
Task Completion Agents are Not Ideal Collaborators

Anonymous Author(s)
Affiliation
Address
email

Abstract

Large Language Model (LLM) agents are increasingly capable of handling complex1

tasks autonomously, but current development and evaluation practices remain2

centered around one-shot task completion. This dominant paradigm fails to account3

for the inherently iterative and collaborative nature of many real-world problems,4

where human goals are often underspecified and evolve over time. This position5

paper argues for a shift in focus: from building and assessing task completion6

agents to developing collaborative agents — those evaluated not just by the quality7

of their final outputs, but by how well they engage with and enhance human8

effort throughout the problem-solving process. To support this shift, we introduce9

collaborative effort scaling, a framework that captures how an agent’s utility10

grows with increasing user involvement. Through case studies and simulated11

evaluations, we show that state-of-the-art agents often underperform in multi-turn,12

real-world scenarios, revealing a missing ingredient in agent design: the ability to13

sustain engagement and scaffold user understanding. Collaborative effort scaling14

offers a new lens for diagnosing agent behavior and guiding development toward15

deeper, more adaptive interaction.16

1 Introduction17

Large Language Model (LLM) agents capable of handling complex tasks are becoming increasingly18

attractive [1–4]. Given a task description, we want agents that can automatically engage in long-form19

reasoning [5–7], interact with environments [8, 9], and use tools effectively [10–12] — with minimal20

human guidance. As a result, agent development has largely focused on producing high-quality, final21

outputs in one shot — what we call task completion agents. These agents are evaluated primarily22

through outcome-based metrics: did the result satisfy the user’s prompt? This framing has also been23

proven operationally convenient and has driven much of the progress in LLM capabilities [13].24

However, this dominant paradigm obscures a fundamental limitation: real-world tasks are rarely25

completed in one shot. Many are inherently iterative and collaborative — requiring the agent not26

just to solve a problem, but to work with a human in navigating it [14–16]. For example, in complex27

knowledge work like data analysis, users may not know exactly what insights they want to dig deeply28

into, until they have seen partial results and uncovered previously unknown constraints. In such cases29

where human goals are inevitably underspecified, When goals are underspecified, agents that assume30

static targets risk producing technically “complete” but practically useless outputs.31

In fact, as we show through diverse case studies across domains like education, data analysis,32

and travel planning (Section 2), such agents frequently underperform in multi-turn settings: They33

prematurely generate overly polished answers that are hard to digest [17], fail to incorporate user34

feedback [18–20], and offer little transparency into their reasoning [21–24].35

What’s missing is a view of agent utility that reflects the process of collaboration, not just its endpoint.36

We argue that desirable collaborator agents should be evaluated on their ability to encourage37

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



and leverage human effort — to inspire users to continuously refine their task specification (e.g.,38

provide users with initial exploratory data analysis instead of full reports), and to draw on and39

amplify user input in ways that improve joint outcomes over time. This view shifts evaluation away40

from static outcomes and towards dynamic interaction trajectories between two usually overlooked,41

human-centered dimensions of collaborative agents (Fig. 1): user effort — how much cognitive42

and investigative work users invest in actively building an understanding of the task or the agent’s43

reasoning process, rather than merely responding to the agent’s clarification prompts; and agent utility44

— how much the agent contributes to the human, not only through improved task outcomes, but also45

by offering additional knowledge and scaffolding.46

Figure 1: Collaboration Scaling.

