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Abstract

Large Language Model (LLM) agents are increasingly capable of handling complex
tasks autonomously, but current development and evaluation practices remain
centered around one-shot task completion. This dominant paradigm fails to account
for the inherently iterative and collaborative nature of many real-world problems,
where human goals are often underspecified and evolve over time. This position
paper argues for a shift in focus: from building and assessing task completion
agents to developing collaborative agents — those evaluated not just by the quality
of their final outputs, but by how well they engage with and enhance human
effort throughout the problem-solving process. To support this shift, we introduce
collaborative effort scaling, a framework that captures how an agent’s utility
grows with increasing user involvement. Through case studies and simulated
evaluations, we show that state-of-the-art agents often underperform in multi-turn,
real-world scenarios, revealing a missing ingredient in agent design: the ability to
sustain engagement and scaffold user understanding. Collaborative effort scaling
offers a new lens for diagnosing agent behavior and guiding development toward
deeper, more adaptive interaction.

1 Introduction

Large Language Model (LLM) agents capable of handling complex tasks are becoming increasingly
attractive [114]]. Given a task description, we want agents that can automatically engage in long-form
reasoning [SH7], interact with environments [8} 9], and use tools effectively [10H12]] — with minimal
human guidance. As a result, agent development has largely focused on producing high-quality, final
outputs in one shot — what we call task completion agents. These agents are evaluated primarily
through outcome-based metrics: did the result satisfy the user’s prompt? This framing has also been
proven operationally convenient and has driven much of the progress in LLM capabilities [13].

However, this dominant paradigm obscures a fundamental limitation: real-world tasks are rarely
completed in one shot. Many are inherently iterative and collaborative — requiring the agent not
Jjust to solve a problem, but to work with a human in navigating it [14-16]. For example, in complex
knowledge work like data analysis, users may not know exactly what insights they want to dig deeply
into, until they have seen partial results and uncovered previously unknown constraints. In such cases
where human goals are inevitably underspecified, When goals are underspecified, agents that assume
static targets risk producing technically “complete” but practically useless outputs.

In fact, as we show through diverse case studies across domains like education, data analysis,
and travel planning (Section [2)), such agents frequently underperform in multi-turn settings: They
prematurely generate overly polished answers that are hard to digest [[17], fail to incorporate user
feedback [18H20]], and offer little transparency into their reasoning [21-H24].

What’s missing is a view of agent utility that reflects the process of collaboration, not just its endpoint.
We argue that desirable collaborator agents should be evaluated on their ability to encourage

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



38
39
40
41
42
43
44
45
46

47
48
49
50
51
52
53
54
55
56

57
58
59
60
61
62
63
64
65

66
67
68
69
70

71

72
73
74
75
76
77

78
79
80
81
82
83
84

85

86
87
88
89

and leverage human effort — to inspire users to continuously refine their task specification (e.g.,
provide users with initial exploratory data analysis instead of full reports), and to draw on and
amplify user input in ways that improve joint outcomes over time. This view shifts evaluation away
from static outcomes and towards dynamic interaction trajectories between two usually overlooked,
human-centered dimensions of collaborative agents (Fig. [I): user effort — how much cognitive
and investigative work users invest in actively building an understanding of the task or the agent’s
reasoning process, rather than merely responding to the agent’s clarification prompts; and agent utility
— how much the agent contributes to the human, not only through improved task outcomes, but also
by offering additional knowledge and scaffolding.

To better capture such iterative back-and-forth required for complex
tasks, we take inspiration from the scaling laws in machine learn- 4
ing [[7,125]], and introduce the concept of collaborative effort scaling:
A framework that captures how well an agent’s utility impacts, and
scales with increasing user involvement. Our framework emphasize
on two desired properties of collaborative agents: (1) Continuous
usability: Agents should generate greater value with more user effort,
and (2) Maximum feasibility: Agents should encourage and sustain
engagement across longer interaction trajectories, especially in tasks
where deeper understanding or high-stakes decisions are involved.

