectors), with many such stochastic computa-
tions performed between rounds of communication. We show that our method can
reduce the number, and frequency, of required communication rounds compared to
existing methods without hurting performance, by proving convergence guarantees
for quasi-self-concordant objectives (e.g., logistic regression), alongside empirical
evidence.

1 Introduction

Stochastic optimization methods that leverage parallelism have proven immensely useful in modern
optimization problems. Recent advances in machine learning have highlighted their importance as
these techniques now rely on millions of parameters and increasingly large training sets.

While there are many possible ways of parallelizing optimization algorithms, we consider the
intermittent communication setting (Zinkevich et al., 2010; Cotter et al., 2011; Dekel et al., 2012;
Shamir et al., 2014; Woodworth et al., 2018, 2021), where M parallel machines work together to
optimize an objective duringR rounds of communication, and where during each round each machine
may perform some basic operation (e.g., access the objective by invoking some oracle) K times,
and then communicate with all other machines. An important example of this setting is when this
basic operation gives independent, unbiased stochastic estimates of the gradient, in which case this
setting includes algorithms like Local SGD (Zinkevich et al., 2010; Coppola, 2015; Zhou and Cong,
2018; Stich, 2019; Woodworth et al., 2020a), Minibatch SGD (Dekel et al., 2012), Minibatch AC-SA
(Ghadimi and Lan, 2012), and many others.

We are motivated by the observation of Woodworth et al. (2020a) that for quadratic objectives,
first-order methods such as one-shot averaging (Zinkevich et al., 2010; Zhang et al., 2013)—a special
case of Local SGD with a single round of communication—can optimize the objective to a very high
degree of accuracy. This prompts trying to reduce the task of optimizing general convex objectives to
a short sequence of quadratic problems. Indeed, this is precisely the idea behind many second-order
algorithms including Newton’s method (Nesterov and Nemirovskii, 1994), trust-region methods
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Table 1: Convergence guarantees for different algorithms in the intermittent communication setting.
Notation is as follows: H: smoothness; U : third-order-smoothness; σ: stochastic gradient variance; ρ:
stochastic Hessian-vector product variance; g(x; z): stochastic gradient oracle; h(x, u; z′): stochastic
Hessian-vector product oracle (see Section 2 for complete details). For the sake of clarity, we omit
additional constants and logarithmic factors.

Algorithm
(Reference)

Convergence Rate
Assumption,

Oracle Access

Local SGD
(Woodworth et al., 2020a)

HB2

KR + σB√
MKR

+ H1/3σ2/3B4/3

K1/3R2/3

A1
g(x; z)

FEDAC

(Yuan and Ma, 2020)

HB2

KR2 + σB√
MKR

+ min
{
H1/3σ2/3B4/3

K1/3R
, H

1/2σ1/2B3/2

K1/4R

} A1
g(x; z)

Local SGD
(Yuan and Ma, 2020)

HB2

KR + σB√
MKR

+ U1/3σ2/3B5/3

K1/3R2/3

A3 (3rd-order Smooth)
g(x; z)

FEDAC

(Yuan and Ma, 2020)

HB2

KR2 + σB√
MKR

+H1/3σ2/3B4/3

M1/3K1/3R
+ U1/3σ2/3B5/3

K1/3R4/3

A3 (3rd-order Smooth)

g(x; z)

FEDSN
(Theorem 1)

exp. decay + HB2

KR + σB√
MK

+ ρB2

√
KR

A2 (QSC)
g(x; z), h(x, u; z′)

(Nocedal and Wright, 2006), and cubic regularization (Nesterov and Polyak, 2006), as well as
methods that go beyond second-order information (Nesterov, 2019; Bullins, 2020).

Computing each Newton step requires solving, for convex F , a linear system of the form
∇2F (x)∆x = −∇F (x). Unfortunately, this may be prohibitive in a high dimensional setting,
and may not even be feasible if F is only accessible through a stochastic oracle in a streaming fashion,
as is the case in the setting we consider. To avoid these issues, we reformulate the Newton step
as the solution to a convex quadratic problem, min∆x

1
2∆x>∇2F (x)∆x + ∇F (x)>∆x, which

we then solve using one-shot averaging. Conveniently, computing stochastic gradient estimates
for this quadratic objective does not require computing the full Hessian matrix, as it only requires
stochastic gradients and stochastic Hessian-vector products. This is attractive computationally since,
for many problems, the cost of computing stochastic Hessian-vector products is similar to the cost of
computing stochastic gradients, and both involve similar operations (Pearlmutter, 1994). Furthermore,
highlighting the importance of these estimates, recent works have relied on Hessian-vector products
to attain faster rates for reaching approximate stationary points in both deterministic (Agarwal et al.,
2017; Carmon et al., 2018) and stochastic (Allen-Zhu, 2018; Arjevani et al., 2020) non-convex
optimization.

