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Abstract

Large Language Models (LLMs) are trained001
on massive web-crawled corpora. An increas-002
ing issue is LLMs generating content based on003
leaked data, and the need to detect and suppress004
such generated results, including personal in-005
formation, copyrighted text, and benchmark006
datasets. A fundamental cause of this issue is007
leaked data in the training dataset. However,008
existing research has not sufficiently clarified009
the relationship between leaked instances in010
the training data and the ease of output and011
detection of these leaked instances by LLMs.012
In this paper, we conduct an experimental sur-013
vey to elucidate the relationship between the014
rate of leaked instances in the training dataset015
and the generation and detection of LLMs in016
relation to the leakage of personal information,017
copyrighted texts, and benchmark data. Our018
experiments reveal that LLMs generate leaked019
information in most cases despite there being020
little such data in the training set. Furthermore,021
the lower the rate of leaked instances, the more022
difficult it becomes to detect the leakage. When023
addressing the leakage problem in the training024
dataset, we must be careful as reducing leak-025
age instances does not necessarily lead to only026
positive effects. Finally, we demonstrate that027
explicitly defining the leakage detection task028
using examples in LLMs can help mitigate the029
impact of the rate of leakage instances in the030
training data on detection.031

1 Introduction032

Large Language Models (LLMs) have achieved033

remarkable performance in various real-world ap-034

plications (Brown et al., 2020; Wei et al., 2021;035

Ouyang et al., 2022). One of the success factors036

is the massive web-crawled corpora used for pre-037

training LLMs (Kaplan et al., 2020; Wei et al.,038

2022). The corpora for pre-training LLMs con-039

sist of webpages, books, scientific papers, and pro-040

gramming code (Almazrouei et al., 2023; Zhao041

et al., 2023). Developers of well-known LLMs042

such as ChatGPT1 and Claude 32 infamously do 043

not disclose the composition of the training data, 044

to maintain a competitive edge. 045

The large-scale nature and privatization of such 046

training data increases the risk of leaking inappro- 047

priate data such as personal information, copy- 048

righted works, and LLM benchmarks (Ishihara, 049

2023). It has been revealed that it is possible to 050

efficiently recover training data from LLMs under 051

various settings, including those with and with- 052

out alignment learning (Nasr et al., 2023). This 053

facilitates the collection of personal information 054

and copyrighted works by malicious actors through 055

LLMs. In practice, it has been confirmed that per- 056

sonal information, such as names, phone numbers, 057

and email addresses, has leaked from LLMs via 058

membership inference attacks (Shokri et al., 2016), 059

an attack method that guesses whether a particular 060

instance is included in the training data (Carlini 061

et al., 2020; Huang et al., 2022; Kim et al., 2023). 062

The leak of benchmarks significantly enhances the 063

reported performance of LLMs (Deng et al., 2023; 064

Zhou et al., 2023), leading to over-confidence in the 065

abilities of LLMs. Furthermore, it has become ap- 066

parent that works such as news articles3 and books4 067

can be directly generated by LLMs, and that the 068

training data includes pirated content (Eldan and 069

Russinovich, 2023). As just described, the leak- 070

age of inappropriate content in the training data of 071

LLMs can lead to a loss of trust in the coexistence 072

of humans and AI. 073

Data leakage in LLMs originates from the leak- 074

age of instances in the pre-training data, leading to 075

the output of leaked instances by the LLMs. Data 076

1https://chat.openai.com/
2https://claude.ai/chats
3https://www.nytimes.com/2023/12/27/business/

media/new-york-times-open-ai-microsoft-lawsuit.
html

4https://www.theatlantic.com/
technology/archive/2023/08/
books3-ai-meta-llama-pirated-books/675063/
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leakage detection can be conducted to ensure that077

