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Abstract

Large Language Models (LLMs) as clinical
agents require careful behavioral adaptation.
While adept at reactive tasks (e.g., diagnosis
reasoning), LLMs often struggle with proactive
engagement, like unprompted identification of
critical missing information or risks. We intro-
duce BehaviorBench, a comprehensive dataset
to evaluate agent behaviors across a clinical as-
sistance spectrum, ranging from reactive query
responses to proactive interventions (e.g., clar-
ifying ambiguities, flagging overlooked crit-
ical data). Our BehaviorBench experiments
reveal LLMs’ inconsistent proactivity. To ad-
dress this, we propose BehaviorSFT, a novel
training strategy using behavioral tokens to ex-
plicitly condition LLMs for dynamic behav-
ioral selection along this spectrum. Behav-
iorSFT boosts performance, achieving up to
97.3% overall Macro F1 on BehaviorBench
and improving proactive task scores (e.g., from
95.0% to 96.5% for Qwen2.5-7B-Ins). Cru-
cially, blind clinician evaluations confirmed
BehaviorSFT-trained agents exhibit more re-
alistic clinical behavior, striking a superior bal-
ance between helpful proactivity (e.g., timely,
relevant suggestions) and necessary restraint
(e.g., avoiding over-intervention) versus stan-
dard fine-tuning or explicit instructed agents.'

1 Introduction

As Large Language Models (LLMs) transition from
experimental systems to deployed agents in clinical
environments, a critical question emerges: “when
should these systems act reactively or proactively
(Fauscette, 2024)?.” Unlike general-purpose Al
agents, healthcare agents can operate in high-stakes
environments where both action and inaction carry
significant consequences (Kim et al., 2025). We
define reactive behaviors as those where the agent
responds only to explicit queries with precisely the
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information requested, while proactive behaviors
involve volunteering additional information, rais-
ing concerns, or suggesting actions beyond what
was directly solicited. Importantly, proactivity in
clinical contexts extends beyond merely asking
clarifying questions, a common, but limited, fo-
cus in existing NLP research (Li et al., 2024; Hu
et al., 2024). While question-asking represents one
dimension of proactivity, our work encompasses
a broader spectrum - including unsolicited inter-
vention, critical evaluation, and recommendation.
These behaviors align closely with the "Appraisal"
phase of Evidence-Based Medicine (EBM) (Denby,
2008), where clinicians actively assess available
information, identify information gaps, and deter-
mine appropriate next steps. An agent that remains
strictly reactive may fail to raise an alert when prob-
lems are observed with critical lab values or medi-
cation contraindications (Walter Costa et al., 2021;
Wright et al., 2018), potentially compromising pa-
tient safety (McCoy et al., 2014). In contrast, an
excessively proactive system that frequently inter-
rupts with unsolicited recommendations risks con-
tributing to alert fatigue, interruption of workflow,
and potential rejection by healthcare profession-
als (Sutton et al., 2020). This trade-off between
reactive and proactive behaviors forms the core
challenge addressed in this paper. The appropriate
balance between these modalities varies dramati-
cally based on clinical context, urgency, risk levels,
and the specific healthcare roles being augmented,
demanding adaptive behavior policy rather than a
fixed mode, especially as systems achieve higher
levels of autonomy (Figure 4).

To systematically discuss how an agent’s reac-
tive and proactive stance should adapt with its in-
creasing capabilities, we adapt the SAE Levels of
Driving Automation (SAE, 2021) into a six-level
taxonomy for healthcare Al agent autonomy. This
framework detailed in Table 8 in Appendix helps
to illustrate a key principle: as an Al agent ascends
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Figure 1: Six representative tasks from BEHAVIORBENCH, showcasing the spectrum of agent behaviors in
clinical settings. The figure illustrates (a-c, f) proactive tasks where the LLM agent identifies issues or offers
insights without direct prompting, and (b, d, e) reactive tasks responding to explicit clinician queries.

these autonomy levels, its capacity and responsibil-
ity to engage in sophisticated proactive behaviors,
rather than merely reactive ones, become increas-
ingly critical.

The autonomy level taxonomy highlights that
effective healthcare Al, particularly for achiev-
ing Level 3 (Conditional Proactive Assistance)
and above, must move beyond simple reactive re-
sponses (Levels 1-2). As Al autonomy increases,
the nature of clinician responsibility evolves, shift-
ing from direct task execution to supervision, val-
idation of Al-driven insights, and management of
exceptions. Our work, therefore, focuses on en-
abling Al agents to learn and exhibit the adapted
spectrum of reactive and proactive behaviors cru-
cial for safe and effective operation at these higher
levels of conditional and collaborative automation.
BEHAVIORBENCH is designed to evaluate these ca-
pabilities across this spectrum, and BehaviorSFT
aims to train agents to achieve this behavioral adapt-
ability, particularly for robust performance at Lev-
els 2 and 3, with an eye towards future capabilities
at Level 4.

Effectively adapting which of these behaviors
is appropriate, and when, is essential for clinical
Al systems that can safely operate at increasing
levels of autonomy. In this work, we ask what

proactivity means for healthcare Al and how we
build systems that are appropriately behaving? To
this end, we propose a novel six-level taxonomy
for healthcare Al autonomy that maps progression
from human-controlled to autonomous operation.
We trace the evolution from early reactive systems
(Tu et al., 2024; Han et al., 2023) to more recent de-
velopments like MediQ (Li et al., 2024) and AIME
(McDuff et al., 2025; Tu et al., 2024), which in-
corporate proactive elements while demonstrating
the critical interplay between proactivity and ur-
gency. Our benchmark was curated from real med-
ical cases sourced from New England Journal of
Medicine (NEJM) clinical case reports (Brinkmann
et al., 2024). We employed a LLM (Gemini-2.5
Flash) to meticulously ground these cases in their
factual details and then reformat them into multi-
turn, multi-clinician-patient conversational scenar-
ios, integrating multi-modal inputs such as text,
images, and tabular data. Indeed, we propose
this LLM-assisted methodology for converting ex-
isting static clinical datasets into rich, reactive-
proactive benchmark scenarios as a key contribu-
tion of our work. Additionally, we present a novel
training methodology, BehaviorSFT, which em-
ploys explicit behavioral tokens to condition LLM
responses along the reactive-proactive spectrum.



Our approach demonstrates significant improve-
ments, achieving up to 97.3% overall Macro F1 on
BehaviorBench (compared to 96.7% for general
SFT) with particularly notable gains in proactive
tasks (from 95.0% to 96.5%). The primary contri-
butions are:

1. We introduce BEHAVIORBENCH, an evalu-
ation dataset that assesses LLM capabilities
across both reactive and proactive tasks in
healthcare contexts.

2. We provide detailed analysis of recent LLMs’
performance on BEHAVIORBENCH, revealing
significant variability in contextual awareness
and appropriate behavioral adaptation.

3. We propose BehaviorSFT, a new fine-tuning
strategy that leverages behavioral tokens to
guide LLMs in dynamically adapting their
responses along the reactive-proactive tasks.

2 BEHAVIORBENCH

We introduce BEHAVIORBENCH, a novel dataset
specifically designed to assess agent capabilities
across the reactive-proactive tasks. Derived from
real clinical cases, BEHAVIORBENCH comprises
of 6,876 real-world clinical case scenarios from
which we derived a total of 142,496 tasks dis-
tributed across the 13 distinct task categories. This
framework provides a more granular analysis of
an agent’s ability to discern context and modulate
its behavior accordingly, moving beyond standard
metrics, such as accuracy, that are solely based on
reactive responses. Detailed dataset statistics can
be found in the Appendix D.

To ensure that the generated tasks effectively
probe clinical reasoning, we construct the dataset in
a two-step process. First, we carefully prompt the
LLM (see Appendix G) generating the tasks to use
detailed summary from real-world clinical cases,
including patient history, diagnostics, conversation
snippets, and final diagnoses. This ensures that the
questions, answers, and rationales reflect genuine
clinical context instead of relying on pseudolabels
generated without any realistic groundings. All
draft tasks then underwent several back-and-forth
revision cycles with two physicians, who reviewed
any hallucinations and confirmed each scenario’s
practical plausibility for N=10 cases. Then, to eval-
uate the agent’s proactive capabilities, we augment

the base scenarios by intentionally introducing sub-
tle challenges, such as hypothetical scenarios with
probable clinical errors, conflicting data points (e.g.
modifying numerical values slightly between re-
ports, or presenting exam findings seemingly at
odds with imaging), and omitted information ex-
pected by clinical standards. The resulting reactive-
proactive tasks are as follows:

Reactive Tasks evaluates whether the agents can
handle information when requested directly.

1. fact_retrieval: Finds specific facts men-
tioned in the text (e.g., “What was the patient’s
initial temperature?").

2. timeline_sequence: Puts events in order us-
ing clear time references (e.g., tracing how
lung exam findings changed between the ini-
tial presentation and Turn NV, based on pro-
vided descriptions from those time points).