To better capture such iterative back-and-forth required for complex47

tasks, we take inspiration from the scaling laws in machine learn-48

ing [7, 25], and introduce the concept of collaborative effort scaling:49

A framework that captures how well an agent’s utility impacts, and50

scales with increasing user involvement. Our framework emphasize51

on two desired properties of collaborative agents: (1) Continuous52

usability: Agents should generate greater value with more user effort,53

and (2) Maximum feasibility: Agents should encourage and sustain54

engagement across longer interaction trajectories, especially in tasks55

where deeper understanding or high-stakes decisions are involved.56

As a first attempt, we apply this framework to study existing human57

agent collaboration setups in a simulated environment by Shao et al.58

[26]. In Section 4, we show that current agents are merely mediocre59

collaborators in complex, real-world knowledge tasks like travel60

planning [27] in that the additional user effort frequently leads to61

minimal or no improvement compared to a fully autonomous baseline. In-depth analysis of the62

collaboration reveals key limitations in agents’ collaborative capabilities. A key issue is their reliance63

on a seemingly recursive problem-solving approach: they focus on completing immediate, individual64

tasks or user asks, but fails to come up and operate with an overarching optimal global plan.65

In summary, this position paper advocates for developing collaborative agents and evaluating66

them with collaborative effort scaling. The current approach of optimizing for task completion67

does not yield important collaborative capabilities needed in the iterative process for accomplishing68

long-form tasks; and evaluating via collaborative effort scaling can offer helpful diagnostic insights69

and supports agent development in more challenge and complex real-world tasks.70

2 Task completion agents in collaboration: Cases and Reflections71

Most recent agents share a common, task completion objective: given a task description, the agent is72

expected to take actions to produce an output that satisfies the user’s need. The agent can either be a73

standalone LM [28] or one equipped with tools and can autonomously perceive and take actions in74

an environment [1, 3]. Thanks to their ease of use, these task-to-output pipelines have become the75

dominant mode of interaction. To name a few: Manus [29] and OpenAI Operator [30] automate user76

tasks through web browsing; Cursor [31] and OpenHands [32] generate and edit code on demand.77

We investigate how far this task completion paradigm extends to complex, real-world scenarios.78

Specifically, we examine knowledge-based tasks [33, 18] — those that demand significant human79

involvement for informed decision-making, learning, or creative work. Examples include data80

analysis, literature review and synthesis, or trip planning. A defining feature of these tasks is their81

iterative nature [14, 15]: reaching a satisfactory outcome often requires multiple rounds of refinement.82

To explore how agents perform in such settings, we collaborate with experts across five domains,83

analyzing concrete use cases.84

2.1 Case Studies85

Data analysis. Consider a case where a data scientist works with an agent in Google Colab [34]86

to analyze a coffee survey dataset [35]; their goal is to understand the data and come up with87

informed decisions for their business. After receiving the user’s instructions and multiple steps of88

automated planning and action, the agent presents the user with a full-fledged report, However, this89
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Figure 2: We study five case studies of take completion agents in real-world iterative processes and
distill key takeaways around collaboration success and challenges.

report includes hundreds of lines of code, visualizations, and a summary of the analysis, which is90

challenging to digest; It also glosses over early-stage exploratory analysis. As a result, it contains91

incorrect assumptions that go unnoticed. The data scientist struggles to pose meaningful follow-up92

questions and ultimately overlooks critical insights—such as patterns in regional coffee preferences93

or anomalies in pricing—due to limited transparency into how the conclusions were derived. In this94

case, while the agent technically fulfilled the user’s request, the outcome is suboptimal. The root95

issue lies in the user’s initial inability to fully articulate their analytical goals—often a consequence96

of not yet having a clear understanding of the data. Ideal agent should respect that developing a deep97

understanding of the data is naturally an iterative process. Rather than delivering a one-off report, the98

agent should focus on guiding the user through well-scoped, incremental analyses. By doing so, it99

can support the user in forming sharper questions and arriving at deeper, more actionable insights.100

Reflection on: Data Analysis

What the Agent Currently Does
• Generates full reports with complex code and visuals.
• Presents conclusions without process transparency.
• Assumes static goals from users.

What the Agent Should Ideally Do
• Support iterative exploration of data.
• Expose assumptions and reasoning steps gradually.
• Facilitate goal refinement as insights evolve.

