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Abstract—Model compression technology, a crucial aspect of 

neural network models, offers a range of benefits. It reduces the 

number of parameters and computational load, thereby shrinking 

the model size, enhancing inference speed, decreasing memory 

usage, and saving power. This article delves into the research of 

model compression technology for neural network models, 

focusing on channel pruning algorithms and model compression 

methods based on the Batch Normalization (BN) layer. The goal is 

to reduce the number of model parameters and computational 

load, leading to a smaller model size, faster inference speed, 

reduced memory usage, and saved power. The article applies 

sparse regularization to the scaling factors of the BN layer, serving 

as the basis for determining channel importance and reducing 

model complexity. It then presents experimental comparisons on 

VGGNet-16, ResNet-164, and DenseNet-40 neural network models, 

including standard training, sparse regularization, and pruning 

fine-tuning training results. The experiments reveal that the 

pruned networks achieve comparable or even higher accuracy 

than the original networks, underscoring the importance of the 

research in model compression technology. 
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model compression 

I. INTRODUCTION 

Deep Neural Networks (DNN) have unique architecture and 
characteristics to adapt to different tasks and data sets, but as the 
depth and width of the model increase, the computational 
resources required for its training and reasoning increase 
dramatically. For example, the number of parameters in Alex 
Net [1] reaches 60M, and even the computation amount in some 
image training tasks reaches hundreds of millions of floating 
points. Although the development of Graphics Processing Unit 
(GPU) accelerates the training of models, in actual application 
scenarios, network bandwidth limitations make edge computing 
devices a necessary choice. Embedded platforms have small 
memory and limited computing power, so it is necessary to 
compress the neural network model to adapt to resource 
constraints [2]. To solve these problems, researchers have 
proposed compression methods such as low-rank decomposition, 

weight quantization, knowledge distillation, and model pruning 
[3]. However, these methods can only solve some of the above 
problems, and some methods still need to rely on specific 
software and hardware acceleration. 

One practical approach to reduce resource consumption in 
large Convolutional Neural Network (CNN) is through network 
sparsity. This method introduces sparsity at different levels, 
significantly compressing model size and speeding up inference. 
Anwar [4] pioneered the inclusion of sparsity in feature maps, 
kernels, and their internals within pruning strategies, achieving 
substantial model compression. Subsequent research by Han [5] 
explored balancing network sparsity with accuracy, proposing 
methods to maintain high precision while promoting structured 
sparsity. Lebedev [6] also applied group pruning strategies to 
convolutional kernels, enhancing computational efficiency 
through sparse regularization. Wen [7] developed structured 
sparse learning algorithms that regulate filter and channel 
structures, effectively reducing model size and computational 
burden. These studies demonstrate that sparsity strategies can 
significantly decrease computing and storage costs while 
maintaining model performance. 

This study explores a practical and effective method for 
channel pruning, addressing challenges in deploying large CNN 
under limited resources. The approach involves sparse 
regularization of Batch Normalization (BN) layer scaling factors 
as criteria for channel importance assessment without requiring 
modifications to the existing model framework. By applying L1 
regularization, the scaling factors of BN layers tend towards zero, 
automatically identifying unimportant channels and 
significantly reducing model complexity. Compared to the 
original network, the pruned network achieves much 
compactness regarding model size, runtime memory, and 
computational requirements. Iterating this process multiple 
times yields a multi-channel model compression approach, 
making the network more streamlined and practical for real-
world applications.



Fig. 1. Comparison of deep neural network structures before and after pruning operation

II. CHANNEL PRUNING 

Channel pruning is a structured pruning technique that 
evaluates the contribution and importance of each channel 
within a neural network, identifying and removing non-critical 
channels that have minimal impact on model performance. This 
method significantly reduces model complexity and 
computational load, enhancing inference speed and efficiency 
without sacrificing accuracy. It makes the model more suitable 
for resource-constrained environments or real-time applications. 
Implementing channel pruning involves three key steps: 
evaluating channel importance, selecting channels for pruning, 
and executing the operation. This process helps optimize model 
performance and improve the efficiency of computational 
resource utilization. 

