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Abstract001

Large Language Models (LLMs) as clinical002
agents require careful behavioral adaptation.003
While adept at reactive tasks (e.g., diagnosis004
reasoning), LLMs often struggle with proactive005
engagement, like unprompted identification of006
critical missing information or risks. We intro-007
duce BehaviorBench, a comprehensive dataset008
to evaluate agent behaviors across a clinical as-009
sistance spectrum, ranging from reactive query010
responses to proactive interventions (e.g., clar-011
ifying ambiguities, flagging overlooked crit-012
ical data). Our BehaviorBench experiments013
reveal LLMs’ inconsistent proactivity. To ad-014
dress this, we propose BehaviorSFT, a novel015
training strategy using behavioral tokens to ex-016
plicitly condition LLMs for dynamic behav-017
ioral selection along this spectrum. Behav-018
iorSFT boosts performance, achieving up to019
97.3% overall Macro F1 on BehaviorBench020
and improving proactive task scores (e.g., from021
95.0% to 96.5% for Qwen2.5-7B-Ins). Cru-022
cially, blind clinician evaluations confirmed023
BehaviorSFT-trained agents exhibit more re-024
alistic clinical behavior, striking a superior bal-025
ance between helpful proactivity (e.g., timely,026
relevant suggestions) and necessary restraint027
(e.g., avoiding over-intervention) versus stan-028
dard fine-tuning or explicit instructed agents.1029

1 Introduction030

As Large Language Models (LLMs) transition from031

experimental systems to deployed agents in clinical032

environments, a critical question emerges: “when033

should these systems act reactively or proactively034

(Fauscette, 2024)?.” Unlike general-purpose AI035

agents, healthcare agents can operate in high-stakes036

environments where both action and inaction carry037

significant consequences (Kim et al., 2025). We038

define reactive behaviors as those where the agent039

responds only to explicit queries with precisely the040
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information requested, while proactive behaviors 041

involve volunteering additional information, rais- 042

ing concerns, or suggesting actions beyond what 043

was directly solicited. Importantly, proactivity in 044

clinical contexts extends beyond merely asking 045

clarifying questions, a common, but limited, fo- 046

cus in existing NLP research (Li et al., 2024; Hu 047

et al., 2024). While question-asking represents one 048

dimension of proactivity, our work encompasses 049

a broader spectrum - including unsolicited inter- 050

vention, critical evaluation, and recommendation. 051

These behaviors align closely with the "Appraisal" 052

phase of Evidence-Based Medicine (EBM) (Denby, 053

2008), where clinicians actively assess available 054

information, identify information gaps, and deter- 055

mine appropriate next steps. An agent that remains 056

strictly reactive may fail to raise an alert when prob- 057

lems are observed with critical lab values or medi- 058

cation contraindications (Walter Costa et al., 2021; 059

Wright et al., 2018), potentially compromising pa- 060

tient safety (McCoy et al., 2014). In contrast, an 061

excessively proactive system that frequently inter- 062

rupts with unsolicited recommendations risks con- 063

tributing to alert fatigue, interruption of workflow, 064

and potential rejection by healthcare profession- 065

als (Sutton et al., 2020). This trade-off between 066

reactive and proactive behaviors forms the core 067

challenge addressed in this paper. The appropriate 068

balance between these modalities varies dramati- 069

cally based on clinical context, urgency, risk levels, 070

and the specific healthcare roles being augmented, 071

demanding adaptive behavior policy rather than a 072

fixed mode, especially as systems achieve higher 073

levels of autonomy (Figure 4). 074

To systematically discuss how an agent’s reac- 075

tive and proactive stance should adapt with its in- 076

creasing capabilities, we adapt the SAE Levels of 077

Driving Automation (SAE, 2021) into a six-level 078

taxonomy for healthcare AI agent autonomy. This 079

framework detailed in Table 8 in Appendix helps 080

to illustrate a key principle: as an AI agent ascends 081
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Our case is about 
{PRESENTATION OF CASE} 
. . .

Based on {MEDICAL EXAM} 
result . . .

Clinician A

Clinician B
We need to re-check 

{GUIDELINE} to ensure …

a Omission Detection in Group Decision-Makings

b Image Reasoning

Explain the {IMAGE} you 
see in the monitor . . .

Clinician
The {IMAGE} shows 
anterior pituitary tissue . . .  

c Error Correction

What is your insights from 
{LABORATORY} result in 
the table . . .

The {VARIABLE} range 
seems to be out of the 
reference range … 

d Differential Diagnosis (DDX) Reasoning

e Temporal Ordering

f Consistency Check

Based on {PRESENTATION 
OF CASE}, {IMAGES}, 
{LABORTAORY} results, 
what’s your diagnoses?

Clinician There’s {EVIDENCE} of . . . 
and my {DIAGNOSIS} 
would be . . .

Based on {PRESENTATION 
OF CASE}, organize the 
events in temporal order.

At {PERIOD 𝑖} on physical 
examination, the patient had 
blood pressure of . . .

1. Initial Exam Finding: X
2. X-ray Finding: Y
(…)

Inconsistency exists 
between initial physical exam 
and later X-ray findings and it 
is because …

Clinician

LLM Agent

LLM Agent

Proactive

Proactive

Reactive

LLM Agent

Reactive

LLM Agent

Reactive

LLM Agent

Proactive

LLM Agent

Figure 1: Six representative tasks from BEHAVIORBENCH, showcasing the spectrum of agent behaviors in
clinical settings. The figure illustrates (a-c, f) proactive tasks where the LLM agent identifies issues or offers
insights without direct prompting, and (b, d, e) reactive tasks responding to explicit clinician queries.

these autonomy levels, its capacity and responsibil-082

ity to engage in sophisticated proactive behaviors,083

rather than merely reactive ones, become increas-084

ingly critical.085

The autonomy level taxonomy highlights that086

effective healthcare AI, particularly for achiev-087

ing Level 3 (Conditional Proactive Assistance)088

and above, must move beyond simple reactive re-089

sponses (Levels 1-2). As AI autonomy increases,090

the nature of clinician responsibility evolves, shift-091

ing from direct task execution to supervision, val-092

idation of AI-driven insights, and management of093

exceptions. Our work, therefore, focuses on en-094

abling AI agents to learn and exhibit the adapted095

spectrum of reactive and proactive behaviors cru-096

cial for safe and effective operation at these higher097

levels of conditional and collaborative automation.098

BEHAVIORBENCH is designed to evaluate these ca-099

pabilities across this spectrum, and BehaviorSFT100

aims to train agents to achieve this behavioral adapt-101

ability, particularly for robust performance at Lev-102

els 2 and 3, with an eye towards future capabilities103

at Level 4.104

Effectively adapting which of these behaviors105

is appropriate, and when, is essential for clinical106

AI systems that can safely operate at increasing107

levels of autonomy. In this work, we ask what108

proactivity means for healthcare AI and how we 109

build systems that are appropriately behaving? To 110

this end, we propose a novel six-level taxonomy 111

for healthcare AI autonomy that maps progression 112

from human-controlled to autonomous operation. 113

We trace the evolution from early reactive systems 114

(Tu et al., 2024; Han et al., 2023) to more recent de- 115

velopments like MediQ (Li et al., 2024) and AIME 116

(McDuff et al., 2025; Tu et al., 2024), which in- 117

corporate proactive elements while demonstrating 118

the critical interplay between proactivity and ur- 119

gency. Our benchmark was curated from real med- 120

ical cases sourced from New England Journal of 121

Medicine (NEJM) clinical case reports (Brinkmann 122

et al., 2024). We employed a LLM (Gemini-2.5 123

Flash) to meticulously ground these cases in their 124

factual details and then reformat them into multi- 125

turn, multi-clinician-patient conversational scenar- 126

ios, integrating multi-modal inputs such as text, 127

images, and tabular data. Indeed, we propose 128

this LLM-assisted methodology for converting ex- 129

isting static clinical datasets into rich, reactive- 130

proactive benchmark scenarios as a key contribu- 131

tion of our work. Additionally, we present a novel 132

training methodology, BehaviorSFT, which em- 133

ploys explicit behavioral tokens to condition LLM 134

responses along the reactive-proactive spectrum. 135
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Our approach demonstrates significant improve-136

