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Abstract
We investigate the mechanism of in-context001
learning (ICL) on sentence classification002
tasks with semantically-unrelated labels003
("foo"/"bar"). We find intervening in only 1%004
heads (named "in-context heads") significantly005
affects ICL accuracy from 87.6% to 24.4%.006
To understand this phenomenon, we analyze007
the value-output vectors in these heads and008
discover that the vectors at each label position009
contain substantial information about the010
corresponding labels. Furthermore, we observe011
that the prediction shift from "foo" to "bar" is012
due to the respective reduction and increase in013
these heads’ attention scores at "foo" and "bar"014
positions. Therefore, we propose a hypothesis015
for ICL: in in-context heads, the value-output016
matrices extract label features, while the017
query-key matrices compute the similarity018
between the features at the last position and019
those at each label position. The query and020
key matrices can be considered as two towers021
that learn the similarity metric between the022
last position’s features and each demonstration023
at label positions. Using this hypothesis, we024
explain the majority label bias and recency025
bias in ICL and propose two methods to reduce026
these biases by 22% and 17%, respectively.027

1 Introduction028

In-context learning (ICL) is an emergent abil-029

ity (Wei et al., 2022a) of large language models030

(Brown et al., 2020; Ouyang et al., 2022; Touvron031

et al., 2023). By using some demonstration-label032

pairs as prompts, ICL performs well without up-033

dating parameters on many tasks, such as machine034

translation (Sia and Duh, 2023), complexity reason-035

ing (Li et al., 2023a), compositional generalization036

(Zhou et al., 2022) and information extraction (He037

et al., 2023).038

Because the mechanism of ICL remains unclear,039

many studies focus on understanding how ICL040

works. Pan et al. (2023) find that ICL can be disen-041

tangled into task recognition (TR) and task learning042

(TL). TR does not rely on the demonstration-label 043

mappings because the roles of demonstrations and 044

labels are helping the model know "what is the 045

task". In this situation, the model have similar 046

predictions when the mappings are wrong (Min 047

et al., 2022), because the predictions are based on 048

pre-trained priors. On the other hand, TL relies 049

on the demonstration-label mappings because the 050

semantic priors are removed. For example, in an 051

ICL sentiment classification task, if the labels are 052

"positive/negative", the task is TR. If the labels 053

are "foo/bar", the task is TL because the labels are 054

semantically-unrelated (Wei et al., 2023). Wang 055

et al. (2023) analyze the information flow by aver- 056

aging all attention heads and find the label words 057

are anchors to merge the semantic information of 058

corresponding demonstrations in shallow layers, 059

and information is extracted from label words to 060

the final prediction in deep layers. 061
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Figure 1: Hypothesis of ICL mechanism. (a) Shallow
layers merge features into label positions and last posi-
tion. In in-context heads, (b) value-output matrix VO ex-
tracts label information. (c) Query matrix Q and (d) key
matrix K compute the (e) similarity scores between last
position and each demonstration, deciding how much
label information is transferred into the last token.
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Although these studies are important for under-062

