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Abstract001

Conversational search needs to accurately un-002
derstand the actual search intent in multi-turn003
interactions to retrieve relevant passages. Tradi-004
tional conversational query rewriting methods005
primarily rely on manually rewritten queries.006
In contrast, conversational dense retrieval ap-007
proaches directly utilize the entire conversation008
context as input, which introduces redundant009
noise and is further constrained by the limited010
availability of human-annotated supervisory011
signals in the dataset. To address these limita-012
tions, we propose the Generative History Aug-013
mentation for Context-Aware Dense Retrieval014
(GHADR) system. Initially, we propose an iter-015
ative prompt refinement mechanism to leverage016
large language models (LLMs) to augment the017
conversation history and generate high-quality018
rewritten queries. Subsequently, we imple-019
ment a semantically guided clustering algo-020
rithm to mine additional supervision signals021
for model training. Finally, we train a context-022
aware passage retriever using both the rewritten023
queries and the extracted signals from histor-024
ical turns. Experiments on four public con-025
versational search datasets demonstrate the ef-026
fectiveness of GHADR in improving retrieval027
performance and reducing reliance on human-028
annotated signals.029

1 Introduction030

Conversational search enables users to engage in031

multi-turn interactions to satisfy their information032

needs by retrieving relevant passages from a collec-033

tion of passages, based on the current query and its034

conversation history that including previous queries035

and responses (Kim and Kim, 2022). Unlike tra-036

ditional single-turn ad-hoc retrieval, which relies037

primarily on keyword and phrase matching, conver-038

sational search requires modeling the whole con-039

versation context to accurately capture the underly-040

ing search intent, as this intent may be distributed041

across the entire conversation history (Yu et al.,042

Figure 1: A conceptual illustration for the CQR and
CDR.

2020; Qian and Dou, 2022; (Mo et al., 2024b)). 043

Therefore, conversational search is much more 044

challenging than ad-hoc retrieval. Existing meth- 045

ods can be roughly categorized into two groups: 046

Conversational Query Rewriting (CQR) and Con- 047

versational Dense Retrieval (CDR), as illustrated 048

in Figure 1. 049

To capture the real information needs in multi- 050

turn conversation, CQR aims to reformulate conver- 051

sational queries into stand-alone queries that can 052

be submitted to any off-the-shelf retrievers (Vaku- 053

lenko et al., 2021; Fang et al., 2022). Previous stud- 054

ies often fine-tune a pre-trained language model, 055

such as T5 (Chung et al., 2024). However, these 056

methods rely on manually rewritten queries as su- 057

pervision signals to train the rewrite model, yet 058

obtaining large-scale manually annotated data for 059
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training remains challenging in practice. Further-060