This paper evaluates channel importance by using the values 
of trainable scaling factors on each channel for pruning. 
Specifically, channels corresponding to scaling factors close to 
zero are considered unimportant and pruned, treating channel 
pruning as a sparsity optimization problem. BN layers are 
commonly used in neural networks to accelerate training and 
enhance model generalization. The scale factors within BN 
layers reflect the importance of each channel in the model. By 
introducing regularization and adjusting the values of channel 
scale factors, unimportant channels have their scale factors 
approach zero. The specific values of these scale factors are then 
used to measure channel importance, automatically removing 
channels with relatively lower importance. This approach 
compresses the model while maintaining accuracy, resulting in 
a compact neural network, as shown in Fig. 1. 

III. CHANNEL PRUNING-BASED DEEP NEURAL NETWORK MODEL 

COMPRESSION METHOD 

A. Importance evaluation and L1 sparse training 

The core idea of channel pruning is to remove redundant 
channels to simplify the model. Because channel pruning 
involves pruning and thinning parts of the network structure 
rather than individual weights, it does not require specialized 
libraries to achieve inference speedup and runtime memory 
savings [8]. The mathematical expression of channel pruning is 
represented as: 

 arg min
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where c represents the number of channels, i is the index of the 

number of channels, c’ represents the number of channels, Xi and 
Wi correspond to each channel of the input feature map and 

convolution kernel respectively, and i denotes channel 
coefficients. 

If  equals 0, the corresponding channel will be removed. 
The ordinary least square method can be used to solve the 
pruning problem without affecting the accuracy of the model.  
This paper aims to compress the input feature map channels 
from c to c’ while minimizing the reconstruction error as much 

as possible. Because  does not participate in the weight 
parameter update process in the above formula, its value can 
only be 0 or 1, complicating the optimization process. 

For channel pruning, finding an appropriate criterion to 
assess channel importance is necessary to ensure effective 
model pruning. In image recognition tasks, BN layers are 
included in CNN to prevent gradient explosion, accelerate 
model convergence, and enhance generalization performance 

[11]. BN layers normalize data using trainable scaling factors  

and offset coefficients , allowing them to learn the feature 
distribution of convolution layer outputs. Consider a 
convolution layer's input composed of b samples; the layer's 

output features form a 4th-order tensor x ϵ Rb×c×H×W, where H 

and W represent the height and width of the feature map, 
respectively, and c denotes the channel dimension of the feature 

map. The BN layer first computes the mean  and variance  

for each channel in the feature map x. For any channel v ϵ {1,2,

⋯,c}, formulas (2) and (3) are satisfied. 
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Normalize the feature map X after the convolution operation. 
Where X(v) is the tensor of feature maps on batch data with 
channel index v. 

 �̂�(𝑣) =
𝑋(𝑣)−𝜇𝑣

√𝜎𝑣
2+𝜀

 () 

The batch normalization layer plays a crucial role in 
stabilizing the back propagation process during model training. 

                                                                        

(a) Initial network 

                                                                      

(b)  Initial network 



Fig. 2. Flow chart of iterative pruning strategy

It achieves this by introducing scaling factors  and offset 

coefficients . These two sets of parameters are responsible for 
the stretching and shifting operations performed by the BN layer 
on its results. The output of the feature maps after batch 
normalization processing is represented as: 

 𝑍𝑜𝑢𝑡 = 𝛾𝑣�̂�𝑣 + 𝛽𝑣 () 

When the scaling factor v in the equation approaches zero, 

the output of the BN layer tends to v for potential biases 
introduced during the normalization operation. In neural 
networks, each convolutional layer is typically followed by a 

BN layer, where the scaling factors  in the BN layer correspond 
one-to-one with the channels of each convolutional layer.  

Thus, the scaling factor's magnitude can quantify each 
channel's contribution to the model's performance. If the scaling 

factor  of a channel approaches zero, it indicates that the feature 
maps generated by that channel contribute minimally to the 
model's performance, making the channel redundant. By 
removing these redundant channels, the parameter count of the 
network can be reduced without altering the original network's 
feature extraction capability. 