standing ICL, the exact mechanism of ICL remains063

a mystery for several reasons. Firstly, the informa-064

tion flow is typically observed as an average across065

each head, but understanding ICL requires explor-066

ing the precise importance of each head. Secondly,067

each head has a query matrix, key matrix, value068

matrix, and output matrix; it is essential to study069

the role of each matrix in detail. Lastly, ICL is070

plagued by issues such as majority label bias and071

recency bias, and how to explain and mitigate these072

biases has not yet been thoroughly investigated.073

In this paper, we address these issues by iden-074

tifying important heads for ICL and studying the075

roles of each matrix within these heads. Using two076

methods, we identify 12 important heads (named077

in-context heads) that significantly affect ICL ac-078

curacy across five datasets, reducing it from 87.6%079

to 24.4% on average. Intervening in 6 heads080

(fooheads) decreases the probabilities of "foo",081

while intervening in the other 6 heads (barheads)082

reduces the probabilities of "bar". To explore the083

reason of this phenomenon, we study these heads’084

value-output vectors computing by value-output085

matrices, and find that the vectors on label positions086

contain much information about the corresponding087

labels. Moreover, we observe the attention scores088

in the in-context heads when predictions shift from089

"foo" to "bar", and find that the attention scores at090

"foo" positions decrease, while the attention scores091

at "bar" positions increase. Based on these observa-092

tions, we propose a hypothesis for ICL, as shown093

in Figure 1: in in-context heads, value-output ma-094

trices extract label information ("foo"/"bar") from095

corresponding labels, and query-key matrices com-096

pute the similarity between the last position and097

each label position. The query and key matrices098

can be regarded as two towers for learning the simi-099

larity between the features at last position and each100

demonstration at label positions. The greater the101

similarity, the higher the probability of the corre-102

sponding label.103

Based on this hypothesis, we explore the reason104

why ICL has majority label bias (Zhao et al., 2021)105

and recency bias (Lu et al., 2021). The existing of106

majority label bias matches our hypothesis: query107

and key matrices compute the attention weights108

between the last position and each demonstration,109

so the sum of one label’s attention weights is larger110

when this label is related to more demonstrations.111

About recency bias, we hypothesize that it is caused112

by the influence of positional embedding during 113

attention score computation in both shallow and 114

deep layers. Based on our analysis, we propose two 115

methods for reducing these biases. For majority 116

label bias, we increase the attention weight of the 117

imbalanced label’s position in in-context heads, and 118

the majority label bias reduces 22%. For recency 119

bias, we remove the affect of position embedding 120

in in-context heads, and the recency bias reduces 121

17%. Our code and data will be released on github. 122

2 Related Work 123

2.1 Understanding ICL 124

Many studies have explored the mystery of ICL. 125

Min et al. (2022) find that randomly replacing 126

the ground truth labels does not hurt performance 127

much. Wei et al. (2023) argue the reason of this 128

phenomenon is the model can rely on semantic pri- 129

ors. Therefore, they study semantically-unrelated 130

label ICL by transferring the labels into "foo" and 131

"bar" and find that the performance is related to 132

the demonstration-label mapping. Pan et al. (2023), 133

disentangle ICL into task recognition (TR) and task 134

learning (TL) to explain this phenomenon. Chan 135

et al. (2022) demonstrate that the ICL ability is ob- 136

tained when training data have enough rare classes. 137

Liu et al. (2021) argue that selecting the closest 138

neighbors as demonstrations can enhance ICL abil- 139

ity. Gonen et al. (2022) propose choose low per- 140

plexity demonstrations to increase the performance 141

of ICL. Dong et al. (2022) conclude these methods 142

in a survey for ICL. Wang et al. (2023) find the 143

label words are anchors to extract demonstrations 144

in shallow layers, and the last position extracts in- 145

formation from label words in deep layers. 146

Some studies try to explain ICL theoretically. 147

Xie et al. (2021) argue that ICL ability is gained 148

when the pretraining distribution is a mixture of 149

HMMs, and they explain ICL as implicit Bayesian 150

inference. Garg et al. (2022) prove that transform- 151

ers can learn linear functions by ICL. Akyürek et al. 152

(2022) find transformers can learn linear regression 153

functions and hypothesize that ICL can implement 154

standard learning algorithms implicitly. Li et al. 155

(2023b) explore the softmax regression and find 156

that attention-only transformers are similar with 157

gradient descent models. Von Oswald et al. (2023) 158

and Dai et al. (2022) regard ICL as meta-learning 159

and argue that ICL does gradient descent implicitly. 160
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2.2 Mechanistic Interpretability161

