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Abstract

Current evaluations of agents remain centered around one-shot task completion,
failing to account for the inherently iterative and collaborative nature of many
real-world problems, where human goals are often underspecified and evolve. We
argue for a shift from building and assessing task completion agents to developing
collaborative agents, assessed not only by the quality of their final outputs but
by how well they engage with and enhance human effort throughout the problem-
solving process. To support this shift, we introduce collaborative effort scaling, a
framework that captures how an agent’s utility grows with increasing user involve-
ment. Through case studies and simulated evaluations, we show that state-of-the-art
agents often underperform in multi-turn, real-world scenarios, revealing a missing
ingredient in agent design: the ability to sustain engagement and scaffold user
understanding. Collaborative effort scaling offers a lens for diagnosing agent
behavior and guiding development toward more effective interactions.

1 Introduction

Figure 1: Compared to traditional task-
completion-based agent evaluation (grey), our
collaborative effort scaling framework can de-
tect different types of agent behavior considering
the trade-off between user effort and joint util-
ity (green, orange, and blue). An ideal agent
provides value as users spend more effort—
“interaction sustainability”—and “maximizes us-
ability” to allow for sufficient user interaction
and avoid early termination.

Large Language Model (LLM) agents capable of
handling complex tasks are becoming increasingly
attractive [60, 59, 13, 54]. Given a task descrip-
tion, we want agents that can automatically en-
gage in long-form reasoning [45, 18, 44], interact
with environments [66, 28], and use tools effec-
tively [63, 24, 35, 53]—with minimal human guid-
ance. As a result, agent development has largely
focused on producing high-quality, final outputs
in one shot, which we refer to as task comple-
tion agents. These agents are evaluated primarily
through outcome-based metrics: did the result sat-
isfy the user’s prompt? This framing has also been
proven operationally convenient and has driven
much of the progress in LLM capabilities [52].

However, this dominant paradigm obscures a fun-
damental limitation: real-world tasks are rarely
completed in one shot. Many are inherently itera-
tive and collaborative, requiring the agent not just
to solve a problem but to work with a human in
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navigating it [37, 49, 61]. For example, in complex knowledge work (e.g., data analysis), users may
not know exactly what insights they want to explore until they have seen partial results and uncovered
previously unknown constraints. In such cases where human goals are inevitably underspecified,
agents that assume static targets risk producing technically “complete” but practically useless outputs.

In fact, as we show through diverse case studies across domains like education, data analysis,
and travel planning (Section 2), such agents frequently underperform in multi-turn settings: They
prematurely generate overly polished answers that are hard to digest [29, 9], fail to incorporate user
feedback [39, 50, 6], and offer little transparency into their reasoning [34, 56, 32, 31]. However,
human input can play a critical role in refining the task specification after multiple agent steps or to
draw on and amplify user input in ways that improve joint outcomes over time. These limitations
illustrate how agent utility is a product of the collaboration process, not just its endpoint. We argue
that desirable collaborator agents should be evaluated on their ability to appropriately leverage
human effort to improve task completion.

So, how do we measure how well agents can collaborate with humans? Evaluating agents for their
collaboration abilities requires shifting away from only measuring static outcomes and towards
dynamic interaction trajectories. We argue that evaluations should incorporate two human-centered
dimensions of collaborative agents (Figure 1):

• User Effort — how much cognitive and investigative work users invest in the collaboration process,
which may involve actively building an understanding of the task or the agent’s reasoning process,
or simply answering the agent’s clarification prompts;

• Utility of Joint Actions — how much the joint human and agent team can accomplish together,
reminiscent of joint human-AI team performance studied in prior literature [5].

Taking inspiration from the scaling laws in machine learning [21, 26], we capture these two dimen-
sions through the concept of collaborative effort scaling: a framework that captures how well an
agent’s utility impacts and scales with increasing user involvement. Our framework naturally leads
to studying two desired properties of collaborative agents: interaction sustainability, where agents
should generate greater value with more user effort, and maximum usability, where agents should
encourage and sustain engagement across longer interactions when needed, especially in tasks where
deeper understanding or high-stakes decisions are involved.

As a first attempt, we apply this framework to study existing human agent collaboration setups in a
simulated environment by Shao et al. [51]. In Section 4, we show that current agents are merely
mediocre collaborators in complex, real-world knowledge tasks like travel planning [62] in that the
additional user effort frequently leads to minimal or no improvement compared to a fully autonomous
baseline. Analysis of the collaboration reveals key limitations in agents’ collaborative capabilities. A
key limitation is their reliance on a seemingly recursive problem-solving approach: they focus on
completing immediate, individual tasks or user asks, but fail to develop and follow a coherent global
plan for meaningful, long-term interactions necessary for the task.

In summary, we advocate for developing collaborative agents and evaluating them with col-
laborative effort scaling. The current approach of optimizing for task completion does not yield
important capabilities needed in the iterative process for accomplishing long-form tasks. Our results
show how evaluating via collaborative effort scaling can offer helpful diagnostic insights and support
agent development in more challenging and complex real-world tasks.