Usability

Feasibility

Utility of joint actions

As a first attempt, we apply this framework to study existing human
agent collaboration setups in a simulated environment by Shao et al.
[26]. In Section[d] we show that current agents are merely mediocre  Figure 1: Collaboration Scaling.
collaborators in complex, real-world knowledge tasks like travel

planning [27] in that the additional user effort frequently leads to

minimal or no improvement compared to a fully autonomous baseline. In-depth analysis of the
collaboration reveals key limitations in agents’ collaborative capabilities. A key issue is their reliance
on a seemingly recursive problem-solving approach: they focus on completing immediate, individual
tasks or user asks, but fails to come up and operate with an overarching optimal global plan.

User effort

In summary, this position paper advocates for developing collaborative agents and evaluating
them with collaborative effort scaling. The current approach of optimizing for task completion
does not yield important collaborative capabilities needed in the iterative process for accomplishing
long-form tasks; and evaluating via collaborative effort scaling can offer helpful diagnostic insights
and supports agent development in more challenge and complex real-world tasks.

2 Task completion agents in collaboration: Cases and Reflections

Most recent agents share a common, task completion objective: given a task description, the agent is
expected to take actions to produce an output that satisfies the user’s need. The agent can either be a
standalone LM [28]] or one equipped with tools and can autonomously perceive and take actions in
an environment [[1, 13]]. Thanks to their ease of use, these task-to-output pipelines have become the
dominant mode of interaction. To name a few: Manus [29] and OpenAl Operator [30] automate user
tasks through web browsing; Cursor [31] and OpenHands [32] generate and edit code on demand.

We investigate how far this task completion paradigm extends to complex, real-world scenarios.
Specifically, we examine knowledge-based tasks [33] 18] — those that demand significant human
involvement for informed decision-making, learning, or creative work. Examples include data
analysis, literature review and synthesis, or trip planning. A defining feature of these tasks is their
iterative nature [14}[15]]: reaching a satisfactory outcome often requires multiple rounds of refinement.
To explore how agents perform in such settings, we collaborate with experts across five domains,
analyzing concrete use cases.

2.1 Case Studies

Data analysis. Consider a case where a data scientist works with an agent in Google Colab [34]
to analyze a coffee survey dataset [35]; their goal is to understand the data and come up with
informed decisions for their business. After receiving the user’s instructions and multiple steps of
automated planning and action, the agent presents the user with a full-fledged report, However, this
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Figure 2: We study five case studies of take completion agents in real-world iterative processes and
distill key takeaways around collaboration success and challenges.

report includes hundreds of lines of code, visualizations, and a summary of the analysis, which is
challenging to digest; It also glosses over early-stage exploratory analysis. As a result, it contains
incorrect assumptions that go unnoticed. The data scientist struggles to pose meaningful follow-up
questions and ultimately overlooks critical insights—such as patterns in regional coffee preferences
or anomalies in pricing—due to limited transparency into how the conclusions were derived. In this
case, while the agent technically fulfilled the user’s request, the outcome is suboptimal. The root
issue lies in the user’s initial inability to fully articulate their analytical goals—often a consequence
of not yet having a clear understanding of the data. Ideal agent should respect that developing a deep
understanding of the data is naturally an iterative process. Rather than delivering a one-off report, the
agent should focus on guiding the user through well-scoped, incremental analyses. By doing so, it
can support the user in forming sharper questions and arriving at deeper, more actionable insights.

Reflection on: Data Analysis

What the Agent Currently Does

 Generates full reports with complex code and visuals.
* Presents conclusions without process transparency.

* Assumes static goals from users.

What the Agent Should Ideally Do

 Support iterative exploration of data.

* Expose assumptions and reasoning steps gradually.
* Facilitate goal refinement as insights evolve.