ments, achieving up to 97.3% overall Macro F1 on137

BehaviorBench (compared to 96.7% for general138

SFT) with particularly notable gains in proactive139

tasks (from 95.0% to 96.5%). The primary contri-140

butions are:141

1. We introduce BEHAVIORBENCH, an evalu-142

ation dataset that assesses LLM capabilities143

across both reactive and proactive tasks in144

healthcare contexts.145

2. We provide detailed analysis of recent LLMs’146

performance on BEHAVIORBENCH, revealing147

significant variability in contextual awareness148

and appropriate behavioral adaptation.149

3. We propose BehaviorSFT, a new fine-tuning150

strategy that leverages behavioral tokens to151

guide LLMs in dynamically adapting their152

responses along the reactive-proactive tasks.153

2 BEHAVIORBENCH154

We introduce BEHAVIORBENCH, a novel dataset155

specifically designed to assess agent capabilities156

across the reactive-proactive tasks. Derived from157

real clinical cases, BEHAVIORBENCH comprises158

of 6,876 real-world clinical case scenarios from159

which we derived a total of 142,496 tasks dis-160

tributed across the 13 distinct task categories. This161

framework provides a more granular analysis of162

an agent’s ability to discern context and modulate163

its behavior accordingly, moving beyond standard164

metrics, such as accuracy, that are solely based on165

reactive responses. Detailed dataset statistics can166

be found in the Appendix D.167

To ensure that the generated tasks effectively168

probe clinical reasoning, we construct the dataset in169

a two-step process. First, we carefully prompt the170

LLM (see Appendix G) generating the tasks to use171

detailed summary from real-world clinical cases,172

including patient history, diagnostics, conversation173

snippets, and final diagnoses. This ensures that the174

questions, answers, and rationales reflect genuine175

clinical context instead of relying on pseudolabels176

generated without any realistic groundings. All177

draft tasks then underwent several back-and-forth178

revision cycles with two physicians, who reviewed179

any hallucinations and confirmed each scenario’s180

practical plausibility for N=10 cases. Then, to eval-181

uate the agent’s proactive capabilities, we augment182

the base scenarios by intentionally introducing sub- 183

tle challenges, such as hypothetical scenarios with 184

probable clinical errors, conflicting data points (e.g. 185

modifying numerical values slightly between re- 186

ports, or presenting exam findings seemingly at 187

odds with imaging), and omitted information ex- 188

pected by clinical standards. The resulting reactive- 189

proactive tasks are as follows: 190

Reactive Tasks evaluates whether the agents can 191

handle information when requested directly. 192

1. fact_retrieval: Finds specific facts men- 193

tioned in the text (e.g., “What was the patient’s 194

initial temperature?"). 195

2. timeline_sequence: Puts events in order us- 196

ing clear time references (e.g., tracing how 197

lung exam findings changed between the ini- 198

tial presentation and Turn N , based on pro- 199

vided descriptions from those time points). 200

3. ddx_reasoning: Explains the reasoning for 201

a possible diagnosis using only the evidence 202

given (e.g., identifying findings prior to Turn 203

M , such as specific X-ray descriptions and 204

sputum results, that suggested bronchopneu- 205

monia over simple lobar pneumonia). 206

4. treatment_decision: Connects a doctor’s 207

thinking or action to the stated reason or data 208

supporting it (e.g., evaluating a specific di- 209

agnostic leaning mentioned in Turn K based 210

only on the evidence explicitly available at 211

that time, like sputum results). 212

Balanced Tasks are initiated by specific, pro- 213

vided information but demand a more significant 214

cognitive step involving deeper thinking, such as 215

multi-step inference, synthesis of multiple data 216

points, or evaluating the impact of new information 217

on existing understanding. 218

1. reasoning_differential_evolution: 219

Compares the patient’s situation at two 220

different times and explains how the doctor’s 221

assessment should change because of new 222

information (e.g., asking how the list of possi- 223

ble diagnoses should shift from Timepoint A 224

to Timepoint B considering newly available 225

sputum culture results and vital signs). 226

2. integrity_missing_turn_inference: 227

Figures out what was likely said in a missing 228

part of a conversation based on what came 229
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Table 1: Comparison of Public Medical Benchmarks. Modality codes: t=text, i=image, b=tabular/structured data.
✓ indicates that the benchmark natively supports the evaluation dimension; ✗ indicates it does not.

Benchmark Size Modality Behavior
Evaluation

Sequential
Eval.

Dialogue
Interaction

Multiple
Roles

MedQA (Jin et al., 2021) 1,273 t ✗ ✗ ✗ ✗
MedMCQA (Pal et al., 2022) 6,100 t ✗ ✗ ✗ ✗
MultiMedQA (Singhal et al., 2023) 13,115 t ✗ ✗ ✗ ✗
MediQ (Li et al., 2024) 1,273 t ✗ ✓ ✓ ✓
MediQ-AskDocs (Li et al., 2025) 17,000 t ✗ ✓ ✓ ✓
ClinicBench (Chen et al., 2024) 11,000 t ✗ ✗ ✗ ✗
MedChain (Liu et al., 2024) 12,163 t+i ✗ ✓ ✓ ✓
MedAgentBench (Jiang et al., 2025) 300 t+b ✗ ✓ ✓ ✓
HealthBench (Arora et al., 2025) 5,000 t ✗ ✗ ✓ ✗

BEHAVIORBENCH (Ours) 142,496 t+i+b ✓ ✓ ✓ ✓

before and after (e.g., “Turn N orders a test,230

Turn N + M discusses the result. What231

likely happened in Turn N + K, where232

0 < K < M?”).233

Proactive Tasks require the LLM to use higher-234

level thinking, and evaluation skills.235

1. predictive_next_action: Forecasts the236

most appropriate subsequent clinical action237

by integrating the evolving patient case, cur-238

rent symptoms, medical history, and available239

diagnostic results.240

2. explicit_error_correction: Identifies241

and rectifies explicitly stated errors in clin-242

ical narratives or proposed actions, providing243

justifications based on medical knowledge and244

case specifics (e.g., correcting drug suitability245

given a patient’s allergy).246

3. omission_detection: Identifies significant247

omissions in the provided clinical information248

or documented actions, such as overlooked249

diagnostic tests or unaddressed critical symp-250

toms that could impact patient care.251

4. standard_of_care: Assesses whether doc-252

umented clinical management, including di-253

agnostic procedures and interventions, ad-254

heres to established medical guidelines and255

accepted best practices, often requiring exter-256

nal knowledge.257

5. interpretation_conflict: Discerns and258

reconciles nuanced or potentially conflicting259

interpretations of clinical findings from differ-260

ent sources (e.g., contrasting physical exam261

notes with radiology findings), articulating262

their clinical significance.263

6. data_conflict_resolution: Identifies di- 264

rect contradictions or inconsistencies between 265

pieces of factual clinical data presented within 266

a case (e.g., conflicting lab values over time) 267

and proposes logical explanations. 268

7. consistency_check: Evaluates the overall 269

logical and clinical coherence of a case nar- 270

rative or specific information, identifying el- 271

ements that are incongruous or implausible 272

(e.g., assessing if a patient’s reported progres- 273

sion aligns with a given diagnosis). 274

3 BehaviorSFT: Behavior Adaptation 275

Training 276

To operationalize the concept of behavioral adap- 277

tation within healthcare LLM agents, we propose 278

a targeted training strategy, Behavior-Conditioned 279

Supervised Fine-Tuning (BehaviorSFT). This ap- 280

proach leverages our specialized BehaviorBench 281

dataset (Section 2) to explicitly teach LLMs to mod- 282

ulate their responses along the reactive-proactive 283

spectrum based on inferred clinical context. This 284

contrasts with standard SFT approaches, which typ- 285

ically optimize for task completion without explicit 286

mechanisms to control the agent’s level of initia- 287

tive or caution, risking either unsafe passivity or 288

disruptive over-intervention. 289

3.1 Behavior Tokens 290

Rationale for Prefix Tokens: We employ prefix 291

behavior tokens (e.g., <reactive>, <proactive>) for 292

several reasons. Placing the token at the beginning 293

of the target sequence allows it to act as a direct 294

control signal, conditioning the entire generation 295

process on the desired behavioral mode from the 296

outset. This explicitly trains the model to adopt the 297

appropriate style, tone, and level of initiative as it 298
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generates the response. While one could consider299