2 Task completion agents in collaboration: Cases and Reflections

Agents typically follow a standard paradigm: given a task description, they act to produce an
output satisfying the user’s need. These agents may be standalone LLMs [4] or tool-augmented
systems capable of autonomous perception and action [60, 13]. Such paradigms now dominate user
interactione.g., Manus [41] and OpenAI Operator [46] automate web tasks, while Cursor [11] and
OpenHands [2] handle code generation and editing. We examine how well this paradigm applies
to complex knowledge-based tasks [40, 39] that demand human judgment, learning, and creativity
across five domains.
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Figure 2: We study five case studies of task completion agents in real-world iterative processes and
distill key takeaways around collaboration success and challenges.

2.1 Case Studies

Data analysis. Consider a data scientist who works with an agent in Google Colab [15] to analyze a
coffee survey dataset [16]; their goal is to understand the data and make informed decisions for their
business. After receiving the user’s instructions and multiple steps of automated planning and action,
the agent presents the user with a full-fledged report. However, this report includes hundreds of lines
of code, visualizations, and a summary of the analysis, which is challenging to digest. As a result, it
contains incorrect assumptions that go unnoticed. The data scientist struggles to pose meaningful
follow-up questions and ultimately overlooks critical insightssuch as patterns in regional coffee
preferences or anomalies in pricingdue to limited transparency into how the conclusions were derived.
In this case, while the agent technically fulfilled the user’s request, the outcome is suboptimal. An
ideal agent should respect that developing a deep understanding of the data is naturally an iterative
process. Rather than delivering a one-off report, the agent should focus on guiding the user through
incremental analyses.

Reflection on: Data Analysis

Current Agents
• Generates full reports with complex code and visuals.
• Presents conclusions without process transparency.
• Assumes static user goals.

Ideal Agents
• Allow iterative exploration.
• Expose assumptions and reasoning steps gradually.
• Facilitate goal refinement as insights evolve.

Travel planning. Consider the typical use case of travel planning—an American tourist uses a web
agent such as OpenAI Operator [46] to plan a 7-day trip to Rome. The agent quickly provides a
detailed itinerary but fails to explain why certain attractions are included while others are omitted,
or why specific durations are allocated. This triggers a series of follow-up questions from the
tourist, which the agent struggles to answer. Worse, as the conversation unfolds, the agent begins
to misread the tourist’s intent and incorporates misleading or low-quality content from unreliable
sources. Eventually, the tourist gives up and resorts to manual research, missing out on a more
personalized experience. In this scenario, the novice tourist lacks domain knowledge to interpret the
itinerary on their own. This gap triggers unnecessary questions that could have been easily avoided
had the agent explained its reasoning. Because the user is already uncertain, any error or ambiguity
becomes a breaking point, leading them to abandon the interaction entirely.

Reflection on: Travel Planning

Current Agents
• Produces static itinerary from initial input.
• Overloads user with opaque suggestions.
• Misinterprets user intent during follow-up.
• Breaks user trust with low-quality content.

Ideal Agents
• Support iterative sensemaking of travel options.
• Explain rationale behind recommendations.
• Respond constructively to evolving feedback.
• Maintain reliability across the interaction.

Financial advising. Consider a client seeking financial guidance from an LLM agent after recently
purchasing their first home and welcoming their first child [38, 14]. After they provide basic
information about their income and goals, the agent delivers comprehensive recommendations about
investment allocations and insurance coverage. However, after discussing with colleagues, the client
realizes their original self-assessment of goals and risk tolerance were flawed and not well-calibrated
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for their household’s needs and market conditions. When the client tries to correct these assumptions
and express more conservative investment preferences, the agent struggles to reconcile this new
information and makes contradictory recommendations with hallucinated justifications for risky
allocations [55]. In this case, the agent’s plan is again suboptimal because it prematurely locked in
the user’s initial preferencesdespite the user’s limited familiarity with the financial decision spaceand
failed to press the user further or adapt as it became clear that those preferences evolved. Ideally,
the agent should support the user’s sensemaking of the domain and, at a minimum, accommodate
updated assumptions to reduce the mismatch between advice and context.

Reflection on: Financial Advising

Current Agents
• Relies on a single-shot user self-assessment.
• Cannot reconcile conflicting user preferences.
• Misinterprets user preferences.

Ideal Agents
• Support users on reflective decision-making.
• Allow dynamic re-evaluation of user goals.
• Revisit assumptions as user awareness evolves.

Education. Consider a high school student struggling with mathematical concepts they’ve encoun-
tered in class, unsure how to proceed with a homework assignment, who turns to a large language
model (LLM) for assistance. The agent provides step-by-step answers, helping the student complete
the task efficiently. However, it does not engage with what the student does or does not understand,
nor does it adapt its explanations. As a result, the student completes the homework without building
true comprehension, leading to poor performance in subsequent assessments [7]. In such a learning-
oriented setting, the goal is not merely to fulfill the student’s immediate request; it is to explain
concepts in a way that equips the student to complete the assignment and internalize generalizable
principles that support transfer learning. Achieving this requires more than correct answers; the agent
should adapt appropriately to what the student does or does not understand [48].

Reflection on: Education

Current Agents
• Prioritizes task completion over deep understanding.
• Offers direct answers without probing comprehension.
• Lacks responsiveness to student learning signals.

Ideal Agents
• Adapt explanations to the student’s level and gaps.
• Encourage active learning through targeted questions.
• Balance short-term help with long-term learning

goals.

Math discovery. Finally, another promising trend of the agents is to work with researchers and push
frontiers in scientific discovery. A math professor shared an example of how they’ve used various
language models (or agents) to support the proof of a novel theorem. Through multiple interactions,
the agent generates many proof attempts, most of which contain subtle errors. While one conjecture
generated by the agent sparks useful insight, the professor later reflects that it would have been faster
to work without the agent, due to the time spent verifying flawed suggestions and lack of rigorous
reasoning support.