the LLM output does not contain any leaked in-078

stances. We establish the following three criteria079

concerning leakage issues:080

• Leakage Rate refers to the proportion of081

leaked instances contained in the pre-training082

data of LLMs.083

• Generation Rate refers to the proportion of084

the evaluation dataset where the LLM can re-085

produce leaked instances when instructed to086

do so.087

• Detection Rate refers to the performance of088

LLMs in distinguishing between leaked and089

non-leaked instances in the evaluation dataset.090

Despite the leakage rate being the origin of data091

leakage issues, it is not understood how it affects092

the generation rate and detection rate. In this paper,093

we conduct an experimental survey to elucidate the094

relationship between the leakage rate and both the095

generation rate and detection rate for personal in-096

formation, copyrighted texts, and benchmark data.097

This leads to new insights into how we should ad-098

dress leaks in pre-training data, which are the root099

cause of leakage issues.100

Regarding the leakage rate, while there have101

been reports on the investigation of personal in-102

formation leakage in pre-training data (Subramani103

et al., 2023; Longpre et al., 2023), the leakage rates104

in copyrighted texts and benchmarks have not been105

disclosed. The work has been conducted using reg-106

ular expressions, which cannot be easily applied to107

detecting copyrighted texts and benchmarks. We108

investigate the leakage rates in pre-training data109

not only for personal information but also for copy-110

righted texts and benchmarks using web searches.111

Regarding the detection rate, existing methods de-112

tect whether instances are leaked based on the like-113

lihood or loss function thresholds of LLMs (Carlini114

et al., 2020; Shi et al., 2023; Fu et al., 2023).115

In our experiments, based on sampling 5 mil-116

lion instances from the pre-training data of LLMs117

and investigating the leakage rates for personal in-118

formation, copyrighted texts, and benchmarks, the119

rates are to be 75.1%, 19.0%, and 0.1%, respec-120

tively. Detection rates are increasingly high for, in121

order, personal information, copyrighted texts, and122

benchmarks, with higher leakage rates leading to123

better detection performance. This suggests that124

the higher the leakage rate, the more beneficial in-125

formation LLMs can learn during pre-training to126

distinguish leaked instances. On the other hand, no 127

significant difference is observed between the gen- 128

eration rates for personal information, copyrighted 129

texts, and benchmarks. These results indicate that 130

a small leakage rate in pre-training data does not 131

significantly influence the tendency of LLMs to 132

output leaked instances, but it can make detecting 133

leaked instances more challenging. Therefore, sim- 134

ply reducing the leakage rate does not necessarily 135

bring only positive effects. It is necessary to apply 136

preprocessing to balance the leakage and detection 137

rates. 138

Finally, we aim to mitigate the impact of the leak- 139

age rate on the detection rate. Existing methods do 140

not explicitly define the task of classifying leaked 141

and non-leaked instances for LLMs. Therefore, if 142

the number of leaked instances in the training data 143

is small, the information from these instances may 144

not be sufficiently reflected in the output. We in- 145

troduce a detection method that explicitly teaches 146

the task definition by using a few-shot approach to 147

present leaked and non-leaked instances. Our ex- 148

perimental results show that the few-shot-based de- 149

tection method performs on average about 7 points 150

higher than existing methods. On the other hand, 151

the detection rate drops in the zero-shot case with- 152

out providing examples, suggesting that providing 153

examples to LLMs is particularly important. 154

2 Leakage Rate 155

The leakage rate is the proportion within the leak- 156

age instances we targeted in the pre-training dataset, 157

including personal information, copyrighted texts, 158

and benchmark datasets. We target the training data 159

used by LLMs whose experimental settings are pub- 160

licly available for our experiments. We begin by 161

listing publicly available LLMs and curating their 162

training data. Next, we introduce how to calculate 163

the leakage rate for personal information, copy- 164

righted texts, and benchmarks in the pre-training 165

data of LLMs. 166

2.1 Pre-training Datasets 167

In this study, we target the pre-training data of the 168

following six LLMs for which the details of the 169

experimental setup are publicly available. 170

• T5 (Raffel et al., 2019): T5 uses the Colossal 171

Clean Crawled Corpus (C4) containing about 172

800 GB of text data collected from filtered 173

and cleaned web pages as its pre-training data. 174

Scientific texts, books, and news account for 175
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LLMs Size C4 CommonCrawl The Pile GitHub Wikipedia Books Papers Conversations

T5 800 100.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
LLaMA 4,700 15.0% 67.0% 0.0% 4.5% 4.5% 4.5% 2.5% 2.0%
Pythia 800 0.0% 0.0% 100.0% 0.0% 0.0% 0.0% 0.0% 0.0%
MPT 4,000 63.4% 8.5% 0.0% 14.5% 4.0% 3.0% 5.2% 1.4%
Falcon 3,600 0.0% 84.0% 0.0% 3.0% 1.0% 6.0% 1.0% 5.0%
OLMo 5,300 5.7% 78.7% 0.0% 12.6% 0.1% 0.1% 2.8% 0.0%

Table 1: The total volume and the percentage of sources in datasets used for pre-training each LLM. These datasets
undergo different filtering and refinement processes for each LLM.