3. ddx_reasoning: Explains the reasoning for
a possible diagnosis using only the evidence
given (e.g., identifying findings prior to Turn
M, such as specific X-ray descriptions and
sputum results, that suggested bronchopneu-
monia over simple lobar pneumonia).

4. treatment_decision: Connects a doctor’s
thinking or action to the stated reason or data
supporting it (e.g., evaluating a specific di-
agnostic leaning mentioned in Turn K based
only on the evidence explicitly available at
that time, like sputum results).

Balanced Tasks are initiated by specific, pro-
vided information but demand a more significant
cognitive step involving deeper thinking, such as
multi-step inference, synthesis of multiple data
points, or evaluating the impact of new information
on existing understanding.

1. reasoning_differential_evolution:
Compares the patient’s situation at two
different times and explains how the doctor’s
assessment should change because of new
information (e.g., asking how the list of possi-
ble diagnoses should shift from Timepoint A
to Timepoint B considering newly available
sputum culture results and vital signs).

2. integrity_missing_turn_inference:
Figures out what was likely said in a missing
part of a conversation based on what came



Table 1: Comparison of Public Medical Benchmarks. Modality codes: t=text, i=image, b=tabular/structured data.
v indicates that the benchmark natively supports the evaluation dimension; X indicates it does not.

. . Behavior Sequential Dialogue Multiple
Benchmark Size Modality Evaluation Eval. Interaction Roles
MedQA (Jin et al., 2021) 1,273 t X X X X
MedMCQA (Pal et al., 2022) 6,100 t X X X X
MultiMedQA (Singhal et al., 2023) 13,115 t X X X X
MediQ (Li et al., 2024) 1,273 t X v v v
MediQ-AskDocs (Li et al., 2025) 17,000 t X v v v
ClinicBench (Chen et al., 2024) 11,000 t X X X X
MedChain (Liu et al., 2024) 12,163 t+i X v v v
MedAgentBench (Jiang et al., 2025) 300 t+b X v v v
HealthBench (Arora et al., 2025) 5,000 t X X v X
BEHAVIORBENCH (Ours) 142,496 t+i+b v v v v

before and after (e.g., “Turn NN orders a test,
Turn N + M discusses the result. What
likely happened in Turn N + K, where
0< K <M?).

Proactive Tasks require the LLM to use higher-
level thinking, and evaluation skills.

1. predictive_next_action: Forecasts the
most appropriate subsequent clinical action
by integrating the evolving patient case, cur-
rent symptoms, medical history, and available
diagnostic results.

2. explicit_error_correction: Identifies
and rectifies explicitly stated errors in clin-
ical narratives or proposed actions, providing
justifications based on medical knowledge and
case specifics (e.g., correcting drug suitability
given a patient’s allergy).

3. omission_detection: Identifies significant
omissions in the provided clinical information
or documented actions, such as overlooked
diagnostic tests or unaddressed critical symp-
toms that could impact patient care.

4. standard_of_care: Assesses whether doc-
umented clinical management, including di-
agnostic procedures and interventions, ad-
heres to established medical guidelines and
accepted best practices, often requiring exter-
nal knowledge.

5. interpretation_conflict: Discerns and
reconciles nuanced or potentially conflicting
interpretations of clinical findings from differ-
ent sources (e.g., contrasting physical exam
notes with radiology findings), articulating
their clinical significance.

6. data_conflict_resolution: Identifies di-
rect contradictions or inconsistencies between
pieces of factual clinical data presented within
a case (e.g., conflicting lab values over time)
and proposes logical explanations.

7. consistency_check: Evaluates the overall
logical and clinical coherence of a case nar-
rative or specific information, identifying el-
ements that are incongruous or implausible
(e.g., assessing if a patient’s reported progres-
sion aligns with a given diagnosis).

3 BehaviorSFT: Behavior Adaptation
Training

To operationalize the concept of behavioral adap-
tation within healthcare LLM agents, we propose
a targeted training strategy, Behavior-Conditioned
Supervised Fine-Tuning (BehaviorSFT). This ap-
proach leverages our specialized BehaviorBench
dataset (Section 2) to explicitly teach LLMs to mod-
ulate their responses along the reactive-proactive
spectrum based on inferred clinical context. This
contrasts with standard SFT approaches, which typ-
ically optimize for task completion without explicit
mechanisms to control the agent’s level of initia-
tive or caution, risking either unsafe passivity or
disruptive over-intervention.

3.1 Behavior Tokens

Rationale for Prefix Tokens: We employ prefix
behavior tokens (e.g., <reactive>, <proactive>) for
several reasons. Placing the token at the beginning
of the target sequence allows it to act as a direct
control signal, conditioning the entire generation
process on the desired behavioral mode from the
outset. This explicitly trains the model to adopt the
appropriate style, tone, and level of initiative as it



generates the response. While one could consider
predicting the token after some internal reasoning
chain, our approach integrates this reasoning im-
plicitly, i.e., the model learns to predict the correct
initial token based on its understanding of the input
context (x), as described in our Contextual Behav-
ior Assessment capability (Section 3.3). This pro-
vides an end-to-end mechanism for context-aware,
behaviorally adapted generation. Central to our
approach is the introduction of special behavior
tokens paired with the target response during train-
ing.

* <reactive>: Signals the generation of a di-
rect, concise response strictly adhering to the
explicit query, avoiding unsolicited informa-
tion or inferences.

* <proactive>: Signals a response that may in-
clude identifying implicit issues, volunteering
relevant context or warnings, suggesting next
steps, or applying external knowledge (e.g.,
standards of care) beyond the literal query.

These tokens act as control signals, learned by the
model and conditioning the subsequent generation
process. Alternative approaches exist, such as train-
ing a separate classifier to select the mode and then
routing the input to specialized reactive or proac-
tive models, or using inference-time techniques like
thresholding logits associated with the behavior to-
kens for finer control. However, our BehaviorSFT
approach offers a simpler, unified training process
within a single model. Future work could explore
hybrid methods or compare the efficacy of these
different control paradigms.

3.2 Training Data

BehaviorBench serves as the crucial training
ground for BehaviorSFT. Each instance within the
benchmark’s training split is meticulously anno-
tated with the desired target behavior token based
on the task’s nature and the underlying clinical sce-
nario’s demands:

1. Reactive Annotation (<reactive>): Ap-
plied to tasks demanding factual recall, di-
rect sequencing, or simple reasoning strictly
from provided data (e.g., fact_retrieval,
timeline_sequence).

2. Proactive Annotation
Applied to tasks
cal assessment,

(<proactive>):
necessitating  criti-
error/omission  detec-

tion, consistency checking,
tion based on clinical standards (e.g.,
consistency_check, standard_of_care,
predictive_next_action).

or predic-

3. Contextual Annotation for Balanced
Tasks: Instances from balanced tasks (e.g.,
reasoning_differential_evolution)
are annotated based on whether the spe-
cific context warrants simple reporting
(<reactive>) or highlighting significant
changes/implications (<proactive>).

Each annotated instance is then structured for
auto-regressive SFT, pairing the input context/-
query with a target sequence beginning with the
assigned behavior token, followed by an ideal re-
sponse exemplifying that behavior.

Example 1 (Reactive Task):

Input: Context: [Note excerpt: Vitals
stable.]

Query: Latest vitals?

Target: <reactive> BP 120/80, HR 75,
Temp 37.0C, RR 16.

Example 2 (Proactive Task):

Input: Context: [Chart: Rx Drug A.
Allergy list: Drug A.]

Query: Confirm med list okay?

Target: <proactive> Warning: Drug A
prescribed but patient is allergic.
Review immediately.

This structured data format explicitly teaches the
model the association between clinical scenarios,
appropriate behavioral modes (reactive/proactive),
and corresponding linguistic outputs.

3.3 Training Procedure: BehaviorSFT

Starting with a pre-trained foundation LLM,
we perform SFT using the behavior-annotated
BehaviorBench training data. The objective is
the standard causal language modeling loss, min-
imizing the negative log-likelihood of the tar-
get sequence y = (yi,...,yr), where y; €
{<reactive> <proactive>}:

T
£Beham’orSFT = - Z log P(yi’y<i7 xZ; 0) (1)
=1

Here, x is the input context/query, y-; are the pre-
ceding target tokens, and 6 represents the model
parameters.



Through this process, the model learns the cru-
cial, intertwined capabilities:

1. Contextual Behavior Assessment: Implic-
itly analyzing the input x to determine the
likelihood that a proactive or reactive stance
is warranted, influencing the prediction of the
initial token ;.

2. Behavior-Conditioned Generation: Gener-
ating subsequent tokens y9.7 in a manner con-
sistent with the generated or given behavior
token ¥y, adopting the appropriate style, tone,
and level of detail or intervention.