The goal of mechanistic interpretility (Olah, 2022;162

Nanda et al., 2023) is to reverse engineer the cir-163

cuits from inputs to outputs. One common method164

is to apply gradient-based methods (Sundararajan165

et al., 2017; Kindermans et al., 2019) or causal trac-166

ing methods (Pearl, 2001; Vig et al., 2020; Meng167

et al., 2022) to analyze the importance of differ-168

ent attention heads and hidden states. Olsson et al.169

(2022) find that induction heads in attention lay-170

ers are helpful for copying words from the input171

sequence (e.g. [X][Y]...[X] -> [Y]). Wang et al.172

(2022) interpret the circuits on indirect object iden-173

tification task in GPT2. Hanna et al. (2023) studies174

how GPT2 computes greater-than by constructing a175

computational graph of head node and MLP node.176

Another common method for mechanistic inter-177

pretability is the logit lens (Nostalgebraist, 2020),178

whose idea is to analyze the hidden vectors in un-179

embedding space (also named vocabulary space).180

Many studies have found that the parameters in181

transformers are interpretable when projecting into182

vocabulary space (Elhage et al., 2021; Geva et al.,183

2022; Dar et al., 2022).184

3 Hypothesis for ICL Mechanism185

Our hypothesis is motivated by a case study in186

Section 3.1. We find that ICL performance can187

be affected much by only 1% heads, where some188

can enhance the probabilities for "foo" and others189

for "bar" (Section 3.2). To understand why this190

happens, we analyze the value-output vectors and191

attention scores in Section 3.3 and find that value-192

output matrices extract the label information and193

attention scores computed by query-key matrices194

control the label information flow. At last, we dis-195

cuss our hypothesis for ICL in Section 3.4.196

3.1 Hypothesis Motivated by Case Study197

Our hypothesis and analysis is motivated by a case198

study in GPT2-large (Radford et al., 2019). We199

design a simple ICL case for word classification:200

"love : bar like : bar eight : foo two : foo one :",201

where the model’s prediction is "foo". In this case,202

"foo" is the semantic-unrelated label for "number"203

and "bar" is for "sentiment". We propose a locate-204

and-project method for case study: we first locate205

the most important heads using the method dis-206

cussed in Section 3.2, then project the vectors on207

label and last positions into vocabulary space by208

multiplying each vector v and the unembedding209

matrix Eu, following Dar et al. (2022): 210

Dv = softmax(Eu v) (1) 211

Top tokens of value-output vectors and key vectors 212

at label positions and query vector at last position 213

in a022 (layer22, head0) are shown in Table 1. 214

position top words in vocabulary space

2-value BAR, Barron, Barrett, Band, Bray, Bars,
Baron, Bar, Bay, Boyd

5-value BAR, Barron, Barrett, Baron, Bar, Band,
Barbie, Barbar, Bard

8-value foo, Foo, FO, fo, Foley, Fresno, FDR, fas-
cists

11-value foo, Foo, fo, FO, fascists, FDR, Foley, Goo,
fascists

2-key kisses, goddess, love, charms, idol, stress,
nobles, happiness

5-key style, oriented, +++, like, indo, height,
Lover, xual, dont, foo

8-key foo, mc, blah, happ, avg, french, omega,
prod, english, google, height, neigh

11-key foo, mc, infinity, omega, three, two, repeat,
twelve, 666, Three, thirds, five, sixteen

13-query first, end, only, no, all, given, person, cer-
tain, call, same, short, long, 1, one, value

Table 1: Top tokens at label positions and last position.

Label positions’ value-output vectors contain 215

concepts about the labels, and their key vectors 216

contain the corresponding demonstrations. For ex- 217

ample, the label at position 2 is "bar" and the value- 218

output vector contains "BAR, Bars, Bar". Its key 219

vector’s top tokens are related to the correspond- 220

ing demonstration "love". The last position have 221

concepts about the input text "one". Hence, we 222

hypothesize that value-output matrices extract the 223

label information and query-key matrices compute 224

the similarity between the last position (encodes the 225

input text) and each label position (encodes demon- 226

stration). We also note interpretable results in sen- 227

tence classification cases, detailed in Appendix A. 228

3.2 Identifying Important Heads for ICL 229

Datasets and models. We conduct the experi- 230

ments on five sentence classification datasets, in- 231

cluding financial phrasebank (Financ) (Malo et al., 232

2014), AG’s news topic classification (AGnews) 233

(Zhang et al., 2015), Amazon reviews (Amazon) 234

(McAuley and Leskovec, 2013), Hate Speech De- 235

tection (ETHOS) (Mollas et al., 2020), and Stan- 236

ford Sentiment Treebank binary (SST2) (Socher 237

et al., 2013). We conduct experiments on Llama- 238

7B (Touvron et al., 2023) with 32 layers (32 heads 239

per layer), and GPT-J (Wang and Komatsuzaki, 240

2021) with 28 layers (16 heads per layer). 241
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Financ AGnews Amazon ETHOS SST2

foo 90.6 96.6 84.2 69.0 89.2
bar 99.8 100.0 85.6 73.2 88.8

foo 97.6 99.6 65.2 54.2 90.4
bar 98.6 83.2 98.8 92.8 97.2

Table 2: ICL accuracy (%) with correct label "foo"/"bar"
in Llama (first block) and GPT-J (second block).

