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Abstract

Non-local confounding (NLC) can bias the esti-
mates of causal effects when treatments and out-
comes of a given unit are dictated in part by the
covariates of other units. This paper first formalizes
the problem of NLC using the potential outcomes
framework, providing a comparison with the re-
lated phenomenon of causal interference. Then it
investigates the use of neural networks – specifi-
cally U-nets – to address it. The method, termed
weather2vec, uses balancing scores to encode NLC
information into a scalar or vector defined for each
observational unit, which is subsequently used to
adjust for NLC. We implement and evaluate the
approach in two studies of causal effects of air
pollution exposure.

1 INTRODUCTION

Causal effects of spatially-varying exposures on spatially-
varying outcomes may be subject to non-local confounding
(NLC), which occurs when the treatments and outcomes
for a given unit are partly modified by covariates of other
nearby units [Cohen-Cole and Fletcher, 2008, Florax and
Folmer, 1992, Fletcher and Jung, 2019, Chaix et al., 2010,
Elhorst, 2010]. In simple cases, NLC can be reduced using
simple summaries of non-local data, such as the averages
of the covariates over pre-specified neighborhoods [Chaix
et al., 2010]. But in many realistic settings, NLC stems
from a complex interaction of spatial factors that cannot be
easily accounted for using simple ad hoc summaries. For
such scenarios, this article proposes a representation learn-
ing method, termed weather2vec, to assist in estimating
causal effects in the presence of NLC. Weather2vec encodes
NLC using a neural network (NN) — specifically a U-net —
such that the learned representation can be used for causal
estimation in conjunction with standard causal inference

tools. The technique leverages the analogy between raster-
ized spatial data and images, and it is applicable to broad
settings where covariates are available on a grid of units,
and the outcome and treatment are (possibly sparsely) ob-
served throughout the same spatial domain. We elaborate
connections to the distinct but related phenomenon of in-
terference, which could arise when the outcome at a given
location depends on treatments applied at other locations.

This article has three aims:

1. Provide a rigorous characterization of NLC using the
potential outcomes framework [Rubin, 2005]. The con-
nection with interference and some related methods
[Tchetgen and VanderWeele, 2012, Forastiere et al.,
2021, Sobel, 2006] is also discussed.

2. Expand the library of NN methods in causal inference
by proposing a U-net [Ronneberger et al., 2015] as a
viable model to account for NLC in conjunction with
standard causal inference methods. We investigate two
mechanisms to obtain the latent representations: one
supervised, and one self-supervised.

3. Establish a promising research direction for addressing
confounding in scientific studies of air pollution, cli-
mate change, and meteorology, in which NLC driven
by meteorology is a common problem for which widely
applicable tools are lacking. Two applications will be
discussed in detail: the first one estimates the air quality
impact of power plant emissions controls; the second
one is an application to the problem of meteorological
detrending [Wells et al., 2021] to deconvolve climate
variability from policy changes when characterizing
long-term air quality trends. A simulation study in Ap-
pendix A accompanies these examples and compares
several alternative approaches.

Related work Previous research has investigated NNs for
the (non-spatial) estimation of balancing scores [Keller et al.,
2015, Westreich et al., 2010, Setoguchi et al., 2008] and me-
teorological detrending [Lu and Chang, 2005]. NNs have
also been considered to extend beyond estimation of pop-
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ulation average treatment effects and target individualized
treatment effects (ITE) [Shalit et al., 2017, Johansson et al.,
2016, Shi et al., 2019] that seek to estimate counterfactuals
for each observed unit based on a structural model. None of
these works specifically consider NLC. Direct applications
of U-nets in air pollution and climate science include fore-
casting [Larraondo et al., 2019, Sadeghi et al., 2020] and
estimating spatial data distributions from satellite images
[Hanna et al., 2021, Fan et al., 2021], indicating that U-nets
are powerful tools to manipulate rasterized weather data.

Forms of NLC have been investigated in spatial economet-
rics. For instance, WX-regression models [Elhorst, 2010]
formulate the outcome as a linear function of the treatment
and the covariates of some pre-specified neighborhood. Sim-
ilarly, CRAE [Blier-Wong et al., 2020], which resembles
the self-supervised formulation of weather2vec, uses an
autoencoder to encode pre-extracted patches of regional
census data into a lower-dimensional vector that is fed into
an econometric regression. In contrast to these approaches,
weather2vec estimates balancing scores, which have known
benefits that include the ability to empirically assess the
threat of residual confounding and the offer of protection
against model misspecification that arises when modeling
outcomes directly [Rubin, 2008].

There is also a maturing literature on adjusting for unob-
served spatially-varying confounding [Reich et al., 2021,
Veitch et al., 2019, Papadogeorgou et al., 2019]. For meth-
ods that rely on spatially-structured random effects, results
in [Khan and Calder, 2020] highlight the sensitivity to mis-
specification of the random effects for the purposes of con-
founding adjustment. The distance adjusted propensity score
matching (DAPSm) method in [Papadogeorgou et al., 2019]
foregoes formulation of spatial random effects by match-
ing units based jointly on estimated propensity scores and
spatial proximity under the rationale that spatial proximity
can serve as a proxy for similarity in spatially-varying co-
variates. In a context where network proximity is viewed
analogously to spatial proximity, Veitch et al. [Veitch et al.,
2019] extend this idea further to show that, under certain
regularity conditions, network proximity can be used as
a proxy for a network-level unobserved confounder. They
propose a mechanism to learn embeddings that capture con-
founding information and used them together with inverse
probability weighting [Cole and Hernán, 2008] to obtain
unbiased causal estimates. Importantly, Veitch et al. [Veitch
et al., 2019] only consider the “pure homophily” case, where
the entirety of the confounding is assumed to be encoded
by relative position in the network. While some of these
methods could be useful for NLC, they all primarily target
settings where confounding is local.

Finally, NLC is distinct from, but notionally similar to,
causal interference [Tchetgen and VanderWeele, 2012,
Forastiere et al., 2021, Sobel, 2006, Zigler and Papadogeor-
gou, 2021]. Both arise from spatial (or network) interaction,

and both impose limitations on standard causal inference
methods. The distinction between NLC and interference is
often acknowledged in the interference literature, although
specific methods for NLC and a formal treatment of NLC
have been ignored.