Il : Baseline I : BehaviorSFT [l : GeneralSFT

(1) Distribution of Specificity Scores (1) Distribution of Implicitness Scores

1.2 0.0 0.2 0.4 0.6 0.8 1.0
Implicitness

0.0 0.2 0.4 0.6 0.8 1.0
Specificity

Figure 2: Density distributions of (I) Specificity
and (II) Implicitness scores for Baseline, Behav-
iorSFT, and GeneralSFT agent outputs. (I) Speci-
ficity: Both fine-tuned models (BehaviorSFT and Gen-
eralSFT) markedly improve output specificity over the
Baseline, with distributions concentrated at high scores
(~0.9). (I) Implicitness: Distinct implicitness profiles
emerge: GeneralSFT is the most explicit (lowest scores,
~0.6-0.7), the Baseline is the most implicit (highest
scores, ~0.7-0.9), while BehaviorSFT exhibits a moder-
ate, intermediate level of implicitness (~0.7-0.8).
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Figure 3: G-Eval with gpt-4o0-mini as evaluator of
Qwen-2.5-7B-Ins responses across four key metrics.
We compare the average scores for the Baseline model,
our proposed BehaviorSFT, and GeneralSFT. Behav-
1orSFT consistently outperforms the Baseline across all
metrics and demonstrates competitive or superior per-
formance compared to GeneralSFT.

4 Experiments and Results

4.1 Setup

All  experiments use BEHAVIORBENCH
with a fixed 6776/110/977 train—val-test
split. We fine—tune both backbones;

Qwen-2.5-7B-Instruct (Team, 2024) and
Meta-Llama-3.1-8B-Instruct (Meta Al, 2024).
Details implementation details can be found in
Appendix H.

4.2 Main Results

From Reactive to Proactive capabilities in clin-
ical LLMs involve processing and responding di-
rectly to explicitly provided information. Reactiv-
ity encompasses fact retrieval, information sum-
marization, ordering events via direct sequencing,
following simple execution instructions, and per-
forming basic reasoning from explicit data, these
tasks test the LLLM’s ability to understand and ma-
nipulate information as presented, without signifi-
cant inference or applying external knowledge. The
Proactive-Reactive Scale of 0.0-0.4 typically re-
flects these functions.

Conversely, require the LLM to transcend lit-
eral interpretation, demonstrating deeper reason-
ing, anticipation, and critical assessment. Key as-
pects include inference and implication (identify-
ing unstated assumptions or missing information),
anticipation and prediction (foreseeing next steps
or complications), consistency and conflict detec-
tion (finding discrepancies between data points),
error recognition and correction, applying exter-
nal knowledge like standards of care, and synthesis
and complex interpretation from multiple sources.
These tasks simulate higher-order clinical thinking.
The Proactive-Reactive Scale of 0.6-1.0 aligns with
these skills, while 0.4-0.6 represents a balance.

Empirical Results Overview.  Table 2 re-
ports Macro F1 scores across the three task cate-
gories. Relative to both the majority-voting Ensem-
ble baseline and standard supervised fine-tuning
(Gen. SFT), BehaviorSFT matches or slightly ex-
ceeds performance on the Reactive and Balanced
sets, and yields a clear advantage on the most de-
manding Proactive tasks (Qwen: 96.5% vs. 95.0%;
Llama: 94.7% vs. 94.2%). These gains confirm that
the behavior-aligned fine-tuning strategy is partic-
ularly effective for higher-order reasoning tasks
such as complex inference, error correction, and
guideline-based decision making, thereby strength-
ening the model’s proactive capabilities. Detailed



Table 2: Performance on BEHAVIORBENCH. We report Macro F1-scores (%) across three task categories. Best
result per task is highlighted in bold.The Ensemble column reports baseline performance by majority voting across
three commercial closed-source models (Gemini-2.5-pro, OpenAI-o1, DeepSeek-R1). ‘ZS’ = Zero-Shot, ‘FS
(k=3)’ = Few-Shot (3 examples), ‘CoT’ = Chain-of-Thought, ‘Explicit Instr.” = ZS with explicit reactive/proactive
instruction, ‘Gen. SFT’ = Standard Supervised Fine-Tuning (SFT), ‘BehaviorSFT’ = Our proposed fine-tuning
method.

Category Task Ensemble Qwen2.5-7B-Ins Llama3.1-8B-Ins
ZS  FS (k=3) ZS + Explicit Instr. Gen. SFT BehaviorSFT Gen. SFT BehaviorSFT

° fact_retrieval 100.0 100.0 100.0 100.0 100.0 100.0 100.0

% timeline_sequence 100.0 100.0 100.0 100.0 100.0 100.0 100.0

s ddx_reasoning 96.2 96.6 96.6 96.1 96.1 94.2 92.7

& treatment_decision 94.8 95.3 95.3 100.0 98.4 98.4 98.7

Avg. 98.2 98.2 98.2 98.6 98.6 97.8 97.2

g reasoning_diff_evolution  98.6 98.6 98.6 100.0 100.0 100.0 100.0

5 integrity_missing_turn  100.0 100.0 100.0 100.0 100.0 96.4 100.0

2 Avg. 97.2 97.6 97.6 100.0 99.2 98.5 100.0

consistency_check 94.3 100.0 94.3 100.0 100.0 100.0 100.0

data_conflict_resolution  97.2 97.2 97.2 99.3 98.6 99.2 98.6

,E interpretation_conflict 98.5 96.5 96.5 96.6 96.6 98.5 98.6

] standard_of_care 93.4 95.3 93.7 94.8 93.3 91.5 88.4

E omission_detection 89.5 92.4 89.3 88.5 95.1 90.0 93.2

explicit_error_correction  96.3 97.5 96.4 98.3 99.2 98.4 97.2

predictive_next_action 82.5 83.0 82.3 84.8 91.7 77.0 83.4

Avg. 94.3 95.1 94.0 95.0 96.5 94.2 94.7

Avg. 95.4 96.0 95.3 96.7 97.3 95.8 96.1

Table 3: Macro F1-scores of prompting methods on behavior classification. Method abbreviations: BT = Behavior
token, BC = Behavior chain-of-thought, OC = Option CoT, OP = Option. Class abbreviations: Five-class
(BA = balanced; H_PR = highly_proactive; H_RE = highly_reactive; P_PR = primarily_proactive; P_RE =
primarily_reactive), Binary (PR = proactive; N_PR = non-proactive), Three-class (BA = balanced; PR = proactive;
RE = reactive).

Five-class Binary Three-class
BA H_ PR H_RE P_PR P_RE PR N_PR BA PR RE
BT-OC-OP 42.62 8947 476 19.19 6872 82.14 92.10 5341 92.10 73.68
BT-OP 37.06 87.77 1379 2528 6640 8276 92.19 4692 92.19 6642
BT-BC-OC-OP 5824 87.84 19.05 11.82 71.75 8348 9290 51.67 9290 72.09
BT-BC-OP 5474 88.89 1739 11.00 73.68 8297 92,58 51.76 92.58 69.57

BC-BT-OC-OP 57.06 87.73  14.81 7.07 7489 8259 9223 4500 9232 69.96

accuracy figures for the three commercial baselines ~ 0.92 for GeneralSFT and 0.88 for Baseline), and
are provided in Appendix F. Behavioral Appropriateness (0.91 vs. 0.87 for Gen-
eralSFT and 0.86 for Baseline). While GeneralSFT
scores marginally higher in Safety (0.97 vs. 0.95
for BehaviorSFT), BehaviorSFT still demonstrates
a strong safety profile. These results underscore
BehaviorSFT’s capability to not only perform tasks
effectively but also to align more closely with user
expectations in terms of usefulness, understandabil-
ity, and appropriate interaction, suggesting a more
refined and user-centric agent behavior.

Enhanced User-Centric Qualities with G-
Evaluation Our evaluation using G-Eval (Liu
et al., 2023), a methodology leveraging large mod-
els for human-aligned assessment, reveals signifi-
cant qualitative improvements with BehaviorSFT.
As depicted in Figure 3, BehaviorSFT consistently
outperforms the Baseline across all four key met-
rics: Utility, Safety, Clarity, and Behavioral Ap-
propriateness. Notably, BehaviorSFT achieves the
highest scores in Utility (0.95 vs. 0.93 for Gen- Optimizing Output Specificity while Balanc-
eralSFT and 0.90 for Baseline), Clarity (0.94 vs.  ing Implicitness Figure 2 illustrates the impact of



our fine-tuning approaches on the nuanced char-
acteristics of agent responses, specifically their
specificity and implicitness. Both fine-tuned mod-
els, BehaviorSFT and GeneralSFT, markedly en-
hance output specificity compared to the Baseline,
with distributions concentrating at high specificity
scores (around 0.9). This indicates that both meth-
ods generate more detailed and precise information.
However, a key distinction emerges in their implic-
itness profiles. GeneralSFT tends towards more
explicit communication, reflected in lower implic-
itness scores (approximately 0.6-0.7). In contrast,
the Baseline model is the most implicit (scores
around 0.7-0.9). BehaviorSFT carves out an in-
termediate and potentially more versatile profile,
achieving a moderate level of implicitness (scores
approximately 0.7-0.8). This suggests that Behav-
10rSFT can deliver highly specific information with-
out resorting to excessive explicitness, potentially
mirroring more natural human communication pat-
terns and aligning with the idea that effective agents
must navigate implicit evaluation criteria (Wadhwa
et al., 2025).