101

Travel planning. Consider the typical use case of travel planning – An American tourist uses a web102

agent such as OpenAI Operator [30] to plan a 7-day trip to Rome. The agent quickly provides a103

detailed itinerary, but fails to explain why certain attractions are included while others are omitted,104

or why specific durations are allocated. This triggers a series of follow-up questions from the105

tourist, which the agent struggles to answer. Worse, as the conversation unfolds, the agent begins106

to misread the tourist’s intent and incorporates misleading or low-quality content from unreliable107

sources. Eventually, the tourist gives up and resorts to manual research, missing out on what could108

have been a more personalized and efficient experience. In this scenario, the novice tourist lacks109

the domain knowledge to interpret the itinerary on their own. This gap in understanding triggers110

unnecessary questions—questions that could have been easily avoided had the agent explained its111

reasoning. And because the user is already uncertain, any error or ambiguity from the agent becomes112

a breaking point, leading them to abandon the interaction entirely.113

Reflection on: Travel Planning

What the Agent Currently Does
• Produces static itinerary from initial input.
• Overloads user with opaque or generic suggestions.
• Misinterprets user intent during follow-up.
• Breaks user trust with low-quality content.

What the Agent Should Ideally Do
• Support iterative sensemaking of travel options.
• Explain rationale behind recommendations.
• Respond constructively to evolving feedback.
• Maintain reliabibility across the interaction.

114

Financial advising. Consider a 35-year-old client who recently purchased their first home and115

welcomed their first child seeking personalized financial guidance from an LLM agent [36, 37].116

After they provide basic information about their income and goals, the agent delivers comprehensive117

recommendations including investment allocations and insurance coverage. However, after discussing118

with colleagues, the client realizes their original self-assessments of goals and risk tolerance were119
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flawed and not well-calibrated for their social context and location. When the client tries to correct120

these assumptions and clarify their conservative investment preferences, the agent continues to suggest121

mismatched, aggressive strategies, leading to a loss of trust and the need for manual corrections.122

In this case, the agent’s plan is again suboptimal because it prematurely locked in the user’s initial123

preferences—despite the user’s limited familiarity with the financial decision space—and failed to124

adapt as those preferences evolved. Ideally, the agent should support the user’s sensemaking of the125

domain and, at a minimum, accommodate updated assumptions to reduce the mismatch between126

advice and context.127

Reflection on: Financial Advising

What the Agent Currently Does
• Relies on a single-shot user self-assessment.
• Treats initial preferences as fixed throughout the session.
• Fails to adapt suggestions to new user insights.

What the Agent Should Ideally Do
• Support users on reflective decision-making.
• Allow for dynamic re-evaluation of financial goals.
• Revisit assumptions as user awareness evolves.

128

Education. Consider a high school student struggling with mathematical concepts they’ve encoun-129

tered in class, unsure how to proceed with a homework assignment, and turning to a large language130

model (LLM) for assistance. The agent provides step-by-step answers, helping the student complete131

the task efficiently. However, it does not engage with what the student does or does not understand,132

nor does it adapt its explanations. As a result, the student completes the homework without building133

true comprehension, leading to poor performance in subsequent assessments [38]. In such a learning-134

oriented setting, the goal is not merely to fulfill the student’s immediate request; it is to explain135

concepts in a way that equips the student to complete the assignment and internalize generalizable136

principles that support transfer learning. Achieving this requires more than correct answers—it137

requires adaptation and interaction. Furthermore, such effective learning also requires personalization138

— the LLM needs to engage with the student in an iterative process to understand what the student139

does not understand and what sorts of explanations click for the student.140

Reflection on: Education

What the Agent Currently Does
• Prioritizes task completion over deep understanding.
• Offers direct answers without probing comprehension.
• Lacks responsiveness to student learning signals.

What the Agent Should Ideally Do
• Adapt explanations to the student’s level and gaps.
• Encourage active learning through targeted questions.
• Balance short-term help with long-term learning goals.