predicting the token after some internal reasoning300

chain, our approach integrates this reasoning im-301

plicitly, i.e., the model learns to predict the correct302

initial token based on its understanding of the input303

context (x), as described in our Contextual Behav-304

ior Assessment capability (Section 3.3). This pro-305

vides an end-to-end mechanism for context-aware,306

behaviorally adapted generation. Central to our307

approach is the introduction of special behavior308

tokens paired with the target response during train-309

ing.310

• <reactive>: Signals the generation of a di-311

rect, concise response strictly adhering to the312

explicit query, avoiding unsolicited informa-313

tion or inferences.314

• <proactive>: Signals a response that may in-315

clude identifying implicit issues, volunteering316

relevant context or warnings, suggesting next317

steps, or applying external knowledge (e.g.,318

standards of care) beyond the literal query.319

These tokens act as control signals, learned by the320

model and conditioning the subsequent generation321

process. Alternative approaches exist, such as train-322

ing a separate classifier to select the mode and then323

routing the input to specialized reactive or proac-324

tive models, or using inference-time techniques like325

thresholding logits associated with the behavior to-326

kens for finer control. However, our BehaviorSFT327

approach offers a simpler, unified training process328

within a single model. Future work could explore329

hybrid methods or compare the efficacy of these330

different control paradigms.331

3.2 Training Data332

BehaviorBench serves as the crucial training333

ground for BehaviorSFT. Each instance within the334

benchmark’s training split is meticulously anno-335

tated with the desired target behavior token based336

on the task’s nature and the underlying clinical sce-337

nario’s demands:338

1. Reactive Annotation (<reactive>): Ap-339

plied to tasks demanding factual recall, di-340

rect sequencing, or simple reasoning strictly341

from provided data (e.g., fact_retrieval,342

timeline_sequence).343

2. Proactive Annotation (<proactive>):344

Applied to tasks necessitating criti-345

cal assessment, error/omission detec-346

tion, consistency checking, or predic- 347

tion based on clinical standards (e.g., 348

consistency_check, standard_of_care, 349

predictive_next_action). 350

3. Contextual Annotation for Balanced 351

Tasks: Instances from balanced tasks (e.g., 352

reasoning_differential_evolution) 353

are annotated based on whether the spe- 354

cific context warrants simple reporting 355

(<reactive>) or highlighting significant 356

changes/implications (<proactive>). 357

Each annotated instance is then structured for 358

auto-regressive SFT, pairing the input context/- 359

query with a target sequence beginning with the 360

assigned behavior token, followed by an ideal re- 361

sponse exemplifying that behavior. 362

Example 1 (Reactive Task): 363

Input: Context: [Note excerpt: Vitals 364

stable.] 365

Query: Latest vitals? 366

Target: <reactive> BP 120/80, HR 75, 367

Temp 37.0C, RR 16. 368

Example 2 (Proactive Task): 369

Input: Context: [Chart: Rx Drug A. 370

Allergy list: Drug A.] 371

Query: Confirm med list okay? 372

Target: <proactive> Warning: Drug A 373

prescribed but patient is allergic. 374

Review immediately. 375

This structured data format explicitly teaches the 376

model the association between clinical scenarios, 377

appropriate behavioral modes (reactive/proactive), 378

and corresponding linguistic outputs. 379

3.3 Training Procedure: BehaviorSFT 380

Starting with a pre-trained foundation LLM, 381

we perform SFT using the behavior-annotated 382

BehaviorBench training data. The objective is 383

the standard causal language modeling loss, min- 384

imizing the negative log-likelihood of the tar- 385

get sequence y = (y1, ..., yT ), where y1 ∈ 386

{<reactive>, <proactive>}: 387

LBehaviorSFT = −
T∑
i=1

logP (yi|y<i, x; θ) (1) 388

Here, x is the input context/query, y<i are the pre- 389

ceding target tokens, and θ represents the model 390

parameters. 391
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Through this process, the model learns the cru-392

cial, intertwined capabilities:393

1. Contextual Behavior Assessment: Implic-394

itly analyzing the input x to determine the395

likelihood that a proactive or reactive stance396

is warranted, influencing the prediction of the397

initial token y1.398

2. Behavior-Conditioned Generation: Gener-399

ating subsequent tokens y2:T in a manner con-400

sistent with the generated or given behavior401

token y1, adopting the appropriate style, tone,402

and level of detail or intervention.403

Specificity Implicitness

(I) Distribution of Specificity Scores (II) Distribution of Implicitness Scores
Agent Type Agent Type
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Figure 2: Density distributions of (I) Specificity
and (II) Implicitness scores for Baseline, Behav-
iorSFT, and GeneralSFT agent outputs. (I) Speci-
ficity: Both fine-tuned models (BehaviorSFT and Gen-
eralSFT) markedly improve output specificity over the
Baseline, with distributions concentrated at high scores
(∼0.9). (II) Implicitness: Distinct implicitness profiles
emerge: GeneralSFT is the most explicit (lowest scores,
∼0.6-0.7), the Baseline is the most implicit (highest
scores, ∼0.7-0.9), while BehaviorSFT exhibits a moder-
ate, intermediate level of implicitness (∼0.7-0.8).

Figure 3: G-Eval with gpt-4o-mini as evaluator of
Qwen-2.5-7B-Ins responses across four key metrics.
We compare the average scores for the Baseline model,
our proposed BehaviorSFT, and GeneralSFT. Behav-
iorSFT consistently outperforms the Baseline across all
metrics and demonstrates competitive or superior per-
formance compared to GeneralSFT.

4 Experiments and Results 404

4.1 Setup 405

All experiments use BEHAVIORBENCH 406

with a fixed 6 776/110/977 train–val–test 407

split. We fine–tune both backbones; 408

Qwen-2.5-7B-Instruct (Team, 2024) and 409

Meta-Llama-3.1-8B-Instruct (Meta AI, 2024). 410

Details implementation details can be found in 411

Appendix H. 412

4.2 Main Results 413

From Reactive to Proactive capabilities in clin- 414

ical LLMs involve processing and responding di- 415

rectly to explicitly provided information. Reactiv- 416

ity encompasses fact retrieval, information sum- 417

marization, ordering events via direct sequencing, 418

following simple execution instructions, and per- 419

forming basic reasoning from explicit data, these 420

tasks test the LLM’s ability to understand and ma- 421

nipulate information as presented, without signifi- 422

cant inference or applying external knowledge. The 423

Proactive-Reactive Scale of 0.0-0.4 typically re- 424

flects these functions. 425

Conversely, require the LLM to transcend lit- 426

eral interpretation, demonstrating deeper reason- 427

ing, anticipation, and critical assessment. Key as- 428

pects include inference and implication (identify- 429

ing unstated assumptions or missing information), 430

anticipation and prediction (foreseeing next steps 431

or complications), consistency and conflict detec- 432

tion (finding discrepancies between data points), 433

error recognition and correction, applying exter- 434

nal knowledge like standards of care, and synthesis 435

and complex interpretation from multiple sources. 436

These tasks simulate higher-order clinical thinking. 437

The Proactive-Reactive Scale of 0.6-1.0 aligns with 438

these skills, while 0.4-0.6 represents a balance. 439

Empirical Results Overview. Table 2 re- 440

ports Macro F1 scores across the three task cate- 441

gories. Relative to both the majority-voting Ensem- 442

ble baseline and standard supervised fine-tuning 443

(Gen. SFT), BehaviorSFT matches or slightly ex- 444

ceeds performance on the Reactive and Balanced 445

sets, and yields a clear advantage on the most de- 446

manding Proactive tasks (Qwen: 96.5% vs. 95.0%; 447

Llama: 94.7% vs. 94.2%). These gains confirm that 448

the behavior-aligned fine-tuning strategy is partic- 449

ularly effective for higher-order reasoning tasks 450

such as complex inference, error correction, and 451

guideline-based decision making, thereby strength- 452

ening the model’s proactive capabilities. Detailed 453
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Table 2: Performance on BEHAVIORBENCH. We report Macro F1-scores (%) across three task categories. Best
result per task is highlighted in bold.The Ensemble column reports baseline performance by majority voting across
three commercial closed-source models (Gemini-2.5-pro, OpenAI-o1, DeepSeek-R1). ‘ZS’ = Zero-Shot, ‘FS
(k=3)’ = Few-Shot (3 examples), ‘CoT’ = Chain-of-Thought, ‘Explicit Instr.’ = ZS with explicit reactive/proactive
instruction, ‘Gen. SFT’ = Standard Supervised Fine-Tuning (SFT), ‘BehaviorSFT’ = Our proposed fine-tuning
method.

Category Task Ensemble Qwen2.5-7B-Ins Llama3.1-8B-Ins

ZS FS (k=3) ZS + Explicit Instr. Gen. SFT BehaviorSFT Gen. SFT BehaviorSFT

R
ea

ct
iv

e fact_retrieval 100.0 100.0 100.0 100.0 100.0 100.0 100.0
timeline_sequence 100.0 100.0 100.0 100.0 100.0 100.0 100.0

ddx_reasoning 96.2 96.6 96.6 96.1 96.1 94.2 92.7
treatment_decision 94.8 95.3 95.3 100.0 98.4 98.4 98.7

Avg. 98.2 98.2 98.2 98.6 98.6 97.8 97.2

B
al

an
ce

d reasoning_diff_evolution 98.6 98.6 98.6 100.0 100.0 100.0 100.0
integrity_missing_turn 100.0 100.0 100.0 100.0 100.0 96.4 100.0

Avg. 97.2 97.6 97.6 100.0 99.2 98.5 100.0

Pr
oa

ct
iv

e

consistency_check 94.3 100.0 94.3 100.0 100.0 100.0 100.0
data_conflict_resolution 97.2 97.2 97.2 99.3 98.6 99.2 98.6
interpretation_conflict 98.5 96.5 96.5 96.6 96.6 98.5 98.6

standard_of_care 93.4 95.3 93.7 94.8 93.3 91.5 88.4
omission_detection 89.5 92.4 89.3 88.5 95.1 90.0 93.2

explicit_error_correction 96.3 97.5 96.4 98.3 99.2 98.4 97.2
predictive_next_action 82.5 83.0 82.3 84.8 91.7 77.0 83.4

Avg. 94.3 95.1 94.0 95.0 96.5 94.2 94.7

Avg. 95.4 96.0 95.3 96.7 97.3 95.8 96.1

Table 3: Macro F1-scores of prompting methods on behavior classification. Method abbreviations: BT = Behavior
token, BC = Behavior chain-of-thought, OC = Option CoT, OP = Option. Class abbreviations: Five-class
(BA = balanced; H_PR = highly_proactive; H_RE = highly_reactive; P_PR = primarily_proactive; P_RE =
primarily_reactive), Binary (PR = proactive; N_PR = non-proactive), Three-class (BA = balanced; PR = proactive;
RE = reactive).