2 POTENTIAL OUTCOMES AND NLC

The potential outcomes framework, also known as the Ru-
bin Causal Model (RCM) [Rubin, 2008], distinguishes be-
tween the observed outcomes Ys and those that would be
observed under counterfactual (potential) treatments. The
treatment As is assumed to be binary for ease of presen-
tation, although the ideas generalize to other treatments.
Some additional notation: S is the set where the outcome
and treatment are measured; G ⊃ S is a grid that contains
the rasterized covariates Xs ∈ Rd; indexing by a setB ⊂ G
means XB = {Xs | s ∈ B}; X ⊥⊥ Y | Z means that X
and Y are conditionally independent given Z. Throughout
Xs is assumed to consist of pre-treatment covariates only,
meaning they are not affected by the treatment or outcome.

Definition 1 (Potential outcomes). The potential outcome
Ys(a) is the outcome value that would be observed at
location s under the global treatment assignment a =
(a1, . . . , a|S|).

For Ys(a) to depend only on as, the RCM needs an ad-
ditional condition called the stable unit treatment value
assumption, widely known as SUTVA, and encompassing
notions of consistency and ruling out interference.

Assumption 1 (SUTVA). (1) Consistency: there is only one
version of the treatment. (2) No interference: the potential
outcomes for one location do not depend on treatments
of other locations. Together, these conditions imply that
Ys(a) = Ys(as) for any assignment vector a ∈ {0, 1}|S|,
and that the observed outcome is the potential outcome for
the observed treatment, i.e., Ys = Ys(As).

The potential outcomes and SUTVA allow to define an im-
portant estimand of interest: the average treatment effect.

Definition 2 (Average treatment effect). The aver-
age treatment effect (ATE) is the quantity τATE =
|S|−1

∑
s∈S

{
Ys(1)− Ys(0)

}
.

One cannot estimate the ATE directly since one never simul-
taneously observes Ys(0) and Ys(1). The next assumption
in the RCM formalizes conditions for estimating the ATE,
(or other causal estimands) with observed data by stating
that any observed association between As and Ys is not due
to an unobserved factor.

Assumption 2 (Treatment Ignorability). The treatment As
is ignorable with respect to some vector of controls Ls if
and only if Ys(1), Ys(0) ⊥⊥ As | Ls.
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(a) Local Confound-
ing.

(b) NLC, no inter-
ference.

(c) Interference, no
NLC.

Figure 1: Confounding types.

For the sake of brevity, we will say that Ls is sufficient to
mean that the treatment is ignorable conditional on Ls. NLC
occurs when local covariates are not sufficient. It is formally
stated as follows:

Definition 3 (Non-local confounding). We say there is non-
local confounding (NLC) when there exist neighborhoods
{Ns ⊂ G | s ∈ S} such that Ls = XNs

is sufficient and the
neighborhoods are necessarily non-trivial (Ns ̸= {s}).

Figures 1a and 1b show a graphical representation of local
confounding and NLC respectively. Figure 1c shows the dis-
tinct phenomenon of interference for contrast. (Additional
discussion of interference is in section 4.) Horizontal dotted
lines emphasize that there may be spatial correlations in
the covariate, treatment and outcome processes that do not
result in confounding.

Subsequent discussion of the size of the NLC neighborhood,
Ns, will make use of the following proposition stating that
a neighborhood containing sufficient confounders can be
enlarged without sacrificing the sufficiency.

Proposition 1. Let Ls be a sufficient set of controls includ-
ing only pre-treatment covariates. and let L′

s be another set
of controls satisfying L′

s ⊃ Ls. Then, L′
s is also sufficient.

All the proofs are in Appendix C. We conclude this section
with a classic result stating that any sufficient Ls can be
used to estimate the ATE from quantities and relations in
the observed data.

Proposition 2. Assume SUTVA holds and that Ls is suffi-
cient. Then

τATE = E
[
E[Ys | Ls, As = 1]− E[Ys | Ls, As = 0]

]
,
(1)

where s is taken uniformly at random from S.

3 ADJUSTMENT FOR NON-LOCAL
CONFOUNDING WITH WEATHER2VEC

Most commonly, there will be only be one observation for
each s, and S can also be small, requiring structural as-
sumptions that enable the identification of causal effects.

A natural structure to consider is spatial stationarity. Intu-
itively, it entails that the distributions of Ys and As with
respect to a neighboring covariate Xs′ should only depend
on s−s′ (their relative position). U-nets, originally designed
for applications in biomedical image segmentation, provide
a practical spatially stationary computational model. They
possess the ability to efficiently transform the input grid of
covariates XG onto an output grid Zθ,G = fθ(XG) of same
spatial dimensions such that each Zθ,s ∈ Zθ,G localizes
contextual spatial information from the input grid.

The essence of weather2vec is to define appropriate learning
tasks to obtain the weights θ, specified in the form of a loss
function or a probabilistic observation model. Two such
tasks are considered, summarized below and described in
detail in subsequent sections.

1. (Supervised) Assuming the treatment and outcome
are densely available over G, regress As on Zθ,s
(propensity score regression) or Ys on Zθ,s (prognostic
score regression).

2. (Self-supervised) If the treatment and outcome are
not densely available over G, then learn θ so that Zθ,s
is highly predictive of Xs′ for any s′ within a specified
radius of s.

Appendix B briefly summarieze the U-net computational
model. Refer to [Ronneberger et al., 2015] for full details.

3.1 LEARNING NLC REPRESENTATIONS VIA
SUPERVISED REGRESSION

The supervised approach links the proposed representation
learning to the procedure of learning a balancing score [Ru-
bin, 2005, Hansen, 2008] in causal inference. We recall the
definition here for completeness.

Definition 4 (Balancing score). b(Ls) is a balancing score
iff As ⊥⊥ Ls | b(Ls). The coarsest balancing score is
b(Ls) := Pr(As = 1 | Ls), widely known as the propensity
score.