141

Math discovery. Finally, another promising trend of the agents is to work with researchers and push142

frontiers in scientific discovery. A math professor shared an example of how they’ve used various143

language models (or agents) to support the proof of a novel theorem. Through multiple interactions,144

the agent generates many proof attempts, most of which contain subtle errors. While one conjecture145

generated by the agent sparks useful insight, the professor later reflects that it would have been faster146

to work without the agent, due to the time spent verifying flawed suggestions and lack of rigorous147

reasoning support.148

Reflection on: Math Discovery

What the Agent Currently Does
• Suggests proofs with subtle but critical flaws.
• Lacks self-verification or explanation of logic.
• Increases user workload via repeated error-checking.

What the Agent Should Ideally Do
• Collaborate through structured, step-wise reasoning.
• Flag uncertainty and validate intermediate steps.
• Augment—not hinder—the user’s scientific process.

149

2.2 Desiderata for Interactive Agents: User Effort, Agent Utility, and Their Interactions150

Across all the case studies, a common pattern emerges: agents technically fulfill user re-151

quests—generating plausible data summaries, travel itineraries, financial plans, and so on. From a152

narrow task completion standpoint, they appear to be doing a reasonable job; yet the resulting outputs153

are consistently suboptimal. This disconnect stems from a fundamental misalignment: agents assume154

that the user’s initial task description fully captures their underlying needs. However, in practice,155

this is rarely the case: Most real-world task specifications are inherently underspecified—for two key156

reasons: First, tasks evolve. As users gain more information, they often revise their goals or discover157

constraints that shift their priorities. In the financial advising example, the client expresses very158
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different preferences after gaining a better understanding of the domain. Similarly, the data scientist159

might have asked entirely different questions had they engaged earlier in exploratory analysis. Second,160

the initial request often reflects a narrow surface-level goal that fails to capture the user’s deeper161

objective. When a tourist asks for an itinerary, they don’t just want a list of places — they want to de-162

velop a sense of what’s worth seeing and why. When a student asks for homework help, their broader163

goal (or at least, it should be) is to understand the concepts well enough to succeed beyond the current164

assignment. These cases underscore two user-centered dimensions that task-completion-focused165

agents tend to ignore:166

• Agent utility: We usually evaluate agent utility narrowly based on final output quality. But in167

tasks with evolving goals, intermediate results — especially ones that help users calibrate their168

understanding — can be far more valuable than a polished endpoint. Here, the utility should be169

more broadly defined, by e.g. the additional knowledge they offer to users. Likewise, when the170

immediate task is a subgoal of a broader objective, the agent utility should be defined to emphasize171

long-term gains (e.g., learning or strategic planning) over short-term task completion.172

• User effort: Many agents aim to minimize user involvement, or treat users primarily as providers173

of clarification. But in open-ended knowledge work, user engagement is not a nuisance—it is part174

of the process. Across the case studies, users are expected to (1) build understanding (e.g., of the175

dataset, financial options, or travel destination), and (2) inspect and build on the agent’s reasoning176

(e.g., in scientific or educational contexts). These efforts shouldn’t be minimized; rather, they177

should be strategically supported—and, when appropriate, even amplified. 1178

• Interaction between the two: Crucially, agent utility and user effort are interdependent. On one179

hand, user engagement is only productive when the agent produces outputs that are interpretable180

and actionable. Users may easily disengage if they find it difficult to follow up (as in the data181

analysis case), or if they get trapped in unnecessary clarifications (as in the travel case) or unfruitful182

interactions (as in financial advising) On the other hand, agent utility can only increase when users183

are asking meaningful, well-scoped questions that the agent can meaningfully support and answer.184

185 These observations lead us to a broader argument: agents tackling complex tasks must be funda-186

mentally collaborative. That means: (1) rather than just delivering results, agents should actively187

involving users in a process of shared discovery; (2) Rather than optimizing for minimal input, agents188

should be designed to effectively leverage user effort as part of the solution process.189