Travel planning. Consider the typical use case of travel planning — An American tourist uses a web
agent such as OpenAl Operator [30]] to plan a 7-day trip to Rome. The agent quickly provides a
detailed itinerary, but fails to explain why certain attractions are included while others are omitted,
or why specific durations are allocated. This triggers a series of follow-up questions from the
tourist, which the agent struggles to answer. Worse, as the conversation unfolds, the agent begins
to misread the tourist’s intent and incorporates misleading or low-quality content from unreliable
sources. Eventually, the tourist gives up and resorts to manual research, missing out on what could
have been a more personalized and efficient experience. In this scenario, the novice tourist lacks
the domain knowledge to interpret the itinerary on their own. This gap in understanding triggers
unnecessary questions—questions that could have been easily avoided had the agent explained its
reasoning. And because the user is already uncertain, any error or ambiguity from the agent becomes
a breaking point, leading them to abandon the interaction entirely.

Reflection on: Travel Planning

What the Agent Currently Does What the Agent Should Ideally Do

* Produces static itinerary from initial input.

* Overloads user with opaque or generic suggestions.

* Misinterprets user intent during follow-up.
* Breaks user trust with low-quality content.

* Support iterative sensemaking of travel options.

» Explain rationale behind recommendations.

* Respond constructively to evolving feedback.
* Maintain reliabibility across the interaction.

Financial advising. Consider a 35-year-old client who recently purchased their first home and
welcomed their first child seeking personalized financial guidance from an LLM agent [36] [37]].
After they provide basic information about their income and goals, the agent delivers comprehensive
recommendations including investment allocations and insurance coverage. However, after discussing
with colleagues, the client realizes their original self-assessments of goals and risk tolerance were
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flawed and not well-calibrated for their social context and location. When the client tries to correct
these assumptions and clarify their conservative investment preferences, the agent continues to suggest
mismatched, aggressive strategies, leading to a loss of trust and the need for manual corrections.
In this case, the agent’s plan is again suboptimal because it prematurely locked in the user’s initial
preferences—despite the user’s limited familiarity with the financial decision space—and failed to
adapt as those preferences evolved. Ideally, the agent should support the user’s sensemaking of the
domain and, at a minimum, accommodate updated assumptions to reduce the mismatch between
advice and context.

Reflection on: Financial Advising

What the Agent Currently Does What the Agent Should Ideally Do

* Relies on a single-shot user self-assessment. * Support users on reflective decision-making.

* Treats initial preferences as fixed throughout the session. * Allow for dynamic re-evaluation of financial goals.
* Fails to adapt suggestions to new user insights. » Revisit assumptions as user awareness evolves.

Education. Consider a high school student struggling with mathematical concepts they’ve encoun-
tered in class, unsure how to proceed with a homework assignment, and turning to a large language
model (LLM) for assistance. The agent provides step-by-step answers, helping the student complete
the task efficiently. However, it does not engage with what the student does or does not understand,
nor does it adapt its explanations. As a result, the student completes the homework without building
true comprehension, leading to poor performance in subsequent assessments [38]]. In such a learning-
oriented setting, the goal is not merely to fulfill the student’s immediate request; it is to explain
concepts in a way that equips the student to complete the assignment and internalize generalizable
principles that support transfer learning. Achieving this requires more than correct answers—it
requires adaptation and interaction. Furthermore, such effective learning also requires personalization
— the LLM needs to engage with the student in an iterative process to understand what the student
does not understand and what sorts of explanations click for the student.

Reflection on: Education

What the Agent Currently Does What the Agent Should Ideally Do

* Prioritizes task completion over deep understanding. ¢ Adapt explanations to the student’s level and gaps.

* Offers direct answers without probing comprehension. ¢ Encourage active learning through targeted questions.
» Lacks responsiveness to student learning signals. * Balance short-term help with long-term learning goals.