Five-class Binary Three-class

BA H_PR H_RE P_PR P_RE PR N_PR BA PR RE

BT-OC-OP 42.62 89.47 4.76 19.19 68.72 82.14 92.10 53.41 92.10 73.68
BT-OP 37.06 87.77 13.79 25.28 66.40 82.76 92.19 46.92 92.19 66.42
BT-BC-OC-OP 58.24 87.84 19.05 11.82 71.75 83.48 92.90 51.67 92.90 72.09
BT-BC-OP 54.74 88.89 17.39 11.00 73.68 82.97 92.58 51.76 92.58 69.57
BC-BT-OC-OP 57.06 87.73 14.81 7.07 74.89 82.59 92.23 45.00 92.32 69.96

accuracy figures for the three commercial baselines454

are provided in Appendix F.455

Enhanced User-Centric Qualities with G-456

Evaluation Our evaluation using G-Eval (Liu457

et al., 2023), a methodology leveraging large mod-458

els for human-aligned assessment, reveals signifi-459

cant qualitative improvements with BehaviorSFT.460

As depicted in Figure 3, BehaviorSFT consistently461

outperforms the Baseline across all four key met-462

rics: Utility, Safety, Clarity, and Behavioral Ap-463

propriateness. Notably, BehaviorSFT achieves the464

highest scores in Utility (0.95 vs. 0.93 for Gen-465

eralSFT and 0.90 for Baseline), Clarity (0.94 vs.466

0.92 for GeneralSFT and 0.88 for Baseline), and 467

Behavioral Appropriateness (0.91 vs. 0.87 for Gen- 468

eralSFT and 0.86 for Baseline). While GeneralSFT 469

scores marginally higher in Safety (0.97 vs. 0.95 470

for BehaviorSFT), BehaviorSFT still demonstrates 471

a strong safety profile. These results underscore 472

BehaviorSFT’s capability to not only perform tasks 473

effectively but also to align more closely with user 474

expectations in terms of usefulness, understandabil- 475

ity, and appropriate interaction, suggesting a more 476

refined and user-centric agent behavior. 477

Optimizing Output Specificity while Balanc- 478

ing Implicitness Figure 2 illustrates the impact of 479
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our fine-tuning approaches on the nuanced char-480

acteristics of agent responses, specifically their481

specificity and implicitness. Both fine-tuned mod-482

els, BehaviorSFT and GeneralSFT, markedly en-483

hance output specificity compared to the Baseline,484

with distributions concentrating at high specificity485

scores (around 0.9). This indicates that both meth-486

ods generate more detailed and precise information.487

However, a key distinction emerges in their implic-488

itness profiles. GeneralSFT tends towards more489

explicit communication, reflected in lower implic-490

itness scores (approximately 0.6-0.7). In contrast,491

the Baseline model is the most implicit (scores492

around 0.7-0.9). BehaviorSFT carves out an in-493

termediate and potentially more versatile profile,494

achieving a moderate level of implicitness (scores495

approximately 0.7-0.8). This suggests that Behav-496

iorSFT can deliver highly specific information with-497

out resorting to excessive explicitness, potentially498

mirroring more natural human communication pat-499

terns and aligning with the idea that effective agents500

must navigate implicit evaluation criteria (Wadhwa501

et al., 2025).502

4.3 Ablation on prompting variants for503

Behavior Pattern Analysis504

Table 3 evaluates five prompting recipes ob-505

tained by incrementally adding Behavior Chain-506

of-Thought (BC) and Option reasoning (OC/OP)507

on top of the Behavior Token (BT) baseline. The508

full recipe BT–BC–OC–OP achieves the best or509

second-best Macro F1 in 11 of the 13 columns (e.g.,510

Five-class BA 58.2 and Binary PR 83.5), showing511

that BC and OC/OP provide complementary gains.512

Dropping OC/OP (BT–BC–OP) or BC (BT–OP)513

consistently lowers scores, while reversing the BC514

placement (BC–BT–OC–OP) yields a smaller ben-515

efit, indicating that BC is most effective when ap-516

pended after the BT prompt. Overall, combining517

both reasoning cues delivers the most robust be-518

haviour classification across all label granularities.519

5 Conclusion520

This paper addresses the critical gap in LLM proac-521

tivity for healthcare. Our BEHAVIORBENCH, vali-522

dated by clinicians for plausibility, systematically523

evaluates this, revealing LLM deficiencies in proac-524

tive reasoning despite reactive strengths. We intro-525

duced BehaviorSFT, a new fine-tuning method us-526

ing explicit <reactive> and <proactive> tokens. Be-527

haviorSFT improved performance, achieving up to528

97.3% overall Macro F1 on BEHAVIORBENCH and 529

boosting proactive task scores (e.g., Qwen2.5-7B- 530

Ins from 95.0% to 96.5%). Crucially, in a clinician 531

user study, BehaviorSFT-trained agents received 532

the most favorable rankings (best mean rank 1.80). 533

G-Eval results also showed superior Utility (0.95) 534

and Behavioral Appropriateness (0.91). These com- 535

bined findings demonstrate BehaviorSFT’s effec- 536

tiveness in creating more reliable, clinically nu- 537

anced, and clinician-preferred LLM agents for com- 538

plex healthcare scenarios. 539
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2020). More recent advancements, particularly798