In the context of distributed optimization, second-order methods have shown promise in the empir-
ical risk minimization (ERM) setting, whereby estimates of F are constructed by distributing the
component functions of the finite-sum problem across machines. Such methods which leverage this
structure have since been shown to lead to improved communication efficiency (Shamir et al., 2014;
Zhang and Xiao, 2015; Reddi et al., 2016; Wang et al., 2018; Crane and Roosta, 2019; Islamov et al.,
2021; Gupta et al., 2021). An important difference, however, is that these methods work in a batch
setting, meaning they allow for repeated access to the same K examples each round on each machine,
giving a total of MK samples. In contrast, we work in the stochastic (one-pass, streaming) setting,
and so our model independently samples a fresh set of MK examples per round, for a total of MKR
examples (see Appendix G.5 for an empirical comparison).

Our results

Our primary algorithmic contribution, which we present in Section 3 (and include a sketch in Ap-
pendix A), is the method FEDERATED-STOCHASTIC-NEWTON (FEDSN), a distributed approximate
Newton method which leverages the benefits of one-shot averaging for quadratic problems. We pro-
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vide in Section 3, under the condition of quasi-self-concordance (Bach, 2010), the main guarantees of
our method (Theorem 1). In Section 4 we show how, for some regimes in terms of M , K, and R, our
method may improve upon the rates of previous first-order methods, including FEDAC (Yuan and Ma,
2020). In Section 5, we compare a more practical version of our method, FEDSN-LITE (Algorithm 6)
against the other methods, showing we can significantly reduce communication compared to other
first-order methods.

2 Preliminaries

We consider the following optimization problem:
min
x∈Rd

F (x), (1)

and throughout we use F ∗ to denote the minimum of this problem. We further use ‖·‖ to denote the
standard `2 norm, we let ‖x‖A :=

√
x>Ax for a positive semidefinite matrix A, and we let I denote

the identity matrix of order d.

Next, we establish several sets of assumptions, beginning with those which are standard for smooth,
stochastic, distributed convex optimization. We would note that we are working in the homogeneous
distributed setting (i.e., each machine may access the same distribution), rather than the heterogeneous
setting (Khaled et al., 2019; Karimireddy et al., 2019; Koloskova et al., 2020; Woodworth et al.,
2020b; Khaled et al., 2020).
Assumption 1 (A1).

(a) F is convex, differentiable, and H-smooth, i.e., for all x, y ∈ Rd, F (y) ≤ F (x) +
∇F (x)>(y − x) + H

2 ‖y − x‖
2.

(b) There is a minimizer x∗ ∈ arg minx F (x) such that ‖x∗‖ ≤ B.

(c) We are given access to a stochastic first-order oracle in the form of an estimator g :
Rd × Z 7→ Rd, and a distribution D on Z such that, for any x ∈ Rd queried by the
algorithm, the oracle draws z ∼ D, and the algorithm observes an estimate g(x; z) that
satisfies:

(i) g(x; z) is an unbiased gradient estimate, i.e., Ezg(x; z) = ∇F (x).
(ii) g(x; z) has bounded variance, i.e., Ez‖g(x; z)−∇F (x)‖2 ≤ σ2.

In order to provide guarantees for Newton-type methods, we will require additional notions of
smoothness. In particular, we consider α-quasi-self-concordance (QSC) (Bach, 2010), which for
convex and three-times differentiable F is satisfied for α ≥ 0 when, for all x ∈ dom(F ), v, u ∈ Rd,

|∇3F (x)[v, u, u]| ≤ α‖v‖
(
∇2F (x)[u, u]

)
,

where we define

∇kF (x)[u1, u2, . . . , uk] :=
∂k

∂u1, ∂u2, . . . , ∂uk

∣∣
t1=0,t2=0,...,tk=0

F (x+ t1u1 + t2u2 + · · ·+ tkuk),

for k ≥ 1, i.e., the kth directional derivative of F at x along the directions u1, u2, . . . , uk. Related to
this is the condition of α-self-concordance, which has proven useful for classic problems in linear
optimization (Nesterov and Nemirovskii, 1994), whereby for all x ∈ dom(F ), u ∈ Rd,

|∇3F (x)[u, u, u]| ≤ 2α
(
∇2F (x)[u, u]

)3/2
.