Math discovery. Finally, another promising trend of the agents is to work with researchers and push
frontiers in scientific discovery. A math professor shared an example of how they’ve used various
language models (or agents) to support the proof of a novel theorem. Through multiple interactions,
the agent generates many proof attempts, most of which contain subtle errors. While one conjecture
generated by the agent sparks useful insight, the professor later reflects that it would have been faster
to work without the agent, due to the time spent verifying flawed suggestions and lack of rigorous
reasoning support.

Reflection on: Math Discovery

What the Agent Currently Does What the Agent Should Ideally Do
 Suggests proofs with subtle but critical flaws. * Collaborate through structured, step-wise reasoning.
* Lacks self-verification or explanation of logic. * Flag uncertainty and validate intermediate steps.

* Increases user workload via repeated error-checking. ¢ Augment—not hinder—the user’s scientific process.

2.2 Desiderata for Interactive Agents: User Effort, Agent Utility, and Their Interactions

Across all the case studies, a common pattern emerges: agents technically fulfill user re-
quests—generating plausible data summaries, travel itineraries, financial plans, and so on. From a
narrow task completion standpoint, they appear to be doing a reasonable job; yet the resulting outputs
are consistently suboptimal. This disconnect stems from a fundamental misalignment: agents assume
that the user’s initial task description fully captures their underlying needs. However, in practice,
this is rarely the case: Most real-world task specifications are inherently underspecified—for two key
reasons: First, tasks evolve. As users gain more information, they often revise their goals or discover
constraints that shift their priorities. In the financial advising example, the client expresses very
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different preferences after gaining a better understanding of the domain. Similarly, the data scientist
might have asked entirely different questions had they engaged earlier in exploratory analysis. Second,
the initial request often reflects a narrow surface-level goal that fails to capture the user’s deeper
objective. When a tourist asks for an itinerary, they don’t just want a list of places — they want to de-
velop a sense of what’s worth seeing and why. When a student asks for homework help, their broader
goal (or at least, it should be) is to understand the concepts well enough to succeed beyond the current
assignment. These cases underscore two user-centered dimensions that task-completion-focused
agents tend to ignore:

* Agent utility: We usually evaluate agent utility narrowly based on final output quality. But in
tasks with evolving goals, intermediate results — especially ones that help users calibrate their
understanding — can be far more valuable than a polished endpoint. Here, the utility should be
more broadly defined, by e.g. the additional knowledge they offer to users. Likewise, when the
immediate task is a subgoal of a broader objective, the agent utility should be defined to emphasize
long-term gains (e.g., learning or strategic planning) over short-term task completion.

* User effort: Many agents aim to minimize user involvement, or treat users primarily as providers
of clarification. But in open-ended knowledge work, user engagement is not a nuisance—it is part
of the process. Across the case studies, users are expected to (1) build understanding (e.g., of the
dataset, financial options, or travel destination), and (2) inspect and build on the agent’s reasoning
(e.g., in scientific or educational contexts). These efforts shouldn’t be minimized; rather, they
should be strategically supported—and, when appropriate, even amplified. E]

* Interaction between the two: Crucially, agent utility and user effort are interdependent. On one
hand, user engagement is only productive when the agent produces outputs that are interpretable
and actionable. Users may easily disengage if they find it difficult to follow up (as in the data
analysis case), or if they get trapped in unnecessary clarifications (as in the travel case) or unfruitful
interactions (as in financial advising) On the other hand, agent utility can only increase when users
are asking meaningful, well-scoped questions that the agent can meaningfully support and answer.

These observations lead us to a broader argument: agents tackling complex tasks must be funda-
mentally collaborative. That means: (1) rather than just delivering results, agents should actively
involving users in a process of shared discovery; (2) Rather than optimizing for minimal input, agents
should be designed to effectively leverage user effort as part of the solution process.