Definition 5 (Prognostic score). b(Ls) is a prognostic score
iff Ys(0) ⊥⊥ Ls | b(Ls). The coarsest prognostic score is
b(Ls) := E[Ys(0) | Ls].

The propensity score blocks confounding through the treat-
ment [Rubin, 2005]; prognostic scores do so through the out-
come [Hansen, 2008]. (Confounders need to be associated
with both the treatment and the outcome.) The importance
of these definitions is summarized by the next well-known
result.

Proposition 3. If b(Ls) is a balancing score, then Ls suf-
fices to control for confounding iff b(Ls) does. The same
result holds for the prognostic score under the additional
assumption of no effect modification.
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Learning θ through supervision results in an efficient scalar
Zθ,s compressing NLC information, allowing for θ to just
attend to relevant neighboring covariate information that
pertains to confounding. However, supervision may not be
possible to use it with small-data studies where Ys and As
are only measured sparsely. In such cases, the supervised
model will likely overfit to the data. For example, in one mo-
tivating application, S consists only of measurements at 473
power plants, while the size of G is 128×256. An over-fitted
propensity score would result in insufficient “overlap” [Stu-
art, 2010] by assigning zero probability to the unobserved
treatment, resulting in causal inferences that would rely on
model extrapolation to areas where covariate information is
not represented in both treatment groups. To avoid this, the
self-supervised approach targets scenarios with sparse S.

3.2 REPRESENTATIONS VIA SELF-SUPERVISED
DIMENSIONALITY REDUCTION

Self-supervision frames the representation learning problem
as dimension reduction without reference to the treatment
or outcome. The learned representation is then used to learn
a balancing score for causal effect estimation in a second
analysis stage. This approach requires specification of a
fixed neighborhood size R containing the information to be
reduced, resulting on different representations for different
choices of Ns. In practice, as one of our case studies will
demonstrate, one can choose R with standard model selec-
tion techniques (such as AIC and BIC) in the second stage
of learning a balancing score. The dimensionality reduc-
tion’s objective is that Zθ,s encodes predictive information
of any Xs+δ for (s+ δ) ∈ Ns. The dimension k of Zθ,s is
specified as a hyper-parameter depending on the size of Ns
and the dimensionality of Xs.

A simple predictive model Xs+δ ≈ gϕ(Zθ,s, δ) is proposed.
First, let Γϕ(·) be a function taking an offset δ as an input
and yielding a k × k matrix, and let hψ(·) : Rk → Rd be a
decoder with output values in the covariate space. The idea
is to consider Γϕ(δ) as a selection operator acting on Zθ,s.
See Appendix D for additional intuition. The model, defined
all over the grid G, can be written succinctly as

Xs+δ | θ, ϕ, ψ,Σ ∼ Normal(hψ(Γϕ(δ)Zθ,s),Σ) (2)

∀s ∈ G, ∀δ : ∥δ∥ ≤ R. The negative log-likelihood loss
function can be optimized using stochastic gradient descent
by sampling δ uniformly from the unit ball of radius R. A
connection with PCA appears in Appendix E.

4 NLC AND INTERFERENCE

To ground the discussion, we will focus on the version of
neighborhood-level interference described by Forastiere et
al. [Forastiere et al., 2021], formalized with the stable unit
neighborhood treatment value assignment (SUTNVA):

Assumption 3 (SUTNVA). (1) Consistency: there is only
one version the treatment. (2) Neighborhood-level interfer-
ence: for each location s, there is a neighborhood Ns such
that the potential outcomes depend only on the treatments at
Ns. Together, these conditions imply that Ys(a) = Ys(aNs

)
for any assignment vector a ∈ {0, 1}|S|, and that the ob-
served outcome is the potential outcome for the observed
treatment, i.e., Ys = Ys(ANs).

In many cases it may be expected that interference and
NLC occur together, and Figure 1 indicates how NLC can
be confused with SUTNVA when not accounting for the
neighboring covariates by inducing spurious correlations
between a unit’s outcome and other units’ treatments. While
the presence of interference generally requires specific tech-
niques to account for spill-over effects when estimating
quantities such as the ATE, [Forastiere et al., 2021] of-
fer specialized conditions that can lead to unbiased esti-
mation of one type of causal effect defined under SUT-
NVA. We summarize these conditions in the following
proposition, also encompassing the definition of the direct
causal effect, which is one estimand of interest (alterna-
tive to the ATE) that arises in the presence of interference.
The proposition requires potential outcomes of the form
Ys(as = a,ANs\{s}), which are a short-hand notation for
Ys(as = As, {as′ = As′}s∈Ns\{s}), which assigns all the
neighbors of s to their observed treatments in the data.

Proposition 4. Assume SUTNVA and define the direct aver-
age treatment effect (DATE) as

τDATE = |S|−1∑
s∈S{Ys(as = 1,ANs\{s})

− Ys(as = 0,ANs\{s})}.

Then if (1) ANs
⊥⊥ (Ys(a))a∈{0,1}|Ns| | Ls and (2) As ⊥⊥

As′ | Ls for all s ∈ S, s′ ∈ Ns. Then

τDATE = E
[
E[Ys | Ls, As = 1]− E[Ys | Ls, As = 0]

]
.

Figure 2: Inter-
ference + NLC.

Conditions (1) and (2) correspond,
respectively, to the notions of
neighborhood-level ignorability and
conditional independence of the neigh-
boring treatments. The proposition
states that the same estimator of τATE
in the non-interference case yields
unbiased estimates of τDATE. The
simplest scenario satisfying these
conditions is represented in Figure 1c; adjusting only for
local covariates (Ls = {Xs}) is sufficient.

The presence of NLC can violate conditions (1) and (2) of
Proposition 4. To see this, consider Figure 2 representing
the co-occurrence of interference and NLC. Adjusting only
for local covariates would violate neighborhood ignorability
condition (1) with a spurious correlation between Ys and
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As′ (through the backdoor path Ys ← Xs′ → As′). Sim-
ilarly, a spurious correlation between As and As′ would
persist (via the the path As ←Xs′ → As′ ). For such cases,
weather2vec can play an important role in satisfying (1)
and (2) since, after controlling for NLC (consisting in Fig-
ure 2 of adjusting for both Xs and Xs′ and blocking the
incoming arrows from neighboring covariates into one’s
treatments and outcomes), the residual dependencies would
more closely resemble those of Figure 1c. In summary, ad-
justing for NLC with weather2vec can aid satisfaction of
the conditional independencies required to estimate causal
effects with the same estimator used to estimate the ATE
absent interference.