approximately 25% in C4. The filtering in-176

cludes the removal of inappropriate content,177

deletion of duplicates, and detection of lan-178

guage.179

• LLaMA (Touvron et al., 2023): LLaMA em-180

ploys English CommonCrawl, C4, Github,181

Wikipedia, Books, ArXiv, and StackExchange182

as pre-training datasets.183

• Pythia (Biderman et al., 2023): Pythia uses184

the Pile5, which comprises 800GB of text185

data. It aggregates content from 22 different186

sources, including books, websites, GitHub187

repositories, and more.188

• MPT (Team, 2023): MPT uses RedPajama189

dataset (Computer, 2023), which prepro-190

cesses the Common Crawl, Wikipedia, Books,191

ArXiv, and StackExchange to remove low-192

quality content and duplicate pages.193

• Falcon (Almazrouei et al., 2023): Falcon uti-194

lizes the RefinedWeb dataset (Penedo et al.,195

2023), which employs heuristic rules to fil-196

ter the Common Crawl dataset and remove197

duplicates.198

• OLMo (Groeneveld et al., 2024): OLMo uses199

Dolma (Soldaini et al., 2024), which is a200

dataset of 3T tokens from a diverse mix of web201

content, academic publications, code, books,202

and encyclopedic materials.203

We present the configuration of the LLMs and the204

pre-training data used in our experiments in Table 1.205

The most common sources included in all LLMs206

are web page sources such as C4, CommonCrawl,207

and the Pile. Because they are collected from vari-208

ous web pages, there is a risk that they may contain209

personal information, copyrighted texts, or bench-210

marks. For example, the C4 includes personal in-211

formation such as voter lists and pirated e-books212

that violate copyright laws.6 Data from books and213

5https://huggingface.co/datasets/EleutherAI/
pile

6https://www.washingtonpost.com/technology/
interactive/2023/ai-chatbot-learning/

papers particularly related to copyrighted texts are 214

explicitly included in LLaMA, MPT, and Falcon 215

at a rate of more than 5%. Using the entire pre- 216

training datasets is not practical from a computa- 217

tional resource perspective. We sampled 5 million 218

instances from the pre-training data used in each 219

of the LLMs and investigated the leakage rates of 220

personal information, copyrighted texts, and bench- 221

marks. 222

2.2 Scopes of Leakage Instances in the 223

Pre-training Datasets 224

We determine whether personal information is in- 225

cluded in the text through regular expressions pro- 226

posed in the existing research (Subramani et al., 227

2023). This regular expression targets 20 types7 228

of personal information. Additionally, we deter- 229

mine whether a person’s name is included in the 230

text using named entity recognition from the spaCy 231

library8. If the target text contains even one piece 232

of personal information, we determine that it is 233

leaking. We targeted books, news articles, and 234

papers found on Google Books9, Google News10, 235

and Google Scholar11 as the subjects of the copy- 236

righted texts. We use the Selenium library to au- 237

tomate the search process. It’s important to note 238

that copyrighted text may not constitute a copyright 239

violation if it is properly cited. Therefore, a high 240

leakage rate does not necessarily imply that LLMs 241

are prone to committing copyright violations. For 242

the leakage rate of benchmarks, it is challenging to 243

cover all benchmarks. Therefore, considering that 244

the negative impact of leakage becomes more prob- 245

7The regular expressions to find personal information: IP
address, IBAN code, US SSN, email addresses, phone numbers,
amex card, bcglobal, carte blanche card, diners club card,
discover card, insta payment card, jcb card, korean local card,
laser card, maestro card, mastercard, solo card, switch card,
union pay card, and visa card

8https://spacy.io/usage/linguistic-features
9https://books.google.com/

10https://news.google.com/
11https://scholar.google.com/
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lematic for larger benchmarks widely used by many246