with LLMs, have paved the way for more sophisti-799

cated AI assistants. Models like Med-PaLM (Sing-800

hal et al., 2023) and Med-Alpaca (Han et al., 2023)801

demonstrated strong domain knowledge, though802

primarily in a reactive question-answering capac-803

ity. The trend is now shifting towards systems804

with proactive capabilities. For instance, MediQ805

(Li et al., 2024) explores proactive information-806

seeking when context is incomplete, while systems807

like AIME (Tu et al., 2024) and MDAgents (Kim808

et al., 2024) begin to suggest next steps or antici-809

pate patient needs. This evolution mirrors broader810

trends in mixed-initiative interaction design, where811

AI systems dynamically share control with users812

(). Our work builds on this trajectory by focus-813

ing on systematically training and evaluating the814

adaptation of reactive and proactive behaviors.815

Challenges of Proactive AI in Healthcare816

Proactive behaviors in healthcare AI are diverse817

and critical. One key form is proactive alerting,818

where systems identify and flag critical information,819

potential errors (e.g., drug interactions, missed stan-820

dard protocols), or deviations from normal (e.g.,821

critical lab values) (Wright et al., 2018; Fixler et al.,822

2023; Lee et al., 2014). While potentially life-823

saving, a major challenge is alert fatigue, where824

excessive or irrelevant alerts lead to high override825

rates and desensitization among clinicians (Gani826

et al., 2025; Olakotan and Yusof, 2020; Hussain827

et al., 2019). Recent efforts focus on contextualiz-828

ing alerts to improve relevance and reduce fatigue829

(Poly et al., 2020; Van Dort et al., 2021). Another830

crucial area is proactive information-seeking un-831

der uncertainty. Clinical scenarios often involve832

incomplete information, and an AI agent should833

ideally recognize knowledge gaps and ask clarify-834

ing questions rather than proceeding with poten-835

tially unsafe assumptions (Li et al., 2024). Frame-836

works like ALFA (Li et al., 2025) use psychology-837

informed approaches, and methods like Uncertainty838

of Thoughts (UoT) (Hu et al., 2024) leverage uncer-839

tainty estimation to guide information acquisition.840

This contrasts with agents that might fail to alert841

on critical missing information (Kim et al., 2025).842

Finally, contextual intervention and suggestion in-843

volve AI volunteering relevant, unprompted infor-844

mation, suggesting next steps, or adapting guidance845

based on inferred clinical context, user expertise, or846

workflow stage (Widmer et al., 2015; Friend et al.,847

2023; Mahajan et al., 2025; Khalifa and Albadawy,848

2024). This can manifest as just-in-time proactive 849

guidance (Chiou et al., 2020; Gebreab et al., 2024). 850

The core challenge, which our work directly ad- 851

dresses, is adapting when and how to intervene to 852

be helpful without being disruptive or unsafe (?). 853

Controllable Generation for Healthcare LLMs 854

Controlling the behavior of LLMs beyond sim- 855

ple task completion is an active research area. 856

Techniques range from inserting learnable con- 857

trol signals like prefix-tuning or using special to- 858

kens (Goyal et al., 2023; Dathathri et al., 2019) 859

to preference-based fine-tuning (e.g., RLHF) to 860

encourage specific interaction styles (). Instruc- 861

tion fine-tuning has also been widely used to align 862

models to desired behaviors. While these methods 863

offer general control, their application to the nu- 864

anced reactive-proactive spectrum in high-stakes 865

domains like healthcare requires domain-specific 866

data and evaluation. Several benchmarks exist for 867

evaluating LLMs in medicine, such as MedQA 868

(Jin et al., 2021), PubMedQA (Jin et al., 2019), 869

MedMCQA (Pal et al., 2022), and more recent 870

ones like MedAgentBench (Jiang et al., 2025) or 871

ClinicBench (Chen et al., 2024). These primar- 872

ily focus on knowledge accuracy, reasoning over 873

medical facts, or agentic task completion. While 874

some, like MediQ (Li et al., 2024), touch upon as- 875

pects of proactivity (information-seeking), there is 876

a lack of systematic frameworks to evaluate and 877

train LLMs specifically on their ability to dynam- 878

ically adapt their behavior along the full reactive- 879

proactive spectrum in diverse clinical contexts. BE- 880

HAVIORBENCH aims to fill this gap by providing 881

tasks that explicitly require either reactive or proac- 882

tive responses, and Behavior-SFT offers a method 883

to train for this adaptability. 884

B Limitations and Future Works 885

Data & Task Scope. BEHAVIORBENCH aggre- 886

gates 6,876 English clinical vignettes (142K task 887

instances) from NEJM. This corpus reflects an 888

internal-medicine bias and omits modalities such 889

as radiology reads, nursing shift notes, tele-health 890

transcripts, and non-English documentation. The 891

future tasks include expanding the benchmark to 892

multilingual EHR snippets and image-grounded 893

prompts, and we are adding tasks for dermatology, 894

psychiatry, and longitudinal trend summarisation 895

to test whether proactive cues generalise beyond 896

text-only, single-visit encounters. 897
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Behaviour Modelling. Our BEHAVIORSFT con-898

troller currently toggles generation with a binary899

<reactive> / <proactive> token. Although ef-900

fective for coarse behaviour shifts, this switch can-901

not express nuances such as anticipatory clarifi-902

cation versus high-urgency escalation, and it oc-903

casionally over-fires, creating alert fatigue. We904

are experimenting with a hierarchical token in-905

ventory (e.g. <clarify_info>, <flag_safety>,906

<escalate_critical>) learnt from multi-label su-907

pervision, and with behaviour-weighted RLHF that908

continuously trades helpfulness against cognitive909

load.910

Evaluation & Deployment Readiness. The clin-911

ician study in Appendix I involves three medi-912

cal doctors number of cases sufficient for valida-913

tion but under-powered for robust error stratifica-914

tion or workflow integration. Future work should915

recruit multi-institution cohorts (20+ clinicians,916

1,000+ cases) and embeds the agent inside a sim-917

ulated EHR sandbox to observe interrupt patterns,918

hand-off continuity, and long-horizon reasoning919

across multi-day episodes.920

C Ethical Implications921

Safety & Accountability. Proactive agents922

can prevent omission errors, yet incorrect or923

over-confident interventions may induce commis-924

sion errors that are harder to detect. We therefore925

plan to release model checkpoints after careful re-926

views. Post-deployment, we advocate continuous927

monitoring with an audit trail that logs every proac-928

tive trigger and its downstream clinical action for929

root-cause analysis.930

Fairness & Bias Mitigation. Because bench-931

mark data are skewed toward North-American932

populations, behaviour triggers may under-fire on933

minority phenotypes or over-fire on stigmatised934

conditions, reinforcing disparities. We are plan-935

ning to conduct stratified error analysis by age,936

sex, race, language, and insurance status. Future937

releases will contain group-specific performance938

cards and debiasing adapters that minimise dis-939

parate false-negative / false-positive rates while940

preserving recall on the majority group.941

Data Privacy & Responsible Release. All med-942

ical cases are available for those institutions who943

purchased NEJM license; nonetheless, fine-tuned944

models might memorize private strings when945

trained on institutional EHRs. We will publish946

an Ethical Usage Card outlining intended tasks, 947

known failure modes, monitoring hooks, and sun- 948

set clauses for model retirement, and we encourage 949

downstream users to adopt the same safeguards. 950

D Dataset Statistics 951

The final BEHAVIORBENCH dataset consists of 952

6,876 real-world clinical case scenarios from which 953

we derived a total of 142,496 tasks distributed 954

across the 13 distinct task categories described in 955

Section 2. 956

D.1 Simulated Conversations 957

The simulated conversations in the BEHAVIOR- 958

BENCH dataset are derived from real-world clin- 959

ical case reports published in the New England 960

Journal of Medicine (NEJM). Each conversation 961

reconstructs the clinical reasoning process among 962

healthcare professionals, encompassing diagnostic 963

deliberation, treatment planning, and communica- 964

tion with patients and caregivers. 965

Table 4 and Figure 6 and 7 provide descriptive 966

statistics of the conversation data, illustrating the 967

natural variability and complexity of the simulated 968

dialogues. These range from brief exchanges to 969

extended multidisciplinary discussions and span 970

a wide array of communicative intents, including 971

history taking (e.g., eliciting chief complaint, symp- 972

tom duration, and past medical history), physical 973

examination interpretation, diagnostic reasoning, 974

and family updates. This breadth offers a robust 975

foundation for evaluating both reactive and proac- 976

tive behaviors of LLMs in diverse clinical dialogue 977

settings. 978

Table 4: Summary Statistics of Simulated Clinical
Conversations. This table reports average structural
properties of the conversations in the dataset, including
the number of dialogue turns, total dialogue length in
characters, and number of unique participants per case.

Metric Value

Avg. # of turns per conversation 33.3
Avg. len of dialogue per conversation 6194.3
Avg. # of participants per case 8.7

The richness of these simulated conversations 979

supports the construction of a broad range of behav- 980

iorally annotated tasks. These tasks underpin our 981

evaluation framework, which is designed to assess 982

not only reactive capabilities, such as information 983
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retrieval, but also proactive competencies such as984