To guide the network in producing sparse scaling factors 

 during training, we apply L1 regularization to . This 

regularization technique encourages the scaling factors  to 
converge towards smaller values, thereby promoting pruning. 
The effect of L1 regularization is to make some values of the 
scaling factor distributed near 0, effectively making some 
channels less important in the network's performance. Define an 
objective function as: 

 𝐿 = ∑ 𝑙(𝑓(𝑥, 𝑊), 𝑦) + 𝜆 ∑ 𝑔(𝛾)γ∈Γ(𝑥,𝑦)  () 

where (x,y) represents the training data and corresponding target 
values, and W denotes the trainable weight parameters in the 
network. 

The first term is the CNN's training loss function, which 
measures the difference between the predictions made by the 

network and the actual target values. The second term, g (), is 
a sparsity penalty term on the scaling factor designed to 
encourage these factors to converge toward smaller values, 

thereby promoting pruning. The  is a balancing factor to adjust 
the relative importance between training loss and sparsity 
penalty [9]. This paper adopts g(s)=|s|, utilizing L1 
regularization.  

We use the Stochastic Gradient Descent (SGD) method to 
calculate the gradient of the loss function L concerning the 
scaling factor, as shown below. 

 ∇𝛾𝐿 = ∇𝑊𝑙∇𝛾𝑊 + 𝜆𝑠𝑔𝑛(𝛾) () 

During training, the network learns the  value of each 

channel. After the training, the BN layer's  value is statistically 
sorted. Based on the set pruning threshold, the network then 

creates a mask of the same dimension as the  value to indicate 

which channels need to be pruned. If a  value is less than the 
threshold, the corresponding mask value is set to 0, and the 
channel can be deleted. Otherwise, the value is 1, and the 
channel is reserved. When all the channels with a mask value of 
0 are pruned from the network, we have a compact neural 
network model. Finally, we also need to fine-tune the pruning 
model to compensate for the loss of accuracy. 

B. Iterative pruning strategy 

The single pruning learning method includes sparsity 
regularization training, pruning, and fine-tuning. However, to 
avoid the significant degradation of network performance, we 
adopt the iterative pruning method. This method breaks down 
the pruning process into multi-stage processes, ensuring a 
systematic approach to network optimization. We delete one 
section of the network at a time under the overall pruning rate 
target. We update the loss function and proceed to the tuning 
process for the network to reduce the cumulative error caused 
by deleting the channel. Then, the importance of the remaining 
channels is calculated using (6), and the next pruning channels 
are sorted. When the number of iterative pruning parameters to 
the model meets the preset requirements, the pruning is stopped. 
Finally, it's time to fine-tune. The entire training process is 
applied several times to learn a more compact network model. 
The iterative pruning strategy is shown in Fig. 2. 

During channel pruning, channels are ranked based on , 
which reflects their importance in the model. A portion of less 
important channels is then pruned according to a set iterative 
pruning rate. This iterative pruning approach allows adjustments 
based on the previous round's results, ensuring a balanced and 
optimized pruning effect and speed. In Fig. 2, the dashed line 
indicates that if fine-tuning results are unsatisfactory, the overall 
pruning rate is reduced. 

C. Channel selection module 

Scaling factors from BN layers as a criterion for channel 
importance in pruning methods can be directly applied to 
conventional CNN architectures, such as AlexNet [1] and 
VGGNet.  

 



Fig. 3. Structure Diagram of ResNet-164 with CS Module 

However, it does not perform well for networks like ResNet 
[10] and DenseNet [11], which feature skip connections and pre-
activation designs, where the output of each layer serves as input 
to multiple subsequent layers. Typically, a BN layer is placed 
before convolutional layers between these layers. In such cases, 
sparsity is achieved at the input side of the layer, meaning the 
layer selectively uses a subset of channels it receives. 

To achieve savings in parameters and computations, a 
channel selection (CS) module is added after the BN layer 
instead of directly pruning convolutional layers within each 
layer[9]. Taking ResNet-164 [10] as an example, ResNet-164 
adopts a pre-activation structure, where BN and activation 
functions (such as ReLU) are applied before convolution 
operations in each residual unit. This design helps mitigate the 
vanishing gradient problem, enhancing model training 
efficiency and convergence speed. The network model with the 
CS module added to each residual unit of this architecture is 
depicted in Fig. 3. The dotted box represents bottleneck structure. 

