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ABSTRACT

Next location prediction is a critical task in human mobility analysis and serves as a
foundation for various downstream applications. Existing methods typically rely on
discrete IDs to represent locations, which inherently overlook spatial relationships
and cannot generalize across cities. In this paper, we propose NextLocLLM, which
leverages the advantages of large language models (LLMs) in processing natural
language descriptions and their strong generalization capabilities for next location
prediction. Specifically, instead of using IDs, NextLocLLM encodes locations
based on continuous spatial coordinates to better model spatial relationships. These
coordinates are further normalized to enable robust cross-city generalization. An-
other highlight of NextlocLLM is its LLM-enhanced POI embeddings. It utilizes
LLMs’ ability to encode each POI category’s natural language description into em-
beddings. These embeddings are then integrated via nonlinear projections to form
this LLM-enhanced POI embeddings, effectively capturing locations’ functional
attributes. Furthermore, task and data prompt prefix, together with trajectory em-
beddings, are incorporated as input for partly-frozen LLM backbone. NextLocLLM
further introduces prediction retrieval module to ensure structural consistency in
prediction. Experiments show that NextLocLLM outperforms existing models in
next location prediction, excelling in both supervised and zero-shot settings.

1 INTRODUCTION

With the rapid advancement of smart city infrastructure and positioning techniques, the acquisition of
human mobility trajectories has become increasingly widespread, offering unprecedented research
opportunities (Yabe et al., 2024a). Accurately predicting a user’s next location holds significant
value across multiple key domains. For urban planning and traffic management, forecasting mobility
patterns can optimize traffic flow, reduce congestion, and improve the efficiency of public resource
allocation (Medina-Salgado et al., 2022; Kraemer et al., 2020). In disease control, predicting
population movements aids in tracking epidemic spread and formulating more effective prevention
measures (Ceder, 2021). Moreover, accurate next location prediction is crucial for service providers
who offer location-based recommendations and route planning, as it significantly enhances the quality
of personalized services, delivering experiences that better meet users’ needs (Lian et al., 2020).

Early methods for next location prediction mainly rely on manually designed features like behavioral
sequences, user profiles, and temporal factors. Using these features, researchers employ statistical
methods and time-series analysis to model and predict movement patterns (Noulas et al., 2012; Ying
et al., 2014; Zhao et al., 2016). However, these methods heavily depend on feature engineering, which
usually requires intensive efforts and exhibits limited performance. Later, neural network models like
RNNs and Transformers are used to capture high-order transition patterns and dependencies (Feng
et al., 2018; Yao et al., 2017; Kong & Wu, 2018). Some studies further integrate geospatial information
by constructing graph neural networks to explore spatial correlations (Liu et al., 2016; Lian et al.,
2020; Yao et al., 2023). These deep learning-based models typically learn embedding tables based on
location IDs to represent locations. However, the learned embeddings inherently lack generalization
capability, especially when applied to new locations from unseen cities or scenarios.
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Figure 1: Comparison between deep-learning models, existing LLM-based models, and Nextlo-
cLLM.White-box LLMs means models where their internal parameters are directly accessible.
Black-box LLMs are typically accessed through APIs or encapsulated interfaces.

With the success of large language models (LLMs) (Achiam et al., 2023; Touvron et al., 2023b;a),
researchers have started exploring the potential of using LLMs for next location prediction (Wang
et al., 2023; Liang et al., 2024; Beneduce et al., 2024). However, these methods rely solely on utilizing
prompts designed to describe trajectories denoted by location IDs, which introduces several limitations.
First, these models use discrete location IDs, which fails to capture the geographic distances between
locations, thus overlooking spatial relationships and reducing prediction accuracy (Liu et al., 2016).
Second, the reliance on location IDs severely limits model transferability across cities, as the same
ID in different cities usually represents completely different locations with varying features, making
cross-city generalization infeasible (Jiang et al., 2021). Moreover, the distribution of point-of-interest
(POI) categories, which provides functional information about locations, is not considered in these
models due to the constraints of prompt length (Wang et al., 2023; Liang et al., 2024). Lastly, even
when prompts are explicitly designed with clear output specifications, these models may still produce
outputs that do not adhere to instructions (e.g., produce fewer location candidates than specified),
posing challenges for subsequent structured analysis and application (see Appendix B).

To overcome these limitations, we introduce NextLocLLM, the first model that integrates LLMs in
next location prediction structure, rather than relying solely on prompt-based approaches. Unlike
traditional methods that depend on discrete location IDs, NextLocLLM leverages spatial coordinates
to enhance its understanding of spatial relationships between locations. By normalizing coordinates,
geographic information of different cities is mapped to a common numerical range, thus improving
NextLocLLM’s transferability and generalization across different urban environments. To better
capture the functional characteristics of locations, NextLocLLM incorporates POI category distri-
bution as a key feature. Leveraging the comprehensive power of LLMs, NextLocLLM generates
semantic embeddings based on natural language descriptions of each POI category. These semantic
embeddings are then weighted according to the frequency of each POI category at a given location,
forming a weighted sum that represents the composite POI characteristics as the LLM-enhanced POI
embeddings for the subsequent input. Additionally, prompt prefix is designed to provide LLM with
rich contextual information, further enhancing its understanding of mobility data and prediction task.
In output phase, the model employs a prediction retrieval module which employs KD-tree to convert
output coordinates into the top-k most probable predicted locations, ensuring structured and clear
outputs. Figure 1 illustrates the differences between NextLocLLM and existing deep learning or
LLM-based next location prediction models. Extensive experiments demonstrate that NextLocLLM
exhibits strong competitiveness in next location prediction tasks, excelling in both fully supervised or
zero-shot scenarios. In summary, our main contributions are as follows:

• We propose NextLocLLM, the first model to integrate LLM in next location prediction
structure, without solely using prompts. By utilizing normalized spatial coordinates to
represent locations, NextLocLLM more accurately captures spatial relationships, as well as
enhances its transferability and generalization in different urban environments.

• We design LLM-enhanced POI embeddings, which integrate POI category distributions
with natural language descriptions of each POI type, utilizing the representational power of
LLMs to effectively capture the functional attributes of locations.
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• We develop prediction retrieval module that employs a KD-tree to convert output coordinates
into the top-k most likely predicted locations, ensuring structured outputs.

• Experiments conducted on multiple datasets validate NextLocLLM’s competitive perfor-
mance in both fully supervised and zero-shot scenarios.

2 RELATED WORK

Early methods of next location prediction largely relied on feature engineering and domain expertise.
They employed features tied to urban mobility patterns, using statistical techniques and time series
analysis to model and predict movement. (Noulas et al., 2012) proposed features capturing transitions
between venues and spatiotemporal check-in patterns, which were then applied in linear regression.
(Chen et al., 2014) introduced Next Location Predictor with Markov Modeling, incorporating individ-
ual and collective movement behaviors. Similarly, (Ying et al., 2014) employs factors in geographic,
temporal, and semantic signals to predict location likelihood. These methods rely extensively on
feature engineering, which often demands substantial effort and yields restricted performance.

In deep learning era, researchers adopted models like RNNs and Transformers for next location
prediction, which excel in capturing temporal dependencies. STRNN (Liu et al., 2016) modeled
local spatial and temporal contexts using transition matrices based on time intervals and geographic
distances. (Fan et al., 2018) combined CNNs and bidirectional LSTMs for prediction by integrating
contextual information. GETNext (Yang et al., 2022) introduced a Graph Enhanced Transformer
that utilized global trajectory flow map. (Hong et al., 2023) developed an MHSA-based model that
leverages raw location sequences, temporal data, and land use functions. (Yao et al., 2023) combined
geographic embeddings, multi-layer attention, and Bi-LSTM, and integrated geographic information.
While these models achieve excellent performance on specific datasets, their generalization capability
remains a challenge, as they often underperform on datasets from unseen cities or scenarios.

In recent years, with the swift advancement of large language models (LLMs) (Touvron et al.,
2023b;a; Achiam et al., 2023), researchers have begun to extend their researches in next location
prediction with LLMs. Current studies mainly rely on specifically designed prompt engineering.
(Wang et al., 2023) introduced the concepts of historical and contextual stays to capture long- and
short-term dependencies in human mobility, incorporating time-aware predictions with temporal data.
(Wang et al., 2024) leveraged the semantic perception capabilities of LLMs to extract personalized
activity patterns from historical data. (?) developed a context-based chain-of-thought prompting
technique, aligning LLMs with context-aware mobility behaviors through contextual learning from
small samples. Despite some success, these methods exhibit notable limitations. First, these models
employ discrete location IDs that neglect geographic distances and spatial relationships, thereby
compromising prediction accuracy (Liu et al., 2016). Second, using location IDs hinders model
transferability across cities, since identical IDs often correspond to entirely different locations in
different cities, obstructing cross-city generalization (Jiang et al., 2021). Furthermore, these purely
prompt-based models neglect the distribution of point of interest (POI) categories, which are crucial
for capturing the functional characteristics of locations (Wang et al., 2023; Liang et al., 2024).