We therefore propose that agent effectiveness in such settings should be evaluated not solely based on190

final outcomes, but on how those outcomes are reached — whether the agent can effectively involve191

the users as they work together towards the final goal. To capture this, we take inspiration from the192

scaling laws in machine learning, and propose collaborative effort scaling — to examining the193

extent to which an agent’s utility scales with the amount and quality of user effort, visualized as the194

trajectory in Figure 1. Specifically, we highlight two desired goals for a collaborative agent derived195

from the trajectory:196

• Continuous usability: Agents should generate greater value with more user effort — either by197

providing immediate gains from user contributions, or by enabling better final outcomes.198

• Maximum feasibility: Agents should encourage and sustain engagement across longer interaction199

trajectories, especially in tasks where deeper understanding or high-stakes decisions are involved.200

Drop-off due to poor responses, misunderstandings, or unproductive interactions should be treated201

as a critical failure.202

We formalize such notions in the next section.203

3 Operationalizing collaborative effort scaling evaluation204

Building and evaluating collaborative agents that conceptually described above require operational-205

izing the notions of human effort and agent utility. Here, we formalize these notions highlight key206

metrics that could be derived to reflect the collaborative effort scaling.207

1We do not disagree that certain tasks are suitable for full automation with minimum human supervision
(thus they are naturally suitable for the task completion paradigm). Still, we believe that there exist such tasks
that human procedural involvement can still provide value, c.f. Haupt and Brynjolfsson [39] and Brynjolfsson
[40], thus necessitating the iterative process for human-agent collaboration.
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Figure 3: Collaboration rounds.

Formalization of human-agent collaboration.208

Following recent work [26], we describe the209

human agent collaboration process with a Par-210

tially Observable Markov Decision Process211

(POMDP) [41]. We study the joint action212

trace between the human and agent: a =213

[a
(l1)
1 , a

(l2)
2 , . . . , a

(lT )
T ], where T is the total214

number of steps, and lt ∈ {H, A} indicates which party is taking action at step t. Each action215

is based on a corresponding context window c = [c
(l1)
1 , c

(l2)
2 , . . . , c

(lT )
T ]. The handoff between human216

and agent breaks down the whole collaboration process into rounds: ak = a[ik:jk], where ik and jk217

are the start and end step of the action. As shown in Fig. 3, one round may start with a user action218

and followed with multiple agent actions, possibly including silent internal steps such as planning or219

retrieval—or an actual output update (e.g., generating a revised itinerary). Likewise, a user might act220

several times before handing control back. Likewise, the user may take several actions in a row.221

The entire procedure can be further divided into two distinct stages. The first is the initial request222

stage, during which the agent produces a preliminary draft of the output. This stage concludes when223

aAi generates the first substantial version at step i. Following this, the process transitions into a224

refinement stage, where the agents iteratively adjust and improve the output in response to human225

feedback. We consider these two stages in our subsequent metric definitions.226

We note that, in this broad framing, both human effort E and agent utility U could be approximated227

in various different ways. For instance, a basic measure of human effort could be the number of228

human-led rounds, |aH|. This can be enriched by summing the contextual tokens the human processes229 ∑
cA, which captures not just frequency but also cognitive load – “Is this easy to read and respond230

to?” Additionally, effort may reflect action type: if users default to vague queries in response to231

specific model errors, this might signal that parsing or evaluating the context is prohibitively hard—so232

users defer the burden by moving the conversation forward.233

Similarly, agent utility could be tied to per-round performance score Pk when utility is focused on the234

agent outcome. In more granular setups, utility could also consider additional aspects that move the235

collaborative team positively towards the final outcome, even if the output is not updated in certain236

rounds. For example, a positive move could also be the agent correctly resolves user clarifications or237

provides more information, even if the final answer is unchanged.238

Mapping trajectory to metrics. With the human effort and agent utility forming the trajectory in239

Figure 1, we can further capture the key metrics related to usability and feasibility:240

• Overall utiltiy. Here, we assess: Given unlimited human effort, what’s the maximum value an
agent can provide? We define a utility function across the entire interaction period, as