Though quasi-self-concordance is perhaps not as widely studied as self-concordance, recent work has
brought its usefulness to light in the context of machine learning (Bach, 2010; Karimireddy et al.,
2018; Carmon et al., 2020). Notably, for logistic regression, i.e., problems of the form

min
x
F (x) =

1

N

N∑
i=1

log
(

1 + e−bi〈ai, x〉
)
, (2)

we observe that α-quasi-self-concordance holds with α ≤ maxi{‖biai‖}. Interestingly, this function
is not self-concordant, thus highlighting the importance of introducing the notion of QSC for such
problems, and indeed, neither of these conditions implies the other in general.1

1For the other direction, note that F (x) = − ln(x) is 1-self-concordant but not quasi-self-concordant.
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We now introduce further assumptions in terms of both additional oracle access and other smoothness
notions. The following outlines the requirements for the stochastic Hessian-vector products, though
we again stress that the practical cost of such an oracle is often on the order of that for stochastic
gradients (Pearlmutter, 1994; Allen-Zhu, 2018).

Assumption 2 (A2). In addition to Assumption 1, we have:

(a) F is three-times differentiable and α-quasi-self-concordant, i.e., for all x, v, u ∈ Rd,∣∣∇3F (x)[v, u, u]
∣∣ ≤ α‖v‖∇2F (x)[u, u].

(b) We are given access to a stochastic Hessian-vector product oracle in the form of an estimator
h : Rd × Rd × Z 7→ Rd, and a distribution D on Z such that, for any pair x, u ∈ Rd
queried by the algorithm, the oracle draws z′ ∼ D, and the algorithm observes an estimate
h(x, u; z′) that satisfies:

(i) h(x, u; z′) is an unbiased Hessian-vector product estimate, i.e., Ez′h(x, u; z′) =
∇F 2(x)u.

(ii) h(x, u; z′) has bounded variance of the form Ez′‖h(x, u; z′)−∇2F (x)u‖2 ≤ ρ2‖u‖2.

Meanwhile, other works (e.g., Yuan and Ma, 2020) require different control over third-order smooth-
ness and fourth central moment. We do not require this assumption in our analysis, and include it
here for comparison.

Assumption 3 (A3). In addition to Assumption 1, we have:

(a) F is twice-differentiable and U -third-order-smooth, i.e., for all x, y ∈ Rd, F (y) ≤ F (x) +
∇F (x)>(y − x) + 1

2

〈
∇2F (x)(y − x), y − x

〉
+ U

6 ‖y − x‖
3.

(b) g(x; z) has bounded fourth central moment, i.e., Ez‖g(x; z)−∇F (x)‖4 ≤ σ4.

3 Main results

We begin by describing our main algorithm, FEDSN (Algorithm 1). Namely, our aim is to solve
convex minimization problems minx F (x), subject to Assumption 2.

Algorithm 1 FEDERATED-STOCHASTIC-NEWTON, a.k.a., FEDSN(x0)

(Operating on objective F (·) with stochastic gradient g(·; ·) and Hessian-vector product h(·; ·, ·)
oracles.)

Input: x0 ∈ Rd.
Hyperparameters: T : main iterations; and ξ̄: local stability (see Table 4).
Output: Approximate solution to minx F (x) . See Theorem 1

for t = 0, 1, . . . , T − 1 do

∆x̃t = CONSTRAINED-QUADRATIC-SOLVER(xt)
. Approx. min

u:‖u‖≤ 1
2 r̄

ξ̄
2u
>∇2F (xt)u

+∇F (xt)
>u

Update: xt+1 = xt + ∆x̃t
Return: xT

We will rely throughout the paper on several hyperparameter settings and parameter functions, which
we collect in Tables 3 and 4. Recall that M is the amount of parallel workers, R is the number
of rounds of communication, K is the number of basic operations performed between rounds of
communication, and H , B, σ, α, and ρ are as defined in Assumptions 1 and 2.
Among our assumptions, we note in particular the condition of quasi-self-concordance, under which
several works have provided efficient optimization methods. For example, Bach (2010) analyzes
Newton’s method under QSC conditions, in a manner analogous to that of standard self-concordance
analyses, to establish its behavior in the region of quadratic (log log(1/ε)) convergence. More
recently, both Karimireddy et al. (2018) and Carmon et al. (2020) have presented methods which
rely instead on a trust-region approach, whereby, for a given iterate xt, each iteration amounts to
approximately solving a constrained subproblem of the form min∆x:‖∆x‖≤c

ξ
2∆x>∇2F (xt)∆x+

∇F (xt)
>∆x, for some ξ ≥ 1 and problem-dependent radius c > 0. This stands in constrast to the
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Hyperparameter Setting Description

T :=

⌊
R
4ζ log2

((
R
ζ

))⌋
(for ζ = 4096 + 4(80 + 32 logK + 24 log(1 + 2αB))

