

Performance analysis of deep neural network based

on channel pruning

Junfeng Chen*

College of Artificial Intelligence

and Automation, Hohai

University

Jiangsu Key Laboratory of Power

Transmission & Distribution

Equipment Technology, Hohai

University

Changzhou, China

chen-1997@163.com

Na Li

College of Artificial Intelligence

and Automation, Hohai

University

Changzhou, China

lina1783@163.com

Ziyang Weng

College of Artificial Intelligence

and Automation, Hohai

University

Changzhou, China

wengtianx@gmail.com

Jingjing Du

College of Artificial Intelligence

and Automation, Hohai

University

Changzhou, China

hzdujing@163.com

Abstract—Model compression technology, a crucial aspect of

neural network models, offers a range of benefits. It reduces the

number of parameters and computational load, thereby shrinking

the model size, enhancing inference speed, decreasing memory

usage, and saving power. This article delves into the research of

model compression technology for neural network models,

focusing on channel pruning algorithms and model compression

methods based on the Batch Normalization (BN) layer. The goal is

to reduce the number of model parameters and computational

load, leading to a smaller model size, faster inference speed,

reduced memory usage, and saved power. The article applies

sparse regularization to the scaling factors of the BN layer, serving

as the basis for determining channel importance and reducing

model complexity. It then presents experimental comparisons on

VGGNet-16, ResNet-164, and DenseNet-40 neural network models,

including standard training, sparse regularization, and pruning

fine-tuning training results. The experiments reveal that the

pruned networks achieve comparable or even higher accuracy

than the original networks, underscoring the importance of the

research in model compression technology.

Keywords—channel pruning, convolution neural networks,

model compression

I. INTRODUCTION

Deep Neural Networks (DNN) have unique architecture and
characteristics to adapt to different tasks and data sets, but as the
depth and width of the model increase, the computational
resources required for its training and reasoning increase
dramatically. For example, the number of parameters in Alex
Net [1] reaches 60M, and even the computation amount in some
image training tasks reaches hundreds of millions of floating
points. Although the development of Graphics Processing Unit
(GPU) accelerates the training of models, in actual application
scenarios, network bandwidth limitations make edge computing
devices a necessary choice. Embedded platforms have small
memory and limited computing power, so it is necessary to
compress the neural network model to adapt to resource
constraints [2]. To solve these problems, researchers have
proposed compression methods such as low-rank decomposition,

weight quantization, knowledge distillation, and model pruning
[3]. However, these methods can only solve some of the above
problems, and some methods still need to rely on specific
software and hardware acceleration.

One practical approach to reduce resource consumption in
large Convolutional Neural Network (CNN) is through network
sparsity. This method introduces sparsity at different levels,
significantly compressing model size and speeding up inference.
Anwar [4] pioneered the inclusion of sparsity in feature maps,
kernels, and their internals within pruning strategies, achieving
substantial model compression. Subsequent research by Han [5]
explored balancing network sparsity with accuracy, proposing
methods to maintain high precision while promoting structured
sparsity. Lebedev [6] also applied group pruning strategies to
convolutional kernels, enhancing computational efficiency
through sparse regularization. Wen [7] developed structured
sparse learning algorithms that regulate filter and channel
structures, effectively reducing model size and computational
burden. These studies demonstrate that sparsity strategies can
significantly decrease computing and storage costs while
maintaining model performance.

This study explores a practical and effective method for
channel pruning, addressing challenges in deploying large CNN
under limited resources. The approach involves sparse
regularization of Batch Normalization (BN) layer scaling factors
as criteria for channel importance assessment without requiring
modifications to the existing model framework. By applying L1
regularization, the scaling factors of BN layers tend towards zero,
automatically identifying unimportant channels and
significantly reducing model complexity. Compared to the
original network, the pruned network achieves much
compactness regarding model size, runtime memory, and
computational requirements. Iterating this process multiple
times yields a multi-channel model compression approach,
making the network more streamlined and practical for real-
world applications.

