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Abstract

The search for ”biologically plausible” learning
algorithms has converged on the idea of repre-
senting gradients as activity differences. How-
ever, most approaches require a high degree of
synchronization (distinct phases during learning)
and introduce substantial computational overhead,
which raises doubts regarding their biological
plausibility as well as their potential utility for
neuromorphic computing. Furthermore, they com-
monly rely on applying infinitesimal perturbations
(nudges) to output units, which is impractical in
noisy environments. Recently it has been shown
that by modelling artificial neurons as dyads with
two oppositely nudged compartments, it is pos-
sible for a fully local learning algorithm named
“dual propagation” to bridge the performance gap
to backpropagation, without requiring separate
learning phases or infinitesimal nudging. How-
ever, the algorithm has the drawback that its nu-
merical stability relies on symmetric nudging,
which may be restrictive in biological and analog
implementations. In this work we first provide a
solid foundation for the objective underlying the
dual propagation method, which also reveals a
surpising connection with adversarial robustness.
Second, we demonstrate how dual propagation is
related to a particular adjoint state method, which
is stable regardless of asymmetric nudging.

1. Introduction

Credit assignment using fully local alternatives to back-
propagation is interesting both as potential models of bi-
ological learning as well as for their applicability for en-
ergy efficient analog neuromorphic computing (Kendall &
Kumar, 2020; Yi et al., 2022). A pervasive idea in this
field is the idea of representing error signals via activity
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differences, referred to as NGRAD (Neural Gradient Rep-
resentation by Activity Differences) approaches (Lillicrap
et al., 2020). However, a commonly overlooked issue in
NGRAD approaches is the requirement of applying infinites-
imal perturbations (or nudging) to output neurons in order
to propagate error information through the network. This is
problematic as analog and biological neural networks are
inherently noisy, potentially causing the error signal to van-
ish if insufficient nudging is applied. In many local learning
methods the output units are positively nudged to reduce a
target loss, but utilizing additional negative nudging (output
units increase a target loss) can be beneficial to improve
accuracy (e.g. (Laborieux et al., 2021)).

The vanishing error signal problem is addressed by coupled
learning (Stern et al., 2021), which proposes to replace the
clamped output units of contrastive Hebbian learning with
a convex combination of the label and the free phase out-
puts. Unfortunately, coupled learning has been shown to
perform worse than equilibrium propagation on CIFAR10
and CIFAR100 (Scellier et al., 2023), and it does not neces-
sarily approximate gradient descent on the output loss func-
tion (Stern et al., 2021). Holomorphic equilibrium propaga-
tion (Laborieux & Zenke, 2022; 2023) mitigates the need for
infinitesimal nudging required in standard equilibrium prop-
agation (Scellier & Bengio, 2017) at the cost of introducing
complex-valued parameters. Whether this is a suitable ap-
proach for either biological or analog neural networks is
an open question. Dual propagation (Hgier et al., 2023)
(DP), an algorithm similar in spirit to contrastive Hebbian
learning, equilibrium propagation and coupled learning, is
compatible with non-infinitesimal nudging by default. This
method infers two sets of oppositely nudged and mutually
tethered states simultaneously. However, utilization of sym-
metric nudging is a necessary condition for the convergence
of its inference step.

Contributions DP is compatible with strong feedback and
only requires a single inference phase, which are appealing
features with regards to biological plausibility and potential
applications to analog neuromorphic computing. However,
the lack of convergence guarantees in the case of asymmet-
ric nudging is clearly unsettling as exact symmetry is hard
to realize outside of digital computers. Further,—unlike dig-
ital computers—neuromorphic, analog or otherwise highly
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distributed computing hardware typically performs continu-
ous computations and runs asynchronously. Consequently,
numerical stability of an energy-based inference and learn-
ing method is of essential importance. For this reason we
derive an improved variant of dual propagation, which over-
comes this strict symmetry requirement. In summary the
contributions of this work are:

* A derivation of DP based on repeated relaxations of the
optimal value reformulation (Outrata, 1988; Dempe &
Zemkoho, 2013).

* A new Lagrangian based derivation of dual propagation,
which recovers the original dual propagation algorithm in
the case of symmetric nudging, but leads to a slightly al-
tered (and more robust) method in the case of asymmetric
nudging.

* We experimentally investigate the robustness of these al-
gorithms to asymmetric nudging and strong feedback, and
we further demonstrate the impact of asymmetric nudging
on the estimated Lipschitz constant.

2. Related Work

CHL, EP and lifted networks In contrastive Hebbian
learning (CHL) (Movellan, 1991; Xie & Seung, 2003) and
equilibrium propagation (EP) (Scellier & Bengio, 2017)
neuronal activations are found via an energy minimization
procedure. Inference is carried out twice, once with and
once without injecting label information at the output layer.
While CHL clamps the output units to the true targets, EP
applies nudging towards a lower loss. The difference be-
tween the activity in each of these two inference phases is
used to represent neuronal error vectors. To speed up con-
vergence and ensure that inferred states represent the same
local energy basin, this is typically (but not always) done
sequentially, e.g. the second inference phase is initialized
with the solution found in the first phase. A better gradi-
ent estimate can be obtained by introducing an additional
oppositely nudged inference phase, yielding a three-phased
algorithm (Laborieux et al., 2021).

Dual propagation (Hgier et al., 2023) (DP) is another algo-
rithm in the NGRAD family, in which each neuron has two
intrinsic states corresponding to positively and negatively
nudged compartments as illustrated in Fig. 1. The algorithm
is based on a specific network potential and uses the respec-
tive stationarity conditions to obtain an easy-to-implement
inference method: each neuron maintains two internal states
representing the neural activity as (weighted) mean and the
error signal as difference, respectively (which makes it an
instance of an NGRAD method). The mean state is sent
“upstream” to the next layer while the difference is passed
downstream to the preceding layer, where it nudges the re-
ceiving neural state. The method essentially interleaves or
“braids” the two inference phases and makes it possible to
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Figure 1. (a) Ilustration of a dyadic neuron (note that all quantities
are scalar). The two internal states, s and s™, receive the same
bottom-up input a but the top down input A nudges them in oppo-
site directions. The difference and weighted mean of these internal
states are then propagated downstream and upstream respectively.
(b) In a pyramidal neuron bottom-up signal arrive at the basal den-
drites and top-down signal arrive at the apical dendrites. Concerns
regarding DP and biological plausibility are discussed in section 7.

infer both states simultaneously. When the update sequence
is chosen appropriately, as few as two updates per neuron
are sufficient, making the algorithm comparable to back-
propagation in terms of runtime and 10-100X faster than
CHL and EP. In practice, DP is applied to feed forward
networks and EP typically to Hopfield models, which has
implications for how inference is carried out (fixed-point
method vs energy minimization) and on the hardware the
algorithms are suitable for. Another difference to EP and
CHL is, that dual propagation infers both sets of states si-
multaneously (and not in sequential phases). The underlying
network potential used in DP is parametrized by a coefficient
a €10, 1] determining the weighted mean. The stability of
the resulting inference method hinges on choosing o = 1/2.