To address these limitations, we propose NextLocLLM, the first known model to integrate LLM
directly into next location prediction structure. Unlike traditional approaches that rely on discrete
location IDs, NextLocLLM uses normalized spatial coordinates, which better capture geographical
distances between locations and enhance transferability and generalization across diverse urban set-
tings. Additionally, NextLocLLM incorporates LLM-enhanced POI embeddings to more effectively
model locations’ functional attributes, resulting in a more comprehensive predictive framework.

3 PROBLEM FORMULATION

Let L = {loc1, · · · , locp} be the set of locations, and SD = {SD1, · · · , SDq} be the set of possible
stay durations. TI = {(d, t)} is the set of temporal information, where d represents day-of-week
(0 ≤ d ≤ 7) and t is time-of-day (0 ≤ t ≤ 23 in hours). Each location loc ∈ L is represented as a
tuple (id, x, y, poi), where id is a discrete identifier, x and y are the spatial coordinates of location’s
centroid, and poi represents the location’s POI attributes (see Definition 2.2).
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Definition 2.1 (Visiting Record). A record is defined as a tuple s = (loc, (d, t), dur) ∈ L×TI×SD,
indicating that a user visited location loc on day d at hour t, and stayed for a duration of dur.

Definition 2.2 (POI Attributes). The POI attributes for each location loc are represented as attr =
(intr, freq), where intr = (i1, · · · , ir) denotes the natural language descriptions of r POI categories
(see Appendix C), and freq = (f1, · · · , fr) represents the frequency of each POI category within
that location. Here r is the number of POI categories.

Definition 2.3 (Historical and Current Trajectories). A user’s mobility trajectory can be di-
vided into historical and current trajectories. The historical trajectory Sh = (st1−M+1, · · · , st1)
contains M records, reflecting the user’s long-term movement patterns. The current trajectory
Sc = (st−N+1, · · · , st) contains N records, representing the user’s current moving intentions. Here
t1 < t − N + 1, and typically N < M . Since both types of trajectories share the same structure,
without ambiguity, we will use lseq to refer to either N or M in subsequent sections.

Definition 2.4 (Next Location Prediction). Given a user’s historical trajectory Sh and current
trajectory Sc, our target is to predict the ID of next location loct+1 that the user is most likely to visit.
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Figure 2: Structure of NextlocLLM. (a) shows its overall structure, (b) represents multi-dimensional
trajectory content embeddings, (c) is the LLM-enhanced POI embeddings.

4 METHOD

Figure 2 illustrates an overview of our proposed NextLocLLM, which consists of four main compo-
nents: (1) multi-dimensional trajectory content embeddings, (2) LLM-enhanced POI embedding, (3)
an LLM backbone, and (4) a prediction retrieval module. First, we encode mobility trajectories using
features including spatial coordinates, temporal information, and stay duration, to generate trajectory
content embeddings. In addition, leveraging LLMs’ comprehension abilities, we generate semantic
embeddings for each POI category based on their natural language descriptions. These semantic
embeddings are then aggregated into a weighted sum, where the frequency of each POI category
serves as weights, thus effectively capturing functional attributes of locations and producing LLM-
enhanced POI embeddings. Moreover, we design prompt prefix to enhance LLM’s understanding of
both the prediction task and the data structure. The prompt prefix, combined with trajectory content
embeddings and LLM-enhanced POI embeddings, are then passed into the LLM backbone. Finally,
the predicted coordinates from the LLM are processed through the prediction retrieval module, which
employs a KD-tree to retrieve the k nearest candidate locations, ensuring structured prediction results.
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4.1 MULTI-DIMENSIONAL TRAJECTORY CONTENT EMBEDDINGS

For each mobility trajectory, we extract features for each record from both the historical trajectory Sh

and the current trajectory Sc . These features include spatial coordinates ((x, y)h, (x, y)c), time-of-
day (Th, Tc), day-of-week (Dh, Dc) and stay duration (Durh, Durc). Each sequence is processed
using embedding or linear mapping functions, with the same function applied to both historical and
current sequences of the same feature type. Specifically, we develop embeddings for time-of-day and
day-of-week, denoted as ft and fd. Additionally, we utilize linear mappings for spatial coordinates
and stay duration, represented by fxy and fdur, to transform raw data into compact embeddings.

Temporal and Stay Duration Embeddings. To capture temporal characteristics of mobility tra-
jectories, we employ independent embeddings for two critical temporal information: time-of-day
(T ) and day-of-week (D). These temporal aspects are crucial, as user mobility patterns are of-
ten strongly correlated with specific times and days. The temporal features are transformed into
embedding vectors through look-up operations from their respective embedding tables, where time-
of-day embeddings and day-of-week embeddings are generated by ET = ft(T ) ∈ Rlseq×dt and
ED = fd(D) ∈ Rlseq×dd , respectively. In addition, stay duration is another critical temporal di-
mension for understanding user behavior. Typically, longer stay durations indicate more complex
activities, such as working or dining, while shorter durations are associated with quick actions or tran-
sitory activities. The stay durations are processed with min-max normalization, and then transformed
into embeddings through linear mapping function EDur = fdur(Dur) ∈ Rlseq×ddur .

Spatial Coordinates Embeddings. Existing methods typically use numerical identifiers as location
IDs to represent and encode location information. However, these discrete IDs neither capture the
geographical relationships between locations nor enable effective transferability across different
cities. Thus, we propose using spatial coordinates instead of discrete IDs to represent locations’
geographic information. Specifically, we utilize Web Mercator coordinates, as they can reflect
the spatial relationships between locations. At city level, the gap between geodesic distance and
Euclidean distance under Web Mercator projection is minimal, making it suitable for practical
applications (Battersby et al., 2014; Peterson, 2014) (see Appendix D, E). While Web Mercator
coordinates effectively capture spatial relationships within cities, the range in coordinates vary
significantly between cities, which presents generalization challenges in zero-shot scenarios. To
mitigate this, we apply normalization by scaling them to a standard normal distribution N(0, 1). The
mean and variance for it are based on spatial coordinates from all mobility trajectory records in the
target city, rather than the geographical data, as high population density areas are not always located at
the geometric center of a city (see Fig. 4). Finally, the normalized coordinates (x′, y′) are transformed
into spatial coordinates embeddings with a linear function: EXY = fxy(x

′, y′) ∈ Rlseq×dxy .

Trajectory Content Embeddings. So far, we have obtained spatial coordinates embeddings EXY ,
time embeddings ET , day embeddings ED, and stay duration embeddings EDur. To integrate these
features, we first concatenate these embeddings for each trajectory to generate the combined content
embeddings:

Eallh = EXYh
||ETh

||EDh
||EDurh ∈ RM×(dxy+dt+dd+ddur) (1)

Eallc = EXYc ||ETc ||EDc ||EDurc ∈ RN×(dxy+dt+dd+ddur) (2)

After we obtain the combined content embeddings, we apply nonlinear functions fh and fc, param-
eterized by multi-layer perceptrons (MLP), to convert these embeddings into LLM’s embedding
dimension dllm for the historical trajectory and the current trajectory respectively:

Econh
= fh(Eallh) ∈ RM×dllm , Econc

= fc(Eallc) ∈ RN×dllm (3)

4.2 LLM-ENHANCED POI EMBEDDING

In next location prediction, understanding the functional attributes of a location is crucial. The
functionality of a location is determined by the distribution of various points-of-interest (POIs) within
that area. Prior research (Hong et al., 2023; Yang et al., 2022) has demonstrated that incorporating POI
information offers deeper insights into location characteristics, helping to capture user preferences
and behaviors.