U =
1

N

N∑
i=1

maxU
(i)
k ,

where N is the total number of instances in the evaluation (e.g. number of travel planning requests),241

and maxU
(i)
k represents the maximum utility value (approximated in certain ways) for one given242

instance i.243

• Refinement gain. Furthermore, building on the intuition that most of the interaction value comes
from the refinement stage (i.e., most people will interact with the model at least until they get the
first draft), we further define a metric more focused on the additional gain from the refinement. We
define G as the performance improvement after the first major update:

G =
1

N

∑N

i=1
maxU

(i)
k − U

(i)
k′
i
,

where k′i is the first round where the agent updates the output for the i-th task.244

• Feasibility drop. We formalize the observation that when an agent fails to make consistent progress
in the collaboration, the user may stop interacting due to frustration and dissatisfaction, and measure
the feasibility utility — performance reached according to certain no-progress tolerance, defined
by a tolerance threshold τ . For the i-th task, the user will stop the collaboration at step ki,τ if the
agent fails to make satisfactory progress for at most τ rounds. The performance drop under τ is
defined as

D@τ =
1

N

∑N

i=1
U

(i)
ki,τ

− U
(i)
Ki

.
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Notice that, in this case, we contrast P (i)
ki,τ

with P
(i)
Ki

, the performance of the agent at the end of the245

collaboration process, as a counterfactual measurement of the performance the agent can achieve if246

the user continues to interact with the agent.247

4 Applying collaborative effort scaling evaluation in simulated experiments248

We showcase the benefit of our framework through a simulation study, following recent work that249

approximates human behaviors [42–44]. Specifically, we simulate users with LLMs interacting with250

agents, and adopt the simplest proxies for measurement: we use the round performance score Pk as a251

stand-in for utility, and the number of rounds as a proxy for human effort.2 This setup deliberately252

oversimplifies our broader framework, but enables a first step in a controlled environment—letting253

us sidestep the challenges of handling diverse user inputs or selecting the most faithful proxies. As254

we show below, even this minimal instantiation is sufficient to highlight differences between agents255

powered by different LLMs and prompts.256

4.1 Experimental details257

Setup. We use the Collaborative-Gym [26] environment that allows for asynchronous human and258

agent actions, which mimics the realistic interaction process. In this study, we focus on the travel259

planning task [27]: Given an initially high-level description of the user’s travel goal, e.g., “Help me260

plan a 5-day trip from Omaha to Michigan starting on 2022-03-19”, the agent will work with the261

simulated user to draft a travel plan that includes the itinerary, accommodation, and transportation.262

Throughout an iterative collaboration process, the agent can elicit the user’s latent preferences and263

constraints, and both parties can use tools for retrieving travel information and edit the final travel264

plan together. We use the identical 101 subset of the travel planning dataset in the co-gym paper.265

Metric. The agent performance is measured by the quality of the generated travel plan. We adopt266

the script by Xie et al. [27] that uses an LM to determine whether the derived plan satisfies common267

sense (commonsense pass rate) or user constraints (constraint pass rate), and report the arithmetic268

average as the performance. The same evaluation is used for both the output or any intermediate269

rounds with a travel plan updated to obtain Pk.270

Implementation. The co-gym environment comes with an automated agent implementation based on271

the RaAct framework [45], as well as two collaborative agent implementations: one- and two-stage272

planning agents. In the process, the collaborative agent can opt to send a message to send messages273

to the simulated user. The difference between the one- and two-stage planning agent is that the274

latter is incorporates an additional planning step to determine whether to collaborate given the current275

state of the task and the user. We test three LMs, i.e., GPT-4o (gpt-4o-2024-08-06), Claude-3.5-276

sonnet (claude-3-5-sonnet-20241022), and Llama-3.1-70B: the agent prompts remain the same277

when we test with different LMs.278

Figure 4: The collaborative scaling curve comparing different
models and agent implementations.