more, this rewrite-then-retrieve pipeline prevents061

CQR models from being directly optimized for062

downstream retrieval tasks (Wu et al., 2022; Mo063

et al., 2023a), as the two-stage process hinders end-064

to-end training.065

In contrast, CDR leverages a pre-trained ad-hoc066

retriever to encode the entire conversation context067

and candidate passages into a unified embedding068

space, followed by end-to-end fine-tuning on con-069

versational data (Yu et al., 2021; Lin et al., 2021b;070

Mao et al., 2022). The end-to-end CDR models071

can be directly optimized for better retrieval per-072

formance (Cheng et al., 2024). However, previous073

studies often treat the entire conversation context074

as input, while prior queries and responses in the075

conversation may be ambiguous or irrelevant to076

the current query. These approaches inevitably in-077

troducing noise into the training process of CDR078

models (Ye et al., 2023). Moreover, fine-tuning079

the retriever typically requires a large volume of080

labeled context-passage pairs. In practice, how-081

ever, obtaining accurate annotations for such pairs082

is significantly more challenging than collecting083

conversational data itself.084

To tackle these problems, we propose Generative085

History Augmentation for Context-Aware Dense086

Retrieval (GHADR), a novel method that integrates087

the strengths of both CQR and CDR. Specifically,088

GHADR adopts the CQR framework to reduce am-089

biguities in the conversation history and reformu-090

late the query with complete information, thereby091

reducing the introduction of unwanted noise. Si-092

multaneously, it inherits the end-to-end character-093

istics of CDR to optimize retrieval performance in094

conversational search scenarios.095

There are three key components in our proposed096

GHADR. Initially, we leverage the strong language097

understanding and text generation capabilities of098

large language models (LLMs) to resolve contex-099

tual ambiguities in conversation history, enhancing100

both the informativeness of historical context and101

the quality of the generated search query. Subse-102

quently, based on the augmented conversation his-103

tory and the rewritten query, we employ a semantic-104

guided clustering algorithm to mine additional su-105

pervision signals. This component effectively ad-106

dresses the challenge of data scarcity in retriever107

training. Finally, we jointly incorporate the rewrit-108

ten query and the extracted historical supervision109

signals into the contrastive learning framework,110

strengthening the retriever’s implicit context mod-111

eling capabilities. 112

Our contributions are summarized as follows: 113

• We develop an iterative prompt framework to 114

augment conversation history, and then em- 115

ploy a semantic guidance method to mine ad- 116

ditional supervision signals. 117

• We innovatively propose GHADR to train 118

a context-aware conversational passage re- 119

triever by leveraging supervision signals 120

mined from historical turns. It manages to 121

comprehensively improve the effectiveness of 122

conversational dense passage retrievers. 123

• Extensive experiments on four publicly avail- 124

able datasets show the effectiveness of the pro- 125

posed GHADR. Our analysis reveals the com- 126

plementary effects of all components within 127

the proposed method. 128

2 Related Work 129

Conversational Dense Retrieval. CDR (Yu et al., 130

2021; Qian and Dou, 2022; Jeong et al., 2023; 131

Huang et al., 2023; Mo et al., 2024d) leverages 132

conversational search sessions to fine-tune an end- 133

to-end, ad-hoc retriever that enables encoding ses- 134

sions into embedding space for dense retrieval. 135

Considering that the context of the entire conver- 136

sation may be lengthy and contains a significant 137

amount of noise, some studies (Lin et al., 2021b; 138

Mao et al., 2022; Mao et al., 2024) design sophisti- 139

cated context-denoising approaches for better CDR 140

models. 141

While recent approaches (Mo et al., 2023b; Mo 142

et al., 2024c) have demonstrated strong perfor- 143

mance by leveraging actual retrieval outcomes as 144

relevance indicators, we highlight potential deploy- 145

ment limitations in practical scenarios where his- 146

torical ground-truth annotations are unavailable. 147

Therefore, we propose a method that explicitly se- 148

lects semantically relevant conversational turns as 149

additional supervision signals. Furthermore, we in- 150

corporate the supervision signals derived from his- 151

torical ground-truth passages to enhance the train- 152

ing of the CDR model. 153

Conversational Query Rewriting. CQR aims 154

to enhance conversational search performance by 155

transforming context-dependent queries into stan- 156

dalone ad-hoc queries (Yu et al., 2020; Vaku- 157

lenko et al., 2021). To optimize query rewriting, 158

some studies have leveraged reinforcement learn- 159

ing (Chen et al., 2022; Wu et al., 2022; Liu et al., 160
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2024) or incorporated ranking signals during model161