Therefore, rather than directly pruning convolutional layers, 
introducing a CS module after the BN layer allows channel 
selection based on the parameter. This approach is more flexible 
in implementation, enabling savings in parameters and 
computations while maintaining network structural stability. By 
leveraging the CS module, the subset of input channels received 
by each layer can be dynamically adjusted by parameters during 
training to achieve sparsity and performance optimization. 

IV. EXPERIMENTAL VALIDATION AND ANALYSIS 

A. Experimental settings 

This study conducted experiments on three network models: 
VGGNet, ResNet-164, and DenseNet-40, using two CIFAR 
datasets for training and testing. The experiments were 
conducted with 160 epochs, optimizing the loss function of the 
network models using the SGD algorithm. A weight decay 

coefficient  of 10-4 and a Nesterov momentum [12] of 0.9 
without dampening were chosen. The batch size was 64, and the 

initial learning rate was set to 0.1. During training, the learning 
rate was adjusted to 0.01 at epoch 80 and 0.001 at epoch 120 to 
facilitate learning rate updates. 

This study trained the models in normal conditions using 
standard training procedures without compression or 
optimization. These results serve as the baseline for comparison 
with other conditions. The scaling factor for channels typically 
defaults to 1. However, the experiments set it to 0.5 to better suit 
the current task or model architecture characteristics, thereby 
potentially improving training accuracy. When pruning the 
channels of models trained through sparsity, the choice of 
threshold values directly impacts the model's overall 
performance. Therefore, determining an appropriate scaling 
factor pruning threshold is crucial. 

When the pruning threshold is too large, it results in minimal 
or negligible pruning. In contrast, excessively small thresholds 
may lead to over-pruning, removing too many weights or 
structures from the model. Therefore, when the pruning ratio 
exceeds a certain threshold, both pruning and fine-tuning may 
cause a decline in classification performance. However, fine-
tuning can often compensate for accuracy losses due to 
excessive pruning. Hence, during the experimental pruning 
process, this study tested the model's accuracy under different 
pruning thresholds to determine the optimal threshold. During 
fine-tuning, epochs are set to 160, and the model's accuracy and 
error values are recorded after each epoch to determine the 
optimal epoch. Upon completion of training, the accuracy and 
parameter count of the models trained under normal conditions 
and after pruning are compared. 

B. Experimental results and analysis 

In this section, three network models were trained on the 
CIFAR dataset. 

TABLE I.  RESULTS ON CIFAR-10 

Models CIFAR-10 Baseline Sparsity Prune Fine-

tune 

VGG 

Net 

 (70%) 

Accuracy (%) 91.81 91.70 32.54 91.78 

Parameters (M) 20.04 20.04 2.25 2.25 

ResNet-

164 
(40%) 

Accuracy (%) 88.83 88.76 12.32 88.05 

Parameters (M) 1.71 1.71 1.45 1.45 

DenseNet-
40 

(40%) 

Accuracy (%) 90.11 90.17 25.69 90.32 

Parameters (M) 1.10 1.10 0.69 0.69 

TABLE II.  RESULTS ON CIFAR-100 

Models CIFAR-10 Baseline Sparsity Prune Fine-

tune 

VGG 

Net 
 (50%) 

Accuracy (%) 71.12 70.85 5.31 71.32 

Parameters (M) 20.04 20.04 4.93 4.93 

ResNet-
164 

(40%) 

Accuracy (%) 66.07 66.13 48.00 67.36 

Parameters (M) 1.71 1.71 1.49 1.49 

DenseNet-

40 

(40%) 

Accuracy (%) 70.33 68.88 60.67 70.76 

Parameters (M) 1.10 1.10 0.71 0.71 

 

 

 

 

 

 

 

 



Fig. 4. Accuracy curves of three network models on CIFAR

Fig. 5. Comparison of the number of parameters of the three deep learning 

models before and after the pruning operation 

TABLE I. shows that after fine-tuning the VGGNet-16 
model trained on CIFAR-10, the model achieved comparable 
accuracy to normal training while reducing the parameter count 
by 17.79 million. Further comparison of the loss values between 
normal training and 70% pruned plus fine-tuned VGGNet-16 
models indicates that the pruned model's loss remains 
comparable to normal training, suggesting that pruning did not 
significantly degrade model accuracy but effectively reduced 
parameter count. 