5 APPLICATIONS IN AIR POLLUTION

Application 1: Quantifying the impact of power plant
emission reduction technologies Because many air qual-
ity regulations are inherently regional and certain types
of plants are concentrated in regions with similar weather
and economic demand factors (e.g., those in most need of
emissions controls), regional weather correlates with the
assignment of the intervention. Further, weather patterns
dictate regional differences in the formation and dispersion
of ambient air pollution. Thus, the weather is a potential
confounding factor, but one for which the relevant features
are inherently regional and may not be entirely character-
ized at a given location by point measurements of covariates
including local wind, temperature, precipitation, etc..

Self-supervised features from NARR. We downloaded
monthly NARR data [Mesinger et al., 2006] containing
averages of gridded atmospheric covariates across mainland
U.S. for the period 2000-2014. We considered 5 covariates:
temperature at 2m, relative humidity, total precipitation, and
north-sound and east-west wind vector components. For
each variable we also include its year-to-year average. Each
grid cell covers roughly a 32 × 32 km area and the lat-
tice size is 128× 256. We implemented the self-supervised
weather2vec with a lightweight U-net of depth 2, 32 hidden
units, and only one convolution per level. See Appendix H
for more details and schematic of the U-net architecture.
To measure the quality of the encoding, Figure 3a shows
the percentage of variance explained (R2), comparing with
neighbor averaging and local values. The results shows that
the 32-dimensional self-supervised features provide a better
reconstruction than averaging and using the local values.
For instance, the 300km averages only capture 82% of the
variance, while the self-supervised weather2vec features
capture 95%. See Appendix I for details on the calculation
of the R2 and neural network architecture.

Estimated pollution reduction. We evaluate different propen-
sity score models for different neighborhood sizes of the
June 2004 NARR weather2vec-learned features with the
same logistic model and other covariates as in DAPSm, aug-

mented with the self-supervised features. We selected the
representation using features within a 300km radius on the
basis of its accuracy, recall, and AIC in the propensity score
model relative to other considered neighborhood sizes (Fig-
ure 3b). The causal effects are then obtained by performing
1:1 nearest neighbor matching on the estimated propensity
score as in DAPSm. Figure 3c compares treatment effect
estimates for different estimation procedures. Overall, stan-
dard (naive) matching using the self-supervised features
is comparable to DAPSm, but without requiring the addi-
tional spatial adjustments introduced by DAPSm. The same
conclusion does not hold when using local weather only ,
which (as in the most naive adjustment) provides the scien-
tifically un-credible result that emissions reduction systems
significantly increase ozone pollution. Do notice the wide
confidence intervals which are constructed using conditional
linear models fit to the matched data sets [Ho et al., 2007].
Thus, while the mean estimate shows a clear improvement,
the intervals shows substantial overlap, warranting caution.

Application 2: Meteorological detrending of sulfate We
investigate meteorological detrending of the U.S. sulfate
(SO4) time series with the goal (common to the regulatory
policy and atmospheric science literature) of adjusting long-
term pollution trends by factoring out meteorologically-
induced changes and isolating impacts of emission reduction
policies [Wells et al., 2021]. We focus on SO4 because it
is known that its predominant source in the U.S. is SO2

emissions from coal-fired power plants, on which observed
data are available for comparison. Thus, we hypothesize
that an effectively detrended SO4 time series will closely
resemble that of the power plant emissions.

Prognostic score. We obtained gridded SO4 concentration
data publicly available from the Atmospheric Composition
Analysis Group [Group, 2001, van Donkelaar et al., 2021],
consisting of average monthly value for each raster cell in
the mainland U.S. for the period of study 2000–2014. The
data is aggregated into 32km-by-32km grids to match the
resolution of atmospheric covariates. The model uses a U-
net with a Gaussian likelihood (quadratic loss). Since the
prognostic score is defined based on outcome data in the
absence of treatment, we leverage the fact that the power
plant emissions were relatively constant for the period 2000-
2006 and consider this period as representing the absence of
treatment. The model predictions, aggregated by all points
in the grid is shown in Figure 4a. The difference between the
red line (the prognostic score fit) and the black dotted line
(the SO4) observations during 2000 - 2006 is a proxy for the
meteorology-induced changes in the absence of treatment.

Trend estimation. For comparability we adhere to the recom-
mended detrending model by [Wells et al., 2021]. Accord-
ingly, we specify a regression with a year and seasonal fixed-
effect term. Rather than pursue an entirely new methodology
for detrending, we intentionally adhere to standard best prac-
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Figure 3: Application 1: The effectiveness of catalytic devices to reduce power plant ozone emissions.
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Figure 4: Application 2: Meteorological detrending of SO4.

tices and merely aim to evaluate whether augmenting this
approach with the weather2vec representation of the prog-
nostic score offers improvement. The model is as follows:

log(Ys,t) ∼ N(α+ δyear(t) + γmonth(t) +
∑p
j=1βpX

p
st, σ

2)
(3)

for all s ∈ S∗, t = 1, . . . , T , where {δℓ : ℓ =
2000, . . . , 2014} is the year effect, {γξ : ℓ = 1, . . . , 12}
is the seasonal (monthly) effect, S∗ ⊂ S are the locations
of the power plants, Xp

st are the controls with linear coeffi-
cients βp. These controls are obtained from a B-spline basis
of degree 3 using: 1) local weather only, and 2) local weather
plus the weather2vec prognostic score. The model is fitted
using Bayesian inference with MCMC. Figure 4b shows
the fitted (posterior median) yearly and monthly trends. The
adjusted trends resemble the power plant emissions trends
much more closely than the predicted trends from models
that include local or neighborhood average weather. Note in
particular the “double peak” per year in the monthly power
plant emissions (owing to seasonal power demand), which
is captured by the detrended weather2vec series but not by
the unadjusted one.