Fig. 1. Comparison of deep neural network structures before and after pruning operation

II. CHANNEL PRUNING

Channel pruning is a structured pruning technique that
evaluates the contribution and importance of each channel
within a neural network, identifying and removing non-critical
channels that have minimal impact on model performance. This
method significantly reduces model complexity and
computational load, enhancing inference speed and efficiency
without sacrificing accuracy. It makes the model more suitable
for resource-constrained environments or real-time applications.
Implementing channel pruning involves three key steps:
evaluating channel importance, selecting channels for pruning,
and executing the operation. This process helps optimize model
performance and improve the efficiency of computational
resource utilization.

This paper evaluates channel importance by using the values
of trainable scaling factors on each channel for pruning.
Specifically, channels corresponding to scaling factors close to
zero are considered unimportant and pruned, treating channel
pruning as a sparsity optimization problem. BN layers are
commonly used in neural networks to accelerate training and
enhance model generalization. The scale factors within BN
layers reflect the importance of each channel in the model. By
introducing regularization and adjusting the values of channel
scale factors, unimportant channels have their scale factors
approach zero. The specific values of these scale factors are then
used to measure channel importance, automatically removing
channels with relatively lower importance. This approach
compresses the model while maintaining accuracy, resulting in
a compact neural network, as shown in Fig. 1.

III. CHANNEL PRUNING-BASED DEEP NEURAL NETWORK MODEL

COMPRESSION METHOD

A. Importance evaluation and L1 sparse training

The core idea of channel pruning is to remove redundant
channels to simplify the model. Because channel pruning
involves pruning and thinning parts of the network structure
rather than individual weights, it does not require specialized
libraries to achieve inference speedup and runtime memory
savings [8]. The mathematical expression of channel pruning is
represented as:

 arg min
𝛽,𝑊

1

2𝑁
‖𝑌 − ∑ 𝛽𝑖𝑋𝑖𝑊𝑖

𝑐
𝑖=1 ‖𝐹

2 ,

 𝑠. 𝑡. ‖𝛽‖0 ≤ 𝑐′, 0 ≤ 𝑐′ ≤ 𝑐 ()

where c represents the number of channels, i is the index of the

number of channels, c’ represents the number of channels, Xi and
Wi correspond to each channel of the input feature map and

convolution kernel respectively, and i denotes channel
coefficients.

If equals 0, the corresponding channel will be removed.
The ordinary least square method can be used to solve the
pruning problem without affecting the accuracy of the model.
This paper aims to compress the input feature map channels
from c to c’ while minimizing the reconstruction error as much

as possible. Because does not participate in the weight
parameter update process in the above formula, its value can
only be 0 or 1, complicating the optimization process.

For channel pruning, finding an appropriate criterion to
assess channel importance is necessary to ensure effective
model pruning. In image recognition tasks, BN layers are
included in CNN to prevent gradient explosion, accelerate
model convergence, and enhance generalization performance

[11]. BN layers normalize data using trainable scaling factors

and offset coefficients , allowing them to learn the feature
distribution of convolution layer outputs. Consider a
convolution layer's input composed of b samples; the layer's

output features form a 4th-order tensor x ϵ Rb×c×H×W, where H

and W represent the height and width of the feature map,
respectively, and c denotes the channel dimension of the feature

map. The BN layer first computes the mean and variance

for each channel in the feature map x. For any channel v ϵ {1,2,

⋯,c}, formulas (2) and (3) are satisfied.

 𝜇𝑉 =
1

𝑏×ℎ×𝑤
∑ ∑ ∑ 𝑥𝑖,𝑣,𝑗,𝑘

𝑤
𝑘=1

ℎ
𝑗=1

𝑏
𝑖=1 ()

 𝜎𝑉
2 =

1

𝑏×ℎ×𝑤
∑ ∑ ∑ (𝑥𝑖,𝑣,𝑗,𝑘 − 𝜇𝑉)2𝑤

𝑘=1
ℎ
𝑗=1

𝑏
𝑖=1 ()

Normalize the feature map X after the convolution operation.
Where X(v) is the tensor of feature maps on batch data with
channel index v.