To address this issue, we propose LLM-enhanced POI embeddings, leveraging LLMs to better
represent the functional attributes of locations. Specifically, for the natural language descriptions
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of POI categories intr = (i1, · · · , ir), we generate corresponding POI semantic embeddings EI =
(E1, · · · , Er) ∈ Rr×l×dllm through the token embedding layer of LLM, where l is a predefined
description length. The POI distribution freq = (f1, · · · , fr) at each location is then used as weights
to perform a weighted summation of the corresponding POI semantic embeddings, resulting in the
initial location-level POI embeddings:

EPOIloc,init
=

r∑
j=1

Ej ∗ fj ∈ Rlt×dllm (4)

To further integrate such POI semantic information, we apply a nonlinear transformation with MLP
to obtain the final location-level LLM-enhanced POI embeddings:

EPOIloc = MLP(EPOIloc,init
) ∈ Rdllm (5)

For mobility trajectories, we concatenate the location-level POI embeddings for each record, produc-
ing the initial trajectory-level LLM-enhanced POI embeddings EL−POI ∈ Rlseq×dllm . Additionally,
such trajectory-level LLM-enhanced POI embeddings for historical and current trajectory are sepa-
rately passed through fhpoi

and fcpoi with MLP, to accommodate the distinct temporal semantics of
historical and current trajectories as the LLM-enhanced POI embeddings for each type of trajectory:

EL−POIh = fhpoi(EL−POI) ∈ RM×dllm , EL−POIc = fcpoi(EL−POI) ∈ RN×dllm (6)

4.3 LARGE LANGUAGE MODEL BACKBONE

Total Input Embeddings Given the the content embeddings Econh
and Econc

representing histor-
ical and current trajectories respectively, and the corresponding LLM-enhanced POI embeddings
EL−POIh and EL−POIc that capture the functional attributes of various locations, we combine these
two embeddings to form the final embeddings for both the historical and current trajectories:

Ehis = Econh
+ EL−POIh ∈ RM×dllm , Ecur = Econc + EL−POIc ∈ RN×dllm (7)

To further improve the model’s comprehension of the input data and prediction task, we craft a task-
and data-specific prompt prefix that defines the task, describes the data, and explains how to utilize
historical and current trajectories (see Appendix H). This prompt prefix is processed through LLM’s
token embedding layer to generate prompt prefix embeddings. Finally, we concatenate prompt prefix
embeddings with the two final embeddings to form the total input embeddings for the LLM:

Etotal = Einstruct||Ehis||Ecur (8)

Partially Frozen Large Model. To fully leverage the extensive knowledge embedded within LLMs
while preserving their powerful reasoning capabilities, we adopt the strategy in (Zhou et al., 2023)
by freezing the self-attention and feedforward layers of the LLM. These core components retain
the majority of the knowledge acquired during pre-training, and freezing them ensures that this
knowledge remains intact, preventing unintended modifications during task-specific fine-tuning. We
inject the task-specific knowledge for the next location prediction task by fine-tuning a small subset
of parameters contained in positional encoding layers and layer normalization (Zhou et al., 2023;
Liu et al., 2024). This allows LLM to quickly adapt to our task with minimal costs and resources.
Specifically, given the total input embedding Etotal, the LLM produces the output representation
Eo = LLM(Etotal). We extract the last vector vo ∈ Rdllm from Eo at the end of the sequence,
and apply an nonlinear function fo to generate the predicted spatial coordinates xy′o = fo(o). This
result is then converted back to te original scale to obtain the denormalized coordinates xyo. During
training, the objective is to minimize the Euclidean distance between xyo and ground truth x̂y.

4.4 PREDICTION RETRIEVAL MODULE

During inference, after obtaining the predicted coordinates xyo, we employ a prediction retrieval
module to determine the most likely top-k locations, to produce structured next location prediction.
Specifically, we construct a KD-tree based on spatial coordinates of all candidate locations’ centers.
By using xyo as the query point to this KD-tree, we retrieve the top-k locations closest to the predicted
coordinates. These locations are then returned as the final top-k location predictions of NextLocLLM.
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Table 1: Fully Supervised Next Location Prediction Result

Method Xi’an Chengdu Japan
Hit@1 Hit@5 Hit@10 Hit@1 Hit@5 Hit@10 Hit@1 Hit@5 Hit@10

STRNN 11.01% 19.15% 25.61% 22.40% 32.09% 37.45% 8.616% 15.45% 24.46%
LSTM 9.753% 31.17% 45.34% 17.48% 46.93% 63.40% 2.817% 9.993% 15.67%
FPMC 20.97% 39.95% 47.58% 20.94% 49.91% 62.46% 2.973% 7.859% 13.51%
GRU 9.590% 30.92% 45.17% 16.41% 47.80% 63.06% 3.831% 10.69% 15.56%
C-MHSA 50.32% 92.43% 95.38% 76.54% 97.44% 99.37% 20.17% 30.23% 37.68%
DeepMove 41.19% 83.02% 90.85% 57.99% 94.71% 98.38% 11.71% 22.23% 36.35%
GETNext 48.63% 85.67% 93.25% 72.57% 98.29% 99.56% 19.17% 28.62% 33.79%
LLMMob(wt) 33.52% 77.86% 78.00% 45.27% 81.65% 84.37% 17.63% 28.55% 37.26%
LLMMob(wt,s) 20.81% 62.08% 62.23% 26.63% 59.97% 62.26% 12.26% 21.87% 31.19%
LLMMob(wot) 31.27% 72.49% 73.31% 41.13% 80.06% 82.21% 17.29% 27.26% 27.40%
LLMMob(wot,s) 16.77% 58.93% 59.12% 23.37% 57.71% 59.36% 12.57% 21.62% 20.87%
ZS-NL 20.92% 53.29% 66.99% 31.06% 62.25% 64.47% 13.07% 22.31% 26.15%
ZS-NL(s) 20.27% 52.22% 64.97% 26.78% 49.57% 54.67% 11.32% 19.15% 23.57%
NextlocLLM 58.14% 97.14% 99.36% 64.33% 98.48% 99.63% 19.36% 31.82% 46.06%

5 EXPERIMENT

In this section, we evaluate the performance of NextLocLLM in comparison with existing methods
under both fully-supervised and zero-shot next location prediction scenarios. In fully-supervised
scenarios, each model is tested on data from the same cities as the training set, whereas in zero-shot
scenarios, each model is tested on data from cities that are not part of the training set, requiring the
model to generalize based on knowledge learned from other cities. The code for NextLocLLM is
available at: https://anonymous.4open.science/r/NexelocLLM-1CF8/

5.1 EXPERIMENTAL SETUP

5.1.1 BASELINE MODELS

We selected several classical baseline models as well as recently proposed methods for comparison.
These models include those not designed for zero-shot scenarios (LSTM, FPMC, GRU, STRNN,
C-MHSA, DeepMove, and GETNext) and models that support zero-shot next location prediction
(LLMMob and ZS-NL). Detailed descriptions of these baseline models are provided in Appendix. G.

5.1.2 DATASETS

We used four user mobility trajectory datasets in our experiments, including three open-source
datasets—Xi’an, Chengdu (Zhu et al., 2023), and Japan (Yabe et al., 2024b)—and one private dataset
from Singapore. These datasets cover diverse geographical regions and user behavior patterns,
ensuring our results to be broadly applicable. Detailed descriptions can be found in Appendix I.

5.1.3 EVALUATION METRICS

We employed Hit@1, Hit@5, and Hit@10 as the evaluation metrics for model performance. These
metrics measure the proportion of cases in which the model correctly predicts the target location
within the top-k predictions. Specifically, they indicate the accuracy of models when the correct
location appears in the top 1, top 5, or top 10 predictions.

5.1.4 EXPERIMENT CONFIGURATION

For each dataset, we split the data for training, validation, and testing with a 70%/10%/20% ratio.
For zero-shot tasks, we only used the final 20% test set for evaluation. For LLM backbone in
NextLocLLM, GPT-2 is employed unless otherwise specified. We also utilized other LLMs (Llama2-
7B and Llama3-8B) as the backbone for NextLocLLM and found that their prediction performances
are relatively consistent compared to using GPT-2. Detailed results can be found in Appendix N.
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5.2 FULLY SUPERVISED NEXT LOCATION PREDICTION PERFORMANCE COMPARISON

Table 1 presents the performance of different models on next location prediction tasks in fully-
supervised scenarios. The table is divided into three sections by two horizontal lines. Models above
the first horizontal line are designed for fully-supervised scenarios, while models above the second
horizontal line can be used in both fully-supervised and zero-shot settings.

In the first group, models like STRNN, LSTM, FPMC, and GRU struggle to effectively capture
temporal dependencies, leading to relatively poor performance. In contrast, models that utilize
attention mechanisms, such as C-MHSA, DeepMove, and GETNext, demonstrate significantly better
predictive performance. The attention mechanism allows these models to better capture complex
dependencies across different time points, thereby improving prediction accuracy.

In the second group, LLMMob and ZS-NL interact with LLMs purely through prompts. Compared
with ZS-NL, LLMMob provides more detailed task instructions to guide LLMs, thus outperforming
ZS-NL. LLMMob (wt) and LLMMob (wot) denote whether temporal information is considered.
The results show that models including temporal information (wt) outperform those without (wot),
indicating that time is a crucial feature in next location prediction and significantly enhances model
accuracy. Additionally, the suffix “s” indicates a strict requirement for the LLM to output exactly
10 location IDs. If this requirement is not met, even if the correct location is predicted, it does not
count toward the accuracy. Conversely, configurations without the "s" suffix relax this restriction.
This experimental setup was based on our observation that, even when the prompt clearly specifies
the output format and the required number of location IDs, these models sometimes generate outputs
with incorrect formats or numbers of IDs (see Sec Fig. 3 for details). Results show that enforcing
strict output requirements leads to a significant performance drop for both LLMMob and ZS-NL.