training (Qian and Dou, 2022; Mo et al., 2023a).162

However, these approaches rely on manually anno-163

tated rewritten queries for training CQR models,164

which are difficult to obtain in practice. Recently,165

LLMs have been demonstrated to be capable of166

rewriting conversational queries (Mao et al., 2023;167

Ye et al., 2023; Jang et al., 2024; Mo et al., 2024a),168

the generated queries are ideal for downstream re-169

trieval tasks. To address these issues, we implement170

iterative enhancement of conversation context by171

prompting LLMs, which helps effectively resolve172

ambiguities in conversation history and reduces the173

need for manually rewritten queries. We then uti-174

lize the generated rewritten queries as training data175

to assist in training CDR models. By leveraging176

the strengths of CDR models in implicit context177

modeling, we aim to enhance the semantic correla-178

tion between the retrieval system and downstream179

tasks.180

3 Methodology181

3.1 Task Formulation182

Given a new query qk and the conversation history183

Hk−1 = {qi, ri}k−1
i=1 , where qi and ri denote the184

query and the system response to each previous185

turn, respectively. The i-th historical turn is de-186

noted as (qi, ri, p∗i ), where p∗i is the ground-truth187

passage corresponding to qi. For given the cur-188

rent query qk and the conversation history Hk−1,189

our task is to retrieve the gold passage p∗k from a190

passage collection D.191

3.2 Overview of the Methodology192

In this section, we present the proposed three-stage193

framework GHADR, as shown in Figure 2. In the194

first stage (Sec. 3.3), we leverage LLMs to augment195

the conversation history and then prompt LLMs to196

rewrite the current query based on the augmented197

history. In the second stage (Sec. 3.4), we utilize198

the rewritten queries and augmented conversation199

history to extract additional positive and negative200

training sample pairs. For this purpose, we employ201

a semantic embedding-guided hierarchical cluster-202

ing algorithm. In the third stage (Sec. 3.5), we203

use these additional supervision signals to train the204

dense passage retriever through contrastive learn-205

ing, thereby improving its ability to distinguish206

between relevant and irrelevant historical turns.207

3.3 History-Augmented Query Rewriting 208

Recent studies (Mao et al., 2023; Mo et al., 2024a; 209

Jang et al., 2024) have demonstrated that open- 210

source LLMs with language understanding and text 211

generation capabilities can be directly applied to 212

real-world scenarios as an effective approach for 213

query rewriting without requiring fine-tuning. In 214

this section, we propose an iterative prompt refine- 215

ment framework for conversation history augmen- 216

tation and query rewriting. Specifically, the frame- 217

work comprises two core prompts: Rewriting-with- 218

Response (RWR) and Rewriting-after-Rewriting 219

(RAR). 220

Rewriting-with-Response for History Augmen- 221

tation. In this section, we propose RWR instruc- 222

tion to tackle the problems of co-reference and 223

omission. For the current k-th query qk, the con- 224

versation history Hk−1 from the first k − 1 turns 225

is known. As shown in Eq. 1, for any turn t in the 226

first k − 1 turns, we concatenate qt, rt and Ht−1 227

into a prompt, where the prompt is then fed into 228

LLMs to obtain the de-contextualized search query 229

q
′
t. 230

q
′
t = LLM(IRWR ⊕Ht−1 ⊕ qt ⊕ rt) (1) 231

We obtain the augmented conversation history 232

H′
k−1 by replacing all the original queries (qt) in 233

the first k − 1 turns with the corresponding disam- 234

biguated queries (q
′
t). 235

Rewriting-after-Rewriting for Query Rewriting. 236

After obtaining the augmented history H′
k−1 of 237

the first k − 1 turns of conversation, we introduce 238

the RAR instruction to generate a well-informed, 239

context-independent rewritten query using LLMs. 240

For the k-th query with conversation history, as for- 241

malized in Eq. 2, we concatenate the current query 242

qk and the augmented conversation history H′
k−1 243

into a prompt. This composite input is subsequently 244

fed into LLMs to generate the final rewritten query 245

q∗k. 246

q∗k = LLM(IRAR ⊕H′
k−1 ⊕ qk) (2) 247

In a multi-turn conversation scenario, for the 248

initial conversation turn where no historical context 249

exists, the original query itself is directly used as 250

the rewritten query i.e., q∗1 = q1. 251

Through this iterative refinement process, our 252

prompt framework effectively addresses the ques- 253

tion ambiguity problem in conversation context, 254

thereby improving both the accuracy and context 255
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Figure 2: Overview of GHADR. The first step (top) involves leveraging LLMs to augment the conversation history
and reformulate the current query. In the second step (bottom left), the reformulated queries is encoded into semantic
embeddings. Subsequently, a relevance judgment is conducted between the current query and the historical turns,
enabling the extraction of positive and negative samples as supervision signals. The third step (bottom right) trains a
dense passage retriever through contrastive learning, incorporating the additional supervision signals.