2)

Main iterations

β := 0 Momentum

r̄ := min
{

32B
T log(TK), 1

5α

}
Trust-region radius

ξ̄ := exp(αr̄) Local stability

λ̄ := max

{
2eH
K−2 ,

2ρ√
K
, 32eH log(51200)

K ,
4ρ
√

2 log(51200)√
K

,

320
√

2ρ√
MK

, 320σ
r̄
√
MK

, 8eH
K−16

} Regularization bound

N :=
⌈
1 + 5

2 log H(B+5T r̄)

3λ̄r̄

⌉
Binary search iterations

C :=
⌈
8 log

(
dlog2Ne

(
4 + eH

λ̄
+ 80H(B+5T r̄)

λ̄r̄

))⌉
Reg. quadratic repetitions

Table 2: Hyperparameters T , β, r̄, ξ̄, λ̄, N , and C, as used by FEDSN and its subroutines.

Parameter Function Description

ηk(λ) :=


ηλ K ≤ 2

λ max
{
ξ̄H + λ, ρ

2

λ

}
or k < K

2

4

λ
(

8
λ max

{
ξ̄H+λ, ρ

2

λ

}
+k−K2

) K > 2
λ max

{
ξ̄H + λ, ρ

2

λ

}
and k ≥ K

2

Reg. quad.
stepsizes

wk(λ) :=



(1− ληλ + η2
λρ

2)−k−1 K ≤ 2
λ max

{
ξ̄H + λ, ρ

2

λ

}
0 K > 2

λ max
{
ξ̄H + λ, ρ

2

λ

}
and k < K

2

8
λ max

{
ξ̄H + λ, ρ

2

λ

}
+ k − K

2 − 1 K > 2
λ max

{
ξ̄H + λ, ρ

2

λ

}
and k ≥ K

2

Reg. quad.
weights

Table 3: Parameter functions ηk(λ) and wk(λ), as used by FEDSN and its subroutines, where ξ̄ is as
defined in Table 4, and where ηλ denotes η(λ) := 1

2 min
{

1
ξ̄H+λ

, λ
ρ2

}
.

unconstrained minimization problem min∆x
ξ
2∆x>∇2F (x)∆x+∇F (x)>∆x, which, as we may

recall, forms the basis of the standard (damped) Newton method. Carmon et al. (2020) further use
their trust-region subroutine to approximately implement a certain `2-ball minimization oracle, which
they combine with an acceleration scheme (Monteiro and Svaiter, 2013).

These results show, at a high level, that as long as the radius of the constrained quadratic (trust-region)
subproblem is not too large, it is possible to make sufficient progress on the global problem by
approximately solving the quadratic subproblem. Our method proceeds in a similar fashion: each
iteration of Algorithm 1 provides an approximate solution to a constrained quadratic problem. To
begin, we follow Karimireddy et al. (2018) in defining δ(r)-local (Hessian) stability.

Definition 1. Let δ : R+ 7→ R+. We say that a twice-differentiable and convex function F is
δ(r)-locally stable if, for any r > 0 and any x, y ∈ Rd (x 6= y) such that ‖x − y‖ ≤ r and
‖x− y‖∇2F (x) > 0, we have ‖x− y‖∇2F (y) ≤ δ(r)‖x− y‖∇2F (x).

As the next lemma shows, quasi-self-concordance is sufficient to provide this type of local stability.
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Lemma 1 (Theorem I (Karimireddy et al., 2018)). If F is α-quasi-self-concordant, then F is
δ(r) = exp(αr)-locally stable.

The advantage of local stability is that it ensures that approximate solutions to locally-defined
constrained quadratic problems can guarantee progress on the global objective, and we state this more
formally in the following lemma. Note that this lemma is similar to (Theorem IV Karimireddy et al.,
2018), though we allow for an additive error in the subproblem solves in addition to the multiplicative
error, and its proof can be found in Appendix B.

Lemma 2. Let F satisfy Assumption 2 and be δ(r)-locally stable for δ : R+ 7→ R+, let
x0 ∈ Rd be as input to FEDSN (Algorithm 1), let c > 0, let θ ∈ [0, 1), and define Qt(∆x) :=
δ(5c)

2 ∆x>∇2F (xt)∆x + ∇F (xt)
>∆x, where xt is the tth iterate of Algorithm 1. Furthermore,

suppose we are given that in each iteration of Algorithm 1, ‖∆x̃t‖ ≤ 5c and

EQt(∆x̃t)− min
∆x:‖∆x‖≤ 1

2 c
Qt(∆x) ≤ θ

(
Qt(0)− min

∆x:‖∆x‖≤ 1
2 c
Qt(∆x)

)
+ ε,

for ε > 0. Then for each T ≥ 0, Algorithm 1 guarantees

EF (xT )− F ∗ ≤ E[F (x0)− F ∗] exp

(
− Tc(1− θ)

2Bδ( 1
2c)δ(5c)

)
+

2Bδ( 1
2c)d(5c)ε

c(1− θ)
.