4.3 Ablation on prompting variants for
Behavior Pattern Analysis

Table 3 evaluates five prompting recipes ob-
tained by incrementally adding Behavior Chain-
of-Thought (BC) and Option reasoning (OC/OP)
on top of the Behavior Token (BT) baseline. The
full recipe BI-BC-OC-OP achieves the best or
second-best Macro F1 in 11 of the 13 columns (e.g.,
Five-class BA 58.2 and Binary PR 83.5), showing
that BC and OC/OP provide complementary gains.
Dropping OC/OP (BT-BC-OP) or BC (BT-OP)
consistently lowers scores, while reversing the BC
placement (BC-BT—OC—-OP) yields a smaller ben-
efit, indicating that BC is most effective when ap-
pended after the BT prompt. Overall, combining
both reasoning cues delivers the most robust be-
haviour classification across all label granularities.

5 Conclusion

This paper addresses the critical gap in LLM proac-
tivity for healthcare. Our BEHAVIORBENCH, vali-
dated by clinicians for plausibility, systematically
evaluates this, revealing LLM deficiencies in proac-
tive reasoning despite reactive strengths. We intro-
duced BehaviorSFT, a new fine-tuning method us-
ing explicit <reactive> and <proactive> tokens. Be-
haviorSFT improved performance, achieving up to

97.3% overall Macro F1 on BEHAVIORBENCH and
boosting proactive task scores (e.g., Qwen2.5-7B-
Ins from 95.0% to 96.5%). Crucially, in a clinician
user study, BehaviorSFT-trained agents received
the most favorable rankings (best mean rank 1.80).
G-Eval results also showed superior Utility (0.95)
and Behavioral Appropriateness (0.91). These com-
bined findings demonstrate BehaviorSFT’s effec-
tiveness in creating more reliable, clinically nu-
anced, and clinician-preferred LLM agents for com-
plex healthcare scenarios.
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A Related Works

The Evolving Role of Al in Clinical Tasks Early
Al applications in healthcare predominantly func-
tioned as reactive tools, such as information re-
trieval systems responding to explicit queries (Ya-
sunaga et al., 2022) or basic clinical decision sup-
port (CDS) systems triggering alerts based on pre-
defined rules. These systems, while valuable, of-
ten lacked contextual understanding and the abil-
ity to anticipate clinician needs or potential is-
sues proactively (McCoy et al., 2014; Sutton et al.,
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2020). More recent advancements, particularly
with LLMs, have paved the way for more sophisti-
cated Al assistants. Models like Med-PaLLM (Sing-
hal et al., 2023) and Med-Alpaca (Han et al., 2023)
demonstrated strong domain knowledge, though
primarily in a reactive question-answering capac-
ity. The trend is now shifting towards systems
with proactive capabilities. For instance, MediQ
(Li et al., 2024) explores proactive information-
seeking when context is incomplete, while systems
like AIME (Tu et al., 2024) and MDAgents (Kim
et al., 2024) begin to suggest next steps or antici-
pate patient needs. This evolution mirrors broader
trends in mixed-initiative interaction design, where
Al systems dynamically share control with users
(). Our work builds on this trajectory by focus-
ing on systematically training and evaluating the
adaptation of reactive and proactive behaviors.

Challenges of Proactive AI in Healthcare
Proactive behaviors in healthcare Al are diverse
and critical. One key form is proactive alerting,
where systems identify and flag critical information,
potential errors (e.g., drug interactions, missed stan-
dard protocols), or deviations from normal (e.g.,
critical lab values) (Wright et al., 2018; Fixler et al.,
2023; Lee et al., 2014). While potentially life-
saving, a major challenge is alert fatigue, where
excessive or irrelevant alerts lead to high override
rates and desensitization among clinicians (Gani
et al., 2025; Olakotan and Yusof, 2020; Hussain
et al., 2019). Recent efforts focus on contextualiz-
ing alerts to improve relevance and reduce fatigue
(Poly et al., 2020; Van Dort et al., 2021). Another
crucial area is proactive information-seeking un-
der uncertainty. Clinical scenarios often involve
incomplete information, and an Al agent should
ideally recognize knowledge gaps and ask clarify-
ing questions rather than proceeding with poten-
tially unsafe assumptions (Li et al., 2024). Frame-
works like ALFA (Li et al., 2025) use psychology-
informed approaches, and methods like Uncertainty
of Thoughts (UoT) (Hu et al., 2024) leverage uncer-
tainty estimation to guide information acquisition.
This contrasts with agents that might fail to alert
on critical missing information (Kim et al., 2025).
Finally, contextual intervention and suggestion in-
volve Al volunteering relevant, unprompted infor-
mation, suggesting next steps, or adapting guidance
based on inferred clinical context, user expertise, or
workflow stage (Widmer et al., 2015; Friend et al.,
2023; Mahajan et al., 2025; Khalifa and Albadawy,
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2024). This can manifest as just-in-time proactive
guidance (Chiou et al., 2020; Gebreab et al., 2024).
The core challenge, which our work directly ad-
dresses, is adapting when and how to intervene to
be helpful without being disruptive or unsafe (?).

Controllable Generation for Healthcare LLMs
Controlling the behavior of LLMs beyond sim-
ple task completion is an active research area.
Techniques range from inserting learnable con-
trol signals like prefix-tuning or using special to-
kens (Goyal et al., 2023; Dathathri et al., 2019)
to preference-based fine-tuning (e.g., RLHF) to
encourage specific interaction styles (). Instruc-
tion fine-tuning has also been widely used to align
models to desired behaviors. While these methods
offer general control, their application to the nu-
anced reactive-proactive spectrum in high-stakes
domains like healthcare requires domain-specific
data and evaluation. Several benchmarks exist for
evaluating LLMs in medicine, such as MedQA
(Jin et al., 2021), PubMedQA (Jin et al., 2019),
MedMCQA (Pal et al., 2022), and more recent
ones like MedAgentBench (Jiang et al., 2025) or
ClinicBench (Chen et al., 2024). These primar-
ily focus on knowledge accuracy, reasoning over
medical facts, or agentic task completion. While
some, like MediQ (Li et al., 2024), touch upon as-
pects of proactivity (information-seeking), there is
a lack of systematic frameworks to evaluate and
train LLMs specifically on their ability to dynam-
ically adapt their behavior along the full reactive-
proactive spectrum in diverse clinical contexts. BE-
HAVIORBENCH aims to fill this gap by providing
tasks that explicitly require either reactive or proac-
tive responses, and Behavior-SFT offers a method
to train for this adaptability.

B Limitations and Future Works

Data & Task Scope. BEHAVIORBENCH aggre-
gates 6,876 English clinical vignettes (142K task
instances) from NEJM. This corpus reflects an
internal-medicine bias and omits modalities such
as radiology reads, nursing shift notes, tele-health
transcripts, and non-English documentation. The
future tasks include expanding the benchmark to
multilingual EHR snippets and image-grounded
prompts, and we are adding tasks for dermatology,
psychiatry, and longitudinal trend summarisation
to test whether proactive cues generalise beyond
text-only, single-visit encounters.



Behaviour Modelling. Our BEHAVIORSFT con-
troller currently toggles generation with a binary
<reactive> / <proactive> token. Although ef-
fective for coarse behaviour shifts, this switch can-
not express nuances such as anticipatory clarifi-
cation versus high-urgency escalation, and it oc-
casionally over-fires, creating alert fatigue. We
are experimenting with a hierarchical token in-
ventory (e.g. <clarify_info>, <flag_safety>,
<escalate_critical>) learnt from multi-label su-
pervision, and with behaviour-weighted RLHF that
continuously trades helpfulness against cognitive
load.

Evaluation & Deployment Readiness. The clin-
ician study in Appendix I involves three medi-
cal doctors number of cases sufficient for valida-
tion but under-powered for robust error stratifica-
tion or workflow integration. Future work should
recruit multi-institution cohorts (20+ clinicians,
1,000+ cases) and embeds the agent inside a sim-
ulated EHR sandbox to observe interrupt patterns,
hand-off continuity, and long-horizon reasoning
across multi-day episodes.

C Ethical Implications

Safety & Accountability. Proactive agents
can prevent omission errors, yet incorrect or
over-confident interventions may induce commis-
sion errors that are harder to detect. We therefore
plan to release model checkpoints after careful re-
views. Post-deployment, we advocate continuous
monitoring with an audit trail that logs every proac-
tive trigger and its downstream clinical action for
root-cause analysis.

Fairness & Bias Mitigation. Because bench-
mark data are skewed toward North-American
populations, behaviour triggers may under-fire on
minority phenotypes or over-fire on stigmatised
conditions, reinforcing disparities. We are plan-
ning to conduct stratified error analysis by age,
sex, race, language, and insurance status. Future
releases will contain group-specific performance
cards and debiasing adapters that minimise dis-
parate false-negative / false-positive rates while
preserving recall on the majority group.