relevance of query rewriting. Although conceptu-256

ally straightforward, the experimental results pre-257

sented in Sec. 5.2 demonstrate that our proposed258

prompt framework achieves performance compa-259

rable to several existing baselines. Notably, it sur-260

passes the manually rewritten queries included in261

the QReCC dataset under specific settings. The262

precise prompts employed, along with representa-263

tive examples for each case, are provided in Ap-264

pendix A.265

3.4 Semantic-Guided Relevance Judgement266

We agree with Kim and Kim (2022) and Mao et al.267

(2022) that determining whether a historical turn268

is relevant to the current query is one of the cru-269

cial parts of the conversational modeling process.270

To leverage the full conversation context, we pro-271

pose a semantic-guided approach for identifying272

relevant historical turns in relation to the current273

query. Specifically, after obtaining the augmented274

conversation history H
′
k−1 and rewritten query q∗k,275

we employ an embedding model to encode both his-276

torical queries and the current query into semantic277

embeddings. Subsequently, we compute pairwise278

cosine similarity scores between these embeddings279

to construct a similarity matrix, which is then trans- 280

formed into a distance matrix for clustering pur- 281

poses. The agglomerative clustering (Ackermann 282

et al., 2012) algorithm is applied to group semanti- 283

cally coherent queries, leveraging their hierarchical 284

relationships. This clustering algorithm builds a hi- 285

erarchy of clusters through a bottom-up approach, 286

where each data point starts as its own cluster, and 287

pairs of clusters are merged at each iteration based 288

on their similarity until a desired cluster structure 289

is formed. 290

The clustering algorithm partitions historical 291

ground-truth passages into two disjoint groups: 292

P+
h = {p∗i }i=1, P−

h = {p∗j}j=1 (3) 293

Specifically, the P+
h set consists of relevant pas- 294

sages where each passage corresponds to a his- 295

torical query clustered with the current query q∗k. 296

Conversely, the P−
h set comprises irrelevant pas- 297

sages, each associated with historical queries that 298

belong to clusters different from that of the current 299

query q∗k. 300

3.5 Training Dense Retriever in GHADR 301

Contrastive learning is a prevalent choice for train- 302

ing dense passage retriever in recent studies (Kim 303
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and Kim, 2022; Mao et al., 2024). The dense pas-304

sage retriever uses the encoders EP and EQ to305

map passages and queries to embedding space, re-306

spectively. The passage embeddings can be offline307

computed and indexed. The similarity between a308

query and a passage can be compute via dot prod-309

uct: sim(q, p) = EQ(q)
T · EP (p).310

In this work, we train EQ using contrastive learn-311

ing, with the following positive and negative sam-312

ples employed throughout the training process:313

• p∗k: The ground-truth passage corresponding314

to the current query qk.315

• P+
h : Historical passages from previous turns316

deemed relevant to the current query, based317

on relevance judgments from Sec. 3.4.318

• P−
h : Conversely, historical passages from pre-319

vious conversation turns deemed irrelevant to320

the current query.321

• P−
b : In-batch negatives sampled from other322

data instances within the same training batch.323

• P−
r : These are retrieved passages that serve324

as hard negatives. They can be obtained by325

using the top-ranked passages retrieved for qk326

by an off-the-shelf retriever after excluding327

p∗k if it is present (Karpukhin et al., 2020; Mo328

et al., 2024c). In this work, we adopt a sparse329

retriever (BM25) to obtain the hard negatives.330

Given the variability in the number of positive331

and negative samples mined from previous histori-332

cal turns across different queries, we implement a333

randomized sampling strategy. This approach sys-334

tematically selects one historical pseudo-positive335

sample, one historical hard-negative sample, and336

the top-ranked retrieved hard-negative sample per337

training instance. In formal terms, we formulate338

the final training positive and negative samples as339

Eq. 4.340

P+
k = {p∗k} ∪ P+

h

P−
k = P−

h ∪ P−
b ∪ P−

r

(4)341

The contrastive learning loss for the DPR is de-342

fined in Eq. 5, where p+ ∈ P+
k and p− ∈ P−

k .343

L = − log
esim(q∗k,p

+)

esim(q∗k,p
+) +

∑
p− esim(q∗k,p

−)
(5)344

Dataset Split #Conv. #Turns(Qry.)

TopiOCQA
Train 3,509 45,450
Test 205 2,514

QReCC
Train 10,823 63,501
Test 2,775 16,451

CAsT-19 Test 50 479
CAsT-20 Test 25 208

Table 1: Statistics of conversational search datasets.

4 Experimental Setup 345

4.1 Datasets and Metrics 346

Following previous studies (Yu et al., 2021; 347

Jang et al., 2024), four widely-used conversation 348

datasets are used for our experiments. TopiOCQA 349

(Adlakha et al., 2022) contains complex topic- 350

switch phenomena within each conversational ses- 351

sion. QReCC (Anantha et al., 2021) focuses on 352

the query rewriting problem, most queries in a con- 353

versational session are on the same topic. In addi- 354

tion, we evaluate two CAsT datasets (Dalton et al., 355

2020a; Dalton et al., 2020b) which are used solely 356

as test sets, to further validate the zero-shot ability 357

of our method, e.g., when CDR models are trained 358

on QReCC and tested on CAsTs. The statistics of 359

the datasets are provided in Table 1. 360

For an adequate comparison with previous stud- 361

ies, we evaluate the retrieval results using the 362

pytrec_eval (Van Gysel and de Rijke, 2018) 363

tool to calculate three standard evaluation metrics: 364

MRR, NDCG@3, and Recall@10. 365

4.2 Implementation details 366

For the large language models, we use Qwen2.5- 367

7B (Qwen et al., 2025) to perform history aug- 368

mentation and query rewriting. For Sec. 3.4, we 369

encode queries into semantic embeddings using gte- 370

Qwen2-7B-Instruct (Li et al., 2023), and generate 371

relevance judgments using the agglomerative clus- 372

tering algorithm implemented in the scikit-learn 373

(Pedregosa et al., 2011) library. 374

We adopt ANCE (Xiong et al., 2021) as the back- 375

one model for conversation dense passage retriev- 376

ers training. To train GHADR, we use the AdamW 377

optimizer with a learning rate of 1e-5, set the batch 378

size to 32, and train the model for 10 epochs. Fol- 379

lowing previous works (Yu et al., 2021; Mo et al., 380

2024c), we only update the parameters of the query 381

encoder and the passage encoder remains frozen 382

during training. The dense retrieval are performed 383
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using FAISS (Johnson et al., 2019).384