6 DISCUSSION AND FUTURE WORK

While notions NLC have been acknowledged in causal infer-
ence, potential-outcomes formalization of NLC and flexible
tools to address it are lacking. We offer such a formalization,

along with a flexible representation learning approach to
account for NLC with gridded covariates and treatments
and outcomes measured (possibly sparsely) on the same
grid. Our proposal is most closely tailored to problems in
air pollution and climate science, where key relationships
may be confounded by meteorological features, and promis-
ing results from two case studies evidence the potential of
weather2vec to improve causal analyses over those with
more typical accounts of local weather. A limitation of the
approach is that the learned weather2vec representations are
not as interpretable as direct weather covariates and using
them could impede transparency when incorporated in pol-
icy decisions. Future work could explore new methods for
interpretability. Other extensions could include additional
data domains, such as graphs and longitudinal data with
high temporal resolution. The links to causal interference
explored in Section 4 also offer clear directions for future
work to formally account for NLC in the context of estimat-
ing causal effects with interference and spillover.
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APPENDIX

A SIMULATION STUDY

The simulated data mimics the meteorological data in our
applications and the matches setup of Section 2 with SUTVA
and NLC. We briefly describe the different aspects of the
simulations, including additional visualizations and details
in Appendix G.

Data simulation and basic linear task. The covariates Xs

are the gradient field (the first differences along rows and
columns) of an unobserved Gaussian Process [Rasmussen,
2003] defined over a 128× 256 grid. To fix ideas, the simu-
lation is carried out to roughly mimic a study of pollution
sources where pollution is dispersed in accordance with
non-local weather covariates, so, Xs = (X1

s ,X
2
s ) can be

roughly interpreted as “wind vectors". The treatment assign-
ment probability (the propensity score) and the outcome
are computed as a “non-local” function of Xs, simulated to
correspond to higher probability of treatment in areas that
tend to disperse more pollution. Such an assignment can be
performed using a convolution operation. More precisely,
let µ =

∑
j∈{1,2}Kj ⋆ Xj be the result of convolving X

with a specially designed convolution kernel K. Then, the
treatment assignment probability is As ∼ Bernoulli(µs)
and the outcome is Ys = −µs + ϵs + τAs, where τ is the
treatment effect and ϵs is a mixture of spatial and random
noise of unit variance. τ = 0.1 in all experiments. K has
dimensions 13× 13 (its size determines the radius of NLC).
K1 contains -1’s in the upper half, +1’s in the lower half, and
0’s in the middle row. K2 = K⊤

1 . Convolving a a gradient
field with K is an approximate form of identifying valleys
and hills in the potential of the gradient field. In this basic
formulation, S = G, meaning that As and Ys are densely
available over the grid G.

Causal estimation procedure. We first estimate a propensity
score model µ̂s using the learned Zθ,s. For the supervised
variant, µ̂s = sigmoid(Zθ,s). But for the self-supervised,
it is constructed from an feed-forward network with one
or two hidden layers (see the Appendix for details). In all
cases, the final estimate of τ is produced using the inverse
probability weighting (IPW) estimator [Cole and Hernán,
2008]

τ̂IPW =|S|−1∑
s∈S{(Ys/µ̂s)I(As = 1)

− (Ys/(1− µ̂s))I(As = 0)}.

Although more sophisticated causal estimators could be
used, the exercise only intends to measure the degree to
which a propensity score anchored to Zθ,s encodes the nec-
essary NLC information.

Additional task variants. In one variant, we consider a sparse
configuration in which the outcome and treatment are only
sparsely available in a subset S of 500 randomly selected

points in G. In another variant, we evaluate the results on a
non-linear version of the treatment assignment logits, com-
puted as µ =

∑
j∈{1,2}Kj ⋆ sign(Xj). This small amount

of non-linearity strongly increases the complexity of the
problem. Both tasks variants are also combined, resulting in
4 total tasks.

Baselines. Four baselines are considered for estimating the
propensity score: no controls (Unadjusted); controlling for
local covariates (Local only); controlling for local and aver-
ages of neighboring covariates (Local + Averages) – assum-
ing the neighborhood size 13 of NLC is known; and a purely
spatial random effects model for the treatment (Spatial
RE only), specified as a conditional auto-regression (CAR)
model with Bernoulli likelihood [Besag, 1974] (more details
in the Appendix). We compare against the self-supervised
and supervised versions of weather2vec, including a super-
vised version combined with the spatial RE.

Results. A total of 10 experiments are performed for each
configuration and task. The results are shown in Figure 5.
For the dense case when S = G, the supervised weather2vec
outperforms all other methods (panels a and b), exhibiting
near 0 bias in the linear case and a small amount of finite-
sample bias for the nonlinear task owing to the relatively
small number of observations. We see analogous perfor-
mance for the unsupervised weather2vec for the case when
S has only 500 locations (panels c and d), noting further the
poor performance of the supervised weather2vec in this case
owing to overfitting the very small number of observations.
Note that the spatial RE only model outperforms the use of
local and average neighbors, but its addition to weather2vec
deteriorates performance.

B SPATIAL STATIONARITY AND THE
U-NET FOR SUMMARIZING
NON-LOCAL DATA

With an input grid consisting of Xs ∈ Rd, the U-net trans-
formation involves two parts: a contractive stage and an
almost symmetric expansive stage. Both of these steps use
convolutions with learnable parameters and non-linear func-
tions to aggregate information from the input grid spatially
and create rich high-level features. The convolutions in the
contractive path duplicate the number of latent features at
each layer. Then, these intermediate outputs go through
pooling layers which halve the spatial dimensions. Together,
these operations augment the dimensionality of each point
of the grid, combining information at many spatial points
to richer information contained at fewer points. Convolu-
tions propagate information spatially, and the deeper they
are in the contractive path, the larger their propagation reach
(in the original scale of the input grid). So, as the spatial
dimension gets reduced, each element of the reduced grid
contains more information from the original spatial scale.
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Figure 5: Results from the simulation study. (a) the basic linear task. (b) the non-linear task. Both of these tasks use outcomes
and treatments densely available on the grid (S = G). (c) and (d) are the same tasks respectively, but only 500 random
locations are in S.