Inspired by Pan et al. (2023) and Wei et al. (2023)242

that task learning is the emergent ability of large243

language models (LLMs), we replace the labels244

with semantic-unrelated labels "foo" and "bar" to245

study the mechanism of ICL task learning ability.246

In each dataset, we randomly sample two sentences247

with each label, and propose the ICL sentence: "S0248

: bar S1 : bar S2 : foo S3 : foo S4 :" with correct249

label "foo" and "S0 : foo S1 : foo S2 : bar S3 :250

bar S4 :" with correct label "bar", where S0 and251

S1 have the same label, and S2, S3, S4 have the252

other label. We randomly sample 1,000 sentences253

in each dataset. The accuracy when correct labels254

are "foo" and "bar" are shown in Table 2, which255

indicate that the ICL ability exists in most datasets.256

Methods. We apply two methods to identify the257

important heads for ICL. Firstly, we use causal258

tracing methods (Pearl, 2001; Vig et al., 2020) and259

intervene each head in deep layers by setting the260

head’s parameters to zero, and re-calculate the de-261

crease in each dataset. Secondly, following Yu and262

Ananiadou (2024), we compute the log probabil-263

ity increase Sh
l of each head to find which heads264

directly contribute to the final predictions:265

Sh
l = log(p(b|ohl + Linl))− log(p(b|Linl)) (2)266

where b is the predicted label ("foo"/"bar"), Linl is267

lth layer’s input, and ohl is the head output vector268

on layer l, head h. The probability is calculated269

by multiplying the vector with the unembedding270

matrix Eu (Eq.1). If the score is large, the head is271

useful for increasing the probability of label b. We272

identify the heads rank top10 in both methods, and273

there are 6 important "fooheads" affecting "foo"274

and 6 important "barheads" affecting "bar" in both275

model. The average accuracy change when inter-276

vening the fooheads and barheads is shown in Table277

3. When intervening the fooheads, datasets with278

correct label "foo" show a significant decrease in279

accuracy, while those with correct label "bar" ex-280

perience a substantial increase in accuracy. When281

masking in the barheads, datasets with correct la-282

bel "bar" show a significant decrease in accuracy,283

while those with correct label "foo" experience a 284

substantial increase in accuracy. Therefore, our 285

identified fooheads and barheads are important for 286

predicting "foo" and "bar", respectively. We name 287

these heads "in-context heads". 288

correct label : foo correct label : bar
fooheads barheads fooheads barheads

Llama 86.0/0.01 86.0/99.3 89.0/99.2 89.0/35.4
GPT-J 81.4/10.6 81.4/98.9 94.1/99.9 94.1/51.4

Table 3: Origin/intervened accuracy (%) when interven-
ing fooheads and barheads in Llama and GPT-J.

3.3 Analyzing Value-Output Vectors and 289

Attention Scores in In-context Heads 290

Head output o in Eq.1 is computed by the weighted 291

sum of value-output vectors vo on all positions p: 292

o =

T−1∑
p=0

αp · vop (3) 293

where T is the length of the input text. α is the 294

attention score computed by the softmax function 295

on the inner product of last position’s query vector 296

and each position’s key vector. vo is computed by 297

the linear transform of value-output matrices on 298

each position’s layer input. To explore the impor- 299

tance of label positions in each in-context head, 300

we investigate sentences with correct label "foo", 301

and compute the logit minus score M at "foo" and 302

"bar" positions’ weighted value-output vectors: 303

M = log(p(foo|αp · vop))− log(p(bar|αp · vop))
(4) 304

If M is larger than zero, the vectors are important 305

for enhancing "foo" probability. On the contrary, 306

they are important for enhancing "bar" probability. 307

The average logit minus scores at "foo" positions 308

(fp) and "bar" positions (bp) in fooheads (fh) and 309

barheads (bh) are shown in Table 4. In both mod- 310

els, foo positions contain much information about 311

"foo" in fooheads, and bar positions contain much 312

information about "bar" in barheads. Furthermore, 313

the proportion between label positions’ logit minus 314

scores and the in-context heads’ logit minus scores 315

is 99.1%. Therefore, the reason fooheads/barheads 316

affect probabilities of "foo"/"bar" is due to the in- 317

formation saved at "foo"/"bar" positions’ weighted 318

value-output vectors α · vo. 319

To explore the roles of query-key matrices and 320

value-output matrices, we compute the attention 321

scores and the value-output vectors’ logit minus 322
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Financ AGnew Amaz ETHOS SST2

fh-fp 0.29 0.32 0.30 0.30 0.32
fh-bp -0.02 -0.05 -0.04 -0.04 -0.04
bh-fp -0.05 -0.03 -0.03 -0.02 -0.04
bh-bp -0.11 -0.08 -0.14 -0.14 -0.12

fh-fp 0.26 0.23 0.26 0.28 0.31
fh-bp 0.00 -0.01 0.00 -0.01 -0.01
bh-fp -0.07 -0.05 -0.06 -0.06 -0.06
bh-bp -0.16 -0.17 -0.20 -0.23 -0.18

Table 4: Logit minus of weighted value-output vectors
at "foo"/"bar" positions (fp, bp) in fooheads/barheads
(fh, bh) in Llama (first block) and GPT-J (second block).

scores (removing αp in Eq.4). The average scores323

across all datasets are shown in Table 5.324

fooheads barheads
foopos barpos foopos barpos

attn 0.742 0.047 0.369 0.195
minus 0.613 -0.574 -0.075 -0.658

attn 0.540 0.037 0.219 0.203
minus 0.958 0.099 -0.253 -1.656

Table 5: Attention score and logit minus at "foo"/"bar"
positions in fooheads/barheads in Llama (first block)
and GPT-J (second block), averaged on all datasets.

Both query-key matrices and value-output matri-325

ces can affect the probabilities. In Llama fooheads,326

the query-key matrices play large roles for predict-327

ing "foo". The value-output matrices can extract328

both "foo->foo" and "bar->bar", since the absolute329

values of logit minus scores at "foo" and "bar" po-330

sitions are similar. In GPT-J fooheads, both query-331

key matrices and value-output matrices play large332

roles for enhancing "foo". In Llama barheads and333

GPT-J barheads, value-output matrices play larger334

role than query-key matrices for predicting "bar".335

To explore how the predictions change from336

"foo" to "bar", we compare the sentences "S0 : bar337

S1 : bar S2 : foo S3 : foo S4 :" and "S0 : foo S1338

: foo S2 : bar S3 : bar S4 :" in each dataset. We339

compute the change of absolute value on weighted340

value-output vectors’ logit minus scores (minus-w),341

value-output vectors’ logit minus scores (minus),342

and attention scores, shown in Table 6.343

The prediction shift is caused by the change of344

weighted value-output vectors’ logit minus scores.345

When changing the labels, fooheads’ foo positions346

contain less information about "foo", and barheads’347

bar positions contain more information about "bar".348

The "foo" decrease at fooheads’ "foo" positions349

and the "bar" increase at barheads’ "bar" positions350

cause the probability change from "foo" to "bar".351

fooheads barheads
foopos barpos foopos barpos

minus-w -12.1% +54.4% -47.9% +47.2%
minus +26.5% -21.4% +41.8% -10.5%
attn -21.8% +124.8% -44.4% +91.4%