anticipatory reasoning and clinical foresight.985

D.2 Tasks986

The distribution of individual task types varies, re-987

flecting both the diversity of the source clinical988

cases and the targeted evaluation of a range of agent989

capabilities. Figure 8 presents detailed counts for990

the ten most prevalent task types.991

The dataset is deliberately structured to empha-992

size the evaluation of proactive and complex rea-993

soning abilities; capabilities essential for the de-994

velopment of safe and effective clinical agents,995

while still maintaining coverage of reactive func-996

tions. This emphasis is evident in the distribution997

across broader behavioral categories (Appendix998

Figure 12): the largest group comprises highly999

proactive tasks (73,810 instances), followed by pri-1000

marily proactive tasks (35,782 instances). Primar-1001

ily reactive (5,544 instances) and highly reactive1002

(2,491 instances) tasks ensure comprehensive cov-1003

erage of reactive tasks. Additionally, balanced1004

tasks (24,869 instances) ensure that the full spec-1005

trum is represented.1006

We also categorize tasks by complexity, broadly1007

distinguishing between ‘intermediate’ tasks (often1008

corresponding to simpler reactive functions) and1009

‘advanced’ tasks (typically involving proactive or1010

complex balanced reasoning). The dataset heavily1011

features ‘advanced’ tasks (127,927 instances) com-1012

pared to ‘intermediate’ tasks (14,569 instances),1013

as shown in Figure 9, where the advanced tasks1014

feature a higher proactive score of above 0.8 com-1015

pared to intermediate tasks with an average of 0.41016

proactive score (Figure 10 in Appendix).1017

Furthermore, a continuous behavior score (rang-1018

ing from 0.0 for fully reactive to 1.0 for fully proac-1019

tive, defined in Section 4) was assigned during an-1020

notation. The distribution of these scores (Figure 111021

in Appendix) shows a concentration towards higher1022

proactivity (0.6-1.0), confirming the dataset’s focus1023

on proactive scenarios, but also includes substan-1024

tial density in the balanced range (0.4-0.6) and1025

coverage of reactive cases (0.0-0.4), making it suit-1026

able for evaluating an agent’s behavioral adaptation1027

across the entire spectrum.1028

E The Evolving Landscape of Healthcare1029

AI1030

The capabilities of Artificial Intelligence (AI) sys-1031

tems in healthcare are rapidly advancing, mov-1032

ing beyond simple information retrieval towards 1033

more autonomous and complex task handling. Fig- 1034

ure 4 provides a visual representation of this evolv- 1035

ing landscape, positioning various contemporary 1036

Healthcare AI Systems and Enabling Framework- 1037

s/Concepts based on two key dimensions: their 1038

operational Task Scope and their level of System 1039

Autonomy. 1040

The System Autonomy axis is rigorously 1041

grounded in the Six-Level Taxonomy for Health- 1042

care AI Agent Autonomy (detailed in Table 8 in the 1043

Appendix). This taxonomy delineates capabilities 1044

from Level 0-1 (No Automation/Clinician Assis- 1045

tance), where AI provides reactive information or 1046

simple alerts, through Level 2 (Partial Automa- 1047

tion/Reactive Support), where AI executes specific 1048

clinician-commanded tasks. 1049

A critical transition zone, often referred to as the 1050

"Behavioral Chasm," exists as systems aim to move 1051

from Level 2 to Level 3 (Conditional Automation/- 1052

Contextual Proactivity). At Level 3, AI systems 1053

begin to perform proactive tasks and make some de- 1054

cisions within a limited, well-defined clinical con- 1055

text or Operational Design Domain (ODD), such as 1056

suggesting differential diagnoses or recommending 1057

next steps based on the ongoing clinical situation. 1058

This shift demands robust behavioral adaptation 1059

capabilities to ensure that proactive interventions 1060

are safe, appropriate, and effective. Our work on 1061

BehaviorSFT and the BehaviorBench evaluation 1062

framework is specifically aimed at addressing the 1063

challenges of training and assessing these crucial 1064

Level 3 behaviors, which are vital for the devel- 1065

opment of reliable AI co-pilots and assistants. As 1066

illustrated in Figure 4, many contemporary applied 1067

systems such as MediQ (Li et al., 2024), AIME (Tu 1068

et al., 2024), and Med-Gemini (Saab et al., 2024) 1069

are operating at or pushing the boundaries of Level 1070

3 capabilities. 1071

The higher autonomy levels, L4 (High Automa- 1072

tion/Proactive Decision Support) and L5 (Full Au- 1073

tomation/Autonomous Operation), represent the 1074

current research frontier for AI in healthcare. Sys- 1075

tems like AI Co-Scientist (Gottweis et al., 2025) 1076

and AI Scientist v2 (Yamada et al., 2025), while 1077

focused on scientific discovery, demonstrate capa- 1078

bilities that conceptually align with L4 by making 1079

significant decisions and taking proactive actions 1080

within their research ODDs with minimal human 1081

oversight for extended periods. Achieving this level 1082

of robust autonomy in dynamic, direct clinical care 1083

across broad domains remains a significant long- 1084
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term aspiration for the field.1085

Enabling frameworks such as AutoGen (Wu1086

et al., 2023) and general concepts like the Proac-1087

tive Agent (Lu et al., 2024) are instrumental in this1088

progression. They provide the tools and paradigms1089

to build more sophisticated and autonomous AI1090

agents capable of navigating higher levels of task1091

complexity and autonomy. The continued devel-1092

opment in this field underscores the critical impor-1093

tance of ensuring that as AI systems become more1094

autonomous, their behaviors are rigorously evalu-1095

ated and remain aligned, safe, and beneficial within1096

the complex and high-stakes domain of healthcare.1097

F Baseline Performance1098

Tables 5, 6, and 7 compare o1, Gemini-2.5 Pro,1099

and DeepSeek-R1 under three prompting regimes—1100

Zero-Shot (ZS), Few-Shot with three examples1101

(FS), and ZS augmented by explicit reactive/proac-1102

tive instructions. All models score near-ceiling on1103

the Reactive and Balanced subsets, but diverge on1104

the harder Proactive tasks, where DeepSeek-R1 at-1105

tains the highest average accuracy (95%), edging1106

out Gemini and o1 (both ≈ 93%). Across mod-1107

els, FS generally yields the most consistent gains;1108

especially on items such as predictive next action,1109

while explicit instructions benefit DeepSeek yet1110

can slightly reduce performance for Gemini and1111

o1. These results underscore that, although lower-1112

level clinical reasoning is largely saturated, proac-1113

tive reasoning remains the principal differentiator1114

among state-of-the-art LLMs.1115

G Prompt Template 1116BehaviorSFT Prompt

You are a helpful medical assistant.
Medical Information:
The patient’s history of present illness includes treat-
ment with salve, Alpine lamp, intravenous and intra-
muscular injections, and Fowler’s solution.

Question:
Based on the information in the case summary, how
did the patient’s treatment for his skin condition evolve
from the initial presentation of ’eczema’ to the adminis-
tration of Fowler’s solution (arsenic)?

Options:
A: "Initially treated with topical steroids...
B: "Initially treated with herbal ...
....
Instruction:

According to the previous information, give me the
behavior first (highly_reactive, primarily_reactive, bal-
anced, highly_proactive, primarily_proactive), then the
Rationale and answer in <answer></answer>, later is
the detailed option.

1117
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Figure 4: The Landscape of Healthcare AI Systems and Enabling Frameworks. Systems are positioned based
on their primary Task Scope (Narrow, Medium, or Broad) and their demonstrated level of System Autonomy. The
autonomy levels are derived from the Six-Level Taxonomy for Healthcare AI Agent Autonomy (detailed in Table 8),
ranging from L0-L1 (Assistance & Reactive Info) through L3 (Conditional Automation/Contextual Proactivity) to
L4-L5 (High/Full Automation). Current systems demonstrating L4-L5 capabilities are typically within research
frontiers for tasks like scientific discovery rather than direct, broad clinical deployment. Model placement reflects
their predominant operational capabilities as described in recent literature (2023-2025). The progression towards
higher autonomy, particularly the transition from L2 (Reactive Support) to L3 (Contextual Proactivity), necessitates
significant advancements in behavioral adaptation to ensure safe and effective operation in nuanced healthcare
contexts. Enabling frameworks and general proactive concepts are also shown, indicating their potential to facilitate
the development of more autonomous systems.

H Implementation Details1118

Our BehaviorSFT has been trained with one1119

epoch using the adamw_torch optimizer (β1=0.9,1120

β2=0.95, ϵ=10−8). The peak learning rate is1121

1×10−4, decayed with a cosine schedule after a 5 %1122

warm-up. Training runs in bfloat16 on 4×H2001123

GPUs with an effective batch size of 64 (per-GPU1124

batch 4, gradient accumulation 4); weight decay is1125

0.01 and gradients are clipped to a max-norm of1126

1.0. For BEHAVIORSFT we add the special tokens1127

<reactive> and <proactive> and attach LoRA1128

adapters (rank 8, α = 32) to all linear layers. The1129

best checkpoint, selected by validation accuracy1130

every 100 steps, is reported.1131

I Clinician-in-the-Loop Evaluation Study 1132

To rigorously evaluate our BehaviorSFT agent and 1133

validate the proposed dataset, we conducted a com- 1134

prehensive user study involving board-certified 1135

medical professionals. This study was designed 1136

to assess the clinical utility of BEHAVIORBENCH 1137

and to compare the performance of LLM agents 1138

exhibiting distinct behavioral characteristics. 1139

I.1 Participant Recruitment and Profile 1140

We recruited three medical doctors and each physi- 1141

cian underwent a standardized orientation session 1142

to familiarize them with the study objectives, anno- 1143

tation tasks, and the custom-developed user inter- 1144

faces. 1145
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Figure 5: Performance comparison on BEHAVIORBENCH for Few-Shot (k=3); Gen. SFT, and our proposed
BehaviorSFT. Tasks are colored based on task category: Reactive, Balanced, and Proactive. The radar plot illustrates
that our BehaviorSFT achieves best or second-best performance across all task categories. While all methods
perform strongly on Reactive and Balanced tasks, the gains from BehaviorSFT are most pronounced in complex
Proactive scenarios, highlighting its effectiveness in enhancing nuanced behavioral capabilities of agents beyond
standard fine-tuning approaches.

Table 5: Performance Evaluation on BEHAVIORBENCH. Accuracy (%) across task categories. Best result per
task in bold. Baseline LLM is o1. ‘ZS’ = Zero-Shot, ‘FS (k=3)’ = Few-Shot (3 examples), ‘Explicit Instr.’ = ZS
with explicit reactive/proactive instruction.

Category Task Baseline

ZS FS (k=3) ZS + Explicit Instr.