users, we limit our focus to the top benchmarks by247

download count. We create a data store from a total248

of approximately 75,000 instances contained in the249

test data from Huggingface’s Database, which are250

among the top 100 in terms of download count.12251

When one instance contains multiple texts, such as252

context and questions, we add each text separately253

to the data store.254

Existing research defined data leakage for copy-255

righted text as matching approximately 50 words256

between texts (Karamolegkou et al., 2023). Fol-257

lowing this precedent, we exclude texts shorter258

than 50 words from datasets and data stores for259

copyrighted text. For personal information and260

benchmark datasets, we do not set a length limi-261

tation. If the target text is found through an exact262

match search, we consider that a leak. The leakage263

rate is calculated by dividing the number of leaked264

instances by the total number of instances in the265

sampled data.266

Our research limits the scope of leakage targets267

through the sampling of training data and the iden-268

tification of leaked instances using regular expres-269

sions, web searches, and databases. On the other270

hand, it is not practical from a resource perspective271

to comprehensively cover all leakage instances re-272

lated to personal information, copyrighted texts,273

and benchmarks across the entire training data.274

Since our definition mentioned above targets repre-275

sentative cases of leakage, the insights gained can276

be broadly applicable even within a limited scope.277

3 Generation Rate278

We create datasets containing leaked and denied279

texts to calculate the generation rate. The leaked280

text is the text of leaked instances included in the281

pre-training datasets. The denied text is the text282

where the LLM denies responding. We compare283

the likelihoods of the LLM generating the leaked284

text and the denied text, respectively, in response to285

prompts that elicit the leakage. Then, we calculate286

the generation rate as the proportion of cases where287

the likelihood of the leaked text is higher than the288

likelihood of the denied text.289

First, we introduce how to create the leaked text.290

We sample 10,000 instances each from those iden-291

tified as leaks of personal information, copyrighted292

texts, and benchmarks in the pre-training data in293

section 2. We provide the sampled instances to294

12https://huggingface.co/datasets

GPT-413 and generate prompts that cause the LLMs 295

to output those instances. Since OpenAI does not 296

use data inputted to their API for training, there 297

is no concern about these instances leaking.14 We 298

create 8 instances for GPT-4 to perform few-shot 299

learning, such as: “Text: Michel ****: +****- 300

****-**** Prompt: Please tell me Michel ****’s 301

phone number.”.15 In this example, the name and 302

phone number are obfuscated with **** for privacy 303

protection. We use the following prompt: 304

Please write a prompt to generate the given
text.
Text: [Text Example 1] Prompt: [Prompt
Example 1]
...
Text: [Text Example 8] Prompt: [Prompt
Example 8]
Text: [Instance] Prompt:

305

Here, [Text Example 1], [Text Example 8], 306

[Prompt Example 1], and [Prompt Example 307

8] are few-shot examples. We exclude prompts 308

that are inappropriate or copyrighted text that is 309

properly quoted, based on evaluations by 40 crowd 310

workers on Amazon Mechanical Turk.16 We exam- 311

ined the agreement rate among workers regarding 312

the labeling of whether to exclude or not exclude 313

the sampled 100 instances. As a result, the labels 314

of more than 80% of the workers matched for 83% 315

of the instances. After manual filtering, the data 316

sizes for personal information, copyrighted texts, 317

and benchmarks became 9,011, 7,702, and 8,155, 318

respectively. 319

We create 8 denied texts where the response is to 320

reject responding, such as “Sorry, I cannot respond 321

regarding this content.”. We provide the LLM with 322

prompts concatenate with the leaked text and the 323

denied text, respectively. To mitigate the influence 324

of the prompt, we use the average likelihood of the 325

8 denied texts. Then, we calculate the generation 326

rate by dividing the number of times the likelihood 327

of the leaked text is higher than that of the denied 328

text by the total number of our dataset. 329

13https://openai.com/gpt-4
14https://help.openai.com/en/articles/5722486-how-your-

data-is-used-to-improve-model-performance
15We present the created few-shot examples for few-shot

learning in the Appendix A.
16We set the hourly rate for the work at $15.
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4 Detection Rate330