We have now seen how to turn approximate solutions of constrained quadratic problems into an
approximate minimizer of the overall objective. We next need to ensure that the output of our
method CONSTRAINED-QUADRATIC-SOLVER (Algorithm 2) meets the conditions of Lemma 2. As
previously discussed, Woodworth et al. (2020a) showed that first-order methods can very accurately
optimize unconstrained quadratic objectives using a single round of communication; however, here
we need to optimize a quadratic problem subject to a norm constraint. Our constrained quadratic
solver is thus based on the following idea: the minimizer of the constrained problem minx:‖x‖≤cQ(x)

is the same as the minimizer of the unconstrained problem minxQ(x) + λ∗

2 ‖x‖
2 for some problem-

dependent regularization parameter λ∗. While the algorithm does not know what λ∗ should be a
priori, we show that it can be found with sufficient confidence using binary search. Lemma 3, proven
in Appendix C, provides the relevant guarantees.

Lemma 3. Let F satisfy Assumption 2, let x be as input to CONSTRAINED-QUADRATIC-SOLVER
(Algorithm 2), let ξ̄ be as in Table 4, define

Q(u) :=
ξ̄

2
u>∇2F (x)u+∇F (x)>u, Qλ(u) :=

1

2
u>(ξ̄∇2F (x) + λI)u+∇F (x)>u,

u∗λ := arg min
u
Qλ(u), r∗(λ) := ‖u∗λ‖,

and let λr denote, for any r > 0, the value such that r∗(λr) = r. Let û be the output of Algorithm 2
for hyperparameters r̄, ξ̄, λ̄, N and C as in Table 4, and suppose the output ũλ of REGULARIZED-
QUADRATIC-SOLVER(x, λ) satisfies for all λ ≥ λ̄ that

EQλ(ũλ)−min
u
Qλ(u) ≤ ε(λ) :=

λ(r∗(λ)2 + r̄2)

800
.

Then ‖û‖ ≤ 5r̄ and

EQ(û)− min
u:‖u‖≤ 1

2 r̄
Q(u) ≤ 3

4

(
Q(0)− min

u:‖u‖≤ 1
2 r̄
Q(u)

)
+ ε(λ4r̄) +

λ̄r̄2

4
.

We now show that using one-shot averaging (Zinkevich et al., 2010; Zhang et al., 2012) with M
machines—i.e., averaging the results ofM independent runs of SGD—suffices to solve each quadratic
problem to the desired accuracy. The following lemma, which we prove in Appendix D, establishes
that REGULARIZED-QUADRATIC-SOLVER (Algorithm 3) supplies Algorithm 2 with an output û that
satisfies the conditions of Lemma 3.
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Algorithm 2 CONSTRAINED-QUADRATIC-SOLVER(x)

(Operating on objective F (·) with stochastic gradient g(·; ·) and Hessian-vector product h(·; ·, ·)
oracles.)

Input: x ∈ Rd.
Hyperparameters: r̄: trust-region radius; ξ̄: local stability; λ̄: regularization bound; N : binary

search iterations; and C: reg. quadratic repetitions (see Table 4).
Output: Approximate solution to minu:‖u‖≤ 1

2 r̄
ξ̄
2u
>∇2F (x)u+∇F (x)>u . See Lemma 3

Λ1 =
{
λ̄
(

3
2

)n−1
: n = 1, . . . , N

}
i← 1
while Λi 6= ∅ do
λ(i) = Median(Λi)
for c = 1, . . . , C do
ũ(i,c) = REGULARIZED-QUADRATIC-SOLVER(x, λ(i))

if
∣∣{ũ(i,c) :

∥∥ũ(i,c)
∥∥ ∈ [ 3

2 r̄,
7
2 r̄
]}∣∣ > C

2 then
ũ = REGULARIZED-QUADRATIC-SOLVER(x, λ(i))

Return: û = min
{

1, 5r̄
‖ũ‖

}
ũ

else if
∣∣{ũ(i,c) :

∥∥ũ(i,c)
∥∥ ≤ 5

2 r̄
}∣∣ > C

2 then
Λi+1 =

{
λ′ ∈ Λi : λ′ < λ(i)

}
else if

∣∣{ũ(i,c) :
∥∥ũ(i,c)

