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ABSTRACT

Variational Autoencoders (VAEs) are a powerful alternative to matrix factorization
for recommendation. A common technique in VAE-based collaborative filtering
(CF) consists in applying binary input masking to user interaction vectors, which
improves performance but remains underexplored theoretically. In this work, we
analyze how collaboration arises in VAE-based CF and show it is governed by
latent proximity: we derive a latent sharing radius that informs when an SGD update
on one user strictly reduces the loss on another user, with influence decaying as
the latent Wasserstein distance increases. We further study the induced geometry:
with clean inputs, VAE-based CF primarily exploits local collaboration between
input-similar users and under-utilizes global collaboration between far-but-related
users. We compare two mechanisms that encourage global mixing and characterize
their trade-offs: @ $-KL regularization directly tightens the information bottleneck,
promoting posterior overlap but risking representational collapse if too large; @
input masking induces stochastic geometric contractions and expansions, which
can bring distant users onto the same latent neighborhood but also introduce
neighborhood drift. To preserve user identity while enabling global consistency,
we propose an anchor regularizer that aligns user posteriors with item embeddings,
stabilizing users under masking and facilitating signal sharing across related items.
Our analyses are validated on the Netflix, MovieLens-20M, and Million Song
datasets. We also successfully deployed our proposed algorithm on an Amazon
streaming platform following a successful online experiment.

1 INTRODUCTION

Recommender systems are essential for delivering personalized user experiences. Having benefited
from three decades of research (Resnick et al.L|1994), Collaborative filtering (CF) remains an essential
approach in today’s recommender systems (Zhu et al., 2025). CF predictive process consists in
predicting user preferences by identifying and leveraging similarity patterns between users and items
(Su & Khoshgoftaar, |2009; Ricci et al.| [2010), which naturally aligns with the framework of latent
variable models (LVMs) (Bishop & Nasrabadi, 2006), where latent representations are used to capture
the shared structure of user-item interactions. Due to their simplicity and effectiveness, LVMs have
historically played a central role in CF research. However, these models are inherently linear, which
limits their capacity to model the complex and non-linear nature of real-world user behavior (Paterekl
2007; Mnih & Salakhutdinov,2007). To overcome these limitations, researchers have increasingly
explored the integration of neural networks (NNs) into CF frameworks, enabling more expressive
modeling and yielding notable improvements in recommendation accuracy (He et al.|[2017; [Wu et al.
20165 Liang et al., 2018; Truong et al., 2021} [Li et al., | 2021). A particularly successful line of work
is VAE-based collaborative filtering (Liang et al.l 2018]), which extends the variational autoencoder
(VAE) framework (Kingma & Welling},2013; Rezende et al.| | 2014)) to collaborative filtering tasks.
Unlike traditional latent factor models (Hu et al., 2008} [Paterekl [2007; Mnih & Salakhutdinov,
2007)), which require learning a separate latent vector for each user, VAE-based models offer a user-
independent parameterization, where the number of trainable parameters remains fixed regardless of
the number of users|Lobel et al.[(2019)), leading to remarkable scalability. Additionally, empirically,
VAE-based CF models consistently outperform many existing LVM-based alternatives (Liang et al.,
2018}, [Kim & Suh, [2019; Walker et al.,[2022; Ma et al.,[2019; |Guo et al.}|2022; Wang et al., 2023},
2022;|Guo et al., 2024} [Husain & Monteil, [2024; L1 et al., [2021; [Tran & Lauw), [2025)).
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A key driver of the strong performance of VAE-based CF is the use of a binary mask that corrupts the
user interaction vector, producing a partial history from which the model is trained to reconstruct the
full interaction vector (Liang et al., 2018). This masking strategy has been shown to significantly
enhance recommendation accuracy (see Section {.2] and Figure 2] comparing settings with and
without masking). Although input noise has become a standard component in VAE-based CF models
due to its empirical effectiveness, its underlying mechanisms and potential side effects remain largely
unexplored. Existing works treat masking as a simple performance-enhancing heuristic, without
thoroughly examining how it influences the learning process or affects the latent representations. Our
work aims to fill this gap with a comprehensive study the effect of input noise in VAE-based CF. The
contributions of this paper are summarized as follows:

* We conduct an in-depth analysis of the collaboration mechanism in VAE-based collaborative
filtering models and reveal that @ collaboration in VAE-CF is fundamentally governed by latent
proximity; @ VAE-CF with clean inputs primarily leverages local collaboration and fails to
utilize global collaborative signals when input distances are large; ® Both $-KL regularization
and input masking can encourage global collaborative signals, but they operate through distinct
mechanisms with different trade-offs i.e., 5-KL regularization promotes posterior mixing by
directly constraining the information bottleneck, but suffers the risk of representational collapse
when applied too aggressively while Input masking achieves mixing through geometric and
stochastic means such that it can bring distant users into the same latent neighborhood, and latent
space expansions can introduce neighborhood drift effects.

* Guided by our theoretical analysis, we propose a regularization scheme that addresses the issues
induced by input masking, mitigating the loss of local collaboration while preserving its benefits
for global alignment. Specifically, we model items as learnable anchors in latent space, and
during training, the masked encoder outputs are pulled toward the user’s anchor centroid. This
acts as a training-only auxiliary condition that helps stabilize user representations under input
corruption without tightening the information bottleneck, promoting consistent, semantically
grounded latent proximity. To our knowledge, ours is the first work to systematically analyze the
collaboration mechanisms in VAE-based CF, showing that both 3-KL regularization and input
masking can promote global collaboration. In contrast to prior works that focus on addressing
the problems of 3-KL regularization (ref. Appendix|B|for a detailed discussion), we address the
issues induced by input masking.

* Our experimental results demonstrate the strong benefits of the proposed PIA approach compared
to vanilla VAE-CF on benchmark datasets and especially the success on the A/B testing at
Amazon streaming platform. We conducted ablation studies across user groups segmented by
interaction count to validate the effectiveness of global collaborative signals. Additionally, we
provide visualizations of the learned latent space that support our theoretical analysis.

2 COLLABORATION MECHANISM IN VAE-BASED CF

Notations. We index users by u € {1,2,...,U} anditemsbyi € {1,2,...,I}, where U, I are the
number of users and items, respectively. X € {0, 1}V > represents the user-item interaction matrix
(e.g., click, watch, check-in, etc.) and X, = [Xy1, Xu2, - - - , X41] is an I-dimensional binary vector
(the u-th row of X) whereby x,; = 1 implies that user « has interacted with item ¢ and x,; = 0
indicates otherwise. Note that x,,; = 0 does not necessarily mean user n dislikes item 7; the item may
never be shown to the user. For simplicity, we use x to denote a general user interaction vector and
retain x,, when specifically referring to user u. Additionally, we measure distances between input
vectors with the £; norm || - ||; (Hamming) and between latent distributions with the 1-Wasserstein
distance W1 (-, -). We refer to the Appendix Table B]for the notation summary.

2.1 VAE-BASED COLLABORATIVE FILTERING

Given a user’s interaction history x = [x1,%a,...,x7]" € {0,1}!, the goal is to predict the full
interaction behavior of this user with all remaining items. To simulate this process during training, as
well as to avoid overfitting to non-informative patterns (Steck, [2020), VAE-based CF (Liang et al.,
2018; Kim & Suh}2019; |Truong et al., [2021; Vancura & Kordik}[2021)) introduces a random binary
mask b € {0,1}! is, with the entry 1 as un-masked, and 0 as masked. Thus, x, = x ® b is the
user’s partial interaction history, and the goal is to recover the full x given x,.
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Training Objective. The parameters ¢, 6 of the VAE-based collaborative filtering model are learnt
by minimizing the negative S-regularized Evidence Lower Bound (ELBO):

Lvae(%;0,6) = —Eqg, (alx,) [log o (x | 2)] + BKL(gs(2 | x1) || p(2)), M
with standard reparameterization
b~Bernoulli(p)!, x, =x0b, (u,0?) =qs(xpn), e~N(0,1), z=p+eo )

where p is the hyperparameter of a Bernoulli distribution, g is a ¢-parameterized neural network,
which outputs the mean g and variance o of the Gaussian distribution.