We use Pyserini (Lin et al., 2021a) to implement385

sparse retrieval (BM25). Following previous work,386

we set BM25 parameters as k1 = 0.9, b = 0.4 and387

k1 = 0.82, b = 0.68 for TopiOCQA and QReCC,388

respectively. We conduct experiments on a single389

NVIDIA A100 40G GPU.390

4.3 Baselines391

To validate the effectiveness of our approach, we392

compared it with advanced baseline methods. To393

ensure a fair comparison, all selected baselines are394

evaluated on dense passage retrievers.395

ConvGQR (Mo et al., 2023a) reformulates better396

conversational queries by combining two T5-based397

models for query rewrite and query expansion.398

LLM4CS (Mao et al., 2023) presents a simple yet399

effective prompt framework to leverage LLMs as a400

text-based search intent interpreter.401

IterCQR (Jang et al., 2024) iteratively trains the402

conversational query rewriting model by directly403

leveraging information retrieval signals as a reward.404

CHIQ (Mo et al., 2024a) leverages the capabilities405

of LLMs to resolve ambiguities in the conversation406

history before query rewriting.407

ConvDR (Yu et al., 2021) fine-tunes an ad-hoc408

search dense retriever to learn the latent representa-409

tion of the reformulated query.410

SDRConv (Kim and Kim, 2022) performs conver-411

sational dense retrieval on conversational search412

data with additionally mined hard negatives.413

InstructoR (Jin et al., 2023) uses LLMs to estimate414

the relevance score between session and passages415

to guide the training of dense retriever.416

HAConvDR (Mo et al., 2024c) fine-tunes the417

ANCE model on context-denoising reformulated418

query and additional signals from historical turns.419

ConvSDG (Mo et al., 2024d) employs LLMs to420

generate synthetic training data, which is subse-421

quently used for fine-tuning dense retrievers.422

5 Results and Analysis423

5.1 Main Results424

The evaluation results on the TopiOCQA and425

QReCC datasets are presented in Table 2. We have426

the following observations:427

(1) We find that our GHADR consistently out-428

performs all compared baselines across three met-429

rics on both datasets. On the TopiOCQA dataset,430

GHADR improves MRR by 4.0% and Recall@10431

by 9.2% over the second-best method. On the432

QReCC dataset, GHADR’s Recall@10 reaches 433

73.0%, which is close to HAConvDR’s perfor- 434

mance, but the MRR and NDCG@3 metrics are 435

higher, exceeding those of HAConvDR. We at- 436

tribute the performance advantages of GHADR 437

to the following two aspects. First, GHADR in- 438

tegrates the query rewriting capability of CQR 439

and the passage-level context modeling capabil- 440

ity of CDR, enabling it to effectively capture in- 441

tent changes and incorporate multi-turn conversa- 442

tion information in dynamic conversational sce- 443

narios. Second, GHADR optimizes the negative 444

sampling strategy during training, enhancing the 445

model’s ability to distinguish contextually relevant 446

passages. 447

(2) We observe that the CDR approaches overall 448

outperform the CQR approaches on the QReCC 449

dataset, which focuses on query rewriting. This 450

phenomenon suggests that in QReCC scenarios 451

that require handling contextual dependencies, the 452

implicit context modeling technique is able to more 453

consistently capture key information in the con- 454

versation history, leading to better performance in 455

ranking and recall metrics. On the contrary, on the 456

TopiOCQA dataset, the CQR and CDR approaches 457

do not show a significant difference in performance 458

and this phenomenon suggests that explicit query 459

rewriting techniques are also effective in capturing 460

dynamically changing user intent in TopiOCQA 461

scenarios with frequent topic shifts. 462

5.2 Impact of LLMs with different parameter 463

scales 464

To explore the impact of LLMs on the generative 465

history augmentation strategy proposed in Sec. 3.3, 466

we conduct experiments on open-source LLMs 467

with different parameter scales. We perform CQR 468

with Qwen2.5 series LLMs, using the rewritten 469

query as input to sparse retrieval. Table 3 presents 470