minus-w -40.4% +408.5% -51.7% +55.1%
minus +13.9% +32.0% +44.2% -17.6%
attn -43.0% +237.8% -46.1% +86.0%

Table 6: Change of attention score and logit minus at
"foo"/"bar" positions in fooheads/barheads in Llama
(first block) and GPT-J (second block) on all datasets.

The attention scores change significantly when 352

the predictions shift from "foo" to "bar". Attention 353

scores at fooheads’ "foo" positions decrease sub- 354

stantially, while those at barheads’ "bar" positions 355

increase markedly. Comparatively, the change di- 356

rection of the value-output vectors’ logit minus 357

scores does not show a relevant trend with the logit 358

minus scores of the weighted value-output vectors. 359

Therefore, we hypothesize that the change of atten- 360

tion scores within in-context heads is the primary 361

cause for the prediction shift from "foo" to "bar". 362

3.4 Discussion of Our Hypothesis 363

Based on the experimental results, we conclude our 364

hypothesis: In shallow layers, the label positions 365

extract features from the corresponding demonstra- 366

tions, while the last position encodes information 367

of the input text and previous demonstrations/labels 368

(X% input text + Y% near demonstrations + Z% 369

far demonstrations). In in-context heads, the value- 370

output matrices extract the label features into value- 371

output vectors. For example, fooheads extract "foo- 372

>foo" and barheads learn "bar->bar". The query- 373

key matrices compute the similarity between the 374

last position’s features and each label position’s 375

features. When the labels change from "foo" to 376

"bar", the change of last position features causes 377

the similarity scores change and the prediction shift. 378

For instance, the fooheads’ similarity scores at 379

foo positions change from SIM((X+Y)%foo, foo) 380

to SIM(Z%foo, foo), and the barheads’ similarity 381

scores at bar positions change from SIM(Z%bar, 382

bar) into ((X+Y)%bar, bar). Hence, the foo posi- 383

tions’ attention scores decrease in fooheads and the 384

bar positions’ attention scores increase in barheads, 385

causing the probability change from "foo" to "bar". 386

If considering all the in-context heads together, 387

the overall value-output matrices can learn both 388

"foo->foo" and "bar->bar". Under our hypothesis, 389

the query and key matrices can be regarded as two 390
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towers computing the semantic similarity between391

the last position’s features and each label position’s392

demonstration features. If the similarity score is393

large, more corresponding label information is in-394

corporated, enhancing the probability of that label.395

There are four modules related to the ICL ability.396

a) Information extraction ability of shallow397

layers. Shallow layers can be regarded as feature398

extraction modules. The ability of extracting corre-399

sponding demonstrations and the input text decides400

the quality of features.401

b) Value projection ability of in-context heads’402

value-output matrices. If the value projection403

ability is good enough, the in-context heads should404

project "foo" and "bar" together and fairly.405

c) Metric learning ability of in-context heads’406

query and key matrices. The query and key matri-407

ces might be the most important module, because408

they should learn computing different metrics using409

the same matrices. If different ICL tasks share the410

same in-context heads, the query and key matrices411

should learn these metrics jointly.412

d) Numbers and parameters of in-context413

heads. If we regard one in-context head as a two-414

tower model for metric learning, the parameters of415

the head are directly related to the learning ability.416

At the same time, different in-context heads can be417

regarded as voting or ensemble models, so the head418

number also controls the learning ability.419

4 Understanding Majority Label Bias and420

Recency Bias in ICL421

There are several phenomena of ICL that haven’t422

been explained. Zhao et al. (2021) demonstrate423

that models tend to predict majority labels and the424

labels near the input text. Lu et al. (2021) also find425

that changing the demonstration order can affect426

predictions a lot. Based on our hypothesis, we427

explore why ICL has majority label bias (in Section428

4.1) and recency bias (in Section 4.2).429

4.1 Understanding Majority Label Bias430

According to our hypothesis, it is reasonable that431

the model tends to predict majority labels, because432

the label information flow is controlled by the simi-433

larity between last position and each label position.434

When a label has high frequency, the sum of simi-435

larity scores will be larger, thus the probability of436

this label is larger in final prediction. We design an437

imbalanced dataset to verify this. For each sentence438

with correct label "foo", we remove the last demon-439

stration and label. For example, "S0 : bar S1 : 440

bar S2 : foo S3 : foo S4 :" is changed into "S0 : 441

bar S1 : bar S2 : foo S4 :". We compute the sum 442

of attention weights on "foo" positions in fooheads 443

and "bar" positions in barheads on the imbalanced 444

datasets and the original datasets, averaged on all 445

five datasets. The changing of attention scores at 446

"foo" positions and "bar" positions in both models 447

are shown in Figure 2. 448

Figure 2: Attention scores on foo positions in fooheads
and bar positions in barheads, on original dataset and
imbalanced dataset in Llama (left) and GPT-J (right).