The detection rate is the proportion of cases where331

the LLM correctly classifies between leaked in-332

stances included in the pre-training dataset and333

non-leaked instances not included. We create a non-334

leaked dataset composed of instances not included335

in the pre-training data, for the leaked dataset cre-336

ated in section 3. For personal information, we337

create the non-leaked dataset by replacing numbers338

such as phone numbers and credit card numbers339

with random digits, and rewriting texts such as340

names and addresses to different names and ad-341

dresses using GPT-4. For copyrighted texts and342

benchmarks, we use GPT-4 to generate paraphrases343

to create the non-leaked dataset. It is known that344

LLMs can generate paraphrases of state-of-the-art345

level (Kaneko and Okazaki, 2023). We confirm346

that the created non-leaked instances are not in-347

cluded in the entire pre-training data and additional348

instruction-tuning datasets through an exact match349

search.350

5 Experiments351

5.1 Settings352

We used eight NVIDIA A100 GPUs, and used hug-353

gingface implementations (Wolf et al., 2019) for354

our experiments. We used the following 25 models355

as LLMs to investigate the influence of model size356

and instruction-tuning:357

• google-t5/t5-small17 (T5-small)358

• google-t5/t5-base18 (T5-base)359

• google-t5/t5-large19 (T5-large)360

• llama-7b20 (LLaMA-7B)361

• llama-13b (LLaMA-13B)362

• llama-33b (LLaMA-33B)363

• llama-65b (LLaMA-65B)364

• EleutherAI/pythia-70m21 (Pythia-70M)365

• EleutherAI/pythia-160m22 (Pythia-366

160M)367

• EleutherAI/pythia-410m23 (Pythia-368

410M)369

17https://huggingface.co/google-t5/t5-small
18https://huggingface.co/google-t5/t5-base
19https://huggingface.co/google-t5/t5-large
20https://ai.meta.com/blog/

large-language-model-llama-meta-ai/
21https://huggingface.co/EleutherAI/pythia-70m
22https://huggingface.co/EleutherAI/

pythia-160m
23https://huggingface.co/EleutherAI/

pythia-410m

Leakage Rate PI CT BM

T5 80.3% 22.5% 0.2%
LLaMA 76.7% 20.2% 0.1%
Pythia 78.8% 21.8% 0.2%
MPT 79.4% 17.6% 0.1%
Falcon 69.1% 15.9% 0.1%
OLMo 66.7% 16.2% 0.1%
Average 75.1% 19.0% 0.1%

Table 2: Leakage rates in the pre-training data of LLMs
for Personal Information (PI), Copyrighted Texts (CT),
and BenchMarks (BM).

• EleutherAI/pythia-1b24 (Pythia-1B) 370

• EleutherAI/pythia-1.4b25 (Pythia-1.4B) 371

• EleutherAI/pythia-2.8b26 (Pythia-2.8B) 372

• EleutherAI/pythia-6.9b27 (Pythia-6.9B) 373

• EleutherAI/pythia-12b28 (Pythia-12B) 374

• mosaicml/mpt-7b29 (MPT-7B) 375

• mosaicml/mpt-7b-instruct30 (MPT-7B- 376

Instruct) 377

• mosaicml/mpt-30b31 (MPT-30B) 378

• mosaicml/mpt-30b-instruct32 (MPT-30B- 379

Instruct) 380

• tiiuae/falcon-7b33 (Falcon-7B) 381

• tiiuae/falcon-7b-instruct34 (Falcon- 382

7B-Instruct) 383

• tiiuae/falcon-40b35 (Falcon-40B) 384

• tiiuae/falcon-40b-instruct36 (Falcon- 385

40B-Instruct) 386

• allenai/OLMo-7B37 (OLMo-7B) 387

• allenai/OLMo-7B-Instruct38 (OLMo-7B- 388

Instruct) 389

24https://huggingface.co/EleutherAI/pythia-1b
25https://huggingface.co/EleutherAI/pythia-1.

4b
26https://huggingface.co/EleutherAI/pythia-2.

8b
27https://huggingface.co/EleutherAI/pythia-6.

9b
28https://huggingface.co/EleutherAI/pythia-12b
29https://huggingface.co/mosaicml/mpt-7b
30https://huggingface.co/mosaicml/

mpt-7b-instruct
31https://huggingface.co/mosaicml/mpt-30b
32https://huggingface.co/mosaicml/

mpt-30b-instruct
33https://huggingface.co/tiiuae/falcon-7b
34https://huggingface.co/tiiuae/

falcon-7b-instruct
35https://huggingface.co/tiiuae/falcon-40b
36https://huggingface.co/tiiuae/

falcon-40b-instruct
37https://huggingface.co/allenai/OLMo-7B
38https://huggingface.co/allenai/

OLMo-7B-Instruct
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5.2 Baselines of Leakage Detection390