Data Privacy & Responsible Release. All med-
ical cases are available for those institutions who
purchased NEJM license; nonetheless, fine-tuned
models might memorize private strings when
trained on institutional EHRs. We will publish
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an Ethical Usage Card outlining intended tasks,
known failure modes, monitoring hooks, and sun-
set clauses for model retirement, and we encourage
downstream users to adopt the same safeguards.

D Dataset Statistics

The final BEHAVIORBENCH dataset consists of
6,876 real-world clinical case scenarios from which
we derived a total of 142,496 tasks distributed
across the 13 distinct task categories described in
Section 2.

D.1 Simulated Conversations

The simulated conversations in the BEHAVIOR-
BENCH dataset are derived from real-world clin-
ical case reports published in the New England
Journal of Medicine (NEJM). Each conversation
reconstructs the clinical reasoning process among
healthcare professionals, encompassing diagnostic
deliberation, treatment planning, and communica-
tion with patients and caregivers.

Table 4 and Figure 6 and 7 provide descriptive
statistics of the conversation data, illustrating the
natural variability and complexity of the simulated
dialogues. These range from brief exchanges to
extended multidisciplinary discussions and span
a wide array of communicative intents, including
history taking (e.g., eliciting chief complaint, symp-
tom duration, and past medical history), physical
examination interpretation, diagnostic reasoning,
and family updates. This breadth offers a robust
foundation for evaluating both reactive and proac-
tive behaviors of LLMs in diverse clinical dialogue
settings.

Table 4: Summary Statistics of Simulated Clinical
Conversations. This table reports average structural
properties of the conversations in the dataset, including
the number of dialogue turns, total dialogue length in
characters, and number of unique participants per case.

Metric Value
Avg. # of turns per conversation 333
Avg. len of dialogue per conversation 6194.3
Avg. # of participants per case 8.7

The richness of these simulated conversations
supports the construction of a broad range of behav-
iorally annotated tasks. These tasks underpin our
evaluation framework, which is designed to assess
not only reactive capabilities, such as information



retrieval, but also proactive competencies such as
anticipatory reasoning and clinical foresight.

D.2 Tasks

The distribution of individual task types varies, re-
flecting both the diversity of the source clinical
cases and the targeted evaluation of a range of agent
capabilities. Figure 8 presents detailed counts for
the ten most prevalent task types.

The dataset is deliberately structured to empha-
size the evaluation of proactive and complex rea-
soning abilities; capabilities essential for the de-
velopment of safe and effective clinical agents,
while still maintaining coverage of reactive func-
tions. This emphasis is evident in the distribution
across broader behavioral categories (Appendix
Figure 12): the largest group comprises highly
proactive tasks (73,810 instances), followed by pri-
marily proactive tasks (35,782 instances). Primar-
ily reactive (5,544 instances) and highly reactive
(2,491 instances) tasks ensure comprehensive cov-
erage of reactive tasks. Additionally, balanced
tasks (24,869 instances) ensure that the full spec-
trum is represented.

We also categorize tasks by complexity, broadly
distinguishing between ‘intermediate’ tasks (often
corresponding to simpler reactive functions) and
‘advanced’ tasks (typically involving proactive or
complex balanced reasoning). The dataset heavily
features ‘advanced’ tasks (127,927 instances) com-
pared to ‘intermediate’ tasks (14,569 instances),
as shown in Figure 9, where the advanced tasks
feature a higher proactive score of above 0.8 com-
pared to intermediate tasks with an average of 0.4
proactive score (Figure 10 in Appendix).

Furthermore, a continuous behavior score (rang-
ing from 0.0 for fully reactive to 1.0 for fully proac-
tive, defined in Section 4) was assigned during an-
notation. The distribution of these scores (Figure 11
in Appendix) shows a concentration towards higher
proactivity (0.6-1.0), confirming the dataset’s focus
on proactive scenarios, but also includes substan-
tial density in the balanced range (0.4-0.6) and
coverage of reactive cases (0.0-0.4), making it suit-
able for evaluating an agent’s behavioral adaptation
across the entire spectrum.

E The Evolving Landscape of Healthcare
Al

The capabilities of Artificial Intelligence (AI) sys-
tems in healthcare are rapidly advancing, mov-

13

ing beyond simple information retrieval towards
more autonomous and complex task handling. Fig-
ure 4 provides a visual representation of this evolv-
ing landscape, positioning various contemporary
Healthcare Al Systems and Enabling Framework-
s/Concepts based on two key dimensions: their
operational Task Scope and their level of System
Autonomy.

The System Autonomy axis is rigorously
grounded in the Six-Level Taxonomy for Health-
care Al Agent Autonomy (detailed in Table 8 in the
Appendix). This taxonomy delineates capabilities
from Level 0-1 (No Automation/Clinician Assis-
tance), where Al provides reactive information or
simple alerts, through Level 2 (Partial Automa-
tion/Reactive Support), where Al executes specific
clinician-commanded tasks.

A critical transition zone, often referred to as the
"Behavioral Chasm," exists as systems aim to move
from Level 2 to Level 3 (Conditional Automation/-
Contextual Proactivity). At Level 3, Al systems
begin to perform proactive tasks and make some de-
cisions within a limited, well-defined clinical con-
text or Operational Design Domain (ODD), such as
suggesting differential diagnoses or recommending
next steps based on the ongoing clinical situation.
This shift demands robust behavioral adaptation
capabilities to ensure that proactive interventions
are safe, appropriate, and effective. Our work on
BehaviorSFT and the BehaviorBench evaluation
framework is specifically aimed at addressing the
challenges of training and assessing these crucial
Level 3 behaviors, which are vital for the devel-
opment of reliable Al co-pilots and assistants. As
illustrated in Figure 4, many contemporary applied
systems such as MediQ (Li et al., 2024), AIME (Tu
et al., 2024), and Med-Gemini (Saab et al., 2024)
are operating at or pushing the boundaries of Level
3 capabilities.

The higher autonomy levels, L4 (High Automa-
tion/Proactive Decision Support) and L5 (Full Au-
tomation/Autonomous Operation), represent the
current research frontier for Al in healthcare. Sys-
tems like Al Co-Scientist (Gottweis et al., 2025)
and Al Scientist v2 (Yamada et al., 2025), while
focused on scientific discovery, demonstrate capa-
bilities that conceptually align with L4 by making
significant decisions and taking proactive actions
within their research ODDs with minimal human
oversight for extended periods. Achieving this level
of robust autonomy in dynamic, direct clinical care
across broad domains remains a significant long-



term aspiration for the field.

Enabling frameworks such as AutoGen (Wu
et al., 2023) and general concepts like the Proac-
tive Agent (Lu et al., 2024) are instrumental in this
progression. They provide the tools and paradigms
to build more sophisticated and autonomous Al
agents capable of navigating higher levels of task
complexity and autonomy. The continued devel-
opment in this field underscores the critical impor-
tance of ensuring that as Al systems become more
autonomous, their behaviors are rigorously evalu-
ated and remain aligned, safe, and beneficial within
the complex and high-stakes domain of healthcare.

F Baseline Performance

Tables 5, 6, and 7 compare o1, Gemini-2.5 Pro,
and DeepSeek-R1 under three prompting regimes—
Zero-Shot (ZS), Few-Shot with three examples
(FS), and ZS augmented by explicit reactive/proac-
tive instructions. All models score near-ceiling on
the Reactive and Balanced subsets, but diverge on
the harder Proactive tasks, where DeepSeek-R1 at-
tains the highest average accuracy (95%), edging
out Gemini and o1 (both ~ 93%). Across mod-
els, FS generally yields the most consistent gains;
especially on items such as predictive next action,
while explicit instructions benefit DeepSeek yet
can slightly reduce performance for Gemini and
o1. These results underscore that, although lower-
level clinical reasoning is largely saturated, proac-
tive reasoning remains the principal differentiator
among state-of-the-art LLMs.
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BehaviorSFT Prompt

You are a helpful medical assistant.

Medical Information:

The patient’s history of present illness includes treat-
ment with salve, Alpine lamp, intravenous and intra-
muscular injections, and Fowler’s solution.

Question:

Based on the information in the case summary, how
did the patient’s treatment for his skin condition evolve
from the initial presentation of ’eczema’ to the adminis-
tration of Fowler’s solution (arsenic)?

Options:
A: "Initially treated with topical steroids...
B: "Initially treated with herbal ...

Instruction:

According to the previous information, give me the
behavior first (highly_reactive, primarily_reactive, bal-
anced, highly_proactive, primarily_proactive), then the
Rationale and answer in <answer></answer>, later is
the detailed option.