Furthermore, we observe that all models perform better on Xi’an and Chengdu datasets compared to
Japan dataset. We attribute this to the fact that Xi’an and Chengdu datasets have more users, a longer
time span, and shorter average sampling intervals. These factors provide richer mobility information
for the models, enabling them to better learn travel patterns and improve performance.

Our proposed NextLocLLM consistently outperforms all baseline models across these datasets.
NextlocLLM leverages spatial coordinates to represent locations, which allows it to better model
spatial relationships between locations. Additionally, it uses LLM-enhanced POI embeddings to
fully exploit the large model’s natural language understanding capabilities, capturing the functional
attributes of locations more effectively. On Xi’an dataset, NextLocLLM achieved the highest
scores. Even on Chengdu and Japan datasets, where Hit@1 was slightly lower, NextLocLLM still
outperformed other models in Hit@5 and Hit@10, showcasing strong predicting capabilities.

Additionally, we conducted experiments on a private dataset from Singapore. This dataset is relatively
sparse and of lower quality, resulting in poor performance for all models. However, even in this sparse
and low-quality data environment, NextLocLLM maintained competitive performance, outperforming
other models. Detailed results and analysis for the Singapore dataset can be found in Appendix L

5.3 ZERO-SHOT NEXT LOCATION PREDICTION PERFORMANCE COMPARISON

Table 2 presents the performance of different models in zero-shot scenarios. We compared LLMMob,
ZS-NL, and our proposed NextLocLLM. For NextLocLLM, we trained the model on Singapore,
Chengdu, and Japan datasets, and then directly tested it on Xi’an dataset. In addition to accuracy
metrics, we also calculated the geographical distance between predicted coordinates and actual
location centers to further evaluate NextLocLLM’s precision. For reference, the average geographical
distance in the fully-supervised scenario for NextLocLLM on the Xi’an dataset is 176.9 meters.

The results show that well-trained NextLocLLM models demonstrate strong cross-city generalization.
Specifically, NextLocLLM (Chengdu -> Xi’an) and NextLocLLM (Japan -> Xi’an) outperformed
other zero-shot models, demonstrating robust cross-city adaptability. In contrast, NextLocLLM
(Singapore -> Xi’an) performed the weakest, likely due to the lower quality of the Singapore dataset,
which hindered proper training and limited the model’s ability to generalize in the zero-shot scenario.

The geographical distance results further support this analysis. For NextLocLLM (Chengdu -> Xi’an),
the average prediction error was 449.79 meters, which is close to the 176.9 meters observed in
fully-supervised scenario and smaller than the 500-meter grid size for locations, indicating high
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Table 2: Zero-shot Next Location Prediction Result on Xi’an Dataset

Hit@1 Hit@5 Hit@10 Distance(s)
LLMMob(wt) 33.52% 77.86% 78.00% -
LLMMob(wt,s) 20.81% 62.08% 62.23% -
LLMMob(wot) 31.27% 72.49% 73.31% -
LLMMob(wot,s) 16.77% 58.93% 59.12% -
ZS-NL 20.92% 53.29% 66.99% -
ZS-NL(s) 20.27% 52.22% 64.97% -
NextlocLLM(Singapore->Xi’an) 3.85% 9.55% 19.86% 4521.74
NextlocLLM(Chengdu->Xi’an) 37.02% 82.26% 92.41% 449.79
NextlocLLM(Japan->Xi’an) 27.38% 75.87% 86.84% 765.73

Table 3: Ablation Study for NextLocLLM Modules

Prompt Prefix LORA LLM-enhanced POI Hit@1 Hit@5 Hit@10
× × × 25.81% 83.20% 97.54%
× × ✓ 45.79% 94.76% 99.24%
× ✓ × 16.18% 65.29% 89.16%
× ✓ ✓ 38.11% 81.78% 86.87%
✓ × × 39.57% 90.81% 98.75%
✓ ✓ × 27.57% 78.46% 98.75%
✓ ✓ ✓ 28.34% 77.16% 89.27%
✓ × ✓ 58.14% 97.14% 99.36%

geographical accuracy. In contrast, the average prediction error for NextLocLLM (Singapore ->
Xi’an) is 4521.74 meters, far exceeding that of other models. In summary, well-trained NextLocLLM
significantly outperform other baseline models in zero-shot scenarios.

We also compared the zero-shot performance of these models on other datasets, with similar conclu-
sions as those observed on the Xi’an dataset. Detailed results can be found in Appendix M.

5.4 ABLATION STUDY

To validate the effectiveness of different components in NextLocLLM, we conducted a series of
ablation experiments in this section.

5.4.1 ABLATION STUDY FOR NEXTLOCLLM KEY COMPONENTS

We first evaluated the impact of adding prompt prefix, using LLM-enhanced POI embeddings, and
freezing most of LLM’s parameters versus using fine-tuning methods like LoRA. Specifically, not
using LLM-enhanced POI embeddings means treating the POI distribution of each location as a
simple numerical vector and applying a linear mapping directly to generate the POI embeddings
EPOI ∈ Rdpoi . In this case, equations (1) and (2) will change as follows:

Eallh = EXYh
||ETh

||EDh
||EDurh ||EPOIh ∈ RM×(dxy+dt+dd+ddur+dpoi) (9)

Eallc = EXYc
||ETc

||EDc
||EDurc ||EPOIc ∈ RN×(dxy+dt+dd+ddur+dpoi) (10)

Moreover, due to the absence of LLM-enhanced POI embeddings, the final embeddings for historical
and current trajectories, Econh

and Econc , are simply just their content embeddings Econh
and Econc .

Table 4: Ablation Study for NextLocLLM Input Components

Day & Time Duration POI Hit@1 Hit@5 Hit@10
✓ ✓ × 52.78% 95.29% 98.55%
✓ × ✓ 47.65% 94.94% 98.23%
× ✓ ✓ 48.28% 96.00% 98.25%
✓ ✓ ✓ 58.14% 97.14% 99.36%
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Table 5: Ablation Study for Historical and Current Trajectory

Historical Trajectory Current Trajectory Hit@1 Hit@5 Hit@10
✓ × 18.75% 60.62% 82.10%
× ✓ 40.23% 91.94% 98.66%
✓ ✓ 58.14% 97.14% 99.36%

As shown in Table 3, models using prompt prefix consistently outperform those without, showing the
positive effect of prompt prefix on enhancing LLMs’ understanding of data and task. Additionally,
models that incorporates LLM-enhanced POI embedding outperforms the ones without it, highlighting
the importance of using LLM for encoding natural language descriptions of POI categories to better
model location functionality. Finally, the configuration where most large language model parameters
are frozen performs better than the fully fine-tuning approach, indicating that freezing core modules
of LLMs and finetuning the rest helps preserve its pre-trained knowledge while adapting to the
specific task with minimal parameter adjustments. Overall, the best configuration for NextLocLLM
combines prompt prefix, LLM-enhanced POI embedding, and freezing the major LLM parameters.

5.4.2 ABLATION STUDY FOR NEXTLOCLLM INPUT COMPONENTS

We further evaluated the effectiveness of temporal information, stay duration, and POI attributes. Re-
sults are presented in Table 4, which clearly demonstrate that introducing time, stay duration, and POI
functionality information is crucial for the predictive performance of NextLocLLM. Removing any of
these elements results in a performance drop, with temporal information and stay duration showing
particularly significant effects on user behavior prediction. The complete model, which integrates
these various features, provides a more comprehensive and accurate reference for predictions.

5.4.3 ABLATION STUDY FOR HISTORICAL AND CURRENT TRAJECTORY

We also evaluate the impact of historical and current trajectory on the performance of NextLocLLM for
next location prediction. To this end, we conducted experiments where either the historical trajectory
or the current trajectory was used as the sole input. The results are presented in Table 5. The findings
indicate that combination of both trajectories significantly improves prediction accuracy. Using only
the historical trajectory or only the current trajectory leads to a drop in performance. The historical
trajectory reflects the user’s long-term behavior patterns, while the current trajectory captures short-
term behavioral intentions. Combining both allows NextlocLLM to more comprehensively model
user behavior, thereby improving the accuracy of next location predictions.