Casting deep learning as an optimization task over explicit
activations and weights is the focus of a diverse set of back-
propagation alternatives sometimes collectively referred to
as lifted neural networks (Carreira-Perpinan & Wang, 2014;
Askari et al., 2018; Gu et al., 2020; Li et al., 2020; Choro-
manska et al., 2019; Zach & Estellers, 2019; Hgier & Zach,
2020). Predictive coding networks (e.g. (Whittington & Bo-
gacz, 2017; Salvatori et al., 2023)) can be also understood
as instances of lifted neural networks. Although members
of this group have different origins, they are algorithmically
closely related to CHL and EP (Zach, 2021), but vary e.g.
in their suitability for digital hardware.

Weak and strong feedback While a number of CHL-
inspired learning methods for neural networks are shown
to be equivalent to back-propagation when the feedback pa-
rameter /3 approaches zero (i.e. infinitesimal nudging takes
place, as discussed in e.g. (Xie & Seung, 2003; Scellier &
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Bengio, 2017; Zach & Estellers, 2019; Zach, 2021)), practi-
cal implementations use a finite but small value for 3, whose
magnitude is further limited—either explicitly or implicitly.
CHL implicitly introducing weak feedback via its layer
discounting in order to approximate a feed-forward neural
network, and both CHL and EP rely on weak feedback to
stay in the same energy basin for the free and the clamped
solutions. The iterative solver suggested for the LPOM
model (Li et al., 2020) also depends on sufficiently weak
feedback to ensure convergence of the fixed-point inference
scheme. In contrast to these restrictions, the feedback pa-
rameter 3 in dual propagation is weakly constrained and
its main effect is to influence the resulting finite difference
approximation for activation function derivatives.

3. Background

A feed-forward network is a composition of L layer com-
putations sp_1 — fr(Wk—15k—1), where fj is the ac-
tivation function of layer k and Wj_; is the associated
weight matrix. s is the input provided to the network and
Sk := fr(Wg_15k—1) is the vector of neural states in layer
k. The set of weight matrices 6 = {W} }.— form the train-
able parameters, which are optimized during the training
stage to minimize a target loss /. Training is usually—at
least on digitial hardware—conducted via back-propagation
of errors, which is a specific instance of the chain rule.

In (Hgier et al., 2023) a localized, derivative-free approach
for supervised learning in feed-forward neural networks is
proposed, which is based on the following network potential
LPP (Eq. 1) for a parameter « € [0, 1],

LPP(0) = minmax al(s}) + al(sy)

st s~

3,

The terms FEj in are specifically chosen as
Ei(sk, sk-1) = Gr(sg) — s;Wk,lsk,l, where G, is typ-
ically a strongly convex function for the “resting” energy
(and relates to the activation function via VG = f, * and
VG5 = fir). This choice leads—via the corresponding
stationarity conditions—to particularly simple fixed-point
updates for sf for the inference of neural states,

ey

(Ek(sf.8k-1) — Ex(sy ,85-1)) -

DP
Ly

si e fr(Wiasia + oW (sf,, — s1q)) ?)
sp — fe(Wioa8i1 —aWyl (s — sippq))

where @ := 1 — aand 5, := as} + as,, . The state of the
output units is determined by solving

sJLr — argrrsliLn al(sp)+ Er(sn,5n-1)

3

ST argnSliLn —al(sp) + Er(sp,85-1)-

Gradient-based learning of the weight matrices § =

(Wk)é;ol is based on the quantity Oy, L2T o (5;_1

— T =+ .
S11)5, once the neural states s;- are inferred.

The choice of @ = 1 is equivalent to the LPOM formula-
tion (Li et al., 2020), that builds on the following network
potential,

LEPOM (g) = mJirn {(sT)

L
+ 2 (Er(stsi_y) = Er(fe(Wioasi_y), si_y)) -
k=1
“

Eq. 4 can be obtained from Eq. 1 by closed form maximiza-
tion w.r.t. all s, as s, in this setting solely depends on
5;1. Analogously, the choice = 0 can be interpreted
as “inverted” LPOM model (after minimizing w.r.t. all sz
variables). Unfortunately, the straightforward update rules
in Eq. 2 lead to a stable method only when v = 1/2. In Sec-
tion F we discuss the necessary adaptation of Eq. 2 (which
are also used in our experiments) when « € {0, 1}. In this
work we (i) provide explanations why the choice o = 1/2
is special (via connecting it to the adjoint state method in
Section 5 and via a more explicit analysis in Section G) and
(ii) demonstrate why selecting o # 1/2 can be beneficial.

4. A Relaxation Perspective on Dual
Propagation

In this section we show how £27 can be obtained exactly
by repeated application of certain relaxations of the optimal
value reformulation (Outrata, 1988; Dempe & Zemkoho,
2013) (summarized in Section 4.1). Obtaining L2 requires
the application of two (to our knowledge) novel relaxations
for bilevel programs as described in Sections 4.2 and 4.3.

4.1. The Optimal Value Reformulation and its
Relaxation

First we describe a basic (and known) reformulation for
a class of bilevel minmization problems. We consider a
general bilevel program of the form

moin £(s™) s.t. s* = argmin F(s;0) )

S

In the context of this work we assume that the minimizer
of E(s;0) is unique for all §, which corresponds to layer
computation in deep neural networks to be proper (single-
valued) functions. In a first step the constraint in Eq. 5 can
restated as

min ¢(s)

; s.t. E(s;0) < min E(s';0), (6)

which is the optimal value reformulation (Outrata, 1988;
Dempe & Zemkoho, 2013). As E(s;0) > miny E(s;6)
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by construction, the inequality constraint is always (pos-
sibly only weakly) active. By fixing the corresponding
non-negative Lagrange multiplier to 1/ fora 8 > 0 we
obtain a relaxed optimal value reformulation (“ROVR”),

. 1 ) o . /.
1271516(5) + 3 (E(S,O) anE(s ,9))

= minmax {(s) + 5 (E(s;0) — E(s';6)).

0,s s

(N

Repeated application of this conversion from lower-level
minimization task to higher-level penalizers on deeply
nested problems yields a large variety of known learning
methods (Zach, 2021). When 8 — 0, a number of works
have shown the connection between Eq. 7, back-propagation
and implicit differentiation (Xie & Seung, 2003; Scellier &
Bengio, 2017; Gould et al., 2019; Zach, 2021).

4.2. A Saddlepoint Relaxed Optimal Value
Reformulation

A different relaxation for a bilevel program can be obtained
by rewriting Eq. 5 as follows,

mi+n max {(asT+as”) s.t. st = argmin E(s;6)
S s S

®)

s~ = argmin E(s;0),

where « € [0, 1] and @ = 1—a as before. The reformulation
above replaces the solution s* of the inner problem with an
(apparently superfluous) convex combination of two related
solutions s* and s~. Under the uniqueness assumption on
the minimizer of E(+; #), this program is equivalent to Eq. 5
(as s* = sT = s~ by construction). The main effect of
introducing s* in Eq. 8 is, that it allows two independent
applications of the ROVR. Applying the standard ROVR on
s~ (a maximization task) yields the first relaxation,

Ininmzjxﬁ(asJUro_zs*) - %(E(s*; 0) — ming E(s;0))

s.t. sT = argmin, F(s;0), 9)

and a second application of the ROVR on s (with the same
multiplier 1/3) results in

JiPEOVR(H) := min max {(as™ +as™)
’ sTosT (10)
+5(E(s%:0) — E(s7;0))

as the min, E/(s; 0) terms cancel each other. We can reverse
the order of min and max in Eq. 8, which also induces a
reversal of min and max in Eq. 10. Strong duality may
not be satisfied in general, but the stationarity conditions
w.r.t. s7 and s~ are unaffected by permuting min and max.
We call the algebraic conversion from Eq. 5 to Eq. 10 the
saddle-point ROVR or SPROVR.