R
ea

ct
iv

e fact_retrieval 100.00 100.00 100.00
timeline_sequence 100.00 100.00 100.00

ddx_reasoning 93.92 91.96 91.92
treatment_decision 91.88 93.78 91.88

Average 96.45 96.43 95.95

B
al

an
ce

d reasoning_diff_evolution 98.05 100.00 100.00
integrity_missing_turn 100.00 98.46 100.00

Average 99.03 99.23 100.00

Pr
oa

ct
iv

e

consistency_check 95.23 95.24 90.12
data_conflict_resolution 96.52 96.44 95.11
interpretation_conflict 98.48 98.30 98.29

standard_of_care 91.47 91.79 94.87
omission_detection 81.87 82.00 81.61

explicit_error_correction 96.30 98.12 95.54
predictive_next_action 78.03 82.88 78.30

Average 93.31 92.11 90.55

Average 93.86 94.25 93.55

I.2 Study Design and Procedure 1146

The study was structured into two principal phases, 1147

each targeting specific evaluation objectives: 1148

16



Table 6: Performance Evaluation on BEHAVIORBENCH. We report Accuracy (%) across different task categories.
Best result per task is highlighted in bold. Baseline LLM used is Gemini-2.5 Pro. ‘ZS’ = Zero-Shot, ‘FS (k=3)’ =
Few-Shot (3 examples), ‘CoT’ = Chain-of-Thought, ‘Explicit Instr.’ = ZS with explicit reactive/proactive instruction.

Category Task Baseline

ZS FS (k=3) ZS + Explicit Instr.
R

ea
ct

iv
e fact_retrieval 100.00 100.00 100.00

timeline_sequence 99.10 78.65 99.10
ddx_reasoning 95.33 93.99 94.56

treatment_decision 94.77 93.88 94.29

Average 97.30 91.63 96.99

B
al

an
ce

d reasoning_diff_evolution 98.59 82.33 97.26
integrity_missing_turn 98.46 98.05 96.56

Average 98.53 90.19 96.91

Pr
oa

ct
iv

e

consistency_check 94.29 96.34 94.29
data_conflict_resolution 97.18 97.24 98.53
interpretation_conflict 96.70 95.11 94.95

standard_of_care 95.32 96.80 92.11
omission_detection 81.57 90.10 79.12

explicit_error_correction 96.34 94.23 95.55
predictive_next_action 77.88 81.55 73.25

Average 91.33 93.05 89.69

Average 94.27 92.17 93.04

Table 7: Performance Evaluation on BEHAVIORBENCH. We report Accuracy (%) across different task categories.
Best result per task is highlighted in bold. Baseline LLM used is DeepSeek-R1. ‘ZS’ = Zero-Shot, ‘FS (k=3)’ =
Few-Shot (3 examples), ‘CoT’ = Chain-of-Thought, ‘Explicit Instr.’ = ZS with explicit reactive/proactive instruction.

Category Task Baseline

ZS FS (k=3) ZS + Explicit Instr.

R
ea

ct
iv

e fact_retrieval 100.00 100.00 100.00
timeline_sequence 100.00 100.00 100.00

ddx_reasoning 93.16 91.16 94.25
treatment_decision 94.22 95.70 94.77

Average 96.84 96.71 97.26

B
al

an
ce

d reasoning_differential_evolution 98.59 98.59 98.59
integrity_missing_turn_inference 100.00 100.00 100.00

Average 99.29 99.29 99.29

Pr
oa

ct
iv

e

consistency_check 94.29 94.29 100.00
data_conflict_resolution 97.18 95.68 97.88
interpretation_conflict 100.00 96.53 98.22

standard_of_care 93.52 95.32 94.67
omission_detection 93.78 90.75 93.57

explicit_error_correction 97.50 97.52 98.26
predictive_next_action 78.54 80.86 82.69

Average 93.54 92.99 95.04

Average 95.49 94.96 96.10

Phase 1: Dataset Validation1149

In this phase, clinicians were tasked with vali-1150

dating a randomly selected subset of tasks (N=30)1151

from the BEHAVIORBENCH. The primary goal was1152

to ascertain the clinical soundness and appropriate-1153

ness of the dataset components. For each presented1154

task, which included a clinical ‘Task Context’, a1155

specific ‘Question’, and multiple-choice ‘Options’ 1156

(as illustrated in Figure 14), clinicians utilized a 1157

dedicated evaluation panel (Figure 13). Their eval- 1158

uation encompassed: 1159

• Correctness of Ground Truth: Verifying 1160

the accuracy of the designated correct answer 1161
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Figure 6: Distribution of total dialogue length (in characters) per conversation. This metric captures the overall
verbosity of clinical discussions. Most conversations range between 3000 and 5000 characters in length, indicating
substantial detail per case.

Figure 7: Distribution of the number of dialogue turns per conversation. Each conversation represents a
real-world clinical case discussion, with turns corresponding to speaker exchanges. The majority of cases fall
between 15 and 30 turns.

Figure 8: Distribution of instances across specific task types in BEHAVIORBENCH. Each bar represents the
frequency of a task type, colored by its average behavior score (blue = reactive, red = proactive). This illustrates the
diversity of evaluation scenarios, spanning a wide range of communicative functions and behavioral expectations.
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Figure 9: Distribution of instances by task complexity level in BEHAVIORBENCH. Tasks are broadly categorized
as either ’intermediate’ or ’advanced’ based on reasoning depth and contextual demands. The dataset skews toward
advanced tasks, aligning with the goal of evaluating high-autonomy agent behavior.

Figure 10: Average proactive score by task complexity level in BEHAVIORBENCH. Tasks labeled as ‘advanced’
exhibit a significantly higher average proactive score (above 0.8) compared to ‘intermediate’ tasks (around 0.4),
highlighting the alignment between task complexity and expected behavioral autonomy in clinical reasoning.

among the provided options.1162

• Annotator Confidence: Rating their confi-1163

dence in their selected answer on a three-point1164

scale (Low, Moderate, High).1165

• Task Proactivity Level Assessment: Evalu-1166

ating the inherent proactivity level of the ques-1167

tion itself on a continuous scale ranging from1168

0.0 (Reactive) to 1.0 (Proactive). This aimed1169

to capture the degree to which the question1170

prompted an anticipatory or forward-looking1171

response.1172

• Clinical Plausibility: Determining if the task 1173

(question and options combined) was clini- 1174

cally plausible and relevant within the given 1175

case context, with options "Yes," "No," or 1176

"Unsure." 1177

To ensure comprehensive understanding, clinicians 1178

had access to the broader ‘Case Context’, including 1179

a ‘Case Presentation Summary’, the ‘Full Conver- 1180

sation’ transcript leading to the task, and an option 1181

to refer to the original medical case for in-depth 1182

review (Figure 15). 1183
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Figure 11: Distribution of continuous behavior scores across all tasks in BEHAVIORBENCH. The behavior
score ranges from 0.0 (fully reactive) to 1.0 (fully proactive), with the distribution skewed toward higher scores,
indicating a dataset emphasis on proactive clinical reasoning.

Figure 12: Distribution of tasks across discrete behavior categories in BEHAVIORBENCH. Tasks are grouped
into five categories, ranging from ‘highly reactive’ to ‘highly proactive’ to support structured evaluation of agent
behavior along the autonomy spectrum.

Phase 2: Comparative Agent Behavior Evalua-1184

tion1185

This phase focused on evaluating the quality and1186

safety of responses generated by three distinct LLM1187

agent archetypes when presented with N=10 clin-1188

ical tasks from BEHAVIORBENCH. The agents1189

included: (1) BehaviorSFT: An agent fine-tuned1190

using our proposed BEHAVIORBENCH approach.1191

(2) General SFT: An agent subjected to general1192

supervised fine-tuning without specific behavioral1193

guidance. (3) ZS + Explicit Instr.: An agent op-1194

erating in a zero-shot setting, guided by explicit1195

instructions on desired behavior. 1196

For each scenario, clinicians were first presented 1197

with the ‘Question Posed to AI’ and the ‘Task Op- 1198

tions’ (with the correct answer highlighted for their 1199

reference). Subsequently, the responses from the 1200

three LLM agents were displayed side-by-side (Fig- 1201

ure 17). The identity and order of these agents 1202

(Agent A, B, C) were anonymized and randomized 1203

for each task to mitigate bias. Using the feedback 1204

panel shown in Figure 16, clinicians performed the 1205

following evaluations: 1206

• Comparative Ranking: Ranking the three 1207
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agent responses from best (1st) to worst (3rd)1208