We therefore propose that agent effectiveness in such settings should be evaluated not solely based on
final outcomes, but on how those outcomes are reached — whether the agent can effectively involve
the users as they work together towards the final goal. To capture this, we take inspiration from the
scaling laws in machine learning, and propose collaborative effort scaling — to examining the
extent to which an agent’s utility scales with the amount and quality of user effort, visualized as the
trajectory in Figure[l] Specifically, we highlight two desired goals for a collaborative agent derived
from the trajectory:

* Continuous usability: Agents should generate greater value with more user effort — either by
providing immediate gains from user contributions, or by enabling better final outcomes.

* Maximum feasibility: Agents should encourage and sustain engagement across longer interaction
trajectories, especially in tasks where deeper understanding or high-stakes decisions are involved.
Drop-off due to poor responses, misunderstandings, or unproductive interactions should be treated
as a critical failure.

‘We formalize such notions in the next section.

3 Operationalizing collaborative effort scaling evaluation

Building and evaluating collaborative agents that conceptually described above require operational-
izing the notions of human effort and agent utility. Here, we formalize these notions highlight key
metrics that could be derived to reflect the collaborative effort scaling.

'We do not disagree that certain tasks are suitable for full automation with minimum human supervision
(thus they are naturally suitable for the task completion paradigm). Still, we believe that there exist such tasks
that human procedural involvement can still provide value, c.f. Haupt and Brynjolfsson [39] and Brynjolfsson
[40], thus necessitating the iterative process for human-agent collaboration.
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Following recent work [26], we describe the

human agent collaboration process with a Par- - - .
tially Observable Markov Decision Process uman ©
(POMDP) [41]. We study the joint action
trace between the human and agent: a =

Round 1 Round 2 Round 3

Figure 3: Collaboration rounds.

[agll),aélz),...,agplﬂ], where T is the total
number of steps, and [; € {H,A} indicates which party is taking action at step ¢. Each action

is based on a corresponding context window ¢ = [cgll), céb), ey cng)}. The handoff between human

and agent breaks down the whole collaboration process into rounds: a, = aj;, .;,1, where i; and ji
are the start and end step of the action. As shown in Fig.[3] one round may start with a user action
and followed with multiple agent actions, possibly including silent internal steps such as planning or
retrieval—or an actual output update (e.g., generating a revised itinerary). Likewise, a user might act
several times before handing control back. Likewise, the user may take several actions in a row.

The entire procedure can be further divided into two distinct stages. The first is the initial request
stage, during which the agent produces a preliminary draft of the output. This stage concludes when
a? generates the first substantial version at step i. Following this, the process transitions into a
refinement stage, where the agents iteratively adjust and improve the output in response to human
feedback. We consider these two stages in our subsequent metric definitions.

We note that, in this broad framing, both human effort E and agent utility U could be approximated
in various different ways. For instance, a basic measure of human effort could be the number of
human-led rounds, |a®|. This can be enriched by summing the contextual tokens the human processes
>~ ¢, which captures not just frequency but also cognitive load — “Is this easy to read and respond
to?” Additionally, effort may reflect action type: if users default to vague queries in response to
specific model errors, this might signal that parsing or evaluating the context is prohibitively hard—so
users defer the burden by moving the conversation forward.

Similarly, agent utility could be tied to per-round performance score P}, when utility is focused on the
agent outcome. In more granular setups, utility could also consider additional aspects that move the
collaborative team positively towards the final outcome, even if the output is not updated in certain
rounds. For example, a positive move could also be the agent correctly resolves user clarifications or
provides more information, even if the final answer is unchanged.

Mapping trajectory to metrics. With the human effort and agent utility forming the trajectory in
Figure[I] we can further capture the key metrics related to usability and feasibility:

* Overall utiltiy. Here, we assess: Given unlimited human effort, what’s the maximum value an
agent can provide? We define a utility function across the entire interaction period, as

1 & :
U= N;maxU,gl),

where IV is the total number of instances in the evaluation (e.g. number of travel planning requests),

and max U, ,gl) represents the maximum utility value (approximated in certain ways) for one given
instance .