In order to model deep feed-forward networks we extend
the bilevel program to a multi-level program with with L

nesting levels,
r%in 0(s}) s.t. sp = argming, Ex(sg,s;_1;0)

(1)

* . .
s = argming, Fq(s1;0),

where each Ej (-, s_1;0) is assumed to have a unique min-
imizer for all s;_; and 6. By applying SPROVR repeatedly
from the outermost level to inner ones, we arrive at the
following relaxed reformulation,
min min max #(5y,) + % (E1(s7;0) — Er(sy:0))
O {sf}{si} (12)

L
+ %Zk:2 (Ek(s,j;§k_1;9) — Ek(slz; §k_1;9)) .

‘We recall that the short-hand notation 5;, stands for 5, =
as; + as;, , but the choice of the coefficient « can in princi-
ple be layer-dependent (by replacing o with o). Similarly,
the value of multiplier 1/ may depend on the layer k.
Traversing the SPROVR from the inside towards the outer-
most level leads to a different (and less relevant) relaxation.

4.3. An Adversarial Relaxed Optimal Value
Reformulation

In this section we present a different instance of an optimal
value reformulation, that yields centered approaches to con-
trastive Hebbian learning and is further closely linked to
adversarial training. We start with the bilevel program,

Jg%(e) ={(s*) st 8" =argmin E(s;0) — apl(s),
(13)

where 5 > 0 is a step size parameter and o € [0, 1]
further modulates the step length. The solution s* is a
minimizer of an adversarially perturbed inner problem
(and assumed to exist), and therefore Eq. 13 is generally
not equivalent to Eq. 5. A simple illustrative example is
given by setting E(s;6) = ||s — 0||>/2 and £(s) = g's,
then argming F(s;0) = 6 but s* in Eq. 13 is given by
s* = 0 + afyg, i.e. s* takes a gradient ascent step from
0 = argming F(s; 0) to increase the (linear) target loss ¢
(somewhat in analogy with the fast gradient method). On
the other hand, the outer problem aims to reduce the main
loss ¢ for this perturbed sample s*.

Using the optimal value reformulation (cf. Section 4.1) this
is equivalent to an inequality constrained program,
min ¢(s*)
pe

(14)
s.t. E(s%;0) — apfl(s*) < msinE(s; 0) — apBL(s).

Fixing the (non-negative) multiplier of the Lagrangian re-
laxation to 1/ yields (after algebraic manipulations)

J;\’RﬂOVR(@) = m}_n max al(sT) +al(s™)

(15)
+ % (E(s*;0) — E(s—;0)),
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which e.g. generalizes the centered variant of EP. Increasing
the effective step length & in Jgdé by increasing & allows
larger adversarial perturbations and therefore makes the
learning task harder. This property carries over to J3¥PVR as
shown in the following proposition (proven in the appendix).
Proposition 4.1. Ler 0 < § < (' and a,a’ € [0,1]
with a < o'. Then the following holds: (a) JAFJ"%(6) <
JARO(9) and (b) 5.1V(6) < 5O (0)

Original EP (o« = 1) and centered EP (Laborieux et al.,
2021; Scellier et al., 2023) (o« = 1/2) are two particular
instances of .J ARBOVR Hence, Prop. 4.1 raises the question
of how much the better gradient estimate and how much
the stricter loss J{EPYR contribute to the advantages of cen-
tered EP.

Without further assumption we cannot expect claim (b) to
be strengthened to .J, AROVR( ) < J AROVR(G) as a larger
adversarial step is offset by a smaller multlpher 1/’ If the
total step size @ remains constant, then a stronger relation
can nevertheless be shown:

Proposition 4.2. Let 0 < 3’ < 8 and o' such that a3 =
o'B'. Then JAROVR(9) < JAROVR(g)

The two relaxations, J. A%OVR and J SP ROVR (Eq. 10) look
very similar, the only difference bemg the location of the
averaging step (averaging the argument or the function value
of the target loss /). Generally we expect JARVR to upper
bound JSFROVR 'which is always the case when £ is convex.
The huge advantage of SPROVR is that it leads to tractable
objectives when applied to deeply nested problems (linear
in the problem depth L). Applying AROVR in a similar
manner on Eq. 11 yields an exponential number of terms
in the resulting objective unless & = 1 or @ = 0 (where
it actually coincides with SPROVR). We now can easily
identify LPF (Eq. 1) as result of applying both SPROVR
and AROVR on a deeply nested program:

Corollary 4.3. The DP objective LPT (Eq. 1) can be ob-
tained by first applying AROVR on the outermost level of
Eq. 11, followed by subsequent applications of SPROVR for
the remaining levels.

In Section 6.1 we verify whether different choices for «
have any impact on the robustness of a trained model. Since
any differences are expected to vanish for small choices of
B, the large (3 setting (we choose 8 = 1/2) is of main inter-
est. Note that unlike standard adversarial training (which
perturbs solely the input to the network), the lifted network
potential L2 is based on perturbations of the network’s
hidden activations. Adversarial perturbations of the inputs
can be achieved by adding an auxiliary constraint sy = =,
e.g. by extending LPF with e.g. Ey(so,x) = ||so — %

In our experiments, a significant reduction of the Lipschitz
estimate is in fact observed when decreasing « (and there-

fore increasing the “adversarial” step size a3). We do of
course not suggest to replace advanced adversarial training
with the loss JGRVR, but the main goal of this section is to
demonstrate that a non—inﬁnitesimal choice of 3 has a theo-
retical and practical impact and therefore goes beyond a pure
approximation of back-propagation (respectively implicit
differentiation). One may also speculate that the hypothe-
sized NGRAD-based learning in biological systems gains
some robustness by leveraging a similar mechanism.

5. A Lagrangian Perspective on Dual
Propagation

In this section we derive a variant of dual propagation, which
we refer to as DP T, which turns out to be robust to asymmet-
ric nudging (i.e. choosing o € [0, 1] not necessarily equal
to 1/2). Our starting point is a modified version of LeCun’s
classic Lagrangian-based derivation of backpropagation (Le-
cun, 1988). We assume (i) that the activation functions fj,
are all invertible (which can be relaxed), and (ii) that f; has
a symmetric derivative (i.e. fi(z) = f/.(z) ). The second
assumption clearly holds e.g. for element-wise activation
functions. Our initial Lagrangian relaxation can now be
stated as follows,

L) = mqinmgtxﬂ(sL)
IV (16)
> 08 (Fi (k) = Wioasia)

Note that the multiplier J; corresponds to the constraint
fk_l(sk) = Wi_155_1 (in contrast to the constraint s;, =
fx(Wg_15;_1) employed in (Lecun, 1988)). The main step
is to reparamtrize s and dy, in terms of s'k" and s,

Sk = as$ + as, O = s; — 5 17
for a parameter « € [0, 1] (and @ := 1—«). In the following
we use the short-hand notations 5 := as; + as, and
ap ;= Wg_15_1.