Reflection on: Math Discovery

Current Agents
• Suggests proofs with subtle but critical flaws.
• Lacks self-verification or explanation of logic.
• Increases user workload via repeated error-checking.

Ideal Agents
• Collaborate through structured, step-wise reasoning.
• Flag uncertainty and validate intermediate steps.
• Augmentnot hinderthe user’s scientific process.

2.2 Desiderata for Interactive Agents

Across all the case studies, a common pattern emerges: agents technically fulfill user requestsgen-
erating plausible data summaries, travel itineraries, financial plans, and so on. From a narrow task
completion standpoint, they appear to be doing a reasonable job, yet the resulting outputs are con-
sistently suboptimal. This disconnect stems from a fundamental misalignment: agents assume that
the user’s initial task description fully captures their underlying needs. However, in practice, this is
rarely the case.

Most real-world task specifications are inherently underspecifiedfor two key reasons: First, tasks
evolve. As users gain more information, they often revise their goals or discover constraints that
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Figure 3: We use the handoff between human and agent to split the collaboration process into rounds:
each round may contain zero or more user actions.

shift their priorities. In the financial advising example, the client expresses very different preferences
after gaining a better understanding of the domain. Similarly, the data scientist might have asked
entirely different questions had they engaged earlier in exploratory analysis. Second, the initial
request often reflects a narrow surface-level goal that fails to capture the user’s deeper objective.
When a tourist asks for an itinerary, they don’t just want a list of places—they want to develop a
sense of what’s worth seeing and why. When a student asks for homework help, their broader goal is
likely to understand the concepts well enough to succeed beyond the current assignment to do well
on assessments. These cases underscore two user-centered dimensions that task-completion-focused
agents tend to ignore:

• Agent utility: Agent utility is often narrowly evaluated based on final output quality. In tasks with
evolving goals, intermediate results—especially ones that help users calibrate their understanding—
can be far more valuable than a polished endpoint. Utility should be more broadly defined (e.g., by
the additional knowledge they offer to users). Likewise, when the immediate task is a subgoal of a
broader objective, the agent’s utility should be defined to emphasize long-term gains (e.g., learning
or strategic planning) over short-term task completion.

• User effort: Many agents aim to minimize user involvement or treat users primarily as providers
of clarification. But in open-ended knowledge work, user engagement is not a nuisance—they
are often an active part of the process. Users are expected to (1) build understanding (e.g., of the
dataset, financial options, or travel destination) and (2) inspect and build on the agent’s reasoning
(e.g., in scientific or educational contexts).

• Interaction between the two: Agent utility and user effort are interdependent. On one hand,
user engagement is only productive when the agent produces outputs that are interpretable and
actionable. Users may easily disengage if they find it difficult to follow up (as in the data analysis
case), or if they get trapped in unnecessary clarifications (as in the travel case) or unfruitful
interactions (as in financial advising). On the other hand, agent utility can only increase when users
are asking meaningful questions that the agent can support and answer.

These observations lead us to a broader argument: agents tackling complex tasks must be fundamen-
tally collaborative. That means (1) rather than just delivering results, agents should actively involve
users in a process of shared discovery, and (2) rather than optimizing for minimal input, agents should
be designed to effectively leverage user effort as part of the solution process.

We therefore propose that agent effectiveness in such settings should be evaluated not solely based
on final outcomes but on how those outcomes are reached. Taking inspiration from the scaling laws
in machine learning, we introduce collaborative effort scaling to examine the extent to which an
agent’s utility scales with the amount and quality of user effort, visualized as the trajectory in Figure 1.
Specifically, we highlight two desired goals for a collaborative agent derived from the trajectory:

• Interaction sustainability: Agents should generate greater value with more user effort—either by
providing immediate gains from user contributions or by enabling better final outcomes.

• Maximum usability: Agents should encourage and sustain engagement across longer interaction
trajectories when needed, especially in tasks where deeper understanding or high-stakes decisions
are involved. Drop-off due to poor responses, misunderstandings, or unproductive interactions
should be treated as a critical failure.

3 Operationalizing collaborative effort scaling evaluation

Formalization of human-agent collaboration. Following recent work [51], we describe the human-
agent collaboration process with a Partially Observable Markov Decision Process (POMDP) [25].
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We study the joint action trace between the human and agent: a = [a
(l1)
1 , a

(l2)
2 , . . . , a

(lT )
T ], where

T is the total number of steps, and lt ∈ {H, A} indicates which party is taking action at step t. Each
action is based on a corresponding context window c = [c

(l1)
1 , c

(l2)
2 , . . . , c

(lT )
T ]. The handoff between

human and agent breaks down the whole collaboration process into rounds: ak = a[ik:jk], where ik
and jk are the start and end step of the action (Figure 3). One round may start with a user action and
be followed by multiple agent actions, possibly including silent internal steps such as planning or
retrieval, or an actual output update (e.g., generating a revised itinerary). Likewise, a user might act
several times before handing control back.

The entire procedure can be further divided into two stages. The first is the initial request stage, during
which the agent produces a preliminary draft of the output. This stage concludes when aA

i generates
the first substantial version at step i. The process then transitions into a refinement stage, where the
agents iteratively adjust and improve the output in response to human feedback. We consider these
two stages in our subsequent metric definitions.