 �̂�(𝑣) =
𝑋(𝑣)−𝜇𝑣

√𝜎𝑣
2+𝜀

 ()

The batch normalization layer plays a crucial role in
stabilizing the back propagation process during model training.

(a) Initial network

(b) Initial network

Fig. 2. Flow chart of iterative pruning strategy

It achieves this by introducing scaling factors and offset

coefficients . These two sets of parameters are responsible for
the stretching and shifting operations performed by the BN layer
on its results. The output of the feature maps after batch
normalization processing is represented as:

 𝑍𝑜𝑢𝑡 = 𝛾𝑣�̂�𝑣 + 𝛽𝑣 ()

When the scaling factor v in the equation approaches zero,

the output of the BN layer tends to v for potential biases
introduced during the normalization operation. In neural
networks, each convolutional layer is typically followed by a

BN layer, where the scaling factors in the BN layer correspond
one-to-one with the channels of each convolutional layer.

Thus, the scaling factor's magnitude can quantify each
channel's contribution to the model's performance. If the scaling

factor of a channel approaches zero, it indicates that the feature
maps generated by that channel contribute minimally to the
model's performance, making the channel redundant. By
removing these redundant channels, the parameter count of the
network can be reduced without altering the original network's
feature extraction capability.

To guide the network in producing sparse scaling factors

 during training, we apply L1 regularization to . This

regularization technique encourages the scaling factors to
converge towards smaller values, thereby promoting pruning.
The effect of L1 regularization is to make some values of the
scaling factor distributed near 0, effectively making some
channels less important in the network's performance. Define an
objective function as:

 𝐿 = ∑ 𝑙(𝑓(𝑥, 𝑊), 𝑦) + 𝜆 ∑ 𝑔(𝛾)γ∈Γ(𝑥,𝑦) ()

where (x,y) represents the training data and corresponding target
values, and W denotes the trainable weight parameters in the
network.

The first term is the CNN's training loss function, which
measures the difference between the predictions made by the

network and the actual target values. The second term, g (), is
a sparsity penalty term on the scaling factor designed to
encourage these factors to converge toward smaller values,

thereby promoting pruning. The is a balancing factor to adjust
the relative importance between training loss and sparsity
penalty [9]. This paper adopts g(s)=|s|, utilizing L1
regularization.

We use the Stochastic Gradient Descent (SGD) method to
calculate the gradient of the loss function L concerning the
scaling factor, as shown below.

 ∇𝛾𝐿 = ∇𝑊𝑙∇𝛾𝑊 + 𝜆𝑠𝑔𝑛(𝛾) ()

During training, the network learns the value of each

channel. After the training, the BN layer's value is statistically
sorted. Based on the set pruning threshold, the network then

creates a mask of the same dimension as the value to indicate

which channels need to be pruned. If a value is less than the
threshold, the corresponding mask value is set to 0, and the
channel can be deleted. Otherwise, the value is 1, and the
channel is reserved. When all the channels with a mask value of
0 are pruned from the network, we have a compact neural
network model. Finally, we also need to fine-tune the pruning
model to compensate for the loss of accuracy.

B. Iterative pruning strategy

The single pruning learning method includes sparsity
regularization training, pruning, and fine-tuning. However, to
avoid the significant degradation of network performance, we
adopt the iterative pruning method. This method breaks down
the pruning process into multi-stage processes, ensuring a
systematic approach to network optimization. We delete one
section of the network at a time under the overall pruning rate
target. We update the loss function and proceed to the tuning
process for the network to reduce the cumulative error caused
by deleting the channel. Then, the importance of the remaining
channels is calculated using (6), and the next pruning channels
are sorted. When the number of iterative pruning parameters to
the model meets the preset requirements, the pruning is stopped.
Finally, it's time to fine-tune. The entire training process is
applied several times to learn a more compact network model.
The iterative pruning strategy is shown in Fig. 2.

During channel pruning, channels are ranked based on ,
which reflects their importance in the model. A portion of less
important channels is then pruned according to a set iterative
pruning rate. This iterative pruning approach allows adjustments
based on the previous round's results, ensuring a balanced and
optimized pruning effect and speed. In Fig. 2, the dashed line
indicates that if fine-tuning results are unsatisfactory, the overall
pruning rate is reduced.