∥∥ > 5
2 r̄
}∣∣ > C

2 then
Λi+1 =

{
λ′ ∈ Λi : λ′ > λ(i)

}
else

Return: û = 0
i← i+ 1

ũ = REGULARIZED-QUADRATIC-SOLVER(x, λ̄)

Return: û = min
{

1, 5r̄
‖ũ‖

}
ũ

Lemma 4. Let F satisfy Assumption 2, let x ∈ Rd, λ ∈ R+ be as input to REGULARIZED-
QUADRATIC-SOLVER (Algorithm 3), let Qλ(u) = 1

2u
>(ξ̄∇2F (x) + λI)u+∇F (x)>u, let Q∗λ :=

minuQλ(u), let u∗ := arg minuQλ(u), and let stochastic first-order and stochastic Hessian-
vector product oracles for F , as defined in Assumptions 1 and 2, respectively, be available for
each call to REGULARIZED-QUADRATIC-GRADIENT-ACCESS (Algorithm 4), for either Case 1
(Different-Samples) or Case 2 (Same-Sample). Let û, as output by Algorithm 3, be a weighted
average of the iterates of M independent runs of SGD with stepsizes η0(λ), . . . , ηK−1(λ), i.e.,
û = 1

M
∑K−1
k=0 wk

∑M
m=1

∑K−1
k=0 wku

m
k . Then, for both Cases 1 and 2,

EQλ(û)−Q∗λ ≤



2 max
{
ξ̄H + λ, ρ

2

λ

}
‖u∗‖2 min

{
1
K , exp

(
−K+1

4 min
{

λ
ξ̄H+λ

, λ
2

ρ2

})}
+ 2(σ2+ρ2‖u∗‖2)

λMK if K ≤ 2
λ max

{
ξ̄H + λ, ρ

2

λ

}
96λ‖u∗‖2 exp

(
−K8 min

{
λ

ξ̄H+λ
, λ

2

ρ2

})
+ 96(σ2+ρ2‖u∗‖2)

λMK

if K > 2
λ max

{
ξ̄H + λ, ρ

2

λ

}
.

Our analysis for Algorithm 3 is based on ideas similar to those of Woodworth et al. (2020a), whereby
the algorithm may access the stochastic oracles via REGULARIZED-QUADRATIC-GRADIENT-
ACCESS (Algorithm 4). However, additional care must be taken to account for the fact that Al-
gorithm 4 supplies stochastic gradient estimates of the quadratic subproblems Qλ(u) as per the
oracles models described in Assumptions 1 and 2. Thus, the estimates—based in part on stochas-
tic Hessian-vector products—have variance that scales with the norm of the respective iterates of
Algorithm 3 (see Assumption 2(b.ii)).
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Algorithm 3 REGULARIZED-QUADRATIC-SOLVER(x, λ)

(Operating on objective F (·) with stochastic gradient g(·; ·) and Hessian-vector product h(·; ·, ·)
oracles.)

Input: x ∈ Rd, λ ∈ R+.
Hyperparameters: β: momentum; ξ̄: local stability; and parameter functions ηk(λ), wk(λ) (see

Tables 3 and 4).
Output: Approximate solution to minuQλ(u) = 1

2u
>(ξ̄∇2F (x) + λI)u+∇F (x)>u . See

Lemma 4
Initialize: u1

0, . . . , u
M
0 = 0 . Initial iterates on each machine

for Each machine m = 1, . . . ,M in parallel do
for k = 0, . . . ,K − 1 do
γ(umk ; zmk , z

′m
k ) = REGULARIZED-QUADRATIC-GRADIENT-ACCESS(x, umk , λ)

umk+1 = umk − ηk(λ)γ(umk ; zmk , z
′m
k ) + 1{k>0}β(umk − umk−1) 2

Return: ũ = 1
M
∑K
k=1 wk(λ)

∑M
m=1

∑K
k=1 wk(λ)umk

We also note two possible cases for the oracle access: Case 1 (Different-Samples) in Algorithm 4
requires both a call to a stochastic first-order oracle (which draws z ∼ D) and a call to a stochastic
Hessian-vector product oracle (which draws a different z′ ∼ D); while Case 2 (Same-Sample) allows
both stochastic estimators to be observed for the same random sample z ∼ D. These cases differ by
only a small constant factor in the final convergence rate, and we base our practical method on this
single sample model. We refer the reader to Appendix G.4 for discussion of these settings.

Algorithm 4 REGULARIZED-QUADRATIC-GRADIENT-ACCESS(x, u, λ)

(Operating on objective F (·) with stochastic gradient g(·; ·) and Hessian-vector product h(·; ·, ·)
oracles.)