* Refinement gain. Furthermore, building on the intuition that most of the interaction value comes
from the refinement stage (i.e., most people will interact with the model at least until they get the
first draft), we further define a metric more focused on the additional gain from the refinement. We
define G as the performance improvement after the first major update:

1 N ; ;
G=5 > maxt U,
where k] is the first round where the agent updates the output for the i-th task.

* Feasibility drop. We formalize the observation that when an agent fails to make consistent progress
in the collaboration, the user may stop interacting due to frustration and dissatisfaction, and measure
the feasibility utility — performance reached according to certain no-progress tolerance, defined
by a tolerance threshold 7. For the i-th task, the user will stop the collaboration at step k; - if the

agent fails to make satisfactory progress for at most 7 rounds. The performance drop under 7 is
defined as

I NG i
Dar= Y U ~Ug.
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Notice that, in this case, we contrast P,S)T with PI(Q, the performance of the agent at the end of the

collaboration process, as a counterfactual measurement of the performance the agent can achieve if
the user continues to interact with the agent.

4 Applying collaborative effort scaling evaluation in simulated experiments

We showcase the benefit of our framework through a simulation study, following recent work that
approximates human behaviors [42H44]. Specifically, we simulate users with LLMs interacting with
agents, and adopt the simplest proxies for measurement: we use the round performance score P, as a
stand-in for utility, and the number of rounds as a proxy for human eﬁ‘ortE] This setup deliberately
oversimplifies our broader framework, but enables a first step in a controlled environment—Iletting
us sidestep the challenges of handling diverse user inputs or selecting the most faithful proxies. As
we show below, even this minimal instantiation is sufficient to highlight differences between agents
powered by different LLMs and prompts.

4.1 Experimental details

Setup. We use the Collaborative-Gym [26] environment that allows for asynchronous human and
agent actions, which mimics the realistic interaction process. In this study, we focus on the travel
planning task [27]: Given an initially high-level description of the user’s travel goal, e.g., “Help me
plan a 5-day trip from Omaha to Michigan starting on 2022-03-19”, the agent will work with the
simulated user to draft a travel plan that includes the itinerary, accommodation, and transportation.
Throughout an iterative collaboration process, the agent can elicit the user’s latent preferences and
constraints, and both parties can use tools for retrieving travel information and edit the final travel
plan together. We use the identical 101 subset of the travel planning dataset in the co-gym paper.

Metric. The agent performance is measured by the quality of the generated travel plan. We adopt
the script by Xie et al. [27] that uses an LM to determine whether the derived plan satisfies common
sense (commonsense pass rate) or user constraints (constraint pass rate), and report the arithmetic
average as the performance. The same evaluation is used for both the output or any intermediate
rounds with a travel plan updated to obtain F.

Implementation. The co-gym environment comes with an automated agent implementation based on
the RaAct framework [45], as well as two collaborative agent implementations: one- and two-stage
planning agents. In the process, the collaborative agent can opt to send a message to send messages
to the simulated user. The difference between the one- and two-stage planning agent is that the
latter is incorporates an additional planning step to determine whether to collaborate given the current
state of the task and the user. We test three LMs, i.e., GPT-40 (gpt-40-2024-08-06), Claude-3.5-
sonnet (claude-3-5-sonnet-20241022), and Llama-3.1-70B: the agent prompts remain the same
when we test with different LMs.

Simulated user. The simulated user Two-stage Collaboration Planning Agents claude3sonnet
is also a prompted agent based on

gpt-4o with additional access to the ]
user’s preferences and goals of the ]
task. Besides taking actions and pro-
viding feedback, it also gives a satis-

h

Model Name
® claude3sonnet

0.4

Performance Rating

faction rating for the agent’s action L A~

during one round: for a round of ac- ol Session Count

tions ay, it produces a 5-point likert © : o Agent Type
score that assess the agents’ determin- = @ T == Automated Agent

. . . . @ ® One-stage Planning
ing if the agent actions are making = ® ] © Twostage Planning
process towards the end goal. The in- — T 5 : T : :

teraction stops when either party finds Collaboration Round Collaboration Round
the task is done or the total interaction
actions exceeds a maximum number
of 30 rounds.