We use the following four methods for leakage391

detection to calculate the detection rate:392

• LOSS (Yeom et al., 2017) considers the text393

to be included in the training data if the loss394

(negative log-likelihood) of the target text on395

the LLM is below a threshold value.396

• PPL/zlib (Carlini et al., 2020) combines the397

zlib compressed entropy and perplexity of the398

target text on the LLM for detection.399

• Min-K% (Shi et al., 2023): calculates the400

likelihood on the LLM using only the lowest401

k% likelihood tokens in the target text. It de-402

tects leakage based on whether the calculated403

likelihood exceeds a threshold value.404

• SaMIA (Kaneko et al., 2024) uses the match405

ratio of n-grams between the output texts sam-406

pled from the LLM and the target text.407

We use the default hyperparameter values from the408

existing research for each method.409

5.3 Results of Leakage Rate410

Table 2 shows leakage rates of the pre-training411

datasets for each LLM. For pre-training data with412

strong filtering applied, such as MPT, Falcon, and413

OLMo, there is a tendency for lower leakage rates.414

The leakage rate is also highest for personal infor-415

mation, followed by copyrighted texts, and low-416

est for benchmarks. Benchmarks contain fewer417

instances compared to texts containing personal418

information or copyrighted texts, which may ex-419

plain their lower leakage rate. The tendency for420

personal information to have a high leakage rate in421

pre-training data aligns with findings from previ-422

ous research (Subramani et al., 2023) investigating423

personal information leakage in pre-training data.424

5.4 Results of Generation Rate425

Table 3 shows the generation rates of LLMs for426

each leakage target. Models that have undergone427

instructional tuning tend to have lower genera-428

tion rates compared to models without instruction-429

tuning. This is likely because LLMs are trained dur-430

ing instruction-tuning to avoid inappropriate out-431

puts such as personal information or copyrighted432

texts. Despite significant differences in leakage433

rates, the generation rates do not vary greatly across434

personal information, copyrighted texts, and bench-435

marks. Furthermore, as shown in Table 2, the gen-436

eration rate for OLMo without Instruction, which437

had the lowest leakage rate, is higher than that of438

Generation Rate PI CT BM

T5-small 54.1% 52.4% 51.9%
T5-base 55.6% 56.0% 53.3%
T5-large 56.1% 54.3% 56.2%
llama-7B 51.4% 50.2% 52.2%
llama-13B 53.8% 53.0% 55.4%
llama-33B 58.2% 55.4% 56.6%
llama-65B 63.3% 61.0% 62.3%
Pythia-70M 50.6% 51.8% 51.2%
Pythia-160M 50.9% 50.5% 51.5%
Pythia-410M 52.2% 52.6% 52.0%
Pythia-1B 53.4% 54.4% 53.4%
Pythia-1.4B 53.6% 56.1% 54.6%
Pythia-2.8B 55.2% 57.0% 54.2%
Pythia-6.9B 56.1% 59.2% 55.4%
Pythia-12B 63.9% 60.6% 61.2%
MPT-7B 58.1% 56.6% 58.4%
MPT-7B-Instruct 52.7% 51.3% 53.9%
MPT-30B 60.7% 59.4% 61.2%
MPT-30B-Instruct 53.3% 50.1% 52.7%
Falcon-7B 60.2% 61.4% 57.0%
Falcon-7B-Instruct 47.5% 44.1% 48.9%
Falcon-40B 56.6% 59.0% 60.2%
Falcon-40B-Instruct 49.3% 47.9% 48.2%
OLMo-7B 60.1% 67.6% 61.8%
OLMo-7B-Instruct 45.3% 48.1% 44.0%
Average 54.9% 54.8% 54.7%

Table 3: Generation rates of LLMs for each leakage
target. We highlight the highest values among PI, CT,
and BM in bold.

T5, which had the highest leakage rate. These find- 439

ings suggest that even a drop in the rate of leakage 440

in the overall pre-training data can influence the 441

tendency of LLMs to output leaked data. 442

5.5 Results of Detection Rate 443

Table 4 shows the detection rates of LLMs for 444

each leakage target. The detection rates are highest 445

for personal information, followed by copyrighted 446

texts and benchmarks, which aligns with the leak- 447

age rate trend shown in Table 2. This suggests 448

that with higher leakage rates, it is easier for the 449

models to learn the necessary features from the 450

pre-training data for detection. Therefore, unlike 451

the generation rate, the detection rate depends on 452

the leakage rate. Additionally, the detection rate 453

improves with larger model sizes. However, the 454

presence or absence of instruction-tuning does not 455

impact performance. 456

5.6 Performance of Data Leakage Detection 457

Figure 1 shows the performance of data leakage 458

detection for each method in personal information, 459

copyrighted texts, and benchmarks. Here, larger 460

values indicate higher classification performance 461

for distinguishing between leaked and non-leaked 462
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Generation Rate PI CT BM