6 CONCLUSION

In this paper, we present NextLocLLM, the first known method to integrate large language models
(LLMs) into the structure of next location prediction models. By innovatively encoding normalized
spatial coordinates, NextLocLLM effectively captures geographic relationships between locations
and its ability to transfer across different cities is significantly enhanced. Additionally, NextLo-
cLLM incorporates LLM-enhanced POI embeddings, leveraging LLMs to encode natural language
descriptions of point-of-interest (POI) categories, enabling itself to better understand the functional
characteristics of locations. To reduce training costs while preserving the pre-trained knowledge,
we freeze most of the LLM’s parameters and fine-tune only a few key layers. This strategy ensures
that LLMs can quickly adapt to next location prediction task. The prediction retrieval module guar-
antees structured top-k location predictions. Experimental results demonstrate that NextLocLLM
consistently outperforms baseline models in both fully-supervised and zero-shot prediction scenarios,
showing strong power in next location prediction task. Ablation studies confirm the contribution of
each key module to the overall performance. However, we observe that the current model’s geograph-
ical distance error remains a challenge, typically exceeding 200 meters, which limits its effectiveness
in fine-grained prediction tasks, such as those with a 50-meter grid size. Future work will explore
incorporating user profile information and other essential elements to further improve accuracy.
Overall, NextLocLLM offers an innovative and effective solution for next location prediction, with
significant potential for real-world applications across various domains.
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A PROMPT FOR ZS-NL AND LLM-MOB

In this section, we present the prompt formats used by the baseline models ZS-NL and LLM-Mob.
We preserve the original prompt content from the source papers in full. We highlighted in red the parts
of each model’s prompt that specify the required number of location IDs to be output. Additionally,
to clearly differentiate between LLM-Mob(wt) and LLM-Mob(wot), the extra components in LLM-
Mob(wt) are marked in blue.

B EXAMPLE FOR WRONGLY STRUCTURED OUTPUT BY PURELY
PROMPTED-BASED NEXT LOCATION PREDICTION MODEL

Fig 3 shows examples of LLM-Mob on the Xi’an dataset. We can observe that for line index 1, the
model only produced three outputs, even though the prompt clearly instructed the LLM to provide
10 possible location IDs. This discrepancy highlights a common issue with prompt-based models:
they sometimes fail to follow explicit prompt prefixs regarding output structure. In this case, despite
the requirement for 10 locations, the model returned fewer results, which could affect the overall
performance. This inconsistency raises concerns about the reliability of prompt-based methods when
dealing with structured output requirements, particularly in tasks that demand a specific number of
predictions.

Figure 3: Part of LLM-MOB’s output on Xi-an Dataset.
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Table 6: POI categories’ description (For Xian and Chengdu)

POI category Description
Entertainment Entertainment: This category combines scenic spots with sports and

recreation services for leisure activities.
Commercial Commercial: It includes businesses, financial services, automotive, shop-

ping, and dining services.
Education Education: This category covers institutions which involved in science,

education, and cultural services.
Public Service Public Service: including government, daily services, healthcare, trans-

port, and public infrastructure.
Residential Residential: This category comprises accommodation services and

mixed-use commercial and residential areas.

Table 7: POI categories’ description (For Sinapore)

POI category Description
Leisure and Entertainment Leisure and Entertainment: This category encompasses venues for arts,

entertainment, events, and nightlife activities, serving as hubs for cultural,
social, and recreational engagements.

Shopping and Services Shopping and Services: It includes retail outlets and professional service
providers, catering to the diverse purchasing and service needs of con-
sumers.

Dining and Health Education: This category covers eating establishments with health and
medical services, offering places for dining along with health care facili-
ties.

Travel and Accommodation Travel and Accommodation: including all travel-related infrastructure
and lodging options, including transportation hubs, universities, and
residential areas, facilitating mobility and accommodation.

Outdoor and Recreational Activities Outdoor and Recreational Activities: This category comprises outdoor
spaces and landmarks, providing areas for recreation and appreciation of
natural and cultural heritage.

C POI CATEGORIES’ DESCRIPTION

In this section, we provide descriptions of the different POI categories across various datasets. The
raw POI distribution for the Xi’an and Chengdu datasets are sourced from (Center, 2017), while
the Japan dataset comes with its own raw POI distribution, and the raw POI distribution data for
the Singapore dataset was scraped from openstreetmap. The original POI categories were quite
numerous, resulting in very few POIs for each location and making the vectors extremely sparse.
Additionally, the definitions and classifications of POIs vary significantly across the datasets. To
address these issues, we clustered POI categories with similar attributes, aggregated the number of
POIs in each category for each location, and provided natural language descriptions for each clustered
POI category.

D TRANSFORMATION FROM LONGITUDE & LATITUDE TO WEB MERCATOR

Given a location’s geographic coordinates (lon, lat), we can convert them into Web Mercator
coordinates using the following formulas:

lonwm = lon× R

D
(11)

latwm = ln(tan(
π

4
+

lat

2
))× R

D
(12)

where R represents half the Earth’s circumference, which is approximately 20, 037, 508.34 meters.
The constant D represents 180 degrees, as the Earth’s longitude ranges from −180· to 180·.
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E ANALYSIS OF WEB MERCATOR PROJECTION’S LITTLE BIAS IN URBAN
AREAS

The bias of the Web Mercator projection increases with latitude, but within smaller regions (such as
city scales), this bias is relatively minimal, particularly for cities located in low- and mid-latitude
areas (Battersby et al., 2014; Peterson, 2014; Hwang, 2013). To clarify this, we can explain through
mathematical analysis.

The Web Mercator projection maps spherical coordinates (longitude and latitude) onto 2D plane
coordinates, with the formulas shown in Appendix D. The Mercator projection preserves angles
(conformal) but not area, meaning that regions at higher latitudes (especially near the poles) are
stretched in terms of area and distance. For lower and mid-latitude regions (such as most city scales),
this distortion is relatively minor and can be neglected. We can demonstrate the Web Mercator
projection’s bias at a city scale with the following approach.

Assume the latitude range within a city is ∆ϕ and the longitude range is ∆lat. Since the Web
Mercator projection maintains a linear relationship for longitude, the primary bias arises from the
non-linear term in latitude latwm = ln(tan(π4 + lat

2 ))× R
D . If the latitude difference within the city

is small (e.g., within 1°), we can analyze the error over this small range using a Taylor expansion:

y(lat+∆lat) ≈ y(lat) +
dy

dlat
∆lat (13)

We then calculate dy
dlat =

R
cos(lat) . At low and mid-latitudes, this calculation shows that the error is

relatively small, meaning the Web Mercator projection behaves almost linearly within this range.

F HEATMAP OF DIFFERENT DATA

(a) (b)

(c) (d)

Figure 4: Heatmap for human mobility data used.

Fig. 4 presents the heatmaps for mobility data across four cities: Chengdu, Xi’an, Singapore, and a
city in Japan. From these visualizations, we can observe that the centroid of each city is not always
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aligned with the center of mobility data. In other words, the areas with the highest population density
and movement activity often do not correspond to the geographic center of the city. This discrepancy
illustrates the uneven distribution of human movement, which is influenced by factors such as data
collection and formation, urban design, commercial hubs, and transportation networks.

As a result, instead of using the geographic center of the city for normalization, we rely on the
mean coordinates of the mobility data. This approach better captures the actual spatial patterns
and movement trends, allowing for more accurate normalization of location data. By focusing
on the mobility data’s mean coordinate, we can ensure that the model accurately represents the
central tendency of human movement within the city, rather than relying on purely geographic or
administrative boundaries.

G BASELINE DESCRIPTION

The details of baseline methods are briefly summarized as follows. For FPMC, LSRM, GRU, STRNN
and DeepMove, we use their implementation provided by the package Libcity whereas for C-MHSA,
GETNext, LLM-Mob and ZS-NL, we use the source codes released by their authors.

• FPMC (Rendle et al., 2010): a method bringing both matrix factorization (MF) and Markov
chains (MC) approaches together, which is based on personalized transition graphs over
underlying Markov chains.

• LSTM (Graves & Graves, 2012) A type of recurrent neural network capable of learning
order dependence in sequence prediction problems.

• GRU (Chung et al., 2014) Similar to LSTMs, GRUs are a streamlined version that use gating
mechanisms to control the flow of information and are effective in sequence modeling tasks.

• STRNN (Liu et al., 2016) This model focuses on introducing spatiotemporal transfer features
into the hidden layer of RNN.

• Deepmove (Feng et al., 2018) This model uses the attention mechanism for the first time to
combine historical trajectories with current trajectories for prediction.

• GETNext (Yang et al., 2022) An model utilizes a global trajectory flow map and a novel
Graph Enhanced Transformer model to better leverage extensive collaborative signals.

• C-MHSA (Hong et al., 2023) An MHSA-based model that integrates various contextual
information from raw location visit sequences.

• LLM-Mob (Wang et al., 2023) An purely prompt based model which introduced concepts
of historical and contextual stays to capture the long-term and short-term dependencies in
human mobility.

• ZS-NL (Beneduce et al., 2024) Another purely prompt based model designed for zero-shot
next location prediction.

H PROMPT PREFIX PROVIDED

In this section, we outline the specific task and data prompt prefix used in NextLocLLM. The
prompt prefix begins by defining the task and providing a detailed description of the dataset structure.
Additionally, the Additional Description section emphasizes how to think about this task using the
provided data.