Proposition 5.1. Assume that the activation functions fy,
k=1,...,L—1, areinvertible, have symmetric derivatives
and behave locally linear. Then the Lagrangian correspond-
ing to the reparametrization in Eq. 17 is given by

ﬁgPT 0) = mi+n max ((3r,)
L (18)
+ Z b)) (i (5k) = Weo15k-1)
k=1
and the optimal sf in (18) satisfy
si o fe(Wh—18k-1 + @WJ(SZH —541)) (19)
sy fe(Whe18k—1 — oWy (sf ) — si1))

for internal layers k =1,..., L — 1.
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For the output layer activities sf we absorb f7, into the

target loss (if necessary) and therefore solve

min max ¢(5z,) + (st —s7) (50 —ar) (20)
SL Sr

with corresponding necessary optimality conditions

0=al'(31)+ 3L —ar +a(sf —s7)
2D
0=al'(sy) — 5L +ar +a(sf —sg).

Adding these equations reveals ¢'(31) + sf — s = 0.
Inserting this in any of the equations in (21) also implies
St = ar, = Wp_151_1. Thus, by combining these rela-
tions and with g := ¢/(Wp_151_1), the updates for sf are
given by

s‘LL — Wr_18p—1—ag s < Wr_151-1 +ag. (22)
For the $-weighted least-squares loss, £(sz,) = g”SL —yl?,
the above updates reduce to s} < ar, — aB(ar, — y) and
s; < ap+aBlar —y).

The neural activities s,f together encode the forward and
the adjoint state. Since the updates in Eq. 19 are based on
the adjoint state method, we denote the resulting algorithm
adjoint-DP or just DP .

Relation to the original dual propagation The update
equations in (19) coincide with the original dual propaga-
tion rules if « = 1/2 (Hgier et al., 2023), although the
underlying objectives £2P" (18) and £PP are fundamentally
different. If « # 1/2, then «w and & switch places w.r.t. the
error signals (but not in the definition of 5) compared to the
original dual propagation method.! The updates in (19) for
a = 0 correspond to an algorithm called “Fenchel back-
propagation” discussed in (Zach, 2021).

Both the objective of the original dual propagation (1) and
the objective of the improved variant (18) can be expressed
in a general contrastive form, but the underlying potentials
FE);, are somewhat different,

DP: Ei (s}, 85—1)— Ex (s, s 5k-1)
= Gr(sf) = Gi(sy) — (s —sp) T W18k
DP': Ey(sf,51-1)— Ex(s7T,56-1)
= (5§ —5.) VGr(5r) — (sf —55)  Wi_15_1.
Here Gy is a convex mapping ensuring that
argmin,, FEy(sk,sr—1) provides the desired activa-

tion function fi. The relation between fj and Gy, is given
by fr = VGj, and f,;l = VG|, (where G, is the convex

'This partial exchange of roles of o and & is somewhat analo-
gous to the observation that e.g. forward differences in the primal
domain become backward differences in the adjoint.

conjugate of ;). Activations function induced by G, have
automatically symmetric Jacobians as f; = V?Gj under
mild assumptions. The main difference between these two
flavors of DP can be restated as follows,

AEy, = Gy(si) — Gr(sy) — (sf —s7) " VGr(5k) 23)
= D, (si 15k) — Da, (s, I5x),

where D¢, is the Bregman divergence induced by G'i,. The
difference of Bregman divergences can have any sign, and
AEy, = 0if Dg, (s) ||5k) = Dg, (s}, ||3). Hence, for the
choice o € {0,1} (i.e. 5 = s,j, or 5, = 5,.), ALy can
only be zero when s;” = s,_. Fixing @ = 1/2 and G, to
any convex quadratic function implies AE), = 0 (as Dg,
becomes the squared Mahalanobis distance in this setting).

Non-invertible activation function If f; is not invertible
at the linearization point (such as the softmax function), then
Dy, is singular and the constraint fl;l(sk) = Wi_18k_118
converted into a constraint that D,j Sy, is restricted to a linear
subspace,

Dif (sk — sf) = Wi_15k—1 + Nyvg, (24)

where Ny, spans the null space of Dy, and vy, is an arbitrary
vector. Going through the similar steps as above leads to the

same updates for s;’.

Starting from Lecun’s Lagrangian If we start from the
more natural Lagrangian

L(0) = mSinmngé(gL)
Lot (25)
+ Zkzl Op (5k = fr(Wr_15k-1))

instead from (16), then the back-propagated signal s, | —
sy, cannot be easily moved inside the activation func-

tion f. The update equations for sf are now of the less-
convenient form

s feWeo15k—1) + aWy fl1(S) (sia—sihy)
sp — fr(Wi—15,-1) — OéWkalch(gk)(SEH_S;H)a

which still require derivatives of the (next-layer) activation
functions, which makes it less appealing to serve as an
NGRAD method.

6. Numerical Validation

Our numerical experiments aim to verify two claims: first,
in Section 6.1 we demonstrate that choosing different values
for o makes a significant difference in the learned weight
matrices. Second, Section 6.2 validates that the proposed
DP " method is efficient enough to enable successful train-
ing beyond toy-sized DNNs for arbitrary choices of o 2.

’The code used in our experiments is available at: github.
com/Rasmuskh/dualprop_icml_2024


github.com/Rasmuskh/dualprop_icml_2024
github.com/Rasmuskh/dualprop_icml_2024
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Table 1. Test accuracy and Lipschitz properties of an MLP trained with DP and DP " for different choice of « (and fixed 8 = 1 /2). Lis
the spectral norm of the product of weight matrices. Results are averaged over 3 random seeds. The additional results under DP and BP
correspond to adding input layer robustness (DP) and FGSM-based adversarial training (BP), respectively.

DP DPT BP

a 1 Y 0 1 Y 0
MNIST Acc  95.85+£0.68 98.09+0.06 98.46+0.07 | 98.06£0.15  97.9+0.1  98.21£0.13 || 98.05£0.12
98.43+0.11 98.434+0.04
L 5224288  67.24+12.6  29.944.2 73.442.7 78.14+9.9 4324194 || 55.1+14.4
15.87+6.34 36.16+4.23
F-MNIST | Acc 83.36+£0.74 88.32+0.05 89.16+0.43 | 88.26+£0.46 88.35+0.37 88.18+0.27 || 88.37£0.56
88.29+0.79 88.6440.25
L 157.7+£57.8  34.3+4.0  19.97+3.9 52.0+23.6  35.14+7.0 29.442.7 37.74+10.2
8.05+1.03 12.684+0.81

Implementation The adjoint variant DP " literally imple-
ments the updates stated in Eq. 19. In order to enable DP for
values o # 1/2, we leverage stabilized fixed-point updates
(Section F), Not using stabilized updates yields failures to
learn successfully as indicated in Table 2 (with details given
in Section A.1). Using stable fixed-point updates comes
at a significant computational cost as more iterations are
required to obtain sufficiently accurate neural states. Con-
sequently we apply these only in the experiments related to
the Lipschitz behavior described in Section 6.1.