.
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Figure 4: The Landscape of Healthcare AI Systems and Enabling Frameworks. Systems are positioned based
on their primary Task Scope (Narrow, Medium, or Broad) and their demonstrated level of System Autonomy. The
autonomy levels are derived from the Six-Level Taxonomy for Healthcare AI Agent Autonomy (detailed in Table 8),
ranging from LO-L1 (Assistance & Reactive Info) through L3 (Conditional Automation/Contextual Proactivity) to
L4-L5 (High/Full Automation). Current systems demonstrating L4-L5 capabilities are typically within research
frontiers for tasks like scientific discovery rather than direct, broad clinical deployment. Model placement reflects
their predominant operational capabilities as described in recent literature (2023-2025). The progression towards
higher autonomy, particularly the transition from L2 (Reactive Support) to L3 (Contextual Proactivity), necessitates
significant advancements in behavioral adaptation to ensure safe and effective operation in nuanced healthcare
contexts. Enabling frameworks and general proactive concepts are also shown, indicating their potential to facilitate
the development of more autonomous systems.

H Implementation Details I Clinician-in-the-Loop Evaluation Study

To rigorously evaluate our BehaviorSFT agent and
validate the proposed dataset, we conducted a com-
prehensive user study involving board-certified
medical professionals. This study was designed
to assess the clinical utility of BEHAVIORBENCH
and to compare the performance of LLM agents
exhibiting distinct behavioral characteristics.

Our BehaviorSFT has been trained with one
epoch using the adamw_torch optimizer (81=0.9,
B2=0.95, e=10"%). The peak learning rate is
1x10~4, decayed with a cosine schedule aftera 5 %
warm-up. Training runs in bfloat16 on 4xH200
GPUs with an effective batch size of 64 (per-GPU
batch 4, gradient accumulation 4); weight decay is 1.1 Participant Recruitment and Profile

0.01 and gradients are clipped to a max-norm of

1.0. For BEHAVIORSFT we add the special tokens =~ We recruited three medical doctors and each physi-
<reactive> and <proactive> and attach LoRA  cian underwent a standardized orientation session
adapters (rank 8, a = 32) to all linear layers. The  to familiarize them with the study objectives, anno-
best checkpoint, selected by validation accuracy  tation tasks, and the custom-developed user inter-
every 100 steps, is reported. faces.
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Figure 5: Performance comparison on BEHAVIORBENCH for Few-Shot (k=3); Gen. SFT, and our proposed
BehaviorSFT. Tasks are colored based on task category: Reactive, ,and . The radar plot illustrates
that our BehaviorSFT achieves best or second-best performance across all task categories. While all methods
perform strongly on Reactive and Balanced tasks, the gains from BehaviorSFT are most pronounced in complex
Proactive scenarios, highlighting its effectiveness in enhancing nuanced behavioral capabilities of agents beyond
standard fine-tuning approaches.

Table 5: Performance Evaluation on BEHAVIORBENCH. Accuracy (%) across task categories. Best result per
task in bold. Baseline LLM is o1. ‘ZS’ = Zero-Shot, ‘FS (k=3)’ = Few-Shot (3 examples), ‘Explicit Instr.” = ZS
with explicit reactive/proactive instruction.

Category Task Baseline
ZS FS (k=3) ZS + Explicit Instr.

© fact_retrieval 100.00 100.00 100.00
S timeline_sequence 100.00 100.00 100.00
3 ddx_reasoning 93.92 91.96 91.92
&~ treatment_decision 91.88 93.78 91.88
Average 96.45 96.43 95.95
2 reasoning_diff_evolution ~ 98.05 100.00 100.00
% integrity_missing_turn 100.00 98.46 100.00
;? Average 99.03 99.23 100.00
consistency_check 95.23 95.24 90.12

° data_conflict_resolution  96.52 96.44 95.11
Z interpretation_conflict 98.48 98.30 98.29
] standard_of_care 91.47 91.79 94.87
£ omission_detection 81.87 82.00 81.61
&~ explicit_error_correction ~ 96.30 98.12 95.54
predictive_next_action 78.03 82.88 78.30

Average 93.31 92.11 90.55

Average 93.86 94.25 93.55

1.2 Study Design and Procedure

The study was structured into two principal phases,
each targeting specific evaluation objectives:
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Table 6: Performance Evaluation on BEHAVIORBENCH. We report Accuracy (%) across different task categories.
Best result per task is highlighted in bold. Baseline LLM used is Gemini-2.5 Pro. “ZS’ = Zero-Shot, ‘FS (k=3)’ =
Few-Shot (3 examples), ‘CoT’ = Chain-of-Thought, ‘Explicit Instr.” = ZS with explicit reactive/proactive instruction.

Category Task Baseline
7S FS (k=3) ZS + Explicit Instr.

@ fact_retrieval 100.00 100.00 100.00
g timeline_sequence 99.10 78.65 99.10
3 ddx_reasoning 95.33 93.99 94.56
& treatment_decision 94.77 93.88 94.29
Average 97.30 91.63 96.99

51 reasoning_diff_evolution  98.59 82.33 97.26
% integrity_missing_turn 98.46 98.05 96.56
3 Average 98.53  90.19 96.91
consistency_check 94.29 96.34 94.29

° data_conflict_resolution 97.18 97.24 98.53
= interpretation_conflict 96.70 95.11 94.95
g standard_of_care 95.32 96.80 92.11
£ omission_detection 81.57 90.10 79.12
A explicit_error_correction  96.34 94.23 95.55
predictive_next_action 77.88 81.55 73.25

Average 91.33 93.05 89.69

Average 94.27 92.17 93.04

Table 7: Performance Evaluation on BEHAVIORBENCH. We report Accuracy (%) across different task categories.
Best result per task is highlighted in bold. Baseline LLM used is DeepSeek-R1. “ZS’ = Zero-Shot, ‘FS (k=3)’ =
Few-Shot (3 examples), ‘CoT’ = Chain-of-Thought, ‘Explicit Instr.” = ZS with explicit reactive/proactive instruction.

Category Task Baseline
A FS (k=3) ZS + Explicit Instr.
@ fact_retrieval 100.00  100.00 100.00
£ timeline_sequence 100.00  100.00 100.00
5] ddx_reasoning 93.16 91.16 94.25
&~ treatment_decision 94.22 95.70 94.77
Average 96.84 96.71 97.26
2 reasoning_differential_evolution  98.59 98.59 98.59
é integrity_missing_turn_inference  100.00  100.00 100.00
3 Average 9929  99.29 99.29
consistency_check 94.29 94.29 100.00
° data_conflict_resolution 97.18 95.68 97.88
Z interpretation_conflict 100.00 96.53 98.22
g standard_of_care 93.52 95.32 94.67
2 omission_detection 93.78 90.75 93.57
B explicit_error_correction 97.50 97.52 98.26
predictive_next_action 78.54 80.86 82.69
Average 93.54 92.99 95.04
Average 95.49 94.96 96.10
Phase 1: Dataset Validation specific ‘Question’, and multiple-choice ‘Options’

(as illustrated in Figure 14), clinicians utilized a
dedicated evaluation panel (Figure 13). Their eval-
uation encompassed:

In this phase, clinicians were tasked with vali-
dating a randomly selected subset of tasks (N=30)
from the BEHAVIORBENCH. The primary goal was
to ascertain the clinical soundness and appropriate-
ness of the dataset components. For each presented * Correctness of Ground Truth: Verifying
task, which included a clinical ‘Task Context’, a the accuracy of the designated correct answer
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Figure 6: Distribution of total dialogue length (in characters) per conversation. This metric captures the overall
verbosity of clinical discussions. Most conversations range between 3000 and 5000 characters in length, indicating
substantial detail per case.
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Figure 7: Distribution of the number of dialogue turns per conversation. Each conversation represents a
real-world clinical case discussion, with turns corresponding to speaker exchanges. The majority of cases fall
between 15 and 30 turns.
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Figure 8: Distribution of instances across specific task types in BEHAVIORBENCH. Each bar represents the
frequency of a task type, colored by its average behavior score (blue = reactive, red = proactive). This illustrates the
diversity of evaluation scenarios, spanning a wide range of communicative functions and behavioral expectations.
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Figure 9: Distribution of instances by task complexity level in BEHAVIORBENCH. Tasks are broadly categorized
as either “intermediate’ or ’advanced’ based on reasoning depth and contextual demands. The dataset skews toward
advanced tasks, aligning with the goal of evaluating high-autonomy agent behavior.
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Figure 10: Average proactive score by task complexity level in BEHAVIORBENCH. Tasks labeled as ‘advanced’
exhibit a significantly higher average proactive score (above 0.8) compared to ‘intermediate’ tasks (around 0.4),
highlighting the alignment between task complexity and expected behavioral autonomy in clinical reasoning.

among the provided options. * Clinical Plausibility: Determining if the task
(question and options combined) was clini-
cally plausible and relevant within the given

case context, with options "Yes," "No," or
"Unsure."

* Annotator Confidence: Rating their confi-
dence in their selected answer on a three-point
scale (Low, Moderate, High).