2.2 THEORETICAL ANALYSIS

Before presenting our theoretical analysis, we first recall the CF iy iy i3 iy s ig iy ig

target: predict a user’s preferences from other users’ interaction m

patterns, without relying on item or user side content. Figure

illustrates two typical situations. First, users x; and x4 are close in ~ x; m
the input space (e.g., under ¢;), so each serves as a natural reference

for the other by the definition of the collaborative filtering. Second, *3 m
let Sx = {i : x; = 1} contain the positive items for user x, if %

Sx, C Sx, 1.e., X1 is a more active user with similar interests, then m
x1 should inform recommendations for x» (e.g., items i1,9,43 € =7 Valid Recommendation
Sx, \ Sx;). We refer to this latter, “far-but-related” influence as
a global collaborative signal. To make these notions precise, for

d > 0, we define the input-space neighborhood for user u Ns(u) =
{v: ||xu —Xy||l1 < J} and the (nonzero) overlap indicator: ov(x,,X,) = 1{

Figure 1: Local and global col-
laborative signal example.

|qu NSy |>0 }

Definition 2.1 (Local collaborative signal). The prediction for user v depends on other users within
the neighborhood N (u).

Definition 2.2 (Global collaborative signal). A model exhibits a global collaborative signal at scale
J if there exist users u and v which are “far-but-related” i.e., ||x, — X,||1 > ¢ and ov(x,, %X,) = 1,
and their predictions strictly influence each other.

We now examine how VAE-based CF methods leverage local and global collaborative signals.

Theorem 2.3 (Latent-W; sharing radius). Assume decoder gradient is Lipschitz in z such that for
any given z ~ qu (- | Xy,), uniformly in x and Vz', ||Volg(x,2z) — Vglo(x,2')|| < Lg, ||z — 2'||. Let

Qu, = Q¢(' | Xu), @o:i= Q¢(' | X0), Lu(0):= Eq, Wo(xu,2)], gu(0) := VoLy(0).
Define the content-mismatch term

AI(U) U) = HEqv [VGEQ(X'M Z) - VGEQ(Xva Z)] H; Du,v = LOz Wl (Qua QU) + Aw(ua U).

For one SGD step on user v, 07 = 0 — 1 g,,(0), the first-order change satisfies
Lu(07) = Lu(0) < =nllgu@ (192 = Dup) + O@?).

Consequently, the step on v strictly decreases L, to first order whenever D, ,, < ||g.(0)]), i.e.

(19 (D) — A (us 0))+
Laz

Wl(quaqv) < Tshare(u7v;9) =

Proof. See Appendix [E.1] O

Result-1 (Collaboration is governed by latent proximity). The quantity D,, ,, = Lo, W1 (qu, ¢v)+
A, (u,v) is the transfer penalty: it upper-bounds the per-step regret at user u by updating the model
using user v. When D,, ,, < ||gu]|, the step computed on v still impacts w; thus collaboration during
training is localized to the latent neighborhood { v : Wi (qu, ¢v) < Tshare(u, v; 0) } and collaborative
signal reduces with increased latent distance.

Consequently, to understand how VAE-CF exploits both local and global collaborative signals, we
examine the correspondence between the geometry of the input space and the geometry of the latent
space in VAE-based collaborative filtering, in the following section.
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2.3 CORRESPONDENCE BETWEEN GEOMETRY OF THE INPUT AND LATENT SPACE

We summarize the key theoretical results and present the discussion subsequently.
Lemma 2.4. Assume the encoder is Ly-Lipschitz, i.e., ||qs(Xu) — s (X0 ) || < Lg||x0—%0 || VX, X, €
{0, 1} then Wi(qo (- | xu), 46 (- | Xv)) < Lo [|x0 — Xull1, Vxu, %, € {0,1}.