the sparse retrieval results of our proposed prompt 471

framework. 472

We observe that Qwen2.5-72B achieves the high- 473

est performance, with the MRR score improves by 474

26.7% on TopiOCQA and 9.7% on QReCC com- 475

pared to Qwen2.5-7B. This indicates that models 476

with larger parameter scales generally outperform 477

those with smaller scales, a finding consistent with 478

the scaling laws of LLMs. 479

The improvement is greater for TopiOCQA, in- 480

dicating that conversational scenarios with more 481

topic shifts are more challenging and require LLMs 482

with larger parameter scales to capture topic shifts 483
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Category Method
TopiOCQA QReCC

MRR NDCG@3 Recall@10 MRR NDCG@3 Recall@10
CQR Human-Rewrite - - - 38.4 35.6 58.6
CQR ConvGQR 25.6 24.3 41.8 42.0 39.1 63.5
CQR LLM4CS 27.7 26.7 43.3 44.8 42.1 66.4
CQR IterCQR 26.3 25.1 42.6 42.9 40.2 65.5
CQR CHIQ-FT 30.0 28.9 51.0 36.9 34.0 57.6
CDR ConvDR 27.2 26.4 43.5 38.5 35.7 58.2
CDR SDRConv 26.1 25.4 44.4 47.3 43.6 69.8
CDR InstructoR 25.3 23.7 45.1 43.5 40.5 66.7
CDR ConvSDG 21.4 19.9 37.8 - - -
CDR HAConvDR 30.1 28.5 50.8 48.5 45.6 72.4
CDR GHADR (Ours) 31.3 29.3 55.7 50.0 46.5 73.0

Table 2: Performance of different retrieval methods on TopiOCQA and QReCC, all use dense passage retrievers.
Only the QReCC dataset has manually rewritten queries. All compared models are initialized from ANCE. Bold
and underline indicate the best and the second-best results, respectively.

LLM TopiOCQA
MRR N@3 R@10

Qwen2.5-7B 21.0 19.4 36.3
Qwen2.5-14B 21.6 19.8 37.2
Qwen2.5-32B 23.8 22.1 41.0
Qwen2.5-72B 26.6 25.1 43.8

LLM QReCC
MRR N@3 R@10

Human-Rewritten 39.7 36.2 62.5
Qwen2.5-7B 39.0 35.9 60.0
Qwen2.5-14B 38.9 35.6 59.5
Qwen2.5-32B 39.9 36.8 61.3
Qwen2.5-72B 42.8 39.8 64.1

Table 3: Sparse (BM25) retrieval results for systems
using various LLMs. Only the QReCC dataset has man-
ually rewritten queries.

between conversational turns for higher-quality484

rewritten queries. On QReCC, the sparse retrieval485

results of rewritten queries with small-scale LLMs486

show minimal differences from those of manu-487

ally rewritten queries, indicating that our proposed488

CQR strategy is effective across LLMs of vary-489

ing scales. Furthermore, these results validate that490

the queries rewritten by our History-Augmented491

Query Rewriting component can functionally sub-492

stitute manually rewritten queries, and they are sub-493

sequently employed in the components described494

in Sec. 3.4 and Sec. 3.5.495

5.3 Ablation Study496

In this section, we conduct an ablation study on497

both TopiOCQA and QReCC datasets to investigate498

TopiOCQA QReCC
MRR N@3 MRR N@3

GHADR 31.3 29.3 50.0 46.5
w/o RWR 26.2 24.4 49.6 46.2
w/o RAR 25.6 23.5 49.0 45.5
w/o his pos. 29.6 27.8 48.7 45.3
w/o his neg. 28.8 26.7 47.8 44.5

Table 4: Ablation study of different components.

the impact of different components in our GHADR. 499

The results are shown in Table 4, and we observe 500

that removing any component leads to performance 501

degradation. 502

On the TopiOCQA dataset, there is a significant 503

degradation in performance after removing RWR 504

or RAR. In addition, there are significant domain 505

differences in the contributions of RWR and RAR. 506

For instance, removing RAR leads to a substantial 507

decrease in metric scores for TopiOCQA, while 508

for QReCC, the reduction is marginal. This phe- 509

nomenon can be attributed to the distinct conver- 510

sation characteristics of the two datasets: conver- 511

sations in TopiOCQA involve more complex topic 512

shifts than those in QReCC, which requires more 513

complex query rewriting techniques to adapt to 514

historical context. 515

On both datasets, removing historical negatives 516

leads to more pronounced performance degradation 517

compared with removing historical positives. This 518

demonstrates that negative sampling is more criti- 519

cal than positive sampling in our approach, thereby 520

emphasizing the model’s need for noise suppres- 521

7



CAsT-19 CAsT-20
MRR N@3 MRR N@3

ConvGQR 61.0 34.6 35.1 24.3
InstructoR 61.2 46.6 43.7 29.6
ConvSDG 60.6 35.3 36.5 24.2
GHADR (Ours) 61.5 35.4 44.1 19.0