In this framing, both human effort E and agent utility U could be approximated in multiple ways.
For instance, a basic measure of human effort could be the number of human-led rounds, |aH|. This
can be enriched by summing the contextual tokens the human processes

∑
cA, which captures not

just frequency but also cognitive load—“Is this easy to read and respond to?” Additionally, effort
may reflect action type: if users default to vague queries in response to specific model errors, this
might signal that parsing or evaluating the context is prohibitively hard, so users defer the burden by
moving the conversation forward.

Similarly, agent utility could be tied to per-round performance score Pk when utility is focused on the
agent outcome. In more granular setups, utility could also consider additional aspects that move the
collaborative team towards the final outcome, even if the output is not updated. For example, a positive
move could also be the agent correctly resolves user clarifications or provides more information, even
if the final answer is unchanged.

Mapping trajectory to metrics. With the human effort and agent utility forming the trajectory in
Figure 1, we can further capture the key metrics related to usability and feasibility:

• Overall utility. Given unlimited human effort, what’s the maximum value an agent can provide?
We define a utility function across the entire interaction period as

U =
1

N

N∑
i=1

maxU
(i)
k ,

where N is the total number of instances in the evaluation (e.g., number of travel planning requests),
and maxU

(i)
k represents the maximum utility value (approximated in certain ways) for one given

instance i.
• Refinement gain. Furthermore, building on the intuition that most of the interaction value comes

from the refinement stage (i.e., most people will interact with the model at least until they get the
first draft), we further define a metric more focused on the additional gain from the refinement. We
define G as the performance improvement after the first major update:

G =
1

N

∑N

i=1
maxU

(i)
k − U

(i)
k′
i
,

where k′i is the first round where the agent updates the output for the i-th task.
• Usability drop. We formalize the observation that when an agent fails to make consistent progress

in the collaboration, the user may stop interacting due to frustration and dissatisfaction, and measure
the utility–performance reached according to certain no-progress tolerance, defined by a tolerance
threshold τ . For the i-th task, the user will stop the collaboration at step ki,τ if the agent fails to
make satisfactory progress for at most τ rounds. The performance drop under τ is defined as

D@τ =
1

N

∑N

i=1
U

(i)
ki,τ

− U
(i)
Ki

.

Notice that here we contrast U (i)
ki,τ

with U
(i)
Ki

, the performance of the agent at the end of the
collaboration process, as a counterfactual measurement of the performance the agent can achieve if
the user continues to interact with the agent.
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4 Applying collaborative effort scaling in simulated experiments

We showcase the benefit of our framework through a simulation study, following recent work that
approximates human behaviors [12, 47, 67]. Specifically, we simulate users with LLMs interacting
with agents and adopt the simplest proxies for measurement: we use the performance score Pk of
round k as a stand-in for utility, and the number of rounds as a proxy for human effort.2 This setup
deliberately oversimplifies our broader framework but enables a first step in a controlled environment.
As we show below, even this minimal instantiation is sufficient to highlight differences between
agents powered by different LLMs and prompts.

4.1 Experimental details

Setup. We use the Collaborative-Gym [51] environment that allows for asynchronous human and
agent actions, which mimics the realistic interaction process. In this study, we focus on the travel
planning task [62]: Given an initially high-level description of the user’s travel goal, e.g., “Help me
plan a 5-day trip from Omaha to Michigan starting on 2022-03-19,” the agent will work with the
simulated user to draft a travel plan that includes the itinerary, accommodation, and transportation.
Throughout an iterative collaboration process, the agent can elicit the user’s latent preferences and
constraints, and both parties can use tools to retrieve travel information and edit the final travel plan
together.

Metric. The agent performance is measured by the quality of the generated travel plan. We adopt
the script by Xie et al. [62] that uses an LM to determine whether the derived plan satisfies common
sense (commonsense pass rate) or user constraints (constraint pass rate), and report the arithmetic
average as the performance. The same evaluation is used for both the output or any intermediate
rounds with a travel plan updated to obtain Pk.

Implementation. The Co-Gym environment comes with an automated agent implementation based
on the ReAct framework [65], as well as two collaborative agent implementations: one- and two-
stage planning agents. In the process, the collaborative agent can opt to send messages to the
simulated user. The difference between the one- and two-stage planning agent is that the latter
incorporates an additional planning step to determine whether to collaborate given the current state of
the task and the user (see Section A). We test both commercial and open-source LMs, i.e., GPT-4o
(gpt-4o-2024-08-06), Claude 3.5 Sonnet (claude-3-5-sonnet-20241022), Claude 4.0 sonnet
(claude-4-0-sonnet-20250514), and Llama-3.1 70B: the agent prompts remain the same when
we test with different LMs.

4.2 Results

Figure 4 shows the performance change during the collaboration process for different models and
agents. Overall, we find that agents based on different LMs show a generally similar collaborative
effort scaling trend: there is a process of improvement at the beginning of collaboration, and the
performance plateaus after around five rounds of interaction for all the agents.

Surprisingly, for gpt-4o and llama-3.1-70b, we find that collaborating with the user does not lead
to better performance compared to the fully autonomous baseline. After inspecting the event log, we
find that the collaborative version has a stronger tendency to get into loops of actions, resulting in
less effective collaboration and lower performance. Neither collaborative agent implementation leads
to very different performance.