Figure 4: The collaborative scaling curve comparing different
models and agent implementations.

*In some cases, agents may not update their output (e.g., only conducting searches or requesting more user
information); in such cases, we prefill with the previous performance score Py _1, with Py = 0.
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Table 1: Different metrics for the one- and two-stage collaboration planning agents for the travel plan task.

Automated Utility Refinement Gain  Feasibility Drop

Model Name Baseline First update Final step Overall Abs. Rel. Abs. Rel.
One-stage Collaboration Planning

claude3sonnet 0.572 0.396 0.441 0.450 0.054 13.6%  -0.131 -29.7%

gptdo 0.518 0.483 0.479 0.507 0.024 49%  -0.099 -20.8%

llama3-70b 0.482 0.498 0.496 0.534 0.036 7.1%  -0.090 -18.0%
Two-stage Collaboration Planning

claude3sonnet 0.572 0.647 0.637 0.687 0.040 6.2%  -0.215 -33.7%

gptdo 0.518 0.497 0.492 0.544 0.047 9.5% -0.194 -39.3%

llama3-70b 0.482 0.514 0.498 0.539 0.025 49%  -0.154 -30.9%

4.2 Results and findings

Fig. 4| shows the performance change during the collaboration process for different models and
agents. Overall, we find that agent based on different LMs show a generally similar collaborative
effort scaling trend: there is a process of improvement in the beginning of collaboration, and the
performance plateaus after around 5 rounds of interaction for all the agents.

Surprisingly, for gpt4o and Llama-70B, we find that collaborating with the user does not lead to better
performance compared to the fully autonomous baseline. After inspecting the event log, we find that
the collaborative version has a stronger tendency to get into loops of actions, resulting less effective
collaboration and lower performance. Neither does the collaborative agent implementation leads very
different performance.

Quite differently, the two-stage collaboration strategy leads to a significant performance boost for
the claude model. Not only it achieve better performance than the one-stage planning version, but
it also gets much better performance against the automated baseline. The metrics in Table [I] offers
additional insights: despite the claude model has the best refinement gain in the one-stage planning
case, the lower utility of the first update hinders the subsequent improvement. It shows that, while the
two-stage collaboration planning agent may take a bit extra effort at the beginning (initially lower blue
line in Fig. @ right), it can lead to a better first product, which is crucial for a good final performance.

S Discussion: Rethinking Agents through Utility and Effort

Our results suggest that current agent architectures are not just underperforming — they are misaligned
with how real collaboration works. Here, we reflect on how to use utility and effort — the two
fundamental dimensions of our framework — to rethink about agent design.

Utility and effort need thoughtful, human-centered proxy design One theme from our case
study (which is also a limitation of our simulation) is that existing proxies for “success” — final
task output, correctness, or superficial engagement — are not adequate. Both utility and effort are
richer, more nuanced concepts. They evolve across time, vary by context, and often manifest in subtle
human behaviors. For effort, we need to consider not just frequency of interaction, but cognitive load,
sensemaking behavior, or even confusion. For utility, we must move beyond output quality to account
for how the agent scaffolds understanding, encourages productive exploration, or clarifies ambiguity.
User’s interaction logs like edit histories, request timing, clarification patterns, etc. might help
approximate such dimensions, similar to recent design of adaptive programming suggestions [46].