In both models, the sum of attention weights on 449

"foo" positions decrease on the imbalanced dataset. 450

On the contrary, the attention weights on "bar" 451

positions increase. The results meet our analysis. 452

The attention weights are computed by a softmax 453

function, so when a "foo" demonstration and its 454

label are removed, the sum of attention weights 455

on "foo" positions will decrease, and that on "bar" 456

positions will increase. 457

4.2 Understanding Recency Bias 458

The ICL performance is extremely sensitive to the 459

demonstration order. We hypothesize that the re- 460

cency bias is caused by the influence of positional 461

embeddings on the attention score computation in 462

both shallow layers and deep layers. The attention 463

score is calculated by applying a softmax function 464

to the product of the last position’s query vector 465

and each label position’s key vector. These query 466

and key vectors are derived from the layer input, 467

which is a combination of the positional embed- 468

ding, the word embedding, and the output vectors 469

from previous attention layers and feed-forward 470

network (FFN) layers. Therefore, a "position term" 471

consistently influences the attention scores. 472

The feature extraction of last position is related 473

to the attention scores in shallow layers’ heads. 474

Due to the influence of positional embedding, the 475

model tends to extract varying amounts of features 476

at different positions. Let us consider the case "S0 477
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: bar S1 : bar S2 : foo S3 : foo S4 :". The478

last position contains X% S4 + Y% (S2+S3) and479

Z% (S0+S1), simplified into (X+Y)% foo + Z%480

bar. If the demonstration order is changed into481

"S2 : foo S3 : foo S0 : bar S1 : bar S4 :", the482

last position will contain X% S4 + Z% (S0+S1) +483

Y% (S2+S3), simplified into (X+Z)% foo + Y%484

bar. Hence, the final prediction probability will be485

different between these two sentences if Y and Z486

are different. If Y is larger than Z, the last position487

will contain less "foo". Similarly, the influence of488

positional embeddings also exists in deep layers’489

heads, which tends to enlarge the attention scores490

on later positions in these heads.491

We design a reverse dataset to evaluate the differ-492

ence among different positions. For each sentence493

S0 : bar S1 : bar S2 : foo S3 : foo S4 :, we494

transfer it into a reverse sentence S2 : foo S3 : foo495

S0 : bar S1 : bar S4 :. We compute the average at-496

tention score change at "foo" positions in fooheads497

and "bar" positions in barheads, between the orig-498

inal and the reverse dataset, shown in Figure 3.499

Moreover, we remove the impact of positional em-500

bedding in each in-context head and re-compute501

the attention scores (original modify and reverse502

modify in Figure 3).503

Figure 3: Attention scores on foo positions in fooheads
and bar positions in barheads, on original dataset and
reverse dataset in Llama (left) and GPT-J (right).

Compared with the original dataset, "foo" po-504

sitions’ attention weights decrease and "bar" po-505

sitions’ attention weights increase in the reverse506

dataset in both models. This result aligns with the507

observations in previous studies (Zhao et al., 2021)508

that the probability is affected much when revers-509

ing the demonstration order. When removing the510

impact of positional embedding in each head, the511

near positions’ attention scores decrease and the far512

positions’ scores increase. Hence, our hypothesis is513

verified: the positional term in each head enlarges514

the attention scores on later positions. After re-515

moving the positional term in in-context heads, the516

attention score is still different between the original 517

dataset and the reverse dataset. This difference is 518

caused by the difference in shallow layers’ feature 519

extraction stage. 520

To provide a clearer perspective, we illustrate the 521

attention score change on "foo" positions in each 522

foohead and "bar" positions in each barhead. The 523

change of imbalanced dataset and reverse dataset in 524

Llama and GPT-J is shown in Figure 5 and 6, where 525

the first 6 columns are "foo" positions’ attention 526

scores in fooheads and the last 6 columns are "bar" 527

positions’ scores in barheads. Compared with the 528

original dataset, the attention scores decrease on 529

"foo" positions and increase on "bar" positions in 530

imbalanced dataset and reverse dataset. 531

Figure 4: Attention scores on "foo"/"bar" positions in
original, imbalanced, and recency datasets in Llama.

Figure 5: Attention scores on "foo"/"bar" positions in
original, imbalanced, and recency datasets in GPT-J.