Input: x, u ∈ Rd, λ ∈ R+.
Hyperparameters: ξ̄: local stability (see Table 4).
Output: γ(u; z, z′) s.t. Ez,z′ [γ(u; z, z′)] = ∇Qλ(u) and Ez,z′‖γ(u; z, z′)−∇Qλ(u)‖2 ≤ σ2 +

ρ2‖u‖2

Case 1: Different-Samples (z, z′ drawn independently for each stochastic oracle)
• Query the stochastic first-order oracle at x (as in Assumption 1(c)), so that the oracle

draws z ∼ D, and observe g(x; z)
• Query the stochastic Hessian-vector product oracle at x and u (as in Assumption 2(b)), so

that the oracle draws z′ ∼ D, and observe h(x, u; z′)

Case 2: Same-Sample (Same z′ = z used for both stochastic oracles)
• Query the stochastic first-order oracle at x (as in Assumption 1(c)), so that the oracle

draws z ∼ D, and observe g(x; z)
• Query the stochastic Hessian-vector product oracle at x and u (as in Assumption 2(b)) for
z′ = z, and observe h(x, u; z′)

γ(u; z, z′) := ξ̄h(x, u; z′) + λu+ g(x; z)

Return: γ(u; z, z′)

Finally, having analyzed Algorithms 1, 2, 3, and 4, we may put them all together to provide our main
theoretical result, whose proof can be found in Appendix E.

Theorem 1. Let F satisfy Assumption 2. Then, forK ≥ 175 andR ≥ Ω̃(1), and for hyperparameters
T , β, r̄, ξ̄, λ̄, N , C and parameter functions ηk(λ), wk(λ) as in Tables 3 and 4, the output of FEDSN
(Algorithm 1) with initial point x0 ∈ Rd, using Algorithms 2, 3, and 4 (for both Cases 1 and 2)

2We add heavy-ball/Polyak momentum in this step with momentum parameter β. Our theoretical results
do not require any momentum, and thus FEDSN is analyzed for β = 0. For our experiments we compare the
algorithms both with and without momentum, i.e., β = 0 or optimally tuned β ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.
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satisfies

E[F (xT )]−F ∗ ≤ HB2

(
exp

(
− R

Õ(αB)

)
+ exp

(
− K

O(1)

))
+Õ

(
σB√
MK

+
HB2

KR
+

ρB2

√
KR

)
,

where Ω̃, Õ hide terms logarithmic in R, K, and αB.

4 Comparison with related methods and lower bounds

In this section, we compare our algorithm’s guarantees with those of FEDAC, and we include
additional comparisons in Appendix F. A difficulty in making this comparison is determining the
“typical” relative scale of the parameters H , σ, U , α, and ρ. Drawing inspiration from training
generalized linear models, we consider a natural scaling of the parameters that arises when the
objective has the form F (x) = Ez`(〈x, z〉), where |`′|, |`′′|, and |`′′′| are O(1), and where ‖z‖ ≤ D;
this holds, e.g., for logistic regression problems (see (2)). In this case, upper bounds on the derivatives
of F will generally scale with ‖z‖. So if we assume that ‖z‖ ≤ D for some D, then the derivatives of
F would scale as ‖∇F (x)‖ . D, ‖∇2F (x)‖op . D2, and ‖∇3F (x)‖op . D3, where ‖·‖op denotes
the operator norm. Thus, we will take H = D2, σ = D, U = D3, α = D, and ρ = D2. These
parameters could have different relationships, but we focus on this regime for simplicity.

In addition to working within this natural scaling, we consider the case where we have access to
sufficient machines (i.e., M & KR3

D2B2 ) and for K large enough. We explore various regimes w.r.t.
both the number of rounds of communication R and the “size" of the problem DB. Thus, ignoring
constants and terms logarithmic in R, K, and αB, our upper bound from Theorem 1 reduces to

EF (x̂)−F ∗ . D2B2 exp

(
− R

DB

)
+D2B2 exp(−K) +

D2B2

KR3/2
+
D2B2

KR
+
D2B2

√
KR

≈ D2B2

√
KR

.

Comparison with FEDAC

The previous best known first-order distributed method under third-order smoothness assumptions is
FEDAC (Yuan and Ma, 2020), an accelerated variant of Local SGD, which achieves a guarantee of

EF (x̂)− F ∗ ≤ Õ
(
HB2

KR2
+

σB√
MKR

+
H1/3σ2/3B4/3

M1/3K1/3R
+
U1/3σ2/3B5/3

K1/3R4/3

)
.

For the setting as outlined above, this bound reduces to

EF (x̂)− F ∗ . D2B2

KR2
+
D5/3B5/3

K1/3R4/3
.