When comparing different collaboration strategies, we find that the two-stage collaboration strategy
leads to a significant performance boost for claude-3.5-sonnet. Not only does it achieve better
performance than the one-stage planning version, but it also achieves much better performance
against the automated baseline. The metrics in Table 1 offer additional insights: despite claude-
3.5-sonnet having the best refinement gain in the one-stage planning case, the lower utility of the
first update hinders the subsequent improvement. It shows that, while the two-stage collaboration
planning agent may take extra effort at the beginning (initially lower blue line in Figure 4 middle), it
can lead to a better first product, which is crucial for good final performance.

2In some cases, agents may not update their output (e.g., only conducting searches or requesting more user
information); in such cases, we prefill with the previous performance score Pk−1, with P0 = 0.
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Figure 4: Collaborative scaling curves comparing different models and agent implementations.
The left-most plot compares different LLMs: claude-3.5-sonnet and claude-4.0-sonnet
show similar trends of effectively leveraging user effort, with performance improving quickly and
stabilizing at higher values compared to other models. The right two plots compare one-stage versus
two-stage planning agents for claude-3.5-sonnet (middle) and claude-4.0-sonnet (right).
Notably, claude-4.0-sonnet’s one-stage agent can more efficiently work with the simulated user
compared to claude-3.5-sonnet’s one-stage agent: it achieves similar performance to the two-
stage counterpart with less user effort initially, while converting to a similar plateau performance
later.

Table 1: Comparing collaborative effort scaling metrics for the one- and two-stage agents for the
travel plan task.

Automated
Baseline

Utility (↑) Refinement Gain (↑) Usability Drop (↑)

Model Name First update Final step Overall Abs. Rel. Abs. Rel.

One-stage Collaboration Planning

claude-4.0-sonnet 0.617 0.643 0.672 0.680 0.037 5.7% -0.138 -20.6%
claude-3.5-sonnet 0.572 0.396 0.441 0.450 0.054 13.6% -0.131 -29.7%

gpt-4o 0.518 0.483 0.479 0.507 0.024 4.9% -0.099 -20.8%
llama-3.1-70b 0.482 0.498 0.496 0.534 0.036 7.1% -0.090 -18.0%

Two-stage Collaboration Planning

claude-4.0-sonnet 0.617 0.647 0.665 0.681 0.034 5.2% -0.232 -34.9%
claude-3.5-sonnet 0.572 0.647 0.637 0.687 0.040 6.2% -0.215 -33.7%

gpt-4o 0.518 0.497 0.492 0.544 0.047 9.5% -0.194 -39.3%
llama-3.1-70b 0.482 0.514 0.498 0.539 0.025 4.9% -0.154 -30.9%

In contrast, claude-4.0-sonnet shows a different pattern where the one-stage and two-stage
strategies achieve nearly identical final utilities (0.680 vs 0.681). As shown in Figure 4 (right),
the one-stage planning agent reaches high performance more quickly, while the two-stage version
initially lags before converging to similar levels. The metrics in Table 1 reveal a trade-off: while
both strategies have comparable refinement gains (5.7% vs 5.2%), the two-stage approach incurs a
substantially larger usability drop (-34.9% vs -20.6%), indicating a less efficient collaboration process.
This suggests that less capable models (e.g., claude-3.5-sonnet) may require more structured
interaction scaffolds to achieve comparable performance to stronger models (e.g., claude-4.0-
sonnet), highlighting the importance of adaptive collaboration frameworks that tailor interaction
complexity to the underlying model’s capabilities.

4.3 Analyzing the Agent-User Effort Trade-off

To better understand the dynamics underlying the collaborative effort scaling, we analyze the distri-
bution of effort between the agent and user throughout the interaction process. We use total tokens
generated by the agent and simulated user as a measure of effort (Figure 5; detailed statistics in
Table 3).

User effort varies significantly across models despite similar agent effort. Across most models,
agents generate a relatively consistent amount of tokens (between 103 and 104) as shown in Figure 5
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Figure 5: Analysis of agent-user effort trade-offs across different models. Left: Scatter plots where
each dot represents a travel planning task. The x-axis shows total tokens generated by the simulated
user and the y-axis shows total tokens generated by the execution agent. Dashed lines indicate relative
effort ratios (agent tokens / user tokens); moving toward the top-left indicates less relative user effort.
Right: Performance distributions bucketed by agent-to-user effort ratio (buckets created per model)
reveal how joint performance varies with the balance of contributions. Each row represents a different
model.
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(left). However, the primary differentiator lies in how much effort is required from the simulated
user: models other than claude-4.0-sonnetparticularly gpt-4o and llama-3.1-70boften require
substantially more user tokens without yielding proportional improvements in final performance.
This suggests that less capable models may fail to efficiently extract and utilize user input, leading to
prolonged interactions with diminishing returns. However, claude-3.5-sonnet is the exception
in the set of models we considered; it exhibits a clear separation in agent effort between the two
strategies, suggesting that the model’s collaborative behavior is more heavily influenced by the
interaction scaffold.

A sweet spot exists in the effort distribution. When we consider performance ratings in Figure 5
(right), we find a nuanced relationship between effort balance and task success. For each model, there
appears to be an optimal range of agent-to-user effort ratios where performance peaks. When either
the user contributes disproportionately more effort (low agent-to-user ratio) or the agent dominates
the interaction (high agent-to-user ratio), joint performance tends to degrade. Notably, this sweet spot
is model-dependent: claude-4.0-sonnet achieves strong performance across a broader range of
effort ratios, while gpt-4o and llama-3.1-70b show more pronounced performance degradation
outside their optimal ranges. This finding underscores the importance of calibrating collaboration
patterns to match the underlying model’s capabilities.