C. Channel selection module

Scaling factors from BN layers as a criterion for channel
importance in pruning methods can be directly applied to
conventional CNN architectures, such as AlexNet [1] and
VGGNet.

Fig. 3. Structure Diagram of ResNet-164 with CS Module

However, it does not perform well for networks like ResNet
[10] and DenseNet [11], which feature skip connections and pre-
activation designs, where the output of each layer serves as input
to multiple subsequent layers. Typically, a BN layer is placed
before convolutional layers between these layers. In such cases,
sparsity is achieved at the input side of the layer, meaning the
layer selectively uses a subset of channels it receives.

To achieve savings in parameters and computations, a
channel selection (CS) module is added after the BN layer
instead of directly pruning convolutional layers within each
layer[9]. Taking ResNet-164 [10] as an example, ResNet-164
adopts a pre-activation structure, where BN and activation
functions (such as ReLU) are applied before convolution
operations in each residual unit. This design helps mitigate the
vanishing gradient problem, enhancing model training
efficiency and convergence speed. The network model with the
CS module added to each residual unit of this architecture is
depicted in Fig. 3. The dotted box represents bottleneck structure.

Therefore, rather than directly pruning convolutional layers,
introducing a CS module after the BN layer allows channel
selection based on the parameter. This approach is more flexible
in implementation, enabling savings in parameters and
computations while maintaining network structural stability. By
leveraging the CS module, the subset of input channels received
by each layer can be dynamically adjusted by parameters during
training to achieve sparsity and performance optimization.

IV. EXPERIMENTAL VALIDATION AND ANALYSIS

A. Experimental settings

This study conducted experiments on three network models:
VGGNet, ResNet-164, and DenseNet-40, using two CIFAR
datasets for training and testing. The experiments were
conducted with 160 epochs, optimizing the loss function of the
network models using the SGD algorithm. A weight decay

coefficient of 10-4 and a Nesterov momentum [12] of 0.9
without dampening were chosen. The batch size was 64, and the

initial learning rate was set to 0.1. During training, the learning
rate was adjusted to 0.01 at epoch 80 and 0.001 at epoch 120 to
facilitate learning rate updates.

This study trained the models in normal conditions using
standard training procedures without compression or
optimization. These results serve as the baseline for comparison
with other conditions. The scaling factor for channels typically
defaults to 1. However, the experiments set it to 0.5 to better suit
the current task or model architecture characteristics, thereby
potentially improving training accuracy. When pruning the
channels of models trained through sparsity, the choice of
threshold values directly impacts the model's overall
performance. Therefore, determining an appropriate scaling
factor pruning threshold is crucial.

When the pruning threshold is too large, it results in minimal
or negligible pruning. In contrast, excessively small thresholds
may lead to over-pruning, removing too many weights or
structures from the model. Therefore, when the pruning ratio
exceeds a certain threshold, both pruning and fine-tuning may
cause a decline in classification performance. However, fine-
tuning can often compensate for accuracy losses due to
excessive pruning. Hence, during the experimental pruning
process, this study tested the model's accuracy under different
pruning thresholds to determine the optimal threshold. During
fine-tuning, epochs are set to 160, and the model's accuracy and
error values are recorded after each epoch to determine the
optimal epoch. Upon completion of training, the accuracy and
parameter count of the models trained under normal conditions
and after pruning are compared.

B. Experimental results and analysis

In this section, three network models were trained on the
CIFAR dataset.