In the case where DB is not too large (DB . K2R2), the dominant term for FEDAC is D5/3B5/3

K1/3R4/3 ,

and so we see that our algorithm improves upon FEDAC as long as R .
√
K

DB , whereas for R &
√
K

DB ,
FEDAC provides better guarantees than FEDSN.
Comparison with first-order lower bounds

Woodworth et al. (2021) provide lower bounds under other smoothness conditions, including quasi-
self-concordance, which are relevant to the current work. Roughly speaking, they show that under
Assumption 2(a), no first-order intermittent communication algorithm can guarantee suboptimality
less than (ignoring constant and logM factors)

EF (x̂)− F ∗ ≥ HB2

K2R2
+

σB√
MKR

+ min

{
HB2

R2
,
ασB2

√
KR2

,
σB√
KR

}
.

In the same parameter regime as above, the lower bound reduces to

EF (x̂)− F ∗ & D2B2

K2R2
+ min

{
D2B2

√
KR2

,
DB√
KR

}
.

Comparing this lower bound with our guarantee in Theorem 1, we see that, when DB = O(1) and
the number of rounds of communication is small (e.g., R = O(logK)), our approximate Newton
method can (ignoring logK factors) achieve an upper bound of EF (x̂)− F ∗ . 1/

√
K. Therefore,

in this important regime, FEDSN matches the lower bound under Assumption 2(a), albeit using a
stronger oracle. No prior work has matched this lower bound, and so we do not know whether such
an oracle is necessary in order to achieve it, or if perhaps the stronger oracle allows for breaking it.
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(a) (b)

Figure 1: Empirical comparison of FEDSN-LITE (Algorithm 6) to other methods (see Appendix G.1) on
the LIBSVM a9a (Chang and Lin, 2011; Dua and Graff, 2017) dataset for minimizing: (a) in-sample, and (b)
out-of-sample unregularized logistic regression loss using M ∈ {100, 200} machines. We vary the frequency
of communication (horizontal axis of each plot), while keeping the total number of steps on each machine
(theoretical parallel runtime) fixed at KR = 100. Thus, every point in the sub-plot is a separately tuned instance
of an algorithm, where each algorithm besides FEDAC solves an unregularized ERM problem and reports (a) the
best relative sub-optimality w.r.t. the optimal minimizer and (b) the best validation loss on a held-out dataset. All
results are averaged over multiple runs (see Appendix G.3 for full details).

5 Experiments

In Appendix G.1 we present a more practical variant of FEDSN called FEDSN-LITE (Algorithm 6),
which does away with the search over the regularization parameter as in Algorithm 2. We compare
FEDSN-LITE against the two variants of FEDAC (Algorithm 7, Yuan and Ma (2020)), Minibatch
SGD (Algorithm 9, Dekel et al. (2012)), and Local SGD (Algorithm 8, Zinkevich et al. (2010)). We
also study the effect of adding Polyak’s momentum, which we denote by β, to these algorithms (see
Appendix G.1). FEDAC is mainly presented and analyzed for strongly convex functions by Yuan
and Ma (2020). In fact, they assume the knowledge of the strong convexity constant to tune FEDAC,
which is typically hard to know unless the function is explicitly regularized. To handle general
convex functions, Yuan and Ma (2020) build some internal regularization into FEDAC (see Appendix
E.2 in their paper). However, their hyperparameter recommendations in this setting also depend on
unknowns such as the smoothness of the function and the variance of the stochastic gradients. This
poses a difficulty in comparing FEDAC to the other algorithms, which do not require the knowledge
of these unknowns.

To overcome this we take the more carefully optimized version of FEDAC for strongly convex
functions and tune its internal regularization and learning rate. This emulates the setting where the
objective is assumed to be just convex but FEDAC sees a strongly convex function instead. In our
experiments in Figure 6, we notice that FEDSN-LITE is either competitive with or outperforms the
other baselines. This is especially true for the sparse communication settings, which are of most
practical interest. A more comprehensive set of experiments can be found in Appendix G.2 along
with full implementational details in Appendix G.3.3

6 Conclusion

In this work, we have shown how to more efficiently optimize convex quasi-self-concordant objectives
by leveraging parallel methods for quadratic problems. Our method can, in some parameter regimes,
improve upon existing stochastic methods while maintaining a similar computational cost, and we
have further seen how our method may provide empirical improvements in the low communication
regime. It remains open whether the same guarantees we achieve here can also be achieved using
only independent stochastic gradients (a single stochastic gradient on each sample), or whether in the
distributed stochastic setting access to Hessian-vector products is strictly more powerful than access
to only independent stochastic gradients.

3Code is availabe at https://github.com/kishinmh/Inexact-Newton.
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