I DATASET INTRO

We used four datasets to validate the effectiveness of NextLocLLM, and the detailed descriptions of
these datasets are as follows:

• Xian & Chengdu (Zhu et al., 2023) Synthetic trajectory datasets with high fidelity. The
datasets are generated by diffusion models.

• Japan (Yabe et al., 2024b) The data is about human mobility in one metropolitan area
somewhere in Japan.
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Figure 5: Data and Task Prompt Prefix of NextlocLLM

• Singapore This data is collected by one mobile SIM card company in Singapore

regarding the spatial representation of trajectories, traditional models like DeepMove typically use
location IDs to represent spatial information. In contrast, NextLocLLM utilizes corresponding
spatial coordinates to represent positions. This method directly captures spatial relationships, and
significantly enhances NextLocLLM’s generalization capability in zero-shot tasks. The statistical
information for these four datasets can be found in Table 8.

Figure 6: Example of Data processing

To ensure data quality and enhance the model’s adaptability to trajectory features, we followed the
methodologies of LLM-Mob and C-MHSA and implemented a rigorous preprocessing procedure.
The details are as follows:

• Noise Filtering: To effectively filter noise in the raw data, we used the trackintel package to
generate staypoints and applied the following filtering rules:

– Time interval threshold: A staypoint ends when the time interval between consecutive
location records exceeds 60 minutes. Subsequent records are treated as a new staypoint.

– Distance threshold: A new staypoint is generated only if the user’s movement exceeds
200 meters, reducing the impact of short-distance fluctuations.

– Minimum dwell time: A location is considered a valid staypoint only if the user remains
there for at least 10 minutes (1 minute for the Singapore dataset).

These rules effectively removed transient fluctuations and noise from the data, significantly
improving data quality.

• Ensuring Trajectory Completeness: To ensure data completeness, we calculated the number
of unique days each trajectory spanned (coverage days) and retained only trajectories with
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Table 8: Data Statistical Descriptions

Data Name Num of Records Time Span Num of Users Avg Interval (minute) Num of Trajectories
Xian 23262844 one year 690176 46.2 304870

Chengdu 22827687 one year 712242 44.4 232021
SG 900234 one month 23461 840.35 109141
JPN 88405298 60d 100000 95.78 2902778

more than 15 days of coverage. This criterion helps eliminate short-term noise trajectories
and ensures the model learns long-term, stable behavioral patterns, thereby improving
robustness and generalization.

• Spatial Grid Partitioning and POI Mapping: Following (Yabe et al., 2024b), we divided the
urban area into grids of 500m × 500m and mapped POI data into the corresponding grids.
Additionally, we calculated the count of each POI type in each grid. By incorporating the
functional characteristics of regions into trajectory features, the model can better capture
semantic information and behavioral patterns specific to different areas.

Given that the Singapore dataset originated from unprocessed communication data, we applied extra
preprocessing steps prior to the main pipeline:

• Signal delay filtering: Records where the time gap between signal requests and base station
reception exceeded 1 minute were removed.

• Low-confidence records: Records with low location confidence were excluded.
• Abnormal elevation: Records with anomalous base station elevations were filtered.
• Geographic bounds: Records outside Singapore’s geographic range were discarded.

These additional steps further enhanced the accuracy and usability of the data. As shown in Figure 6,
the preprocessing steps effectively reduced noise in the data. The red-circled regions represent the
refined staypoints, which are concentrated in meaningful areas such as residential zones, commercial
hubs, and transportation nodes. In contrast, the uncircled regions denote noise points that were
successfully removed. These results demonstrate that the filtering rules based on time intervals,
distance thresholds, and minimum dwell times effectively eliminated spurious or non-meaningful
data points, improving the expressiveness of the dataset.

For the Japan dataset, the specific city to which the data belongs is not provided. We created a virtual
spatial coordinate system for it, using the geometric center of the dataset as the origin. Specifically,
the Japan dataset is distributed across a square spatial grid of 200x200 cells, with the center of the
grid at the 100th row and 100th column serving as the origin. This approach does not affect the
prediction outcomes because the NextLocLLM model includes a normalization process for spatial
coordinate embeddings.

(a) (b) (c)

Figure 7: Divided location visualization. (a) Xi’an (b)Chengdu (c)Singapore

J POI CATEGORY FREQUENCY CALCULATION

The frequency of POI categories at each location was calculated through the following steps. First,
we mapped different types of POIs to their corresponding geographic grids using the geographic
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location data recorded in the POI file. This allowed us to identify the specific POI types present
within each grid. Next, we counted the frequency of each POI category in every grid, accurately
capturing the distribution of POI types across different regions.

To better represent the functional attributes of each area, we aggregated fine-grained POI categories
into higher-level functional groups. This aggregation was necessary because individual fine-grained
POI categories (e.g., Restaurants, Cafés) often fail to comprehensively reflect the overall functionality
of an area. By combining similar or related POI categories, the aggregated functional groups provide
a semantically richer and more intuitive representation. For example, a grid containing multiple
restaurants and cafés can be classified under the broader functional category of Dining, which directly
reflects the primary use of the area without focusing on the specifics of individual POI types.

This aggregation process was based on the classification rules outlined in Tables 6 and 7, which
simplify the model’s handling of complex fine-grained information. By doing so, we improved the
generalizability of the features and enabled the model to efficiently learn patterns related to regional
functional attributes. Through these steps, we constructed detailed POI frequency distributions for
each location, providing semantically enriched functional attributes that are essential for supporting
the model’s learning process.

K MODEL PARAMETERS AND CONFIGURATIONS

To ensure the reproducibility of the NextLocLLM experiments, we provide a detailed description of
the key parameter configurations and input settings below:

Basic Training Parameters:

• Learning Rate: 0.0002

• Batch Size: 128

• Max Epochs: 30

• Optimizer: Adam

Key Hyperparameters

• LLM Backbone: GPT-2

• Spatial Coordinate Embedding

• Dimension: 128

• Day & Hour Embedding Dimension: 16

• Duration Embedding Dimension: 16

• POI MLP Dimension: 1024

• LLM Layers: 6

Model Input Configuration

• Historical Trajectory Length: 40 records, capturing long-term behavioral patterns of users.

• Current Trajectory Length: 5 records, capturing short-term behavioral features.

LLM Tokenizer and Embedding Layer We used the tokenizer and embedding layer consistent with
the GPT-2 model to ensure compatibility and uniformity in input processing.

Experimental Hardware The experiments were conducted on a set of Tesla V100-SXM2-32GB
GPUs to support large-scale data training and inference.

L FULLY SUPERVISED RESULT FOR SINGAPORE DATASET

In this section, we present the results of NextLocLLM on a private dataset from Singapore, provided
by a local mobile signal operator. This dataset is highly sparse, with an average time gap of 840.35
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Table 9: Fully Supervised Next Location Prediction Result

Method Sinapore
Hit@1 Hit@5 Hit@10

STRNN 1.073% 2.652% 5.269%
LSTM 0.697% 2.482% 4.137%
FPMC 0.062% 0.283% 0.479%
GRU 1.144% 2.976% 4.551%
C-MHSA 1.625% 5.407% 8.062%
DeepMove 4.013% 10.42% 14.64%
GETNext 2.633% 7.678% 10.09%
LLMMob(wt) 4.980% 15.24% 22.19%
LLMMob(wt,s) 1.899% 8.929% 17.73%
LLMMob(wot) 3.077% 13.64% 20.95%
LLMMob(wot,s) 1.763% 7.671% 13.42%
ZS-NL 1.077% 2.399% 5.064%
ZS-NL(s) 0.958% 1.926% 4.401%
NextlocLLM 5.442% 17.14% 22.36%

Table 10: Zero-shot Next Location Prediction Result on Chengdu Dataset

Hit@1 Hit@5 Hit@10
LLMMob(wt) 45.27% 81.65% 84.37%
LLMMob(wt,s) 26.63% 59.97% 62.25%
LLMMob(wot) 43.15% 77.31% 79.38%
LLMMob(wot,s) 23.37% 57.71% 59.36%
ZS-NL 31.06% 62.25% 64.47%
ZS-NL(s) 26.78% 49.57% 54.67%
NextlocLLM(Xi’an->Chengdu) 61.96% 96.89% 98.86%
NextlocLLM(Japan->Chengdu) 54.33% 88.48% 91.63%
NextlocLLM(Sinapore->Chengdu) 4.96% 10.87% 16.84%

minutes between consecutive records. Moreover, the location data represents the position of the
mobile cell towers rather than the exact locations of the users themselves, introducing additional
inaccuracy. These two factors combined contribute to the generally poor performance of all models
on this dataset.