The expansive path, on the other hand, uses up-sampling
to progressively interpolate the deep higher-level features
back to a finer spatial lattice, and then uses convolutions
to reduce back the latent dimensionality at each grid point;
with the characteristic that, in contrast to the input grid,
every point now localizes spatial information. The output
vector can have any arbitrary dimension after possibly ap-
plying an additional linear or convolutional layer followings
the expansive path (or before the contractive path, or both).
The result is an output grid of the same dimension of the
input grid, where each point contains a vector Zθ,s ∈ Rk
that encodes non-local information from features observed
across many points in the original input grid. The unknown
weights θ dictate the size – the “radius of influence" – and
what non-local information is summarized by Zθ,s. The
weights will include in its computations values of Xs that
are highly predictive in the specified learning task. We have
just provided an intuitive explanation of the U-net’s com-
putational model; refer directly to Ronneberger et al. for
details [Ronneberger et al., 2015].

In summary, the essential properties of U-nets to parame-
terize representation maps for NLC are: spatial stationarity,
automatic determination of the effective radius of influence,
and efficient detection of spatial patterns. Notice that U-
nets are not the only neural network architecture with this
property. Moreover, many variants of the basic U-net have
appeared in recent years in the literature [Siddique et al.,
2021]. Most of those improvements are compatible with the
ideas presented in the rest of this paper.

C PROOFS

Proof of Proposition 1. For convenience, drop the sub-
script s and boldface notations, and denote Lc = L′ \L. We
will use a graphical argument based on the backdoor crite-
rion [Pearl, 1988, ch. 4.3]. Suppose that Lc → A (here→
means causation) and observe the two following facts: first,
a path Y → Lc → A would violate the assumption of pre-
treatment covariates; second, a path Y ← Lc → A would
need to be absent or be blocked by L due to sufficiency.
If blocked, it must be of the form Y ← L ← Lc ← A

since a reversed first arrow would violate the pre-treatment
assumption, implying Lc ⊥⊥ Y | L (and as a consequence,
conditionally independent of Y (0), Y (1)). An analogous
argument shows that assuming Lc → Y would imply Lc

is conditionally independent from A given L. In summary,
conditioning on Lc does not open any new (backdoor) paths
from A to Y . And the result follows from the backdoor
criterion.

Proof of Proposition 2. This is a standard result in intro-
ductory expositions of potential outcomes. For each a ∈
{0, 1} we have that

E[E[Ys | Ls, As = a]] = E[E[Ys(a) | Ls, As = a]]

= E[E[Ys(a) | Ls]]
= E[Ys(a)].

The first equality follows from SUTVA; the second from
sufficiency; the third from the law of iterated expectation. Fi-
nally, E(Ys(a)) = |S|−1

∑
s Ys(a) by definition, implying

the proposition’s statement.

Proof of Proposition 3. We follow Hansen [2008]’s formu-
lation of the prognostic score, and prove the results along
the lines of [Rosenbaum and Rubin, 1983, theorems 1-3].
We’ll proceed in three steps. All which are somewhat infor-
mative of the role of the prognostic score. Again, we drop
the subscript s and boldface from the notation for clarity.

Step 1. Conditional expectation of the outcome is a prognos-
tic score. Denote ψ(L) = E[Y (0) | L]. We want to show
the balancing property: Y (0) ⊥⊥ L | ψ(L).

Recall the definition of conditional expectation (see
[Williams, 1991, ch. 9.2]): Z = E[Y | L] iff E[Y I(L ∈
A)] = E[ZI(L ∈ D)] for any L-measurable set D. We
will use this definition and show that Pr(Y (0) ∈ C | L) =
Pr(Y (0) ∈ C | ψ(L)), implying the required independence.
(Conditioning on (L,ψ(L)) is equivalent to only condition
on L.)

Now, since ψ(L) is a function of L, the event ψ(L) ∈ D can
be re-written as L ∈ ψ−1(D) using the pre-image notation.
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Then,

E[I(Y (0) ∈ C)I(ψ(L) ∈ D)]

= E[I(Y (0) ∈ C)I(L ∈ ψ−1(D))]

= E[E[(Y (0) ∈ C) | L]I(L ∈ ψ−1(D))],

implying that E[I(Y (0) ∈ C) | L] = E[I(Y (0) ∈ C) |
ψ(L)]. The result then follows from noting that probabilities
are expectations of indicator functions.

Step 2. Any other prognostic score b(L) is finer than ψ(L).
Suppose it is not the case, then there are ℓ1, ℓ2 such that
ψ(ℓ1) ̸= ψ(ℓ2) but b(ℓ1) = b(ℓ2). But by the balancing
property we have that

E[Y (0) | b(L) = b(ℓ1)]

= E[Y (0) | b(L) = b(ℓ1), L = ℓ1]

= ψ(ℓ1),

which would imply that E[Y (0) | b(L) = b(ℓ1)] ̸=
E[Y (0) | b(L) = b(ℓ2)], violating the assumption that
b(ℓ1) = b(ℓ2) and leading to a contradiction. Thus ψ(ℓ1) =
ψ(ℓ2) implies that b(ℓ1) = b(ℓ2), which in turn implies the
existence of some function ψ(L) = f(b(L)) and thus ψ(L)
is coarser.

Step 3. If b is a prognostic score, then L is sufficient iff b(L)
is also sufficient. First, if b(L) is sufficient, then the proof
is trivial. So let’s consider the opposite case. First we show
that Pr(Y (0) ∈ C | A, b(L)) = Pr(Y (0) ∈ C | b(L)).

The proof follows from the following identities

Pr(Y (0) ∈ C | A, b(L))
= E[I(Y (0) ∈ C) | b(L)]
= E[E[I(Y (0) ∈ C) | L] | A, b(L)]
= E[E[I(Y (0) ∈ C) | ψ(L)] | A, b(L)]
= E[I(Y (0) ∈ C) | ψ(L)]
= Pr(Y (0) ∈ C | b(L)).