Simulated user. The simulated user279

is also a prompted agent based on280

gpt-4o with additional access to the281

user’s preferences and goals of the282

task. Besides taking actions and pro-283

viding feedback, it also gives a satis-284

faction rating for the agent’s action285

during one round: for a round of ac-286

tions ak, it produces a 5-point likert287

score that assess the agents’ determin-288

ing if the agent actions are making289

process towards the end goal. The in-290

teraction stops when either party finds291

the task is done or the total interaction292

actions exceeds a maximum number293

of 30 rounds.294

2In some cases, agents may not update their output (e.g., only conducting searches or requesting more user
information); in such cases, we prefill with the previous performance score Pk−1, with P0 = 0.
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Table 1: Different metrics for the one- and two-stage collaboration planning agents for the travel plan task.

Automated
Baseline

Utility Refinement Gain Feasibility Drop

Model Name First update Final step Overall Abs. Rel. Abs. Rel.

One-stage Collaboration Planning

claude3sonnet 0.572 0.396 0.441 0.450 0.054 13.6% -0.131 -29.7%
gpt4o 0.518 0.483 0.479 0.507 0.024 4.9% -0.099 -20.8%

llama3-70b 0.482 0.498 0.496 0.534 0.036 7.1% -0.090 -18.0%

Two-stage Collaboration Planning

claude3sonnet 0.572 0.647 0.637 0.687 0.040 6.2% -0.215 -33.7%
gpt4o 0.518 0.497 0.492 0.544 0.047 9.5% -0.194 -39.3%

llama3-70b 0.482 0.514 0.498 0.539 0.025 4.9% -0.154 -30.9%

4.2 Results and findings295

Fig. 4 shows the performance change during the collaboration process for different models and296

agents. Overall, we find that agent based on different LMs show a generally similar collaborative297

effort scaling trend: there is a process of improvement in the beginning of collaboration, and the298

performance plateaus after around 5 rounds of interaction for all the agents.299

Surprisingly, for gpt4o and Llama-70B, we find that collaborating with the user does not lead to better300

performance compared to the fully autonomous baseline. After inspecting the event log, we find that301

the collaborative version has a stronger tendency to get into loops of actions, resulting less effective302

collaboration and lower performance. Neither does the collaborative agent implementation leads very303

different performance.304

Quite differently, the two-stage collaboration strategy leads to a significant performance boost for305

the claude model. Not only it achieve better performance than the one-stage planning version, but306

it also gets much better performance against the automated baseline. The metrics in Table 1 offers307

additional insights: despite the claude model has the best refinement gain in the one-stage planning308

case, the lower utility of the first update hinders the subsequent improvement. It shows that, while the309

two-stage collaboration planning agent may take a bit extra effort at the beginning (initially lower blue310

line in Fig. 4 right), it can lead to a better first product, which is crucial for a good final performance.311

5 Discussion: Rethinking Agents through Utility and Effort312

Our results suggest that current agent architectures are not just underperforming — they are misaligned313

with how real collaboration works. Here, we reflect on how to use utility and effort — the two314

fundamental dimensions of our framework – to rethink about agent design.315

Utility and effort need thoughtful, human-centered proxy design One theme from our case316

study (which is also a limitation of our simulation) is that existing proxies for “success” — final317

task output, correctness, or superficial engagement — are not adequate. Both utility and effort are318

richer, more nuanced concepts. They evolve across time, vary by context, and often manifest in subtle319

human behaviors. For effort, we need to consider not just frequency of interaction, but cognitive load,320

sensemaking behavior, or even confusion. For utility, we must move beyond output quality to account321

for how the agent scaffolds understanding, encourages productive exploration, or clarifies ambiguity.322

User’s interaction logs like edit histories, request timing, clarification patterns, etc. might help323

approximate such dimensions, similar to recent design of adaptive programming suggestions [46].324

Mixed-initiative interaction should be structured by effort-utility trajectories It is not enough for325

agents to “respond well” to user prompts — they must know when to act, how to take initiative, and326

when to defer. This timing and control dynamic — often described as mixed-initiative interaction [47]327