Despite these challenges, NextLocLLM outperforms all baseline models, demonstrating its robustness
even under difficult conditions. As shown in Table 9, NextLocLLM achieves the highest scores across
all key metrics—Hit@1, Hit@5, and Hit@10—outperforming all baseline models.

On the other hand, the limitations of the Singapore dataset, particularly the sparse data and indirect
location information, also affect the training quality of the model. As a result, NextLocLLM models
trained on this dataset perform suboptimally in zero-shot scenarios, as the parameters cannot be fully
optimized during training due to the limited data quality. This lack of sufficient training data on the
Singapore dataset results in lower prediction accuracy when applied to other cities in zero-shot tasks.

In summary, while the NextLocLLM model performs better than other baselines on the challenging
Singapore dataset, the data sparsity and inaccuracy pose significant challenges, impacting the model’s
ability to generalize when applied to other datasets in zero-shot scenarios.

M ZERO-SHOT RESULT ON OTHER DATASETS

We also compare zero-shot next location prediction performance on other datasets. These experiments
share the similar settings with Sec. 5.3. Based on the results in Table 10 and Table!11, NextLocLLM
demonstrates a clear advantage over baseline models in zero-shot scenarios across both the Chengdu
and Singapore datasets, showing its capablity in cross city generalization.
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Table 11: Zero-shot Next Location Prediction Result on Singapore Dataset

Hit@1 Hit@5 Hit@10
LLMMob(wt) 4.981% 15.24% 22.19%
LLMMob(wt,s) 1.962% 8.927% 17.73%
LLMMob(wot) 1.763% 7.671% 13.42%
LLMMob(wot,s) 1.073% 2.399% 5.062%
ZS-NL 0.954% 1.926% 4.403%
ZS-NL(s) 20.27% 52.22% 64.97%
NextlocLLM(Xi’an->Singapore) 5.026% 16.55% 19.46%
NextlocLLM(Chengdu->Sinapore) 5.107% 17.86% 20.41%
NextlocLLM(Japan->Xi’an) 4.968% 15.87% 16.84%

Table 12: Zero-shot Ablation Study

Xian-> Chengdu Hit@1 Hit@5 Hit@10
location 0% 0% 0%
coordinate 61.96% 96.89% 98.86%
no prompt prefix 45.84% 86.11% 98.84%

N PERFORMANCE AMONG DIFFERENT LLMS

Table 13 presents a performance comparison among NextlocLLM using different large language mod-
els, including GPT-2, LLama2-7B, and LLama3-8B. We find that among various LLMs, NextlocLLM
remains competitive, showing a stable performance among different LLMs.

Our understanding of this phenomenon is as follows. LLMs incorporate a vast amount of information.
However, much of this information exceeds the requirements of spatiotemporal sequence analysis.
For spatiotemporal prediction tasks, the redundancy of such language-specific information can
interfere with the model’s ability to effectively capture spatiotemporal patterns, thereby potentially
degrading its performance. However, certain aspects of LLMs—particularly those related to human
intent and semantic understanding—can significantly enhance spatiotemporal prediction tasks. This
duality necessitates a balance when selecting an LLM: minimizing the interference of redundant
language information while retaining the semantic understanding capabilities of LLMs to leverage
their strengths in modeling human behavioral patterns.

O COMPARATIVE ANALYSIS OF SPATIAL COORDINATES AND LOCATION IDS

To evaluate the performance of NextLocLLM with different input representations, we conducted
experiments using either spatial coordinates or location IDs as inputs among various settings, in-
cluding fully-supervised and zero-shot scenarios. The results are presented in Table 14. In the
fully-supervised setting, models with spatial coordinates inputs consistently outperform those using
location IDs, suggesting that coordinate-based representations better capture the spatial relationships
between locations, leading to enhanced prediction accuracy. The advantage of coordinate inputs
becomes even more pronounced in zero-shot settings, such as Xi’an -> Chengdu or Xi’an -> Singa-
pore. With location ID inputs, the model struggles to generalize across cities, resulting in near-zero
Hit@1, Hit@5, and Hit@10 values. This is primarily due to the inconsistency of location ID systems
across cities, which lack the semantic or structural information necessary for effective cross-city
generalization. In contrast, spatial coordinate inputs enable the model to maintain high performance
in zero-shot tasks, with Hit@1 reaching 61.96% in the Xi’an -> Chengdu scenario and 5.026% in

Table 13: Zero-shot Next Location Prediction Result

Hit@1 Hit@5 Hit@10 Distance(m)
gpt2 58.14% 97.14% 99.36% 176.9
Llama2-7B 50.61% 84.09% 96.42% 290.5
Llama3-8B 53.29% 90.66% 97.45% 247.6
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Table 14: Performance comparison between coordinate and location inputs.

Method Coordinate Location
Hit@1 Hit@5 Hit@10 Hit@1 Hit@5 Hit@10

Xi’an (fully supervised) 58.14% 97.14% 99.36% 54.57% 85.11% 87.88%
Singapore (fully supervised) 5.442% 17.14% 22.36% 2.061% 11.42% 15.54%
Xi’an → Singapore 5.026% 16.55% 19.46% 0% 0% 0%
Xi’an → Chengdu 61.96% 96.89% 98.86% 0% 0% 0.03%
Singapore → Xi’an 3.85% 9.55% 19.86% 0% 0% 0.05%

Xi’an -> Singapore. This demonstrates the superior ability of coordinate-based inputs to generalize
spatial knowledge across different urban environments.

P CASE STUDY

Figure 8: Case study of NextlocLLM

In this case study, we evaluated the zero-shot capabilities of NextLocLLM trained on the Xi’an dataset
by testing it on the Singapore dataset. We also compared these results with the fully-supervised
setting, where the model was both trained and tested on the Singapore dataset. The Singapore dataset
was chosen due to its extensive coverage of location IDs and its distinct POI classification system,
which differs from that of Xi’an. This characteristic makes our case study more representative of
real-world transfer scenarios, where different cities often use varying POI classification and definition
systems, posing a challenge for models to generalize across cities. Specifically, we analyzed
a user trajectory from the Singapore dataset with densely sampled points to provide an intuitive
demonstration of the model’s performance. The trajectory had an average sampling interval of 21
minutes. We compared the following approaches:

• Zero-shot NextLocLLM (using coordinates)

• Zero-shot NextLocLLM (using location IDs)

• Fully-supervised NextLocLLM (using coordinates)

• LLM-Mob prediction
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The experimental results clearly highlight the differences in performance across these methods:
Zero-shot NextLocLLM (using coordinates) exhibited outstanding predictive capability, generating
trajectories highly consistent with the ground truth. This demonstrates NextLocLLM’s strong zero-
shot generalization in cross-city tasks. In contrast, Zero-shot NextLocLLM (using location IDs)
showed significant deviations from the ground truth. This result underscores the limitations of location
ID-based models in cross-city tasks, as inconsistent location ID systems across cities fail to convey the
semantic information of geographic spaces. LLM-Mob prediction consistently limited its forecasting
to locations explicitly mentioned in the prompts, revealing that models purely based on prompts
and location IDs struggle to comprehend spatial information or capture trajectory sequence patterns.
This limitation significantly reduces the applicability of LLM-Mob for tasks involving unknown
locations, particularly in zero-shot cross-city scenarios. Finally, Fully-supervised NextLocLLM
(using coordinates) set the upper performance bound in a supervised setting, achieving results only
marginally better than the zero-shot setting. This further validates the robust generalization capability
of NextLocLLM, which maintains near-supervised performance even without target city training data.

Q HYPERPARAMETER SENSITIVITY

We conducted a detailed sensitivity analysis of the key hyperparameters to validate the robustness of
NextLocLLM’s performance. Below is an analysis of the experimental results: Relatively Stable
Parameters: dxy, dt, dd, dpoi. These parameters exhibit relatively smooth effects on the model’s
performance:

• Spatial Coordinate Embedding Dimension (dxy): As the dimension increases from 64 to
256, the model’s performance improves steadily. However, beyond 256, the performance
saturates, indicating that smaller embedding dimensions are sufficient to capture geographic
information effectively.

• Stay Duration Embedding Dimension (dt): Performance shows slight improvement as the
dimension increases from 8 to 32, but further increases have minimal impact, suggesting
that the embedding requirements for stay duration information are relatively low.

• Date and Time Embedding Dimension (dd): Hit@1 performance remains stable as the
dimension increases from 8 to 32, demonstrating that date and time features have a minimal
yet robust effect on model performance.

• POI Embedding Dimension (dpoi): As the dimension increases from 256 to 1024, per-
formance improves significantly, but stabilizes beyond 1024, indicating that overly large
dimensions may introduce redundant information.

In summary, variations in these parameters within a reasonable range have limited impact on the
model’s performance, highlighting the robustness of the model to these hyperparameter settings.