Table 5: Retrieval performance of the zero-shot setting
on CAsT-19 and CAsT-20. Bold and underline indicate
the best and the second-best results, respectively.

sion over positive sample expansion. Notably, the522

complete GHADR model achieves optimal perfor-523

mance on both datasets. Although the contribu-524

tion of each component varies across datasets, the525

results suggest that the components have comple-526

mentary effects, working collectively to enhance527

the model’s overall effectiveness.528

5.4 Zero-shot Analysis529

The zero-shot evaluation is conducted on two CAsT530

datasets to assess the generalization capability of531

GHADR. We first train a dense passage retriever on532

the QReCC training set and then directly evaluate533

it on the CAsT test sets. As presented in Table 5,534

our observations are as follows:535

(1) GHADR performs outstandingly in the MRR536

metric under zero-shot settings, demonstrating its537

strong cross-domain generalization ability and in-538

dicating its ability to accurately locate relevant pas-539

sages. This indicates that the method can effec-540

tively leverage pre-trained knowledge to achieve541

accurate retrieval in unseen target domains without542

requiring domain-specific annotations. This feature543

makes it more flexible and applicable for practical544

applications.545

(2) The NDCG@3 metric reflects the recall per-546

formance by measuring the proportion of relevant547

passages within the top three retrieval results. On548

the CAsT-19 dataset, GHADR surpasses most base-549

lines in NDCG@3, except for InstructoR. In con-550

trast, on the CAsT-20 dataset, the NDCG@3 score551

of GHADR is much lower than that of other base-552

lines. This performance discrepancy suggests that553

GHADR maintains high accuracy but experiences554

a decline in recall when faced with distributional555

shifts or more complex queries. The trade-off556

between accuracy and recall may stem from the557

model’s excessive focus on optimizing semantic558

alignment while neglecting the coverage of multi-559

ple relevant passages.560

Figure 3: T-SNE visualization of query and passage
embeddings based on two DPR models without and
with HAConvDR training. The markers with red, blue,
green and orange color represent query, gold passage,
his.pos. and his.neg. respectively.

5.5 Qualitative Analysis 561

To provide deeper insights into our approach, we 562

conduct a qualitative analysis by visualizing an ex- 563

ample within the embedding space, as illustrated 564

in Figure 3. This figure provides a t-SNE visual- 565

ization (van der Maaten and Hinton, 2008) com- 566

paring the ANCE dense retriever with and without 567

GHADR training. In contrast to the vanilla ANCE 568

model, which fails to distinguish the gold passage 569

from the ground-truth passages in the previous his- 570

torical turns, the ANCE trained with our GHADR 571

demonstrates significantly improved ability to dif- 572

ferentiate relevant passages from distractors. The 573

concrete example of this case analysis is presented 574

in Appendix B. 575

6 Conclusion 576

In this study, we propose GHADR, a framework 577

comprising three core components that combine 578

the advantages of CQR and CDR approaches. The 579

History-Augmented Query Rewriting component 580

iteratively enhances the quality of conversation his- 581

tory, thereby improving the performance of query 582

rewriting. Specifically, the Semantic-Guided Rel- 583

evance Judgement component and the Context- 584

Aware Contrastive Learning component are de- 585

signed to train a dense passage retriever using 586

context-denoised queries and additional supervi- 587

sion signals mined from historical turns. Compre- 588

hensive experimental evaluations on four public 589

datasets demonstrate the effectiveness, applicabil- 590

ity and generalizability of GHADR in handling 591

complex multi-turn conversation. 592
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Limitations593