— should be structured around the evolving effort-utility trajectory. An agent should step in when user328

progress stalls, prompt clarification when utility is plateauing, or relinquish control when users are329

gaining momentum. Critically, this requires not just good training data, but an interaction framework330

that models collaboration as a dynamic control problem. Rather than hardcoding turn-taking rules or331
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relying on rigid role assignment, agents should continuously infer where in the trajectory they are,332

and adjust accordingly.333

Humans evolve during interaction — agents should be trained to encourage such shifts and334

adapt accordingly. One of the most underappreciated facts in human-agent collaboration is that335

users change. Their goals sharpen, assumptions shift, understanding deepens. Agents that assume336

static intent inevitably fail when these changes occur. Our case studies consistently show how quickly337

initial inputs become outdated. This means that agents should not be built with the goal of reducing338

effort or maximizing task efficiency, and should not only request inputs from humans when they want339

to ask clarification questions. Instead, future training of agents should be trained towards certain340

utility signals that can potentially directly contribute to human evolvement, even if it means the341

agent would engage in seemingly inefficient steps from a task outcome prospective — including342

backtracking, exploration, hypothesis generation, etc.343

6 Related work344

From Human-AI to Human-Agent Collaboration. Prior research has studied human “collabora-345

tion” and “teaming” with AI [48–50], proposing design guidelines for effective human-AI interac-346

tions [51, 52]. However, prior research focuses on AI outputs that operate within more constrained347

parameters: their capabilities are often limited to single tasks. In contrast, modern LLM agents348

that can access and execute tools to interact with external environments and have some form of349

memory can enable more dynamic and sophisticated interaction patterns [4, 1–3]. For example, a350

user can use Magentic-One [53] as a general assistant to complete web tasks or OpenHands [54]351

as a pair programmer for software development. In light of new agent development, we contribute352

to guidelines for effective human-agent interaction and call for the community to more carefully353

consider how to design agents for effective human collaboration.354

Agent Benchmarks and Evaluation. Many benchmarks have been introduced to evaluate agent355

task completion capabilities across varying domains [55, 8, 56–58]. Each benchmark follows a356

similar structure: given a task description, agents are designed to create a plan, execute multiple357

tasks, and analyze novel situations to achieve the specified goal [59]. For example, SWE-Bench358

evaluates agents’ abilities to fix bugs in code repositories [55], Web Arena measures agents’ abilities359

to navigate the web and autonomously complete tasks [8], and GAIA tests agents’ abilities to serve360

as general assistants to gather and synthesize information from the web and processes multimodal361

data [56]. While these benchmarks are useful for evaluating agent progress, they do not capture the362

practical interactive usage of agents by humans.363

Recent work has proposed interactive evaluations to mimic real-world interaction scenarios [60, 61,364

26]. For a given task, such as creative writing, interactive evaluations for human-AI collaboration365

focus on evaluating both (1) intermediate progress and (2) final outputs. However, these setups largely366

focus on scenarios where each step involving the AI is usually small and self-contained, making367

the decision of when to invoke the AI model and what result to return relatively straightforward.368

Translating model performance to helpful collaboration is already non-trivial in traditional human-AI369

collaboration, and the complex nature of AI agents only exacerbates this challenge. In particular,370

we focus our discussions on evaluating how user effort and agent utility scale through multiple371

interactions.372

7 Conclusion373

In this paper, we advocate for auditing and evaluating the human-agent collaboration process. Current374

agent benchmarks often treat the collaboration process as implicit or secondary to task completion,375

focusing primarily on outcome-based metrics. Through case studies with experts from five domains,376

we distill desiderata for effective collaboration that extend beyond mere task completion. Based377

on these insights, we introduced collaborative effort scaling as a framework that evaluates how378

effectively agents leverage and enhance human input throughout interaction trajectories. It helps379

us study the collaboration process and identify current agent limitations in a simulated experiment380

on travel planning. As agents are increasingly integrated into complex scenarios with inherently381

underspecified goals, measuring and optimizing for collaborative dynamics will be important, and we382

advocate a wide adoption of our framework in such settings.383
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