6.1. The impact of « on the Lipschitz continuity

Section 4.3 suggests that the choice of « matters in particu-
lar in the strong feedback setting (i.e. 5 is not close to zero).
We ran experiments on MNIST and FashionMNIST using
a 784-512(x 2)-10 MLP with ReLU activation functions,
and Table 1 reports test accuracy and Lipschitz estimates
(computed as spectral norm of the accumulated weight ma-
trix WoW1 Wy as ReLLU is 1-Lipschitz) after 20 epochs of
ADAM-based training (with learning rate 0.001 and default
parameters otherwise). No additional loss terms such as
weight decay were used. As indicated by Prop. 4.1, a lower
value of « yields a significantly smaller Lipschitz constant
(as well as improved test accuracy) for the DP method. The
DP T approach leads to a similar but far less pronounced
behavior regarding the Lipschitz estimate. The small dif-
ferences between the Lipschitz estimates for the different
choices of a have no consistent impact on the test accuracy.

As pointed out in Section 4.3, the DP objective L2 is

robust only w.r.t. perturbations in the internal layers. Conse-
quently, the very first layer is not necessarily adversarially
robust, and additional robustness can be achieved by ex-
tending £P7 with a term for the input layer, introducing
another term Fy(s,z) = ||s — z||?/2. Table 1 also includes
the resulting accuracy and Lipschitz estimates for this ex-
tended variant of £ as well as the results for simple
adversarial training (using FGSM (Goodfellow et al., 2015)
as approximate inner maximization; the step size ¢ = 0.01
chosen to roughly match the test accuracy of DP). Adding

Table 2. Mean test accuracy in percent for the original and the
improved dual propagation methods using a € {0, 1}. (X) indi-
cates that the particular experiment did not converge. Results are
averaged over five random seeds.

a=0 a=1
Iters | DP' DP DP' DP
I 08.3£0.1 98.50+0.1 | 98.4£0.1 97.9+0.1
30 084+£0.0 X 085+0.1 X

input layer robustness significantly reduces the Lipschitz
estimate of the DP-trained network (at a small reduction
of test accuracy). In the setting « = 1/2, DP and DPT
use identical update rules for the hidden units, but treat the
output units differently (Eq. 3 vs. Eq. 22), hence the two
methods behave very similar but not identical in practice.
Finally, we remark that the difference between all tested
methods largely vanishes in the weak feedback setting as
they all mimic back-propagation when 3 — 0%,

6.2. VGG16 experiments

We also train a 16 layer VGG network using DP' with a
crossentropy classification loss on the CIFAR10 and CI-
FAR100 datasets. In contrast to (Hgier et al., 2023) we
do not employ the efficient, backpropagation-like forward-
backward traversal of the layers. Instead we apply 17
forward-only passes through the layers, which—due to the
dyadic neurons—allows errors to gradually propagate to
all layers. We employ standard data augmentation (random
crops and horizontal flips) and carry out all experiments with
3 random seeds and report mean and std. deviation. 10%
of the training data is hold out as validation set for model
selection. The hyperparameters are listed in Section B.

Unlike the MLP setting, we find now that the choice of 3
has some influence on the stability of the training method.
Note that (Hgier et al., 2023) actually reported results for
B = 1/batch-size (instead of 5 = 1) as the (linearized)
mean CE loss was used. We instead use the summed CE
loss (so the feedback signal is not scaled by the batchsize).
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Table 3. Table of top-1 and top-5 accuracies in percent for VGG16 networks trained with DP " for different choices of 3 and a. (1)
Indicates an experiment where a reasonable model was found before training eventually diverged. (X) indicates an experiment where no

reasonable model was learned.

1.0 0.1 0.01 BP
o 0.0 0.5 1.0[0.0 0.5 1.0]0.0 0.5 1.0
CIFAR10 Top-1{91.344+0.16 X X [92.41£0.07 189.3£0.17 X [92.264+0.22 92.19+0.32 92.194+0.08 || 92.36+0.16
CIFAR100 Top-1] 69.3£0.08 X X [70.056+0.23 69.25+0.28 X [69.33£0.24 69.38+0.10 68.83+£0.06 || 69.1£0.1
Top-5| 89.6 £0.11 X X [89.424+0.16 88.544+0.18 X |88.46+£0.17 88.23+£0.18 88.28+0.13 || 88.24+0.22
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Figure 2. CIFAR100: Angle of gradient estimates relative to BP gradients, for DPT with o« = 0 and 8 = 0.01 and 8 = 1.0. Angles are
plotted across layers and epochs (left column). The right column zooms in on the first 200 minibatches (i.e. a fifth of an epoch).

Results for DPT and 8 € {0.01,0.1,1.0} in Table 3 show
that the choice of « has no noticeable impact in the weak
feedback setting (8 = 0.01), which is to be expected. In the
moderate feedback setting (8 = 0.1), DPT with « = 1 fails,
and DPT with @ = 0.5 eventually diverges on CIFAR10
after reaching an acceptable model. The choice 5 = 1.0
requires o = 0 for successful training and leads to a drop
in performance. Fig. 2 compares the angle between DP "
gradient estimates and backprop gradient estimates when
« = 0 in the strong (5 = 1) and weak (5 = 0.01) feedback
setting. It can be seen in Figs. 2a and 2c, that DPT with
B = 0.01 always provides excellent gradient estimates,
whereas the gradients are initially not well aligned when
B = 1. The difference is especially pronounced during the
first 200 batches (a fifth of an epoch) in Figs. 2b and 2d.

Imagenet32x32 We restrict the more compute intensive
ImageNet32x32 experiments to the setting « = 1/2 and
B = 0.01. We use 5% of the training data for validation
and model selection, and use the public validation dataset to
evaluate the selected model. With top-1 accuracy of 41.59+
0.11 and top-5 accuracy of 65.63 = 0.19 it is apparent that
the repeated inference scheme maintains performance on
par with (or slightly above) the results reported for DP and
BP in (Hgier et al., 2023).

7. Discussion

Biological plausibility of the dyadic neuron model In
the DP framework neurons have two internal compartments,
which integrate both bottom-up and top-down input signals.
Introducing distinct neural compartments is somewhat bio-
logically plausible as recent neuroscience research suggests
that dendrites are compartmental structures capable of per-
forming fairly complex operations (Chavlis & Poirazi, 2021;
Beniaguev et al., 2021). It has been proposed in (Guerguiev
et al., 2017; Richards & Lillicrap, 2019) that distal apical
dendrites (integrating top-down feedback signals) might
be responsible for credit assignment in pyramidal neurons,
whereas basal dendrites integrate local feed-forward and
recurrent inputs. The DP algorithm does not fully fit this
picture as the state updates require integrating bottom-up
input and feed-back input jointly. Further, DP relies on
some form of multiplexing within a neuron in order to com-
municate both the neural state difference “downstream” and
the mean state “upstream.” This distinction is illustrated in
Fig. 1. In spite of these caveats, the dyadic neuron model
shows that—by taking a small step away from the single
compartment based McCulloch Pitts neuron model—one
can nevertheless achieve asynchronous propagation of mean-
ingful errors entirely driven by local neural activities. While
still far from biological reality this may be useful for goals
such as on-chip training of neuromorphic hardware.
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Compartmental interpretation of related models The
contrastive, lifted and difference target propagation based
models can all be interpreted as compartmental models (ei-
ther compartments within a neuron or within a small neural
circuitry). In EP and CHL, neurons need to store the ac-
tivities of the two temporally distinct inference phases. In
dual propagation and in LPOM, neurons are required to
maintain the nudged internal states. Neurons in difference
target propagation are expected to have compartments for
storing predictions, targets and possibly even noise per-
turbed states (Lee et al., 2015). Works such as (Guerguiev
et al., 2017; Sacramento et al., 2018) explicitly focus on
building biologically inspired compartmental neuron mod-
els, although these methods incur even higher computational
costs by also modelling spiking behaviour. The segregated
dendrite model (Guerguiev et al., 2017) requires two tem-
porally distinct phases making it closer to a neuroscientists’
realization of CHL or EP. The dendritic cortical microcir-
cuit model (Sacramento et al., 2018) is single phased and
implementation-wise similar to fully asymmetric DP.