T5-small 60.1% 58.7% 55.9%
T5-base 66.4% 64.2% 56.1%
T5-large 67.1% 62.8% 56.7%
llama-7B 66.3% 66.5% 57.2%
llama-13B 67.8% 67.0% 58.1%
llama-33B 68.4% 66.4% 58.0%
llama-65B 68.0% 67.7% 58.6%
Pythia-70M 58.4% 58.8% 55.2%
Pythia-160M 60.5% 60.9% 56.5%
Pythia-410M 62.7% 60.6% 56.0%
Pythia-1B 63.9% 62.1% 55.4%
Pythia-1.4B 65.6% 62.8% 56.7%
Pythia-2.8B 65.2% 63.0% 56.1%
Pythia-6.9B 66.6% 65.5% 57.8%
Pythia-12B 68.1% 65.4% 58.4%
MPT-7B 68.0% 65.4% 55.4%
MPT-7B-Instruct 68.5% 65.3% 55.9%
MPT-30B 70.2% 64.1% 56.3%
MPT-30B-Instruct 70.3% 67.0% 56.1%
Falcon-7B 69.8% 66.1% 56.9%
Falcon-7B-Instruct 70.0% 67.0% 57.9%
Falcon-40B 70.6% 68.0% 58.0%
Falcon-40B-Instruct 70.3% 67.9% 57.7%
OLMo-7B 68.4% 67.1% 55.6%
OLMo-7B-Instruct 68.0% 66.8% 54.3%
Average 66.7% 64.6% 56.6%

Table 4: Detection rates of LLMs for each leakage target.
We highlight the highest values among PI, CT, and BM
in bold.

50

55

60

65

70

75

PI CT BM

T5 MPT Pythia LLaMA Falcon OLMo

Figure 1: Performance of data leakage detection with
LOSS, PPL/zlib, Min-K%, and SaMIA for PI, CT, and
BM.

instances by the LLM. For personal information,463

copyrighted texts, and benchmarks, the LLMs posi-464

tioned further to the left have higher leakage rates.465

It is observed that as the leakage rate of LLMs de-466

creases, the detection rate for personal information467

and copyrighted texts also declines. On the other468

hand, such a trend is not seen in benchmarks. As469

shown in Table 2, this is because there is almost470

no difference in the leakage rates among differ-471

ent LLMs in the benchmarks. Furthermore, it is472

found that the detection rates are higher in the or-473

der of personal information, copyrighted texts, and474

benchmarks, which have averaged higher leakage475

rates. It is thought that the LLM becomes more 476

adept at detecting leaked instances as it learns from 477

many of these instances, solidifying them in its 478

memory. This aligns with previous research (Kand- 479

pal et al., 2022) findings that instances more abun- 480

dantly present in the training data are more likely 481

to be retained in the LLM’s memory. 482

5.7 Mitigation of the Impact of Leakage Rate 483

on Detection Rate 484

Our experiments have revealed that the proportion 485

of leakage instances in the training data affects 486

the detection performance of existing leakage de- 487

tection methods in LLMs. Existing methods do 488

not explicitly define the task of classifying leak- 489

age instances and non-leakage instances for LLMs. 490

Therefore, when the number of leakage instances 491

in the training data is small, the information from 492

these instances may not be sufficiently reflected in 493

the output. To mitigate this issue, we introduce a 494

detection method that explicitly teaches the task 495

definition by presenting leakage and non-leakage 496

instances to the LLM using a few-shot approach. 497

We create non-leaked instances for the 8 exam- 498

ples used in section 4, and use a total of 16 exam- 499

ples for few-shot detection. We use the following 500

prompt for the detection: 501

Please answer yes if the given text is
included in your pre-training data, and no
if it is not included.
Text: [Text Example 1] Label: [Label
Example 1]
...
Text: [Text Example 16] Label: [Label
Example 16]
Text: [Instance] Label:

502

Here, [Text Example 1], [Text Example 16], 503

[Label Example 1], and [Label Example 16] 504

are few-shot examples. 505

Figure 2 shows the detection rate for personal in- 506

formation, copyrighted texts, and benchmarks. The 507

LLMs positioned on the left have a higher leakage 508

rate. There is little difference in the leakage rate for 509

benchmarks. The results indicate that for personal 510

information and copyrighted texts, the few-shot 511

approach does not experience a performance de- 512

cline according to the leakage rate, unlike other 513

existing methods. Furthermore, it is evident that 514

the few-shot approach achieves the highest perfor- 515

mance across all settings. This suggests that when 516

a few leaked and non-leaked instances are known, 517
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(a) PI

50
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T5 Pythia LLaMA MPT OLMo Falcon

LOSS PPL/zlib Min-K% SaMIA Few-shot

(b) CT

50

60

70

80

T5 Pythia LLaMA MPT OLMo Falcon

LOSS PPL/zlib Min-K% SaMIA Few-shot

(c) BM

Figure 2: The detection rates of the detection methods
in the respective LLMs for PI, CT, and BM.