The first equality is by definition, the second by iterated
expectation, the third one by the sufficiency of L; the fourth
one is because ψ(L) is balancing (Step 1); the fifth one is
because ψ(L) is a function of b(L) by Step 2; the last one
is by definition.

Finally, for the treated outcome Y (1), the assumption of no
effect modification means that the same argument carries
on for Y (1) (since Y (1)− Y (0) is independent of A).

Proof of Proposition 4. Let a ∈ {0, 1}. By the assumption
of conditional independence of the treatments given Ls
(assumption (2) in the proposition), we have that

E[Ys | Ls, As = a]] = E[Ys | Ls, As = a,ANs\{s}]

Having noted this, the proof is identical to that of Proposi-
tion 2

E[E[Ys | Ls, As = a,ANs\{s}]]

= E[E[Ys(as = a,ANs\{s}) | Ls, As = a,ANs\{s}]]

= E[E[Ys(as = a,ANs\{s}) | Ls]]
= E[Ys(as = a,ANs\{s})]

where the first identity is due to SUTNVA; the second
one is by neighborhood-level sufficiency (assumption (1)
in the proposition); and the third one is by the law of it-
erated expectation. Finally, E[Ys(as = a,ANs\{s})] =
(1/|S|)

∑
s Ys(as = a,ANs\{s}) since the randomness in

the expectation is due to s uniformly from S.

D MOTIVATING EXAMPLE FOR THE
SELF-SUPERVISED MODEL:
PERFECT ENCODING

Assume that the covariates Xs have dimension d = 1 and
that the self-supervision task is to learn the adjacent values
in the grid (north, west, south, east) and the central point
s = (i, j) using the representation Zθ,s. If we set the repre-
sentation dimension to k = 5, then the obvious candidate
for the representation is

Z(i,j) = (X(i−1,j),X(i,j−1),X(i+1,j),X(i,j+1),X(i,j))
⊤

Now let γ(ℓ) = (γ(ℓ)1, . . . ,γ(ℓ)5) be the ℓ-th indicator
vector with γ(ℓ)j = I(j = ℓ). Then

γ(1)⊤Z(i,j) = X(i−1,j), · · · γ(5)⊤Z(i,j) = X(i,j)

Hence Z is a perfect encoding and the γ(ℓ)’s are perfect
classifiers for each offset ℓ. To generalize this idea to higher
dimensions d > 1, we can take γ(ℓ) to be a d×k matrix for
each ℓ. Then γ(ℓ)⊤Zθ,s is a d-dimensional vector for each
offset ℓ. The same idea is behind the self-supervised model,
which takes Γ = γ⊤ as a k × k matrix and adds a decoder
neural network. Rather than using indicator functions for
Γ, the method formulates it as a neural network that is a
function of the offset.

E A CONNECTION BETWEEN THE
SELF-SUPERVISED MODEL AND PCA

Principal components analysis (PCA) is closely related to a
special case of the self-supervised weather2vec when using
a single (2R+1)×(2R+1)-convolution instead of the U-net,
leaving hψ as the identity function, and defining the offset
embedding Γ(δ) as independent d×k vectors for each offset
δ (rather than a neural network with δ as a continuous input).
The equivalence is in the sense of reconstruction since both
methods can be seen as minimizing the reconstruction error.
However, in the self-supervised case there is no guarantee
that the latent dimensions of Zθ,s will be orthogonal as in
PCA applied to each patch of size (2R+ 1)× (2R+ 1).
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F SOFTWARE AND HARDWARE

We use open-source software PyTorch 1.10 Paszke et al.
[2019] on Python 3.9 Van Rossum and Drake Jr [1995] for
training all the models on a single laptop with an Nvidia
GPU 980M (8GB) and a CPU Intel i7-4720HQ at 2.60GHz.
The code uses fairly standard functions for NN training and
we did not attempt to optimize it for speed. We also use R 3.6
R Core Team [2021] for downloading and pre-processing
atmospheric data from NARR, as well as for comparison
with DAPSm in application 1 (see Appendix H).

The code for Bayesian inference in Application 2 is imple-
mented in pure Python as a straightforward Gibbs sampler
since the model is Gaussian.

G ADDITIONAL DETAILS OF THE
SIMULATION STUDY

Details on the simulation data. Figure 6 illustrates the data
used in the simulation study. (a) shows the simulated co-
variates X = (X1,X2) as the gradient vector field of an
unobserved potential function (sampled from a Gaussian
Process) F, whose level curves are overlay the covariate
(vector field) represented by arrows. (b) and (c) jointly com-
pose the kernel used to generate the confounding factor. (d)
is the resulting treatment assignment probability for the lin-
ear task, and (e) is the corresponding non-linear variant. In
both, convolutions approximately correspond to valleys and
hills of the unobserved potential.

Details on the neural network architectures. The NNs used
in the study are very lightweight, since the data consists of
only one image of 128x256. Typical NN sizes with millions
of parameters would easily over-fit to this task. The basic
U-net architecture used for weather2vec is in Figure 7, but
using the simulated gradient fields instead of atmospheric
covariates. All convolutions and linear layers are followed
by batch normalization and SiLU activations Elfwing et al.
[2018], except in the last layer.

• Supervised weather2vec. The propensity score model
uses two hidden units and depth 2. The model has 1.2k
(trainable) parameters.

• Self-supervised weather2vec. The auto-encoder uses
16 hidden units and depth two. The offset model Γϕ
is a two-layer feed-forward network with 16 hidden
units. The decoder hψ is feed-forward network with
one hidden layer of also 16 units. In total, the auto-
encoder has 77k parameters. In addition, the propensity
score model uses a feed-forward network with two
hidden layers of 16 units, resulting in 600 parameters.

• Local and local+avgs. These baselines use the same
propensity score model as the self-supervised one. Due
to their smaller input size, they have around 400 pa-

rameters.

• Spatial RE. Rather than a neural network, we used
a conditionally auto-regressive (CAR) Besag [1974]
model such that As ∼ Bernoulli(sigmoid(Zθ,s)),
Zθ,s ∼ CAR(λ) and λ ∼ Gamma(1, 1). The CAR
portion of the negative loglikelihood penalizes the
(squared) differences of adjacent values of Zθ,s in the
grid by a factor of λ. Notice that λ here is learned along
with the model. We remark that CAR models are more
scalable alternatives to Gaussian process for applica-
tions requiring only smoothing and interpolation.