5 Discussion

Our results suggest that current agents are not merely underperformingthey are fundamentally
misaligned with the dynamics of real collaboration, suggesting opportunities to rethink agent design.

Utility and effort require thoughtful, human-centered proxies. Our case studies reveal that
common proxies for “success,” such as task completion or engagement frequency, overlook the
nuanced ways utility and effort manifest in practice. Effort encompasses not only interaction
frequency but also cognitive load, sensemaking, and confusion; utility extends beyond output quality
to include how agents scaffold understanding, support exploration, and clarify ambiguity. Richer
behavioral tracessuch as edit histories, timing patterns, and clarifying requestscould help approximate
these dimensions, as in recent adaptive programming systems [10].

Mixed-initiative interaction should follow effortutility dynamics. Agents must not only respond
effectively but also decide when to act, defer, or promptdecisions that depend on the evolving balance
between user effort and perceived utility. Structuring mixed-initiative interaction [22] around this
trajectory allows agents to intervene when progress stalls and step back when users regain momentum.
Achieving this requires modeling collaboration as a dynamic control process. Additionally, case
studies show how initial inputs to agents become obsolete as users refine their thinking. Rather than
simply minimizing effort or maximizing efficiency, agents should pursue utility signals that foster
learning and adaptationeven through seemingly inefficient behaviors such as hypothesis exploration.

Model capability shapes optimal collaboration strategies. Our results reveal that not only should
collaboration strategies be tailored to the underlying model’s capabilities (e.g., claude-3.5-sonnet
versus claude-4.0-sonnet), but also performance difference should not be the only metric consid-
ered (e.g., the difference in usability drop between strategies for claude-4.0-sonnet). For agent
builders, this highlights the importance of profiling the collaborative capabilities of underlying models
before committing to interaction patterns. Rather than applying uniform collaboration frameworks,
systems should incorporate manual scaffoldingsuch as structured planning stages, explicit constraint
verification, or guided decompositionselectively, based on where models demonstrate weaknesses in
collaborative settings.

Collaboration design remains essential as models improve. Our results, along with other recent
findings [51], demonstrate that today’s models benefit substantially from multi-agent interactions—
the collaborative approach consistently outperforms fully autonomous baselines. Our results show
that how a model collaborates significantly impacts overall performance, and that designing for
collaboration may be beneficial not only for human-AI collaboration but also potentially for agent-
agent collaboration. While model capabilities will continue to improve and narrow performance gaps
between collaboration and autonomous baselines, the fundamental need for human-AI collaboration
will persist: real-world tasks are inherently underspecified, and human requirements are difficult
to fully articulate upfront. Future work should therefore explore richer simulation settings where
users possess private information or domain knowledge that goes beyond what any model could
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access independently, better capturing the irreducible value of human involvement in collaborative
problem-solving.

6 Related Work

From Human-AI to Human-Agent Collaboration. Prior research has studied human “collabo-
ration” and “teaming” with AI [57, 20, 36], proposing design guidelines for effective human-AI
interactions [3, 1]. However, prior research focuses on AI outputs that operate within more constrained
parameters: their capabilities are often limited to single tasks. In contrast, modern LLM agents that
can access and execute tools to interact with external environments and have some form of memory
can enable more dynamic and sophisticated interaction patterns [54, 60, 59, 13]. For example, a
user can use Magentic-One [17] as a general assistant to complete web tasks or OpenHands [58] as
a pair programmer for software development. In light of new agent developments, we contribute
to guidelines for effective human-agent interaction and call for the community to more carefully
consider how to design agents for effective human collaboration.

Agent Benchmarks and Evaluation. A growing body of benchmarks evaluates agents’ task com-
pletion across diverse domains [23, 66, 42, 27, 64], typically requiring them to plan, execute, and
adapt to achieve specified goals [43]. For instance, SWE-Bench tests bug fixing in codebases [23],
WebArena assesses autonomous web navigation [66], and GAIA measures multimodal reasoning and
synthesis [42]. Recent efforts introduce interactive evaluations that simulate real-world collabora-
tion [30, 33, 51], capturing both intermediate progress and final outcomes. However, these setups still
involve narrow, stepwise interactions where invoking the model and interpreting its output remain
straightforward. We therefore focus on evaluating how user effort and agent utility evolve and scale
across extended interaction trajectories.

7 Conclusion

In this paper, we advocate for auditing and evaluating the human-agent collaboration process. Current
benchmarks often treat collaboration as secondary, emphasizing outcomes over interaction quality.
Through five domain case studies, we distill desiderata for effective collaboration and introduce
collaborative effort scaling, a framework that evaluates how well agents leverage and enhance human
input. Using a simulated travel-planning task, we demonstrate how this framework reveals current
agent limitations. As agents enter complex, underspecified domains, we argue that measuring and
optimizing collaborative dynamics will be essential for real-world deployment.

Limitations

Certain tasks may be more suitable for full automation with minimal human supervision and thus
better suited for the task completion paradigm. However, there exist such tasks where human
procedural involvement provides value, cf. Haupt and Brynjolfsson [19] and Brynjolfsson [8], thus
necessitating the iterative process for human-agent collaboration.