Mixed-initiative interaction should be structured by effort-utility trajectories It is not enough for
agents to “respond well” to user prompts — they must know when to act, how to take initiative, and
when to defer. This timing and control dynamic — often described as mixed-initiative interaction [47]
— should be structured around the evolving effort-utility trajectory. An agent should step in when user
progress stalls, prompt clarification when utility is plateauing, or relinquish control when users are
gaining momentum. Critically, this requires not just good training data, but an interaction framework
that models collaboration as a dynamic control problem. Rather than hardcoding turn-taking rules or
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relying on rigid role assignment, agents should continuously infer where in the trajectory they are,
and adjust accordingly.

Humans evolve during interaction — agents should be trained to encourage such shifts and
adapt accordingly. One of the most underappreciated facts in human-agent collaboration is that
users change. Their goals sharpen, assumptions shift, understanding deepens. Agents that assume
static intent inevitably fail when these changes occur. Our case studies consistently show how quickly
initial inputs become outdated. This means that agents should not be built with the goal of reducing
effort or maximizing task efficiency, and should not only request inputs from humans when they want
to ask clarification questions. Instead, future training of agents should be trained towards certain
utility signals that can potentially directly contribute to human evolvement, even if it means the
agent would engage in seemingly inefficient steps from a task outcome prospective — including
backtracking, exploration, hypothesis generation, etc.

6 Related work

From Human-AI to Human-Agent Collaboration. Prior research has studied human “collabora-
tion” and “teaming” with Al [48-50], proposing design guidelines for effective human-Al interac-
tions [51}152]]. However, prior research focuses on Al outputs that operate within more constrained
parameters: their capabilities are often limited to single tasks. In contrast, modern LLM agents
that can access and execute tools to interact with external environments and have some form of
memory can enable more dynamic and sophisticated interaction patterns [4}|1H3]. For example, a
user can use Magentic-One [S33]] as a general assistant to complete web tasks or OpenHands [[54]]
as a pair programmer for software development. In light of new agent development, we contribute
to guidelines for effective human-agent interaction and call for the community to more carefully
consider how to design agents for effective human collaboration.

Agent Benchmarks and Evaluation. Many benchmarks have been introduced to evaluate agent
task completion capabilities across varying domains [55, 8, 56-58]]. Each benchmark follows a
similar structure: given a task description, agents are designed to create a plan, execute multiple
tasks, and analyze novel situations to achieve the specified goal [59]. For example, SWE-Bench
evaluates agents’ abilities to fix bugs in code repositories [S5], Web Arena measures agents’ abilities
to navigate the web and autonomously complete tasks [8], and GAIA tests agents’ abilities to serve
as general assistants to gather and synthesize information from the web and processes multimodal
data [56]. While these benchmarks are useful for evaluating agent progress, they do not capture the
practical interactive usage of agents by humans.

Recent work has proposed interactive evaluations to mimic real-world interaction scenarios [60, 61}
20]. For a given task, such as creative writing, interactive evaluations for human-AlI collaboration
focus on evaluating both (1) intermediate progress and (2) final outputs. However, these setups largely
focus on scenarios where each step involving the Al is usually small and self-contained, making
the decision of when to invoke the Al model and what result to return relatively straightforward.
Translating model performance to helpful collaboration is already non-trivial in traditional human-Al
collaboration, and the complex nature of Al agents only exacerbates this challenge. In particular,
we focus our discussions on evaluating how user effort and agent utility scale through multiple
interactions.

7 Conclusion

In this paper, we advocate for auditing and evaluating the human-agent collaboration process. Current
agent benchmarks often treat the collaboration process as implicit or secondary to task completion,
focusing primarily on outcome-based metrics. Through case studies with experts from five domains,
we distill desiderata for effective collaboration that extend beyond mere task completion. Based
on these insights, we introduced collaborative effort scaling as a framework that evaluates how
effectively agents leverage and enhance human input throughout interaction trajectories. It helps
us study the collaboration process and identify current agent limitations in a simulated experiment
on travel planning. As agents are increasingly integrated into complex scenarios with inherently
underspecified goals, measuring and optimizing for collaborative dynamics will be important, and we
advocate a wide adoption of our framework in such settings.
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