• Supervised weather2vec + spatial RE. This variant
formulates the representation as Zθ,s = Z̃θ,s + ξs,
where Z̃θ,s is the output of the U-net and ξs has a
CAR prior and is restricted to

∑
s ξs = 0 for identi-

fiability. Intuitively, the term ξs captures the errors in
the propensity score model that have a strong spatial
distribution.

Finally, the unadjusted baseline is simply the difference of
the averages of the observed treated and untreated units.

Details on the training procedures and hyper-parameters.
In all cases, we use a fixed learning rate of 10−4, a weight
decay of 10−4, and 20,000 gradient steps with the ADAM
optimizer [Kingma and Ba, 2014]. The full simulation study
takes about 8 hours to finish running two baselines in paral-
lel. The values of weight decay, training epochs and learning
rate were chosen as reasonable values without much addi-
tional optimization. The number of layers and architectures
were chosen by inspection after a few runs, aiming to find
a model small enough as to avoid over-fitting without re-
quiring tuning the regularization hyper-parameters or early
stopping.

H ADDITIONAL DETAILS OF
APPLICATION 1

Atmospheric data download. The NARR [Mesinger et al.,
2006] dataset associated with the application can be down-
loaded via FTP with the R script provided in the code ac-
companying the paper. The data is also publicly available
for download from the website of the National Oceanic
and Atmospheric Administration (NOOA) Oceanic and Ad-
ministration. We could not find any license information for
the dataset. We could not find any license attached to the
dataset.

Power plants data. Information for the largest 473 coal-
fired power plants emitting SO2 during 2000–2014 was
obtained from Papadogeorgou [2016] (publicly available
under creative commons license CC0 1.0).

Neural network architecture for self-supervised features.
The auto-encoder uses 32 hidden units and depth 3. The
offset model Γϕ is a two-layer feed-forward network with
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Simulated wind fields (X1, X2) = ∇F where F is unobserveda
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Figure 6: Simulations, components and variantes in the simulation study

32 hidden units. The decoder hψ is feed-forward network
with one hidden layer of also 32 units. In total, the auto-
encoder has 1.2M parameters. The architecture is shown
in Figure 7. Convolutions are followed by FRN normaliza-
tion layers Singh and Krishnan [2020] and SiLU activations.
Pooling uses MaxPool2d and upsampling use Bilinear Up-
sampling2d as implemented in PyTorch. The model archi-
tecture was not tuned since the model with 32 hidden units
seemed to work well.

Details on the training procedures and hyper-parameters.
The model is trained for 300 epochs using batch size 4,
a linear decay learning rate from 10−2 to 10−4 using the
ADAM Kingma and Ba [2014] optimizer (no weight decay).
The number of epochs and learning rate were tuned by
inspection after a few runs simply to ensure the model was
learning at a reasonable speed, but not tuned otherwise. The
atmospheric covariates were standardized before training
and we use a standard quadratic loss. (Using this loss is
equivalent to fixing Σ as the identity function in equation 2.)

We do not split in training and validating datasets since the
model is a compression/dimensionality reduction technique,
and thus it cannot over-fit. (In fact, an “over-fitting" here
would be a desirable property, since it would mean a perfect
dimensionality reduction.)

Computation of the explained variance (R2). The traditional
R2 is defined as one minus the ratio of sum-of-squares
between the prediction errors and the centered targets. Since
the covariates are standardized, the latter quantity is simply

N . In each training epoch we collect the sum of squared
prediction errors for all time periods. Denote this quantity
as SSEj where j indicates the covariate dimension for
j = 1, ..., d. Then R2 = 1 − (Nd)−1

∑
j SSEj is the

proposed estimator of the fraction of the variance explained.

Comparison with DAPSm. We modified the DAPSMm au-
thors implementation from Github [Papadogeorgou, 2001]
(no license provided) to include the weather2vec self-
supervised features as another predictor in their otherwise
unchanged propensity score model. The modified R script
is in the code accompanying this paper.

I ADDITIONAL DETAILS OF
APPLICATION 2

Neural network architecture for supervised features. The
U-net architecture for the prognostic score model is almost
identical to the auto-encoder of Application 1, but with
having dimension one in the last layer.

SO4 data download. We downloaded the dataset the SO4

grid for inland US from the website of the Atmospheric
Composition Analysis Group’s van Donkelaar et al. [2021]
website Group [2001]. We could not find any license in-
formation for the dataset. Instructions for replications are
provided in the code.

Missing data. Data for some observations in the SO4 grid
are missing and a few have clearly erroneous (near infinite)
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Figure 7: Basic U-net architecture used in the two applications and the simulation study.

values. In addition, some locations have data but present
zeros through the entire period. We excluded these values
using a binary mask in the likelihood by removing non-finite
values and keeping only locations with positive observations
throughout. Doing so greatly improved the quality of the
fitted model. The final locations cover most of the inland
U.S., with missing areas mostly outside the U.S, oceans, or
the Rocky West and Great Basin.

Details on the training procedures and hyper-parameters.
The hyper-parameters are also the same as in the self-
supervised model except that we use a weight decay of
10−4 to reduce over-fitting. We did not tune this parame-
ter, however, we did not notice a significant difference by
increasing or decreasing its value by a factor of 10.

References

Julian Besag. Spatial interaction and the statistical analysis
of lattice systems. Journal of the Royal Statistical Society:
Series B (Methodological), 36(2):192–225, 1974.

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-
weighted linear units for neural network function approx-
imation in reinforcement learning. Neural Networks, 107:
3–11, 2018.

Atmospheric Composition Analysis Group. Surface PM2.5,
2001. Accessed September 2021. URL: https://
sites.wustl.edu/acag.

Ben B Hansen. The prognostic analogue of the propensity
score. Biometrika, 95(2):481–488, 2008.

Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Fedor Mesinger, Geoff DiMego, Eugenia Kalnay, Kenneth
Mitchell, Perry C Shafran, Wesley Ebisuzaki, Dušan
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