using a drag-and-drop mechanism.1209

• Safety Assessment: Identifying and describ-1210

ing any instances of clinically unsafe informa-1211

tion, critical errors, or significant omissions in1212

any of the agent responses.1213

• Proactivity/Reactivity Appropriateness:1214

Rating the appropriateness of each agent’s1215

proactivity or reactivity level on a 5-point1216

Likert scale (1: Very Inappropriate, 3:1217

Neutral, 5: Very Appropriate).1218

I.3 Interface Design for Annotation Tasks1219

Custom-designed web-based interfaces were de-1220

veloped to ensure a standardized, intuitive, and1221

efficient annotation experience for the participating1222

clinicians. The interfaces were tailored to the spe-1223

cific requirements of each study phase (see Figure1224

13, 14, 15, 16 and 17).1225

I.4 Annotation Results1226

This section presents the quantitative and qualita-1227

tive findings from the clinician-in-the-loop evalua-1228

tion study. All reported inter-annotator agreement1229

scores were calculated among the three participat-1230

ing physicians.1231

I.4.1 Phase 1: BEHAVIORBENCH Validation1232

Clinicians evaluated a total of 60 unique tasks from1233

the BEHAVIORBENCH.1234

MCQ Accuracy and Task Plausibility The1235

physician annotators demonstrated a high level of1236

accuracy in answering the multiple-choice ques-1237

tions, achieving an overall correctness of 83.3%.1238

This proficiency underscores their expert under-1239

standing of the clinical scenarios presented within1240

the dataset.1241

The clinical plausibility of the tasks was a key1242

validation metric. As shown in Figure ??, a sub-1243

stantial majority of tasks (80.0%) were rated as1244

clinically plausible (“Yes”). No tasks (0.0%) were1245

rated as definitively “No” for plausibility, while1246

20.0% were marked as “Unsure,” suggesting areas1247

where task framing or context might warrant further1248

refinement or clarification for some annotators.1249

Annotator Confidence Levels Annotator confi-1250

dence in their selected MCQ answers was recorded1251

on a three-point scale. The distribution, illustrated1252

in Figure ??, reveals that physicians were predomi-1253

nantly “High” in their confidence (55.0%). “Mod-1254

erate” confidence was reported for 36.67% of an-1255

swers, while “Low” confidence was expressed for1256

only 8.33% of answers. This general trend towards 1257

higher confidence aligns with the observed accu- 1258

racy. 1259

Inter-Annotator Agreement for Dataset Val- 1260

idation To ensure the reliability of the dataset 1261

validation process, inter-annotator agreement was 1262

quantified using the Intraclass Correlation Coeffi- 1263

cient (ICC3) for continuous ratings. 1264

The task proactivity/reactivity slider ratings (0.0- 1265

1.0 scale) demonstrated good reliability with an 1266

ICC3 of 0.61. This robust agreement scores indi- 1267

cate that the physicians interpreted and applied the 1268

validation criteria consistently. 1269

I.4.2 Phase 2: Comparative Agent Behavior 1270

Evaluation Results 1271

Physicians evaluated agent responses across N=24 1272

unique clinical tasks. The anonymized agents eval- 1273

uated were BehaviorSFT, General SFT, and ZS + 1274

Explicit Instr. 1275

Agent Response Ranking and Proactivity/Re- 1276

activity Appropriateness The primary evaluation 1277

involved ranking the three agents. Agent A (BE- 1278

HAVIORBENCH) received the most favorable rank- 1279

ings, achieving the lowest (best) mean rank of 1.80 1280

(Figure 18). In terms of the appropriateness of 1281

proactivity/reactivity, Agent C (ZS + Explicit In- 1282

str.) scored highest with a mean Likert score of 1283

4.20 out of 5 (Figure 19). Agent B (General SFT) 1284

had a mean rank of 2.08 and a mean Likert score 1285

of 4.08. 1286
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Figure 13: Interface for Dataset Task Validation: Annotator’s Evaluation. Medical doctors used this panel to
provide their confidence in the selected answer for a given task, assess the task’s inherent proactivity level on a
continuous scale (0.0 Reactive to 1.0 Proactive), and confirm the clinical plausibility of the task (question and
options) within the provided case context.
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Figure 14: Interface for Dataset Task Validation: Task Presentation. This view provided clinicians with the ‘Task
Context‘ (relevant excerpts from the case), the specific ‘Question‘ being posed for the BehaviorBench task, and the
multiple-choice ‘Options‘, one of which was the ground truth answer they were validating.
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Figure 15: Interface for Dataset Task Validation: Case Context Provision. To ensure comprehensive understand-
ing, clinicians had access to the broader ‘Case Context‘, including a ‘Case Presentation Summary‘ (if available
from the task file), the ‘Full Conversation‘ transcript leading up to the point of the task, and an option to download
the original case PDF for in-depth review.

Figure 16: Interface for Agent Behavior Evaluation: Clinician Feedback Panel. After reviewing the task and agent
responses (shown in Figure ??), medical doctors used this panel to: (1) Rank the three anonymized agent responses
(Agent A, B, C) from best to worst via drag-and-drop. (2) Identify and describe any clinically unsafe information or
critical errors/omissions presented by any agent. (3) Rate the appropriateness of the proactivity/reactivity level for
each agent’s response on a 5-point Likert scale (from Very Inappropriate to Very Appropriate).
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Figure 17: Interface for Agent Behavior Evaluation: Task and Agent Response Display. For each evaluation
scenario, clinicians were presented with the ‘Question Posed to AI‘ and the ‘Task Options‘ (with the correct answer
highlighted for reference). Below this, the distinct responses from three anonymized LLM agents (Agent A, B, C),
including their rationales, were displayed side-by-side for comparative assessment.

Figure 18: (a) Over half (55.0%) of the responses were marked as ‘High’ confidence, while ‘Moderate’ confidence
accounted for 36.7%. ‘Low’ confidence was the least frequent category, representing only 8.3% of responses. (b)
The vast majority (80.0%) of responses affirmed the clinical plausibility (‘Yes’) of the generated MCQs. A smaller
portion (20.0%) of responses were ‘Unsure’, and no responses found the MCQs implausible (‘No’).
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Figure 19: (a) Mean appropriateness scores for agent proactivity/reactivity (5-point Likert scale, higher is better).
(b) BehaviorSFT received the lowest (best) mean rank (1.80), suggesting it was most frequently ranked highest by
evaluators. Gen. SFT had a mean rank of 2.08, while ZS w/ explicit instruction had the highest (worst) mean rank
of 2.12 in a system where lower ranks are better.
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Table 8: Six-Level Taxonomy for Healthcare AI Agent Autonomy

Level Name AI Agent’s Role / Capability Human Clinician’s Role

0 No Automation The AI system provides no assistance or
automation for any clinical task.

Performs all tasks and makes all
decisions related to patient care. The AI
system is not involved.

1 Clinician Assistance The AI system may provide information,
simple alerts based on predefined rules
(e.g., drug interaction warnings,
out-of-range lab value notifications), or
basic data visualization. It does not
perform any part of the dynamic clinical
task itself.

Performs all dynamic decision-making
and actions. Uses the AI as a passive
information source or a simple alerting
tool. Responsible for interpreting
AI-provided information.

2 Partial Automation (Re-
active Support)

The AI system can execute specific,
well-defined reactive sub-tasks under
direct human supervision based on
explicit clinician queries or predefined
triggers (e.g., retrieving specific patient
history, summarizing recent lab results,
performing image segmentation on
request). It does not manage the overall
clinical situation.

Actively monitors the AI’s execution of
sub-tasks, provides necessary inputs, and
must intervene if the AI’s output is
incorrect or inappropriate. Responsible
for the overall task and integrating AI’s
contribution.

3 Conditional Automation
(Contextual Proactivity)

The AI system can perform certain
proactive tasks and make some decisions
within a limited, well-defined clinical
context or Operational Design Domain
(ODD) (e.g., suggesting differential
diagnoses based on current symptoms,
flagging potential omissions in a standard
care plan, recommending next tests). It
can handle some dynamic aspects of the
task.

Monitors the AI and the clinical
environment. Must be ready to take over
control if the AI encounters a situation it
cannot handle, if its suggestions are
inappropriate, or if the situation goes
outside the AI’s ODD.

4 High Automation
(Proactive Decision
Support)

The AI system can make significant
clinical decisions and take proactive
actions in most situations within its
designed ODD without human oversight
for extended periods (e.g., autonomously
adjusting medication dosage based on
real-time patient data within set
parameters, initiating standard protocols
for common conditions, triaging patients
based on urgency).

Primarily acts as a fallback, intervening
only in complex, novel, or out-of-ODD
scenarios. Relies on the AI for most
routine decisions and actions within the
ODD. May oversee multiple AI-managed
cases.

5 Full Automation (Au-
tonomous Operation)

The AI system can perform all clinical
tasks and make all decisions that a human
healthcare professional can, under all
conditions within its defined scope of
operation. It can adapt to novel situations
and operate entirely autonomously,
potentially even taking on roles currently
performed by specialized clinicians.

May not be required for tasks within the
AI’s full operational scope. Human role
shifts to high-level oversight, system
management, or handling tasks entirely
beyond the AI’s designed capabilities or
ethical boundaries.

ODD: Operational Design Domain - The specific conditions under which a given AI system or feature is designed to function.
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