5 Reducing Majority Label Bias and 532

Recency Bias 533

It is important to reduce the majority label bias and 534

recency bias in ICL. In this section, we propose a 535

method for reducing majority label bias in Section 536

5.1, and propose a method for reducing recency 537

bias in Section 5.2. 538
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5.1 Reducing Majority Label Bias by539

Enlarging Imbalanced Label Attention540

According to our analysis in Section 4.1, the ma-541

jority label bias can be attributed to the lack of542

attention weights on imbalanced label positions.543

So we propose a method to reduce the majority544

label bias by enlarging the imbalanced label posi-545

tions’ attention scores. Specifically, we multiply546

an amplified score a on the imbalanced label po-547

sitions’ weighted value-output vectors (aαp · vop548

in Eq.3) and add this vector into the final embed-549

ding. a is the product of a constant hyperparameter550

ac and a varying score av, where av is the ratio551

of the larger demonstration number to the smaller552

demonstration number.553

We first make a balanced dataset by randomly554

sampling 2-4 demonstrations in each label, and ran-555

domly set the demonstration order. The correct556

labels of the balanced sentences are "foo". Then557

we get a "lackfoo" sentence by randomly removing558

a "foo" demonstration, and a "lackbar" sentence by559

randomly removing a "bar" demonstration. Except560

the results in Financ GPT-J, the accuracy of "lack-561

foo" dataset is smaller than the balanced dataset562

due to the lack of "foo" demonstrations, and "lack-563

bar" accuracy is larger than the balanced dataset.564

Financ AGnew Amaz ETHOS SST2

before 0.10 0.09 0.23 0.10 0.19
after 0.07 0.05 0.17 0.07 0.15

before 0.04 0.03 0.05 0.05 0.08
after 0.06 0.02 0.02 0.03 0.06

Table 7: Accuracy change before/after applying our
method in Llama (first block) and GPT-J (second block).

Compared to the balanced dataset, we calculate565

the sum of accuracy change on "lackfoo" and "lack-566

bar" datasets before and after applying our method567

with amplified constant score ac 0.03. The accuracy568

change is shown in Table 7. On average, the accu-569

racy change reduces 29.1% in Llama and 14.9%570

in GPT-J. The results indicate that our method can571

reduce the accuracy change caused by the influence572

of imbalanced demonstrations/labels.573

5.2 Reducing Recency Bias by Removing574

Positional Embedding Affect575

As discussed in Section 4.2, we find the recency576

bias is due to the effect of positional embedding577

on the calculation of attention scores. Hence, in578

order to reduce the recency bias, we reduce the579

position term in in-context heads, and re-calculate580

the output vectors in all in-context heads. This 581

method is similar with adding a shortcut adapter 582

from each in-context head to the final embedding. 583

Financ AGnew Amaz ETHOS SST2

acc-be 0.37 0.42 0.26 0.22 0.30
acc-af 0.31 0.39 0.15 0.16 0.18
attn-be 0.06 0.08 0.06 0.05 0.06
attn-af 0.03 0.06 0.04 0.03 0.03

acc-be 0.39 0.27 0.45 0.41 0.40
acc-af 0.36 0.16 0.42 0.40 0.35
attn-be 0.07 0.05 0.07 0.06 0.08
attn-af 0.04 0.03 0.05 0.04 0.05

Table 8: Standard deviation of accuracy and attention
scores before/after applying our method in Llama (first
block) and GPT-J (second block).

We apply this method to the original dataset and 584

three recency datasets with different demonstra- 585

tion orders, detailed in Appendix B. We calculate 586

the standard deviation in accuracy and in-context 587

heads’ attention scores before (acc-be, attn-be) and 588

after (acc-af, attn-af) applying our method. The 589

results are shown in Table 8. On average, the ac- 590

curacy standard deviation reduces 23.4% in Llama 591

and 10.6% in GPT-J, and the attention score stan- 592

dard deviation reduces 40.1% in Llama and 37.7% 593

in GPT-J. Therefore, removing the positional term 594

in in-context heads is helpful for reducing the re- 595

cency bias. It is also important to reduce the re- 596

cency bias during feature extraction in shallow lay- 597

ers, and we leave this exploration in future work. 598

6 Conclusion 599

We identify the important heads for ICL and ana- 600

lyze the value-output vectors and attention scores 601

in these heads. We propose a hypothesis for the 602

mechanism of ICL. In shallow layers, the demon- 603

strations and input text is captured by the label posi- 604

tions and the last position. In in-context heads, the 605

value-output matrices project the label features into 606

value-output vectors. The query and key matrices 607

can be regarded as two towers learning the simi- 608

larity between the last position’s features and each 609

label position’s features. If the similarity score 610

is high, the corresponding label’s probability is 611

enlarged. Based on this hypothesis, we interpret 612

why ICL has majority label bias and recency bias. 613

Furthermore, we propose two methods to reduce 614

these biases by 22% and 17%. Overall, our study 615

provides a new method and a reasonable hypothe- 616

sis for understanding the mechanism of in-context 617

learning. 618
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7 Limitation619