Timescales of neural dynamics When training a network
with BP, the weights of a layer can not be updated until
the forward pass has completed, and the error has at least
been back-propagated to the layer in question. This strict
synchronization requirement has motivated several algo-
rithms (Jaderberg et al., 2017; Ngkland & Eidnes, 2019),
which—to varying degree—relax the need for precise syn-
chronization. One way to avoid synchronisation across
layers entirely is to use auxiliary losses at each layer, which
often is applied in unsupervised learning methods such
as ART (Grossberg, 1987), deep belief networks (Hinton
et al., 2006; Bengio et al., 2006) or—more recently—soft-
Hebbian learning (Journé et al., 2023). In the supervised
learning setting, many lifted neural network approaches
(such as (Carreira-Perpinan & Wang, 2014; Whittington &
Bogacz, 2017; Li et al., 2020), that result in a joint mini-
mization problem over neural states and synaptic weights)
in principle rely on minimal synchronization (though in
practice, inference of the neural activities is usually run to
convergence to avoid storing intermediate neural states).

Among biologically inspired alternatives to BP, difference
target propagation (Lee et al., 2015) has similar synchroniza-
tion constraints as BP, while CHL and EP require temporally
distinct inference phases to converge before any weight up-
date. DP only has a single inference phase and does not
impose a strict schedule on the order in which layers are
traversed, but still requires that meaningful error signals are
able to reach layers before their weights are updated (see
e.g. the “random-DP” variant in (Hgier et al., 2023)). In
a setting with asynchronous neurons this corresponds to a
requirement that synaptic plasticity takes place at a (much)
slower timescale than neural activities (which is at the core

of continuous-time neuron models used in computational
neuroscience). This agrees with the observation that neural
activity, short-term plasticity (e.g. working memory and
attention) and long-term plasticity take place at entirely dif-
ferent timescales (10ms, 100ms-minutes and minutes-hours
respectively, e.g. (Tsodyks et al., 1998; Abbott & Regehr,
2004; Citri & Malenka, 2008)).

Weight transport One of the key objections to BP is that
it is biologically implausible for the forwards and back-
wards pathways to be symmetric (using W to propagate
forwards and W to propagate errors backwards). This
is known as the weight transport problem (Crick, 1989;
Grossberg, 1987), and variations of this issue is present
in many NGRAD algorithms, including DP. The weight
transport problem is not addressed in the current work, but
we note that DP has previously been shown to be compat-
ible with Kolen-Pollack learning (Kolen & Pollack, 1994)
of the feedback weights (Hgier et al., 2023). There are a
number of other interesting attempts at solving the weight
transport problem in the literature such as random feedback
alignment (Lillicrap et al., 2014; Ngkland, 2016; Frenkel
et al., 2021) and stochastic alignment methods (Akrout et al.,
2019; Ernoult et al., 2022).

8. Conclusion

Fully local activity difference based learning algorithms
are essential for achieving on-device training of neuromor-
phic hardware. However, the majority of works require
distinct inference phases and are costly to simulate. The
dual propagation formulation overcomes these issues but
also relies on symmetric nudging (at each layer), which may
itself be too strict a requirement in noisy hardware. Further-
more, a rigorous derivation of the DP objective has so far
been missing. In this work we first present the theoretical
foundation for dual propagation and argue (in theory and
practice) why asymmetric nudging can be beneficial, despite
requiring slow inference methods (instead of fast fixed-point
dynamics) on digital hardware. Further, we present an im-
proved variant of dual propagation derived from a suitable
Lagrangian, which recovers the dynamics of dual propa-
gation in the case of symmetric nudging (o« = 1/2). In
the case of asymmetric nudging (such as « € {0,1}) the
new variant leads to slightly modified fixed-point dynamics,
which are in fact significantly more stable as demonstrated
in our experiments.
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A. Additional Results

Fig. 3 illustrate additional statistics on the alignment of back-propagation induced gradients (w.r.t. the network parameters)
and the ones obtained by the proposed DP improvement.

A.1. Divergence of DP

The original dual propagation and the improved variant differ in the case « € [0, 1], « # 1/2, with the boundary cases
a € {0, 1} being of particular interest. The most efficient way to implement dual propagation is by sequentially updating
neurons in every layer from input to output and then from output to input (akin to a forward and a backward traversal, which
are nevertheless part of the sole inference phase using the same dynamics) before performing a weight update. However, to
show the unstable behaviour of the original dual propagation formulation in the case of asymmetric nudging we instead
perform repeated inference passes through the layers (which also better matches a continuous/asynchronous compute model).
Each pass (or iteration) corresponds to updating all neurons from input to output layer and back.

The results of these experiments are summarized in Tab 2, where we trained a 784-1000(x4)-10 MLP with ReLU activation
functions on MNIST using the least-squares loss. The nudging strength 3 is 1/2, which is also compatible with the original
DP method. We observe that inference in the original variant of DP diverges when applying asymmetric nudging and
multiple inference iterations. This is not surprising as inference for dual propagation is only guaranteed to converge in the
symmetric setting. The new variant of DP on the other hand yields stable inference results in all cases.

B. CNN experimental details

The experiments of Section 6.2 were carried out with a VGG16 network and the following hyper parameters:

Table 4. Hyper parameters

Epochs Learning rate . .
Dataset Warmup pDecay Total | Initial Peagk Final Momentum | Weight-decay | Batchsize
CIFAR10 10 120 130 | 0.001 0.025 2e-6 0.9 Se-4 100
CIFAR100 10 190 200 | 0.001 0.015 2e-6 0.9 Se-4 50
Imagenet32x32 10 120 130 | 0.001 0.020 2e-6 0.9 Se-4 250

C. Proof of Proposition 5.1
Proof. The first-order optimality conditions for s; and d;, (k = 1,..., L — 1) in Eq. 16 are given by

M 0= (f") (s8)0k — Wy 01 () 0= fi ' (sk) = Wr1s6-1. (26)
Reparametrization in terms of sf (Eq. 17) and expanding (IT) + (1) and (II) — a(I) yields

0= f, ' (asf +asy) —ar+o(fi ) (5k) (st —sp) — oWy (51 — s341)

- o o - - ~ " 27
0=—f, l(asz +as; ) +ar + a(f, 1)'(5k)T(5: — 5, ) — onVk.T(s,:r+1 = Sp41)s

which are also the KKT conditions for £2F in Eq. 18. It remains to manipulate these to obtain the desired update equations.
Adding the equations above results in

0=(fi ")(5k) "(sf —s3) = Wi (s}1 — siiy)- (28)

Dual propagation is (via its use of finite differences) intrinsically linked to a (locally) linear assumption on f;. Hence, we
assume fi(a) = sY+ Dra+O(|la—ag||?) with s) = f(ar) — Dray and Dy, = f(a). The local linear assumption allows
us to neglect the higher order terms. Consequently we also assume that f, !is locally linear and therefore (fe 1)’ (5k) = D,;l
is independent of 5. Hence, we arrive at