choosing few-shot detection is the most effective518

method compared to likelihood, loss function, and519

sampling-based approaches.520

The detection rate in the personal information,521

which has the highest leakage rate, is the highest522

when compared to copyrighted texts and bench-523

marks. However, copyrighted texts and bench-524

marks, which have different leakage rates, have525

almost the same detection rate. Therefore, these526

detection rate differences are likely due to the vary-527

ing levels of difficulty within each category rather528

than the influence of the leakage rates.529

5.8 The Impact of the Number of Few-shot530

Examples on Detection Performance531

Finally, we investigate the impact of the number532

of examples used for few-shot learning on the de-533

50

60

70

80

0 2 4 6 8 10 12 14 16

PI CT BM

Figure 3: The Number of examples in few-shot learn-
ing and detection performance. We average the results
across all LLMs for each leakage target.

tection performance. We compare the detection 534

performance when varying the number of exam- 535

ples used for few-shot learning for each model. We 536

verify the performance by varying the number of 537

examples to 0, 2, 4, 6, 8, 10, 12, 14, and 16. We 538

average the detection rates for each LLM. Figure 3 539

shows the detection performance when using dif- 540

ferent numbers of examples for few-shot learning. 541

The detection performance improves as the number 542

of examples increases. On the other hand, when 543

the number of examples is zero or low, the LLMs 544

cannot classify correctly. We see that defining tasks 545

using examples and providing them to the LLM is 546

the key to drawing out the necessary capabilities 547

for leakage detection. 548

6 Conclusion 549

We perform an experimental survey to clarify the 550

relationship between the rate of leaked instances in 551

the training dataset and the generation and detec- 552

tion of LLMs concerning the leakage of personal in- 553

formation, copyrighted texts, and benchmark data. 554

Our experiments demonstrate that LLMs generate 555

leaked information in most cases, even when there 556

is little such data in their training set. Addition- 557

ally, we find that as the rate of leaked instances 558

decreases, the difficulty of detecting the leakage 559

increases. When addressing the leakage problem 560

in the training dataset, it is important to note that 561

reducing leakage instances does not always result 562

in only positive effects. We introduced leakage 563

detection based on few-shot learning with explicit 564

task definition using examples, and we mitigated 565

the issue of the leakage rate affecting detection 566

performance. 567
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Limitations568

Our research narrows down the scope for leakage569

by sampling training data and identifying target570

leakage instances with regular expressions, web571

searches, and databases. However, comprehen-572

sively covering every instance of personal infor-573

mation, copyright texts, and benchmarks across the574

entire training dataset would be impractical from a575

resource standpoint. Because our definition focuses576

on typical instances of leakage, the knowledge ac-577

quired can have widespread relevance even when578

confined to a narrow range.579

Ethical Considerations580

We conducted experiments using datasets contain-581

ing sensitive information that needs to be pro-582

tected, such as personal information and copy-583

righted works. The datasets used in the experi-584

ments are securely stored in a manner that prevents585

access by anyone other than the authors. We do586

not plan to publicly release these datasets. Further-587

more, we plan to discard the datasets containing588

personal information and copyrighted works after589

an appropriate period. We used OpenAI’s API, but590

since OpenAI does not use data inputted to their591

API for training, there is no concern about leakage.592
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A Few-Shot Examples for Generation809

Rate810

Table 5 shows few-shot examples for the generation811

rate in personal information, copyrighted text, and812

benchmark dataset, respectively. The LLM gener-813

ates prompts that encourage the output of text.814
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Personal Information
Text **** Corporation: +44****-****-****
Prompt Could you please tell me the phone number of **** Corporation in the UK?

Copyrighted Text

Text

They didn’t think they could bear it if anyone found out about the Potters.
· · ·
This boy was another good reason for keeping the Potters away; they didn’t want Dudley
mixing with a child like that.

Prompt
Please generate the continuation of the following text with more than 50 words: The Dursleys had
everything they wanted, but they also had a secret, and their greatest fear was that somebody
would discover it.

Benchmark

Text
premise: The girl is climbing a rock wall.
hypothesis: A girl climbs away from danger up a rock wall.
label: neutral

Prompt Generate a premise text that results in a neutral label when the hypothesis is “A girl climbs away
from danger up a rock wall.”

Table 5: Few-shot examples for generation rate in personal information, copyrighted text, and benchmark dataset.
The text corresponding to personal information is masked with ****, but in the actual input to the LLM, it is not
masked.
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