In this paper, we focus on understanding the mech-620

anism in in-context heads in deep layers. It is also621

important to study how shallow layers transfer fea-622

tures into label positions and the last position. Our623

hypothesis explains the ICL mechanism for classifi-624

cation tasks. More studies should be done on other625

ICL tasks, such as chain-of-thought reasoning (Wei626

et al., 2022b).627

Another limitation of our work comes from the628

attribution method for identifying important heads.629

Gradient-based methods and causal tracing meth-630

ods, which calculate a module’s impact on the fi-631

nal prediction, are commonly employed for impor-632

tance attribution. Additionally, many studies utilize633

saliency score-based methods. In this paper, we634

apply both causal tracing and saliency score-based635

methods to identify important heads, and we be-636

lieve the results in Table 3 support our findings.637

However, it is important to note that there is no638

unified method for attributing important modules,639

and further exploration is needed to design better640

attribution methods.641
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A Case Study on Sentence Classification856

We analyze a sentence classification case sampled857

in AGNews dataset. The top tokens in head 23-858

13 in GPT2 large are shown in Table 9. With the859

prediction "foo", the case is:860

Wall St. Bears Claw Back Into the Black861

(Reuters) Reuters - Short-sellers, Wall Street’s862

dwindling band of ultra-cynics, are seeing green863

again. : bar Stoking the Steamroller No other864

recording artist can channel American middle-865

class tastes quite like Chip Davis and his best-866

selling band. : bar Liverpool completes signings867

of Alonso, Garcia LIVERPOOL, England (AP) –868

Spanish pair Xabi Alonso from Real Sociedad and869

Luis Garcia from Barcelona signed five-year con-870

tracts with Liverpool on Friday. : foo U.S. Doping871

Watchdog to Question BALCO’s Conte - IAAF872

HELSINKI (Reuters) - U.S . anti-doping officials873

plan to question Victor Conte after the BALCO874

head claimed he saw sprinter Marion Jones taking875

banned drugs, world athletics body the IAAF said876

Saturday. : foo Liverpool Progresses to Champions877

League; Monaco, Inter Advance Four-time cham-878

pion Liverpool progressed to soccer Champions879

League 2-1 on aggregate, overcoming a 1-0 home880

defeat to AK Graz in the second leg of qualifying.881

:882

position top words in vocabulary space

bar-value BAR, bars, Bars, bart, Bar, bartender, bar,
Barber

bar-value bartender, Bars, bart, bars, Bar, Barber,
bar, BAR

foo-value foo, McKenzie, Foo, Barney, Walters, Jen-
ner, Murphy, lobster, Handler

foo-value Walters, foo, Barney, McKenzie, Harrington,
Murphy, Barber, Barron, Jenner

bar-key Bloomberg, Investor, billionaires, CNBC,
bankers, Companies, JPMorgan, obal,
economists, bullish, Barron, HSBC, Fried-
man, Consumer, business, sellers

bar-key Buy, Conn, Ok, Previous, Daily, NY, Yes,
Anon, US, Ibid, Profit, Staff, Journal, Van-
guard, Tribune, Well

foo-key Buy, iverpool, Ibid, YORK, UNITED, Oliv,
Charl, Location, Spanish, Miami, US, Liver-
pool, Pool, London, Greenwich, United

foo-key NYT, WATCH, Latest, Exclusive, Previous,
UNC, US, Watch, Possible, Ibid, Statement,
Reaction, UK, Reuters, United, Smoke

last-query ruary, Pipe, lihood, swick, Flavoring, iver-
pool, paddle, paraph, Lake, Repe, tong, bole,
etheless, Lakes

Table 9: Top words of labels and last token in GPT2
large layer 23, head 13 on a sentence classification case.

In this case, the false demonstrations with label883

"bar" are sampled from the "Business" class. The 884

true demonstrations with label "foo" and the input 885

text are sampled from the "Sports" class. On la- 886

bel positions’ value-output vectors, "bar" and "foo" 887

have top rankings. As for the key vectors at label 888

positions, the labels correspond to business demon- 889

strations extract the concepts about business, such 890

as "investor" and "profit". The top tokens of true 891

labels are related to places such as "Liverpool" 892

and "Spanish", which exist in the corresponding 893

demonstrations. These observations indicate that 894

the value-output matrices extract label features, and 895

the key matrix extract corresponding demonstration 896

features. Analyzing the last position’s query vector, 897

we also observe concepts related to "Liverpool". 898

B Recency Datasets for Evaluation 899

The three recency sentences transformed from the 900

original sentence is shown in Table 10. 901

sentence

origin S0 : bar S1 : bar S2 : foo S3 : foo S4 :
reorder-1 S2 : foo S0 : bar S1 : bar S3 : foo S4 :
reorder-2 S0 : bar S2 : foo S3 : foo S1 : bar S4 :
reverse S2 : foo S3 : foo S0 : bar S1 : bar S4 :

Table 10: Sentences transferred from origin sentence.
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