Parameters with Greater Impact: Historical Trajectory Length (M ) and LLM Layers (Nlayers):

• Historical Trajectory Length (M ): As the historical trajectory length increases, performance
steadily improves, suggesting that incorporating more historical information helps the model
better understand past travel patterns and preferences.

• LLM Layers (Nlayers): Performance improves significantly as the number of layers increases
from 3 to 12, indicating that deeper architectures enhance the model’s representational
capacity. However, beyond 6 layers, the performance stabilizes. Considering the trade-off
between efficiency and performance, we chose to use a 6-layer GPT configuration.

This sensitivity analysis demonstrates the robustness of the model to most parameter settings while
identifying key parameters that have a more pronounced effect on performance.

R TRAINING AND INFERENCE TIME

We conducted an in-depth analysis and supplementary experiments focusing on training and inference
times. The results highlight key insights into NextLocLLM’s performance.
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Table 15: Training time comparison

Model Training Time (s/iter)
GRU 0.131
DeepMove 0.155
c-MHSA 0.199
NextLocLLM 0.935

Table 16: Inference time comparison

Model Inference Time (s)
NextLocLLM 229.2
LLM-Mob 95232

For training, the per-iteration training time of NextLocLLM is 0.935 seconds, which is higher
compared to GRU (0.131 seconds), DeepMove (0.155 seconds), and c-MHSA (0.199 seconds).
However, during training, NextLocLLM significantly reduces the computational burden by freezing
most of the LLM backbone parameters and only optimizing a small number of newly added module
parameters. This design not only reduces the number of trainable parameters but also accelerates
model convergence. For instance, on the Xi’an dataset, NextLocLLM converges in approximately
15 epochs. As a result, the total training time is manageable, and the substantial performance
improvement achieved by the model justifies the slightly higher computational cost.

In terms of inference efficiency, NextLocLLM demonstrates a clear advantage. For example, on the
Xi’an dataset, its inference time is 229.2 seconds, which is significantly lower than LLM-Mob’s
95,232 seconds. This efficiency gain can be attributed to two key factors. First, NextLocLLM
supports batch inference, allowing it to predict multiple trajectories simultaneously, in contrast to
LLM-Mob and ZS-NL, which rely on prompt engineering and process trajectories sequentially. This
parallelized design greatly reduces the total inference time. Second, the POI functional attributes for
each location remain consistent across trajectory records. In NextLocLLM, the LLM-enhanced POI
embeddings are precomputed once during data loading and stored for reuse, eliminating the need for
repeated calculations during inference and substantially reducing the computational overhead.

We acknowledge that there is room for improvement in NextLocLLM’s computational efficiency.
In future work, we plan to further optimize the model by exploring techniques such as quantization
and pruning to reduce computational overhead through optimized model weights and structures.
Additionally, we aim to investigate lightweight model designs through distillation methods to further
reduce the model size and enhance real-time performance.

S ANALYSIS OF ZERO-SHOT CAPABILITY

To provide a comprehensive explanation of the model’s performance in zero-shot scenarios, we
conducted an in-depth analysis of the key design components, particularly their contributions to
cross-city tasks, and validated their effectiveness through experiments.

First, we examined the relationship between coordinate-based inputs and zero-shot performance. In
the Xi’an → Chengdu experiment, when using location IDs as inputs, the model performed poorly
in the zero-shot setting, with Hit@1, Hit@5, and Hit@10 scores nearly at 0%. This indicates that
location IDs cannot generalize across cities due to the lack of consistency in ID systems, which fail
to convey structural information inherent in geographic spaces. In contrast, when spatial coordinates
were used as inputs, the model’s performance in the zero-shot scenario improved significantly,
achieving a Hit@1 of 61.96%, Hit@5 of 96.89%, and Hit@10 of 98.86%. This demonstrates that
spatial coordinates provide a universal representation capable of effectively capturing geographic
relationships, thereby enhancing the model’s generalization capability for cross-city tasks.

Second, we investigated the role of prompt prefixs in the model’s zero-shot ability. When prompt
prefixs were removed, the model’s performance dropped noticeably, with Hit@1 decreasing from
61.96% to 45.84%. This result highlights the importance of prompt prefixs in helping the model
understand data characteristics and task objectives. Prompt prefixs provide clear contextual infor-

24



Table 17: Training time comparison

Model Training Time (s/iter)
GRU 0.131
DeepMove 0.155
c-MHSA 0.199
NextLocLLM 0.935

Table 18: Usage of LLM (fully-supervised scenario)

Fully-supervised(Xi’an) Hit@1 Hit @5 HIt @10
NextLocLLM 58.14% 97.14% 99.36%
LLM->Transformer 45.62% 83.25% 88.78%

mation that guides the model to integrate trajectory data, POI embeddings, and other features more
effectively, thereby enhancing its generalization capabilities.

These results clearly demonstrate that NextLocLLM’s zero-shot capability stems from its use of
spatial coordinates, which provide universal geographic information, and prompt prefixs, which
enhance the model’s understanding of the task context and objectives. Together, these innovations
enable NextLocLLM to outperform other LLM-based methods in cross-city tasks.

T USAGE OF LLM

The primary advantage of integrating LLMs into this task lies in their ability to transcend the
limitations of small models. Traditional small models typically rely on statistical patterns extracted
from large trajectory datasets to predict the next location. While effective in data-rich scenarios, these
models often overlook the semantic nature of trajectories—the underlying human behavioral patterns
reflected in the real world. In data-scarce or zero-shot scenarios, where statistical patterns alone
are insufficient, trajectory semantics become critical. LLMs, with their powerful natural language
understanding and reasoning capabilities, excel in capturing the inherent semantics of trajectories,
even with limited data. This is the foundational motivation behind using LLMs as the core design of
our framework.

To maximize the utility of LLMs, we optimized our model to enhance its semantic understanding of
trajectories. First, we employed prompt prefixes to clearly define the prediction task, coupled with
natural language descriptions of POIs to convey their functional attributes. This design leverages the
LLM’s ability to interpret natural language and human behavioral patterns, enabling it to go beyond
learning statistical patterns and uncover the deeper semantic and logical relationships within trajecto-
ries. This capability is particularly beneficial for transfer tasks, where such semantic understanding
significantly boosts performance.

To validate our hypothesis, we conducted experiments where we replaced the LLM in our framework
with a randomly initialized Transformer model and trained it on the same Xi’an dataset. The
results showed that this model performed significantly worse in zero-shot and transfer tasks, with
a particularly notable gap in zero-shot scenarios. This demonstrates the importance of LLM’s pre-
trained knowledge and reasoning capabilities. The LLM effectively utilizes its internal semantic and
logical information to complement the lack of statistical data. Even when the Transformer model was
trained on a large amount of data, its performance still fell short of the LLM, further confirming the
LLM’s unique strengths in transfer tasks.

It is important to note that in fully supervised scenarios with abundant data, small models may hold
certain advantages, such as computational efficiency and faster training times. However, in real-world
applications, data scarcity and transfer tasks are common challenges. In these scenarios, the LLM’s
ability to understand and reason about the semantics of trajectories gives it a clear edge.

25



Table 19: Usage of LLM (Zero-shot scenario)

Fully-supervised(Xi’an->Chengdu) Hit@1 Hit @5 HIt @10
NextLocLLM 61.96% 96.89% 98.86%
LLM->Transformer 31.18% 51.65% 62.71%

Grid Resolution C-MHSA NextLocLLM
Hit@1 Hit@5 Hit@10 Hit@1 Hit@5 Hit@10

500m*500m 50.32% 92.43% 95.38% 58.14% 97.14% 99.36%
200m*200m 40.63% 82.26% 86.77% 50.99% 88.42% 94.77%
50*50 OOM OOM OOM 36.87% 62.95% 72.47%

U INFLUENCE OF GRID RESOLUTION

We conducted experiments on Xi’an to evaluate the performance of NextLocLLM and C-MHSA under
different grid sizes (500m×500m, 250m×250m, and 50m×50m) and analyzed how grid resolution
affects the models’ performance.

The experimental results show that for C-MHSA, finer grid resolutions lead to a noticeable decline in
performance. When the grid size is reduced to 50m×50m, the number of candidate locations increases
substantially, resulting in significantly higher computational overhead and eventually causing an
out-of-memory (OOM) error. In contrast, NextLocLLM, which directly predicts coordinates without
relying on grid partitions, successfully completes predictions even under fine-grained grid settings.
While its performance on metrics such as Hit@1 declines at higher resolutions, it still outperforms
C-MHSA overall, demonstrating robust adaptability to changes in spatial resolution.

This experiment also highlights some areas for potential improvement in NextLocLLM when handling
high-resolution prediction tasks. For instance, under extremely fine grid settings (e.g., 50m×50m), the
model’s performance still has room for enhancement, suggesting that its ability to model coordinate
precision could be further improved.
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Figure 9: Hyperparameter sensitivity analysis
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