T _ _ _ _
0~ Dk (S: - Sk) - WJ(SIH - Sk+1> — s; -8 = DI;FWI;F(SZ+1 - Sk+1)' (29)

12
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Figure 3. MNIST experiments employing asymetric o. Results are averaged over five random seeds. Top: Alignment between the
parameter updates obtained with back-propagation and with the improved DP variant (using 30 inference iterations and asymmetric
nudging with a € {0,1}). Middle: L2 norm of difference between BP and DP gradients. Bottom: L2 norms of BP and DP gradients
when using 30 inference iterations and asymmetric nudging (o = 0.0 and o = 1.0). Results are averaged over five random seeds.
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We insert this into the second of the necessary optimality conditions (27) and obtain
0=f; Yasi +as;) —ar =, (s +alsi —s;)) —ax
— fk_l(s,; + aD;WJ(s;H - s;_H)) —ap = D,;l(s,; — s+ aD,;rW,;r(s'k"H — 3/;-1)) — ag.
The last line is equivalent to
s, = Dypay, + 59— aD,IWJ(sZ‘H = 8141) ~ fr (Wk_1§k_1 - aWJ(sZ‘H - 51;1)) . (30)

Analogously, s} ~ fr(Wi—15k—1 + aW, (s{,; — s;,1)). In summary we obtain the update rules shown in (19). O

D. Proof of Proposition 4.1

For convenience we restate Prop. 4.1:
Proposition D.1. Ler 0 < 8 < " and a,a’ € [0,1] with o < o’. Then the following holds: (a) J5"5(0) < JEF 5(0) and
(b) BIE5(0) < B/ TER,.(6).

This is a consequence of the following lemma.
Lemma D.2. Let

s = arg msin a1 f(z) +g(z) Sg = arg Insin asf(z) + g(2) (31)
Sor as > ay. Then f(s2) < f(s1).

Proof. Optimality of s; 5 implies

a1 f(s1) +g(s1) < a1 f(s2) + g(s2)
azf(s2) +g(s2) < aaf(s1) + g(s1).

Adding these inequalities yields
a1 f(s1) + azf(s2) < a1 f(s2) + azf(s1) <= (a2 — ) f(s2) < (a2 — ) f(s1), (32)

ie. f(s2) < f(s1)since ag — g > 0. O

Proof of the proposition. Claim (a) In the following we absorb 1/ into E and omit the dependency of F on 6 for notational
brevity. a < o implies @ < @’ < 0 < a < /. Further, we define

Sq := argmin al(s) + E(u) S_g = argmin —al(s) + E(s)

33
8o i= argmin a’l(s) + E(u) s_g = argmin —a’l(s) + E(s). @)

We identify f(s) = ¢(s) and ¢g(s) = E(s, ) and apply the lemma to deduce that
U(sar) < U(sa) < U(s—ar) < L(s-a). (34

Now

JEPB( ) = al(sa) + E(sa) + al(s—a) — E(s_a)
Sa) + E(sq) + @l(s—a) — E(s—a)
B(50r) + (0 — &' )0(507) + b5 _s) — Bls_a)
E(sary) + (@ —a')l(s—a) + al(s-a) — E(s-a) (35)
E(sar) + 0/5(3—&) — E(s-a)
E(sar) +0'l(s—ar) — E(s—a')

e
’f(sa/) +
(5ar) +
"U(sor) +
’E(saf) +

)

a5(0),

14
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where we used the definition of s,, in the first inequality, £(s,/) < ¢(s_g) (together with &« — o’ > 0) for the second one,
and finally the definition of s_g/ to obtain the last inequality.

Claim (b) We proceed similar to above and define the non-negative quantities

v = af 5 :=af v =af v = ap. (36)
The assumption 5 < 3’ implies
7 <-y<0<y <y 37
We also introduce
sy 1= argminy{(s) + E(s) s_5 = argmin —y4(s) + E(s)
° ° 38
Sy = argminy'l(s) + E(s) §_s := argmin —7'0(s) + E(s). )
From the lemma we conclude that
E(Say/) S E(S,-y) S 6(8_»7) S E(S_Ty/). (39)
Bars(0) = 1l(sy) + E(sy) +F(s—5) — E(s—5)
< U(sy7) + E(s77) +7¢(5 5) — B(s_»)
= U(sy) + E(sy) + (v = 7)) + (s 5) — (5 )
<Y U(5y7) + () + (7 =7 )(53) + T(5_5) — E(5_5) w0
=7l(sy) + E(sy) + (v =7 +7) U(s-5) — E(s-5)
~
=5
<Y U(5y7) + E5y7) + 705 ) — E(5 )
We applied the definition of s, (first inequality), £(s,/) < ¢(s_5) (2nd inequality) and the definition of s5. O
E. Proof of Proposition 4.2
For convenience we restate Prop. 4.2:
Proposition E.1. Let 0 < 8 < § and o such that a8 = &'3'. Then JS'5(0) < JET 5.(9).
Proof. Lety := af = &' f’. We further introduce
U_(s) := —L(s) + U(s) (4D)
and
Sqp = argmin al(s) + %U(s)
Sorpr = argmina’l(s) + 5;U(s) (42)

S_ = argmin —al(s) + %U(S) = argminU_,(s).
S S

15
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Now

= U(sap) + 5U—+(5ap) = U (s-)

< Usarr) + A0 (sorpr) — 50 (5)

= Usarp) + & (U (sarp) = Us (1)) 43)
>0

< Usapr) + 3 (Ur () = Uoy(5-1)

— ' lsap) + U (srp) +aUs_) — HU(s_) = T 5.(6),

where we used the minimality of s, and s_., and that 1 /3 < 1/’ to obtain the inequalities. O

F. Stabilized Fixed-Point Iterations

The LPOM model considered in (Li et al., 2020) uses specific layerwise potentials £, and also layer-dependent values of 3,

LLPOM (g — ?;ir}}é(s/;) + Z Bik (Gr(sk) — sp Wi—1sk—1 + G (Wi—18k-1)) , (44)
* k

where we use sj, instead of sﬁ as the s, are already eliminated. The LPOM authors suggest fixed-point iterations of the
form

ng) — Jx (Wk—lsk—l + Bfi’kaT (3k+1 - fk+1(Wk8§f71)))) ; (45)

which can be derived from the stationarity condition w.r.t. s,
0= 2 (VGr(sk) = Wi1sk1) + 5= (Wi VG (Wisi) — Wy sii1) o
=5 (fi " (sk) — Wi—18k-1) + Q%HWII(fk+1(Wk5k) — Sk41) -

In (Li et al., 2020) it is assumed that each f, is Lipschitz-continuous (w.l.o.g. 1-Lipschitz continuous) and that {3} }; are
chosen such that

B |\W ! Wik|l2 < 1, (47)

Br+1

i.e. B < Br+1 and thereby introducing discounting of later layers (and enabling only weak feedback from the target loss /).
In our setting we choose Sy = --- = fr_1 = 1 and B = 5. Hence, the scheme in Eq. 45 is only guaranteed to converge as
long as ||W,] Wy||2 < 1. For many standard activation functions (in particular ReLU, leaky ReLU and hard sigmoid) the
underlying Gy, is of the form G (sx) = ||sk||*/2 + 1c(sk) for a convex set C, where 1¢(sy) is the functional form of the
constraint s, € C'. Therefore it is convenient to add a quadratic dampening term when optimizing w.r.t. s;. Let