TABLE I. RESULTS ON CIFAR-10

Models CIFAR-10 Baseline Sparsity Prune Fine-

tune

VGG

Net

 (70%)

Accuracy (%) 91.81 91.70 32.54 91.78

Parameters (M) 20.04 20.04 2.25 2.25

ResNet-

164
(40%)

Accuracy (%) 88.83 88.76 12.32 88.05

Parameters (M) 1.71 1.71 1.45 1.45

DenseNet-
40

(40%)

Accuracy (%) 90.11 90.17 25.69 90.32

Parameters (M) 1.10 1.10 0.69 0.69

TABLE II. RESULTS ON CIFAR-100

Models CIFAR-10 Baseline Sparsity Prune Fine-

tune

VGG

Net
 (50%)

Accuracy (%) 71.12 70.85 5.31 71.32

Parameters (M) 20.04 20.04 4.93 4.93

ResNet-
164

(40%)

Accuracy (%) 66.07 66.13 48.00 67.36

Parameters (M) 1.71 1.71 1.49 1.49

DenseNet-

40

(40%)

Accuracy (%) 70.33 68.88 60.67 70.76

Parameters (M) 1.10 1.10 0.71 0.71

Fig. 4. Accuracy curves of three network models on CIFAR

Fig. 5. Comparison of the number of parameters of the three deep learning

models before and after the pruning operation

TABLE I. shows that after fine-tuning the VGGNet-16
model trained on CIFAR-10, the model achieved comparable
accuracy to normal training while reducing the parameter count
by 17.79 million. Further comparison of the loss values between
normal training and 70% pruned plus fine-tuned VGGNet-16
models indicates that the pruned model's loss remains
comparable to normal training, suggesting that pruning did not
significantly degrade model accuracy but effectively reduced
parameter count.

Additionally, results from fine-tuning ResNet-164 and
DenseNet-40 models show a slight decrease in accuracy by 0.78%
and a parameter reduction of 0.26 million for ResNet-164. In
contrast, DenseNet-40 exhibited a slight accuracy improvement
of 0.21% with a parameter reduction of 0.41 million. These
findings demonstrate that pruning can effectively enhance
model performance by mitigating the impact of unimportant
channels on accuracy, thereby achieving parameter reduction
objectives.

Fig. 1presents the training results of three network models
on the CIFAR-100 dataset. After fine-tuning, VGGNet-16
experienced a slight accuracy decrease of 0.2% compared to
regular training, while the parameter count dropped significantly
from 20.04 million to 4.93 million. The pruned VGG model
maintained its accuracy and significantly reduced its parameter
count. For the ResNet-164 model on the CIFAR-100 dataset,
fine-tuning resulted in an accuracy improvement of 0.29%
compared to regular training, along with a reduction of 0.22
million parameters. Similarly, the DenseNet-40 model showed
an accuracy improvement of 0.43% and a parameter reduction
of 0.39 million after fine-tuning. These results demonstrate that
fine-tuning is an effective optimization method that can reduce
model parameter count while maintaining or improving model
accuracy.

(a) Accuracy and loss curves of VGGNet on CIFAR-10

(b) Accuracy and loss curves of VGGNet on CIFAR-100

(c) Accuracy and loss curves of ResNet-164 on CIFAR-10

(d) Accuracy and loss curves of ResNet-164 on CIFAR-100

(e) Accuracy and loss curves of DenseNet-40 on CIFAR-10

(f) Accuracy and loss curves of DenseNet-40 on CIFAR-100

Fig. 6. Accuracy curves of three network models on CIFAR

Fig. 4 shows the changes of accuracy and loss of the three
network models in the training process. To find the optimal
pruning threshold, we conducted comparative experiments with
different pruning thresholds on three network models. Various
pruning thresholds were selected to prune the models, followed
by fine-tuning. The test errors were recorded over 30 epochs on
the CIFAR-10 dataset. The results are shown in 0. For the
VGGNet-16 network, the optimal pruning ratio is 70%. Beyond
this threshold, the performance of the pruned model
significantly deteriorates. Similarly, for the ResNet-164 network,
the optimal pruning ratio is 40%. In the case of the DenseNet-
40 network, pruning ratios exceeding 40% show an increase in
error post-pruning. However, subsequent fine-tuning effectively
compensates for this accuracy loss, with the best performance
observed at the 40% pruning ratio. However, when the pruning
ratio is further increased to above 70%, the test error of the fine-
tuned model gradually becomes worse than that of the unpruned
baseline model.