Additionally, results from fine-tuning ResNet-164 and 
DenseNet-40 models show a slight decrease in accuracy by 0.78% 
and a parameter reduction of 0.26 million for ResNet-164. In 
contrast, DenseNet-40 exhibited a slight accuracy improvement 
of 0.21% with a parameter reduction of 0.41 million. These 
findings demonstrate that pruning can effectively enhance 
model performance by mitigating the impact of unimportant 
channels on accuracy, thereby achieving parameter reduction 
objectives. 

Fig. 1presents the training results of three network models 
on the CIFAR-100 dataset. After fine-tuning, VGGNet-16 
experienced a slight accuracy decrease of 0.2% compared to 
regular training, while the parameter count dropped significantly 
from 20.04 million to 4.93 million. The pruned VGG model 
maintained its accuracy and significantly reduced its parameter 
count. For the ResNet-164 model on the CIFAR-100 dataset, 
fine-tuning resulted in an accuracy improvement of 0.29% 
compared to regular training, along with a reduction of 0.22 
million parameters. Similarly, the DenseNet-40 model showed 
an accuracy improvement of 0.43% and a parameter reduction 
of 0.39 million after fine-tuning. These results demonstrate that 
fine-tuning is an effective optimization method that can reduce 
model parameter count while maintaining or improving model 
accuracy.  

 

(a) Accuracy and loss curves of VGGNet on CIFAR-10 

 

(b)  Accuracy and loss curves of VGGNet on CIFAR-100 

 

(c)  Accuracy and loss curves of ResNet-164 on CIFAR-10 

 

(d)  Accuracy and loss curves of ResNet-164 on CIFAR-100 

 

(e)  Accuracy and loss curves of DenseNet-40 on CIFAR-10 

 

(f)  Accuracy and loss curves of DenseNet-40 on CIFAR-100 

 



Fig. 6. Accuracy curves of three network models on CIFAR

Fig. 4 shows the changes of accuracy and loss of the three 
network models in the training process. To find the optimal 
pruning threshold, we conducted comparative experiments with 
different pruning thresholds on three network models. Various 
pruning thresholds were selected to prune the models, followed 
by fine-tuning. The test errors were recorded over 30 epochs on 
the CIFAR-10 dataset. The results are shown in 0. For the 
VGGNet-16 network, the optimal pruning ratio is 70%. Beyond 
this threshold, the performance of the pruned model 
significantly deteriorates. Similarly, for the ResNet-164 network, 
the optimal pruning ratio is 40%. In the case of the DenseNet-
40 network, pruning ratios exceeding 40% show an increase in 
error post-pruning. However, subsequent fine-tuning effectively 
compensates for this accuracy loss, with the best performance 
observed at the 40% pruning ratio. However, when the pruning 
ratio is further increased to above 70%, the test error of the fine-
tuned model gradually becomes worse than that of the unpruned 
baseline model. 

Fig. 5 compares parameter counts before and after pruning 
for the three models. After pruning, the parameter counts of all 
three models decreased. Particularly for VGGNet-16, the 
parameter counts significantly reduced after pruning, indicating 
that removing unimportant parameters from the network can 
greatly simplify the model complexity while maintaining 
accuracy. This demonstrates that pruning can effectively reduce 
model complexity without compromising accuracy. 

V. RESULTS 

The channel pruning strategy adopted in this paper can 
significantly reduce the parameter count of CNNs while 
ensuring model performance remains intact. By applying L1 
regularization to the scaling factors of Batch Normalization 
layers, the method effectively selects unimportant channels. 
This allows the network to automatically prune non-essential 
parameters during training, reducing both the number of 
parameters and the computational load. The pruning approach 
not only decreases model complexity but also maintains or even 
enhances performance in image classification tasks. 
Experimental validation across multiple image classification 
datasets and various network models shows that three pruned 
network models achieve the same or even higher accuracy 
compared to the baseline model, while the number of parameters 
is significantly reduced after pruning. These results underscore 

the method's generality and robustness across different model 
architectures and training setups, applicable to various 
convolutional neural network models. Therefore, the channel 
pruning method proposed in this paper reduces computational 
complexity and preserves model generalization ability and 
classification accuracy. 
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