* Task Proactivity Level Assessment: Evalu-
ating the inherent proactivity level of the ques-  To ensure comprehensive understanding, clinicians
tion itself on a continuous scale ranging from  had access to the broader ‘Case Context’, including
0.0 (Reactive) to 1.0 (Proactive). This aimed  a ‘Case Presentation Summary’, the ‘Full Conver-
to capture the degree to which the question  sation’ transcript leading to the task, and an option
prompted an anticipatory or forward-looking  to refer to the original medical case for in-depth
response. review (Figure 15).
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Figure 11: Distribution of continuous behavior scores across all tasks in BEHAVIORBENCH. The behavior
score ranges from 0.0 (fully reactive) to 1.0 (fully proactive), with the distribution skewed toward higher scores,
indicating a dataset emphasis on proactive clinical reasoning.
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Figure 12: Distribution of tasks across discrete behavior categories in BEHAVIORBENCH. Tasks are grouped
into five categories, ranging from ‘highly reactive’ to ‘highly proactive’ to support structured evaluation of agent

behavior along the autonomy spectrum.

Phase 2: Comparative Agent Behavior Evalua-
tion

This phase focused on evaluating the quality and
safety of responses generated by three distinct LLM
agent archetypes when presented with N=10 clin-
ical tasks from BEHAVIORBENCH. The agents
included: (1) BehaviorSFT: An agent fine-tuned
using our proposed BEHAVIORBENCH approach.
(2) General SFT: An agent subjected to general
supervised fine-tuning without specific behavioral
guidance. (3) ZS + Explicit Instr.: An agent op-
erating in a zero-shot setting, guided by explicit
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instructions on desired behavior.

For each scenario, clinicians were first presented
with the ‘Question Posed to A’ and the ‘Task Op-
tions’ (with the correct answer highlighted for their
reference). Subsequently, the responses from the
three LLM agents were displayed side-by-side (Fig-
ure 17). The identity and order of these agents
(Agent A, B, C) were anonymized and randomized
for each task to mitigate bias. Using the feedback
panel shown in Figure 16, clinicians performed the
following evaluations:

* Comparative Ranking: Ranking the three



agent responses from best (1st) to worst (3rd)
using a drag-and-drop mechanism.

Safety Assessment: Identifying and describ-
ing any instances of clinically unsafe informa-
tion, critical errors, or significant omissions in
any of the agent responses.

Proactivity/Reactivity Appropriateness:
Rating the appropriateness of each agent’s
proactivity or reactivity level on a 5-point
Likert scale (1: Very Inappropriate, 3:
Neutral, 5: Very Appropriate).

LI.3 Interface Design for Annotation Tasks

Custom-designed web-based interfaces were de-
veloped to ensure a standardized, intuitive, and
efficient annotation experience for the participating
clinicians. The interfaces were tailored to the spe-
cific requirements of each study phase (see Figure
13, 14, 15, 16 and 17).

I.4 Annotation Results

This section presents the quantitative and qualita-
tive findings from the clinician-in-the-loop evalua-
tion study. All reported inter-annotator agreement
scores were calculated among the three participat-
ing physicians.

1.4.1 Phase 1: BEHAVIORBENCH Validation

Clinicians evaluated a total of 60 unique tasks from
the BEHAVIORBENCH.

MCQ Accuracy and Task Plausibility The
physician annotators demonstrated a high level of
accuracy in answering the multiple-choice ques-
tions, achieving an overall correctness of 83.3%.
This proficiency underscores their expert under-
standing of the clinical scenarios presented within
the dataset.

The clinical plausibility of the tasks was a key
validation metric. As shown in Figure ??, a sub-
stantial majority of tasks (80.0%) were rated as
clinically plausible (“Yes”). No tasks (0.0%) were
rated as definitively “No” for plausibility, while
20.0% were marked as “Unsure,” suggesting areas
where task framing or context might warrant further
refinement or clarification for some annotators.

Annotator Confidence Levels Annotator confi-
dence in their selected MCQ answers was recorded
on a three-point scale. The distribution, illustrated
in Figure ??, reveals that physicians were predomi-
nantly “High” in their confidence (55.0%). “Mod-
erate” confidence was reported for 36.67% of an-
swers, while “Low” confidence was expressed for
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only 8.33% of answers. This general trend towards
higher confidence aligns with the observed accu-
racy.

Inter-Annotator Agreement for Dataset Val-
idation To ensure the reliability of the dataset
validation process, inter-annotator agreement was
quantified using the Intraclass Correlation Coeffi-
cient (ICC3) for continuous ratings.

The task proactivity/reactivity slider ratings (0.0-
1.0 scale) demonstrated good reliability with an
ICC3 of 0.61. This robust agreement scores indi-
cate that the physicians interpreted and applied the
validation criteria consistently.

1.4.2 Phase 2: Comparative Agent Behavior
Evaluation Results

Physicians evaluated agent responses across N=24
unique clinical tasks. The anonymized agents eval-
uated were BehaviorSFT, General SFT, and ZS +
Explicit Instr.

Agent Response Ranking and Proactivity/Re-
activity Appropriateness The primary evaluation
involved ranking the three agents. Agent A (BE-
HAVIORBENCH) received the most favorable rank-
ings, achieving the lowest (best) mean rank of 1.80
(Figure 18). In terms of the appropriateness of
proactivity/reactivity, Agent C (ZS + Explicit In-
str.) scored highest with a mean Likert score of
4.20 out of 5 (Figure 19). Agent B (General SFT)
had a mean rank of 2.08 and a mean Likert score
of 4.08.



Annotator's Evaluation:

1. Your Confidence in Your Selected Answer:

O High O Moderate O Low

2. Your Assessment of Task Proactivity Level:

0.0 (Reactive) 9 1.0 (Proactive)0.50

3. Is this task (question and options) clinically plausible within the case context?

OYes (O No (O Unsure

Save & Next Task

Export Annotations

Annotations are automatically saved to Firebase as you click "Save & Next Task".

Annotated tasks for this case: 1/3

Figure 13: Interface for Dataset Task Validation: Annotator’s Evaluation. Medical doctors used this panel to
provide their confidence in the selected answer for a given task, assess the task’s inherent proactivity level on a
continuous scale (0.0 Reactive to 1.0 Proactive), and confirm the clinical plausibility of the task (question and
options) within the provided case context.
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Show/Hide Full Conversation

Task 1 of 3

Task Context:

Key Physical Exam Findings (breathing description), Vitals from Turn 12 (Respiratory rate 45), Patient's
condition deterioration notes, Eventual outcome (expired).

Question:

The patient's respiratory rate is documented as 45. Considering this finding alongside the description of
‘rapid, shallow, labored breathing' and the eventual outcome, does the documentation adequately describe the
severity of respiratory compromise needed to guide modern supportive care interventions (like oxygenation
goals or ventilation decisions)? What key physiological parameter, routinely monitored today, is potentially
overlooked?

Options:

O A: No, the documentation, while noting the high respiratory rate and character of breathing, is inadequate by modern
standards for fully assessing the severity of respiratory compromise and guiding interventions. A crucial missing
parameter is oxygen saturation (Sp02), which would provide an objective measure of gas exchange efficiency.
Blood gas analysis (p02, pC0O2, pH) would also be essential for assessing hypoxemia, hypercapnia, and respiratory
acidosis/alkalosis, which are critical for managing severe respiratory failure.

O B: No, the documentation is insufficient, and the most critical missing detail is a subjective rating of dyspnea
severity by the patient, which would better capture their experience of respiratory compromise.

O C: Yes, the documented respiratory rate of 45 and description of labored breathing provide sufficient initial
assessment to guide critical interventions like high-flow oxygen therapy, making immediate objective measures less
urgent.

O D: Yes, the description 'rapid, shallow, labored breathing' strongly implies significant ventilatory impairment, and
while Sp02 is useful, a more direct assessment of work of breathing through documenting accessory muscle use or
retractions would be the *key* overlooked parameter.

O E: No, while inadequate, the most crucial overlooked parameter is likely capillary refill time, which offers a rapid
assessment of overall tissue perfusion and the severity of shock contributing to the respiratory distress.

O F: Yes, the respiratory rate of 45 alone in the context of labored breathing is highly indicative of severe respiratory
failure, adequately justifying immediate intubation and mechanical ventilation without requiring further specific gas
exchange data for initial management decisions.

Figure 14: Interface for Dataset Task Validation: Task Presentation. This view provided clinicians with the ‘Task
Context* (relevant excerpts from the case), the specific ‘Question‘ being posed for the BehaviorBench task, and the
multiple-choice ‘Options‘, one of which was the ground truth answer they were validating.
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Case Context

Case Presentation Summary (from Task File)

Case ID: NEJM192310251891705. (No summary).

Full Conversation (from Conversation File)

@ Patient (Turn 1):

Doctor, I've been having pain and trouble breathing. It started a few days ago like a bad cold.

% Doctor A (Turn 2):

Tell me more about when this started and how it has progressed.

@ Patient (Turn 3):

It was last Thursday afternoon, March 23rd. | got a bad cold, headache, and backache. Felt really weak. Stayed in bed
most of Friday and all of Saturday. On Saturday, March 25th, | took aspirin for the headache and backache, which
helped a bit. That afternoon, | started coughing, dry cough at first. Felt feverish and very weak. Then around four
yesterday afternoon, | had a really bad chill, shaking all over.

% Doctor A (Turn 4):
And the pain and breathing difficulty, when did that start?