By, (st Sk—1, Sk+1,0) = Gr(s) — sp Wi—186—-1 + Gy (Wisk) — spsy Wiss (48)

D (13 89, Sk—1, k41, 0) 1= Gr(sk) — 54 Wi—186—1 + (sk — s0) T Wy fron WhsR) — sp 1 Wis (49)

be the terms in £POM dependent on s;, and its (partially) linearized surrogate, respectively. Now consider the iteration

s,(fﬂ) = argn;in ék(sk; sg), Sk—1,Sk+1,0) + %Hsk — 32“2
W, W,y - Wis!' ™)) + Lsl") (50)
i—15k—1 + Wi (Skt1 — for1(Wrs, 7)) + Ls,,
“ 1+1L
It sg) is a stationary point of ®y., then s,(:ﬂ) = s,(f) is also a stationary point of ®j. If Gj41 is 1-strongly convex (and
therefore VGj,4q = fj41 is 1-Lipschitz continuous) and L > ||[W,] Wy||2, then @y, (-5 59, sp—1, sk11,0) + |- — s[|% isa
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majorizer of @, and the sequence (s,(;) )+ decreases monotonically ®y,. It can be further shown that Eq. 50 is a contraction if
L > max(0,|WT Wy —1)/2.

We use the stabilized fixed-point scheme in Eq. 50 determine the neural states s;, in the setting « € {0, 1} (i.e. the LPOM
and inverted LPOM formulations), where we assign L to the estimate of ||W,] Wj||2 obtained by 5 power iterations.
G. Analysis of the fixed point iterations

In the following we use an idealized setup, where we make the following assumptions:

1. We consider a trilevel program with a hidden and an output layer,

2. and we use second-order Taylor expansion for the relevant mappings.

The trilevel program is given by

(y™) s.t.y® = argmin F(y) —y' Wz* 2* =argminG(z) — 2"z (51)
Yy z

and ¢, F and G are given by

(y) =3y " Huy+b/y F(y) =iy Hry + by G(z) = 32" Hgz + bz (52)

In the following subsection we derive the closed form expression for the update of z* in case of the AROVR and SPROVR
relaxations.

G.1. Fixed-point updates based on AROVR
Applying the AROVR step on the outermost level in Eq. 51 yields

Uly*™,y™, 2% 27) = ally™) +ally”) + Fly") = Fly™) = (y"—y7) Wz +G(") - G7) — (2T —27) Tz
(53)

Z =o'z + &z~ uses a potentially different coefficient o/. By using the assumption in Eq. 52, y* are given by
0=ca(Hy" +b)+Hpy" +bp —Wz = y" = (Hp+aH) '(Wz—bp — ab)
0=—a(Hwy +b)+Hpy +bp—Wz = y = (Hp —aH) '(Wz —bp + aby). G
Consequently,
yt—yT = (Hp +aH) "Wz —bp — aby) — (Hp — aHy)) " (Wz — bp + aby)
= ((Hp +aHy)™' = (Hp —aHy) ") (Wz —bp) — (a(Hp + aH) ™" — a(Hp — aHy) ™) by )
Only the term involving W z is of interest as the remaining ones are independent of z. Now define
M := (Hp +aHy)™' — (Hp — aH;) ™", (56)
then
(Hp +aH)M =1 — (Hp + aHy)(Hp — aHy) ™! 57
< (Hr + aH/)M(Hp — aHy) = (Hr — aHy) — (Hr + aHy) = —Hy.
or
M = —(Hp +aH) "Hy(Hp — aHy) ™t (58)

A similar calculation shows that

M' = a(Hp +aH)) " —a(Hp —aH,) ™"
= (Hp + aH,) " ((1 — 20)Hp — 2aaH,)(Hp — aHy) ™"

17
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Finally,
er —_ y7 = M(WZ — bF) — M/be (59)
= (Hp +aH,) ™" (H(Hp — aHy) ' (bp — Wz) — ((1 — 2a)Hp — 2aaH,) (Hp — aHy) ™ 'by) .
With Hr = I and Hy = S1 we obtain
B
= 1. (60)
(1+ap)(1-ap)
Using the quadratic approximation for G, G(z) = %zTH az+ bgz, then
Z+ — H&l (37 - bG + O/WT<y+ - y_)) = g(l’ + Oé/WT(y+ y_)) (61)
27— Hél (a: —bg — @’WT(y+ — y_)) = g(l“ @/WT(?ﬁ y_))
and
ozt + a2z« Hg' (2 —be + (o) = (@) W (yt —y7))
=H:' (z—bg+ 2 =YW T (yt -y~
¢ (z—ba+( Wyt —y7)) ©2)

=g(z+ 2 =)Wyt —y7))
=g(z+ (2d — Y)W (MWZ +v))

for a vector v containing all terms in y© — y~ not dependent on z. The choice o’ = 1/2 therefore implies that Z is a fixed
point of the above relation.

G.2. Fixed-point updates based on SPROVR
The above reasoning applies to the AROVR formulation. The SPROVR model uses a different objective,
Uyt y= 2% 27) =llay" +ay )+ Fly") —Fly ) =y —y ) Wz+G(z") = G(z7) = (27 —27) Tz (63)
with corresponding stationary conditions
al'(§) +VFE(yT) =Wz =0 al'(y) —VF(y )+ Wz =0. (64)
By using a quadratic model for ¢ and F, this translates to
(I) a(Heg+be)+Hpyt +bp—Wz=0 (IT) a(H@y+b) —Hpy™ —bp+Wz=0.  (65)
Adding these relation yields
Hig+bi+Hp(ym —y ) =0 < yt —y~ = —H" (Hey+by). (66)
Further, a(I) — @(IT) results in

0=(a®—-a*Hwy+ (o> —a®)by + Hpyj + bp — W2
=(Qa—-1)H+Hp)§+ 2a—1)by +bp — W2z (67)
— §=(2a—1)Hi+Hp) " (Wz = (2a — 1)by — bp)

and
y+ —y = —H;l (Hg (2o — 1)Hy + I{F)_1 (Wz—(2a—1)by — bp) + bg) . (68)
Let M be the matrix applied on WZ, i.e.

M = —Hp'Hy (20 —1)Hy + Hp) ™", (69)
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then for Hr = I and H, = I we obtain

Mo B 8

1+ (2a—1)8 _1—5+2aﬁl' (70)

Recall the value of M before (Eq. 60). As

(1+aB)(1—aB)=1-F+2af — aaB?

and a@B? > 0, we conclude that the SPROVR leads to a dampened error signal compared to AROVR (which is intuitively
expected). The updates for z* are given by

2P HG (z—bg+ oWyt —y 7)) =g(z+ /W (MWz +v))
2T HG (2 —bg—aWT(yT —y)) =g(z —aWT (MWZ+0)) 70
for a suitable vector v independent of Z. Finally,
ozt + a2« Hg' (2 —be + (o) = (@) W (yT —y7))
=Hg;' (x—bc-l—(?o/—l)WT(y"' -y~ ) a2

=g(z+ 2/ =YW (y" —y7))
=g(z+ (22 = )W (MWz +v)),

and we conclude that Z is again a fixed point for the updates when o’ = 1/2.
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