Fig. 5 compares parameter counts before and after pruning
for the three models. After pruning, the parameter counts of all
three models decreased. Particularly for VGGNet-16, the
parameter counts significantly reduced after pruning, indicating
that removing unimportant parameters from the network can
greatly simplify the model complexity while maintaining
accuracy. This demonstrates that pruning can effectively reduce
model complexity without compromising accuracy.

V. RESULTS

The channel pruning strategy adopted in this paper can
significantly reduce the parameter count of CNNs while
ensuring model performance remains intact. By applying L1
regularization to the scaling factors of Batch Normalization
layers, the method effectively selects unimportant channels.
This allows the network to automatically prune non-essential
parameters during training, reducing both the number of
parameters and the computational load. The pruning approach
not only decreases model complexity but also maintains or even
enhances performance in image classification tasks.
Experimental validation across multiple image classification
datasets and various network models shows that three pruned
network models achieve the same or even higher accuracy
compared to the baseline model, while the number of parameters
is significantly reduced after pruning. These results underscore

the method's generality and robustness across different model
architectures and training setups, applicable to various
convolutional neural network models. Therefore, the channel
pruning method proposed in this paper reduces computational
complexity and preserves model generalization ability and
classification accuracy.

ACKNOWLEDGMENT

This work is partly supported by the Jiangsu Key Laboratory
of Power Transmission & Distribution Equipment Technology
(grant number 2023JSSPD07, 2022JSSPD05) and the Key
Research and Development Plan of Jiangsu Province (grant
number BE20219042).

REFERENCES

[1] A. Krizhevsky, I. Sutskever and G. E. Hinton, “ImageNet classification

with deep convolutional neural networks,” Advances in Neural
Information Processing Systems, vol. 25, pp. 1097-1105, December 2012.

[2] F. Zhu, R. Gong, F. Yu, X. Liu, Y. Wang, Z. Li, X. Yang and J. Yan,
“Towards Unified INT8 Training for Convolutional Neural Network,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), Seattle, pp. 1969-1979, 2019.

[3] Y. Lai, S. Hao, D. Huang. “Methods and progress in deep neural network
model compression,” Journal of East China Normal University (Natural
Science), vol. 2020, no. 5, pp. 68-82, September 2020.

[4] S. Anwar, K. Hwang, and W. Sung, “Structured pruning of deep
convolutional neural networks,” ACM Journal on Emerging Technologies
in Computing Systems (JETC), vol. 13, no. 3, pp. 1-18, July 2017.

[5] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both Weights and
Connections for Efficient Neural Networks,” Advances in Neural
Information Processing Systems, vol. 28, pp. 1135-1143, June 2015.

[6] V. Lebedev and V. Lempitsky, “Fast convnets using group-wise brain
damage,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), Las Vegas, pp. 2554-2564, 2016.

[7] W. Wen, C. Wu, Y. Wang, Y. Chen and H. Li, “Learning structured
sparsity in deep neural networks,” Advances in Neural Information
Processing Systems, vol. 29, pp. 2082-2090, August 2019.

[8] X. Jiang, Z. Li, L. Huang, M. Peng and S. Xu, “Review of neural network
pruning techniques,” Journal of Applied Sciences, vol. 40, no. 5, pp. 838-
849, September 2022.

[9] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan and C. Zhang, “Learning efficient
convolutional networks through network slimming,” Proc. IEEE Int. Conf.
Computer Vision (ICCV), pp. 2736-2744, Oct. 2017.

[10] K. He, X. Zhang, S. Ren and J. Sun, “Identity Mappings in Deep Residual
Networks,” in Computer Vision - ECCV 2016, vol. 9908, pp. 630-645,
2016.

(a) VGGNet

(b) ResNet-164

(c) DenseNet-40

[11] G. Huang, Z. Liu, L. Maaten, KQ. Weinberger, “Densely Connected
Convolutional Networks,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. Honolulu, pp. 4700-4708,
2017.

[12] I. Sutskever, J. Martens, G. Dahl, G. Hinton, “On the importance of
initialization and momentum in deep learning,” in International
Conference on Machine Learning (JMLR), vol. 28, no.3, pp. 1139-1147,
June 2013.