While our paper is an initial attempt to study collaborative effort scaling in human-agent interaction,
there are limitations in our experimental setup: we conduct the experiment in a single domain (travel
planning), which may not capture the full spectrum of collaborative dynamics across different task
types and complexity levels. Additionally, our experiments rely on simulated users rather than real
human participants, which may not fully reflect the nuanced decision-making processes, preferences,
and interaction patterns from real users.
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A Agent Implementation Details

In Co-Gym, before taking new actions, the agents are prompted with their action history and need to
pick a new action to make progress towards the goal, as shown in the prompt below:

Auto Agent Prompt

(System Message)
SETTING: Your name is {name}. You are a helpful AI Agent who can take actions to
interact with the environment to complete the task. Your goal is to complete the
task and aim for a high task performance rating.
TASK DESCRIPTION: {task_description}
SCRATCHPAD: Here is the scratchpad that you use to take notes or store
information in previous steps, which serves as your memory: {scratchpad}
OBSERVATION: Here is the current observation that reveals the current status of
the task environment: {observation}
ACTION HISTORY: Here are the actions that you have taken previously (Do not
repeat your past actions): {action_history}

(Take Next Action Template)
Now take your next action towards completing the task.
ACTION SPACE SPECIFICATION: You can choose from and only from the following
actions. Note that these actions are only for interacting with the environment
and cannot be executed as real code. Please strictly follow the action space
specification. You can only choose one action at a time. Invalid actions
will hurt your performance rating. The following actions are available: {ac
tion_space_description}
OUTPUT FORMAT: Give your output in the format of "Thought:...\nAction:... (must
follow the regex pattern of the selected action)".

For the automated agent, the action space is constrained to those provided in the environment
(e.g., searching the internet), whereas the collaborative agent (both one- and two-stage) has an
additional action to send teammates a message for help. In the prompt below, we highlight the
additional collaboration-oriented components in red:

One-Stage Planning Collaborative Agent Prompt

(System Message)
SETTING: Your name is {name}. You are a helpful AI Agent who can take actions to
interact with the environment and collaborate with other team members (e.g., the
user) to complete the task. Your goal is to complete the task and aim for a high
task performance rating.
You need to collaborate with your teammates effectively because they may have
additional expertise or have preferences/information important to the task. There
are the following members in the team: {team_members}.
TASK DESCRIPTION: {task_description}
SCRATCHPAD: Here is the scratchpad that you use to take notes or store
information in previous steps, which serves as your memory: {scratchpad}
OBSERVATION: Here is the current observation that reveals the current status of
the task environment: {observation}
COMMUNICATION: Here is the current chat history that records the messages ex
changed between you and other teammates (e.g., the user): {chat_history}
ACTION HISTORY: Here are the actions that you have taken previously (Do not
repeat your past actions): {action_history}

(Take Next Action Template)
(Similar to the Auto Agent Prompt)

For two-stage planning agents, before choosing an action, the agent is always asked to review the
current situation and explicitly decide what to do next. When it decides to send a chat message, it
will also review the situation and chat history to compose the message:
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Two-Stage Planning Collaborative Agent Prompt

(The additional planning stage)
Now, based on the current situation, decide to either:
1. Send a message to your teammate(s) (e.g., ask a question, request feedback,

etc.) to facilitate collaboration.
2. Take a task action to change the task environment observation.
3. Do nothing to allow your teammate(s) to take actions.
To ensure you are collaborating effectively, remember to:
1. Communicate clearly and effectively with your teammate(s) (e.g., the user).
2. Wait for other teammates to respond if your previous action requires a

response. Do not spam the chat.
3. Coordinate and synchronize your actions with the user or other teammates.
4. Help establish task and role expectations with your teammates if you need

their expertise.
5. Take your teammates’ cognitive load into consideration when making decisions.

You should not ask them to debug your own code or ask too many questions at
the same time.

OUTPUT FORMAT: Give your output in the format of "Thought:...\nPlan: 1. Send a
message/2. Take a task action/3. Do nothing".

(Send Chat Message Action Template)
Now you have decided to send a message to your teammate(s) (e.g., ask a question,
request feedback, etc.) to facilitate collaboration.
OUTPUT FORMAT: Give your output in the format of "Thought:...\nMessage:... (the
content after ’Message:’ will be sent to your teammate(s))".

B Simulated User Prompts

We use the same setting as Shao et al. [51] for the simulated user: it consists of four sets of prompts
for “deciding what to do next”, “answering agent’s question”, (proactively) “providing feedback”,
and directly “taking task actions”.

Simulated User: Deciding What to Do Next

You are a user interacting with an agent to complete a task. Based on the
current observation and chat history, decide what action to take next by choosing
one of the following.
1. Answer the question: Choose this action if there is a question in the chat

history waiting for your response.
2. Offer feedback: Choose this action if the current observation is incorrect or

deviates from the additional information you know.
3. Take a task action: Choose this action if you want to take an action to help

complete the task.
4. Finish the task: Choose this action if you are satisfied with the current

status of the task and want to finish it.
5. Do nothing: Choose this action if there is no major issue and you want the

agent to proceed.