We identify two potential limitations of our work.594

First, the use of LLM-based query rewriters is in-595

evitably subject to the inherent limitations of LLMs.596

In this study, our experiments are limited to the597

Qwen2.5 family of open-source LLMs, excluding598

other open-source and commercial closed-source599

LLMs. This is primarily due to computational and600

financial constraints.601

Second, when employing the semantic-guided602

strategy to mine historical supervision signals for603

training dense passage retrievers, our current imple-604

mentation relies solely on hierarchical clustering605

techniques. Note that the mined positive samples606

are derived from ground truth passages of historical607

queries that are semantically similar to the current608

query. However, these passages may deviate from609

the actual relevance of the current query. There-610

fore, future research should explore more effective611

strategies for supervision signal mining.612

Ethical Statement613

We conduct experiments with publicly available614

datasets and open-source LLMs. Our approach aug-615

ments the conversation history and rewrites queries616

based on previous conversation history. Since these617

operations are dependent on the historical context618

of the conversation, if there are biases or inappro-619

priate statements in the original conversation con-620

text, the results generated by our method may also621

contain similar biases or inappropriate statements.622
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TopiOCQA #Session 23
Rewriting with Response (RWR)
For an information-seeking dialog, please help reformulate the question into rewrite that can fully
express the user’s information needs without the need of context.

YOUR TASK (only questions and responses may be given):
Context:
Question: Who was adele spitzeder?
Response: German actress, folk singer, and con artist.

Current Question: What was she accused of?
Current Response: She was convicted instead of bad accounting and mishandling customers’ money.

Now, you should give me the rewrite of the **Current Question** under the **Context** and the
**Current Response**. Note that you should always try to rewrite it. Never ask for clarification or
say you don’t understand it in the generated rewrite. The output format should always be Rewrite:
$Rewrite.

Model Output: What charges did Adele Spitzeder face and ultimately receive a conviction for?
Rewriting after Rewriting (RAR)
For an information-seeking dialog, please help reformulate the question into rewrite that can fully
express the user’s information needs without the need of context.

YOUR TASK (only questions and responses may be given):
Context:
Question: Who was adele spitzeder?
Response: German actress, folk singer, and con artist.
Question: What charges did Adele Spitzeder face and ultimately receive a conviction for?
Response: She was convicted instead of bad accounting and mishandling customers’ money.

Current Question: Where was she born?

Now, you should give me the rewrite of the **Current Question** under the **Context**. Note that
you should always try to rewrite it. Never ask for clarification or say you don’t understand it in the
generated rewrite. The output format should always be Rewrite: $Rewrite.

Model Output: In which city was Adele Spitzeder born?

Table 6: The prompts for History Augmentation and Query Rewriting. Blue denotes enhanced historical queries.
Orange denotes the current user’s query and its rewritten output.
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Conversation (TopiOCQA #Session 179_10)
q1: When was the last time a hurricane hit tampa bay area?
q∗1: When was the last time a hurricane hit tampa bay area?
r1: 1921

q2: Which areas did it effected? (relevant)
q∗2: What areas were impacted by the hurricane that occurred in 1921 in the Tampa Bay area?
r2: Cuba, Pasco County, Manatee County and Sarasota County.

q3: Who ruled the first place? (relevant)
q∗3: Who was the leader of Cuba in 1921?
r3: Communist Party of Cuba

q4: Which ethnic groups immigrated here? (relevant)
q∗4: What ethnic groups migrated to the area affected by the 1921 hurricane in the Tampa Bay area?
r4: Afro-Cubans

q5: What is one of the principles of its communist party?
q∗5: What is a core principle of the Communist Party of Cuba?
r5: It entails democratic and open discussion of policy issues within the party, followed by...

q6: When was it founded?
q∗6: What is the founding date of the Communist Party of Cuba?
r6: 3 October 1965

q7: What arrangements were made before the 1921 hurricane? (relevant)
q∗7: What arrangements were issued before the 1921 hurricane that affected the Tampa Bay area?
r7: Storm warnings were issued eastward from mouth of the Mississippi ...

q8: Which states surround borders the river you just mentioned?
q∗8: What are the states that border the Mississippi River?
r8: States of Minnesota, Wisconsin, Iowa, Illinois, Missouri and Kentucky.

q9: What is the significance of its name?
q∗9: What is the origin or meaning behind the name of Mississippi?
r9: The word Mississippi itself comes from the French rendering of the Anishinaabe ...

Current Query
q10: Which species can be found here?
q∗10: What types of wildlife inhabit the area affected by the 1921 hurricane in the Tampa Bay area?

Gold Passage
Mississippi River Other fauna In addition to fish, several species of turtles (such as snapping,
musk, mud, map, cooter, painted and softshell turtles), American alligator, aquatic amphibians
(such as hellbender, mudpuppy, three-toed amphiuma and lesser siren), and cambarid crayfish
(such as the red swamp crayfish) are native to the Mississippi basin.

Table 7: An example for case study in GHADR. q∗i indicates the rewritten query based on augmented history. A
historical query with relevant indicates that the query is relevant to the current turn.
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