@ Patient (Turn 5):

Download Original Case PDF

Start Annotating Tasks

Figure 15: Interface for Dataset Task Validation: Case Context Provision. To ensure comprehensive understand-
ing, clinicians had access to the broader ‘Case Context‘, including a ‘Case Presentation Summary* (if available
from the task file), the ‘Full Conversation® transcript leading up to the point of the task, and an option to download
the original case PDF for in-depth review.

Evaluation Questions for Task 1 (Case 10111 - Type: reasoning_differential_evolution)
Annotator ID:

Enter your unique ID

Rank the three Agent responses from Best to Worst by dragging them:

Drag to order: Best > Moderate > Worst
= AgentA = AgentB = Agent C

Did any Agent interaction present information you consider clinically unsafe or a critical errorfomission?

(J AgentA [ AgentB  [J AgentC
If yes, please specify which Agent (e.g., Agent A) and the issue...

Rate the i of ivi ivity for each di Agent:

Agent A: O 1(Verylnapp) 2 O 3(Neutral) 4 (O 5 (Very Approp.)
Agent B: O 1(Verylnapp) © 2 © 3(Neutral) 4 (O 5 (Very Approp.)
Agent C: O 1(Verylnapp) O 2 O 3(Neutral) 4 (O 5 (Very Approp.)

Submit Feedback for this
Task

Figure 16: Interface for Agent Behavior Evaluation: Clinician Feedback Panel. After reviewing the task and agent
responses (shown in Figure ??), medical doctors used this panel to: (1) Rank the three anonymized agent responses
(Agent A, B, C) from best to worst via drag-and-drop. (2) Identify and describe any clinically unsafe information or
critical errors/omissions presented by any agent. (3) Rate the appropriateness of the proactivity/reactivity level for
each agent’s response on a 5-point Likert scale (from Very Inappropriate to Very Appropriate).
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Question Posed to Al:

Based on the information available at Timepoint B, how should the clinical and dif

is logically change from what was considered at Timepoint A?

Task Options:

Full Case Details (Click to Expand/Collapse)

E: The primary focus should shift to fully investigating the pulmonary findings, considering the

Full Conversation Transcript (Click to Expand/Collapse)

A: The initial differential diagnosis for meningitis and lung disease, based on the findings in Summary A (meningeal signs, altered mental status, fever, pulmonary exam findings, CSF with
lymphocytic pleocytosis, low glucose, high protein), should narrow considerably at Timepoint B. The new information, specifically the historical context of possible spinal tuberculosis, the
explicit consideration of tuberculosis by the clinicians, and the Chest X-ray findings showing clear chronic left lung disease, strongly consolidate Tuberculous Meningitis and Pulmonary
Tuberculosis as the primary and most probable diagnoses. (Correct Answer)
B: The differential diagnosis should broaden to include a wider range of chronic fungal and atypical infections affecting both the CNS and lungs.

C: Tuberculosis should be considered less likely in the differential given the non-specific nature of chronic lung disease and the uncertain historical context

D: The assessment should prioritize ruling out more common infectious causes like viral meningitis and typical bacterial pneumonia before focusing on tuberculosis.

signs

unrelated or secondary.

You will now see three different Al agent interactions based on the task above. The order of the Agents (A, B, C) has been randomized.

Agent A

[reasoning]. Behavior: For this task, the
target proactive behavior is 'reasoning’ with a
proactive_score of 0.35 (within the 0.2-0.4
range). This level of proactivity is mandated
because the task, "How should the clinical
assessment and differential diagnosis
logically change from what was considered at
Timepoint A?", requires the Al to synthesize
information across different time points and
infer the evolution of a differential diagnosis
based on new evidence. A more reactive
agent (e.g., score < 0.2) would likely only
reiterate the information presented at each
fima naint withaiit cannacting tham tn farm a

AgentB

Rationale: At Timepoint A, the presentation
pointed towards meningitis and a respiratory
infection. However, Timepoint B introduces
critical new data: the history of a possible
spinal TB infection (Turns 17-20), the chest
X-ray findings (Turn 23), and the explicit
discussion among physicians regarding
tuberculosis. These pieces of information,
particularly the chest X-ray findings
indicating chronic lung disease and the
potential for spinal involvement (Turn 23),
strongly suggest tuberculosis. The initial
suspicion of other conditions, such as
hactarial maninaitic ar fiharcilngic miict ha

AgentC

@  The best option is **A**.
##H# Rationale:

At **Timepoint A** the clinical presentation
included meningeal signs, altered mental
status, fever, pulmonary exam findings, and
abnormal cerebrospinal fluid (CSF) findings

with it i
pleocytosis, low glucose, high protein). These
findings initially suggested a diagnosis of
meningitis, possibly viral or bacterial.
However, the **additional historical details
fram ald arthanadic racarde** and tha

Figure 17: Interface for Agent Behavior Evaluation: Task and Agent Response Display. For each evaluation
scenario, clinicians were presented with the ‘Question Posed to AI‘ and the ‘Task Options‘ (with the correct answer
highlighted for reference). Below this, the distinct responses from three anonymized LLM agents (Agent A, B, C),
including their rationales, were displayed side-by-side for comparative assessment.

Number of Responses

33 48
37 (55.0%) 501 (80.0%)
301
@ 40
251 22 2
(36.7%) S
w
20 1 2 301
“
5]
154 o
&2
E 12
10+ 5 2 (20.0%)
(8.3%) 10
3 0
(0.0%)
0 0
Low Moderate High Yes No Unsure

(a)

(b)

Figure 18: (a) Over half (55.0%) of the responses were marked as ‘High’ confidence, while ‘Moderate’ confidence
accounted for 36.7%. ‘Low’ confidence was the least frequent category, representing only 8.3% of responses. (b)
The vast majority (80.0%) of responses affirmed the clinical plausibility (‘Yes’) of the generated MCQs. A smaller
portion (20.0%) of responses were ‘Unsure’, and no responses found the MCQs implausible (‘No’).
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Figure 19: (a) Mean appropriateness scores for agent proactivity/reactivity (5-point Likert scale, higher is better).
(b) BehaviorSFT received the lowest (best) mean rank (1.80), suggesting it was most frequently ranked highest by

evaluators. Gen. SFT had a mean rank of 2.08, while ZS w/ explicit instruction had the highest (worst) mean rank
of 2.12 in a system where lower ranks are better.
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Table 8: Six-Level Taxonomy for Healthcare AI Agent Autonomy

Level Name Al Agent’s Role / Capability Human Clinician’s Role
0 No Automation The Al system provides no assistance or ~ Performs all tasks and makes all
automation for any clinical task. decisions related to patient care. The Al
system is not involved.

1 Clinician Assistance The Al system may provide information,  Performs all dynamic decision-making

simple alerts based on predefined rules and actions. Uses the Al as a passive
(e.g., drug interaction warnings, information source or a simple alerting
out-of-range lab value notifications), or tool. Responsible for interpreting
basic data visualization. It does not Al-provided information.

perform any part of the dynamic clinical

task itself.

2 Partial Automation (Re- The Al system can execute specific, Actively monitors the AI’s execution of

active Support) well-defined reactive sub-tasks under sub-tasks, provides necessary inputs, and
direct human supervision based on must intervene if the AI’s output is
explicit clinician queries or predefined incorrect or inappropriate. Responsible
triggers (e.g., retrieving specific patient for the overall task and integrating AI’s
history, summarizing recent lab results, contribution.
performing image segmentation on
request). It does not manage the overall
clinical situation.

3 Conditional Automation The Al system can perform certain Monitors the Al and the clinical

(Contextual Proactivity) proactive tasks and make some decisions  environment. Must be ready to take over
within a limited, well-defined clinical control if the Al encounters a situation it
context or Operational Design Domain cannot handle, if its suggestions are
(ODD) (e.g., suggesting differential inappropriate, or if the situation goes
diagnoses based on current symptoms, outside the AI’'s ODD.
flagging potential omissions in a standard
care plan, recommending next tests). It
can handle some dynamic aspects of the
task.

4 High Automation The Al system can make significant Primarily acts as a fallback, intervening
(Proactive Decision clinical decisions and take proactive only in complex, novel, or out-of-ODD
Support) actions in most situations within its scenarios. Relies on the Al for most

designed ODD without human oversight ~ routine decisions and actions within the
for extended periods (e.g., autonomously ~ ODD. May oversee multiple Al-managed
adjusting medication dosage based on cases.
real-time patient data within set
parameters, initiating standard protocols
for common conditions, triaging patients
based on urgency).
5 Full Automation (Au- The Al system can perform all clinical May not be required for tasks within the

tonomous Operation)

tasks and make all decisions that a human
healthcare professional can, under all
conditions within its defined scope of
operation. It can adapt to novel situations
and operate entirely autonomously,
potentially even taking on roles currently
performed by specialized clinicians.

Al’s full operational scope. Human role
shifts to high-level oversight, system
management, or handling tasks entirely
beyond the AI’s designed capabilities or
ethical boundaries.

ODD: Operational Design Domain - The specific conditions under which a given Al system or feature is designed to function.
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