Rules for selecting your action:
{rules}
The task description you initially sent to the agent:
{task_description}
Current observation that reveals the current status of the task environment:
{observation}
Current chat history between you and other teammates (e.g., the agent):
{chat_history}
Available task actions you can take if you choose "3. Take a task action":
{available_actions}
Additional information that you know (you can use the information to help the
agent better complete your request):
{additional_info}
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Actions you have already taken (don’t repeat the same action):
{action_history}
OUTPUT: The action you want to take next (Please output 1/2/3/4/5).

Simulated User: Answering Agent’s Question

You are a user interacting with an agent to complete a task. Answer the question
in the chat history based on the additional information you know.
Rules:
1. You will stick to or fully utilize the additional information that only you

know.
2. Just generate one line for the message to simulate a real user’s behavior.

Try to make the message as natural as possible.
3. Do not give away all the additional information at once. Only provide the

information that is necessary for the question. You are a lazy user so you
only provide one piece of information at a time.

4. Do not hallucinate information that is not provided in the additional
information. For example, if the agent asks for something but it is not
mentioned in the given information, do not make it up, just say you do not
remember or have it.

5. Do not repeat the exact additional information in the answer. Instead, use
your own words to convey the same information.

The task you want the agent to assist with:
{task_description}
Current observation that reveals the current status of the task environment:
{observation}
Current chat history between you and other teammates (e.g., the agent):
{chat_history}
Additional information that only you know:
{additional_info}
OUTPUT: The answer to the question in the chat history.

Simulated User: Offering Feedback

You are a user interacting with an agent to complete a task. Offer feedback to
the agent based on the current observation and additional information you know.
Rules:
1. You will stick to or fully utilize the additional information that only you

know.
2. Just generate one line for the message to simulate a real user’s behavior.

Try to make the feedback as natural as possible.
3. Do not give away all the additional information at once. Be specific about

what the agent did wrong or what information is missing.
4. Do not hallucinate feedback that is not based on the current observation or

the additional information you know. If you have to answer, just say you do
not know.

5. Do not repeat the exact additional information in the feedback. Instead, use
your own words to convey the same information.

The task you want the agent to assist with:
{task_description}
Current observation that reveals the current status of the task environment:
{observation}
Current chat history between you and other teammates (e.g., the agent):
{chat_history}
Additional information that only you know:
{additional_info}
OUTPUT: The feedback you want to provide to the agent.
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Simulated User: Taking a Task Action

You are a user interacting with an agent to complete a task. Take a task action
to help complete the task. Note that you will stick to or fully utilize the
additional information that only you know to help you take the action.
The task you want the agent to assist with:
{task_description}
Current observation that reveals the current status of the task environment:
{observation}
Current chat history between you and other teammates (e.g., the agent):
{chat_history}
You can choose from and only from the following actions. Note that these actions
are only for interacting with the environment and cannot be executed as real
code. Please strictly follow the action space specification. You can only
choose one action at a time. Invalid actions will hurt your performance rating.
The following actions are available:
{action_space_description}
Additional information that only you know:
{additional_info}
OUTPUT: Action (the action string must follow the regex pattern of the selected
action so it can be parsed later).

Besides, in our evaluation, we include a prompt to assess whether the agent is making progress after
each collaboration round:

Assessing Agent’s Progress

Given a previous user message, agent’s response/question, and the next user
message, judge whether the agent is making progress in addressing the user’s
needs. Provide a rating on a 5-point Likert scale:
1. Strongly Disagree - Agent made no progress or moved backwards
2. Disagree - Agent made minimal progress
3. Neutral - Agent maintained the same level of progress
4. Agree - Agent made good progress
5. Strongly Agree - Agent made excellent progress

Output the rating (1-5). Indicate your rating with a single number among
1/2/3/4/5, and if you want to provide an explanation, please put it after a
new line: {rating}

20



B.1 Comparing the user information in the agent and the simulated user

In the simulated user prompts, the agents have access to an {additional_info} field that is not
visible to the execution agents. For the travel planning task, the additional information constitutes a
structured representation of the user’s preferences and goals of the task, as shown in Table 2.

Table 2: Example of task description and additional information for the travel planning task.

Field Content

task_description Can you assist with crafting a 5-day travel itinerary for 2 people,
originating from Denver and featuring 2 cities in New York? The
itinerary will run from March 18th to March 22nd, 2022. Mexican
and Indian cuisine are our preferred choices of food. Considering
the budget, we have set it to $6,300.

additional_info [’Travel for 2 people’, ’Visit 2 cities in New York’, ’Preference for
Mexican and Indian cuisine’, ’Budget of $6,300’]

C Agent-User Effort Trade-off Statistics

Table 3: Detailed statistics of agent-user effort distribution across different models and collaboration
strategies. All token counts and ratios are averaged across all samples in the evaluation.

Model Setup Agent
Tokens

User
Tokens

Combined
Tokens

Model-to-User
Ratio

Performance
Rating

claude-3.5-sonnet One-stage Planning 4,540 4,386 8,926 1.04 0.44
Two-stage Planning 11,424 1,914 13,338 5.97 0.64

claude-4.0-sonnet One-stage Planning 7,719 541 8,260 14.28 0.67
Two-stage Planning 10,706 678 11,384 15.80 0.66

gpt-4o One-stage Planning 4,318 5,128 9,446 0.84 0.48
Two-stage Planning 10,483 4,926 15,409 2.13 0.50

llama-3.1-70b One-stage Planning 6,068 2,921 8,989 2.08 0.50
Two-stage Planning 7,045 3,599 10,644 1.96 0.50
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