Theorem 2.5. Assume po(x | z) is a regular exponential family with sufficient statistics T (x),
natural parameter 1(z), and log-partition A. Let g, = q4(- | Xy) and q, = q4(- | Xy), and define
qu(z)

a(z) = Then the [-regularized pairwise objective satisfies

qu(2)+qv(2)°
?71(11)1{ > By [—logpe(xi|2)] +8 Y KLge(z|x:) Ip(Z))} 3)
i€{u,v} i€{u,v}

e / (6u(2) + 00(2)) Aa-(xux050(2) dz+ B Y KL{ggl(z | x:) || p(2)),

i€{u,v}
where C'is a constant, A* is the convex conjugate of A, and for o € [0, 1]
AA*(xu,xq,; a) = aA*(T(Xu)) +(1-a) A*(T(XU)) - A*(aT(Xu) +(1- a)T(xv)) >0,
with equality iff T'(x,,) = T(Xy).

Additionally, assume the prior p satisfies the Bobkov—Gétze/Talagrand T (C) inequality (Bobkov &
Gotze, |1999) with a constant C' > 0 (e.g., Normal prior p = N(0,0%I)):

Wi(qus0) < (V2OKL(@llp) + V2CKL(a.[p))- )

Proof. See Appendix [E.2] O

Result-2 (Clean inputs favor local over global collaboration).

e Input locality induces latent locality. We show in Lemma [2.4] that nearby inputs (in ¢;) induce
nearby posteriors in Z i.e., input neighborhoods embed into latent neighborhoods, preserving
local collaboration.

* Reconstruction favors posterior separation. When T'(x,,) # T(x,), any overlap of ¢, and g,
incurs the strictly positive gap [(g, + ¢v) Aa- dz in Eq. , discouraging posterior overlap
and preventing input-distant, content-mismatched users from becoming latent-near, discouraging
global collaboration.

* B-KL encourages posterior overlap. Increasing (5 reduces the optimal KL terms, tightening the
upper bound of Wl(qu, qv), thereby increasing latent overlap i.e., potentially bringing input-distant
users closer in latent space and enabling global collaboration. However, an excessively large 3
can lead to posterior collapse and weaken predictive performance. In practice, 3 is typically kept
small in ranking tasks.

Consequently, for moderate /3, similar users remain latent-near while content-mismatched users are
pushed apart, yielding a clustered latent geometry aligned with input similarity (Setting-1, Figure[2).
By Theorem [2.3] SGD updates are therefore shared predominantly within these latent neighborhoods
(i.e., across pairs with W1 (qu, ¢») < Tshare(u, v; 0)). Hence, with clean inputs, VAE-CF primarily
exploits local collaborative signals and suppresses global influence from input-distant users.

Theorem 2.6. Let x,,,x, € {0,1}! be binary inputs. Let by, ,by, ~ Bern(p)! be independent
masks and set X, = x,, © bx, and x|, = x, ® bx,. Denote the number of non-overlapped items
h = ||xy — Xy||1 and the number of overlapped items s = (xy,X,). For any 6 > 0, define
Ts = [6] — 1 and Us = [4]. Then:

. : in{h,T, k
Contraction. Pr[||x), — x,|1 < 48] > (0 +(1-p)?)° SominthTo} (1) p*(1 = p) .

Expansion. Pr[|x,, —x,|1 >8] > Yi_y. (3)(20(1 - )" (1 —20(1 - p))*

Proof. See Appendix O

V
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Result-3 (Masking induces stochastic neighborhood mixing). Random masks perturb pairwise
distances stochastically i.e., each draw can contract or expand ||x,, — x/,||;. Under Lemma
contractions propagate to latent space; if the realized ¢ satisfies Ly 6 < Tshare (U, v; 0), an SGD step
on v strictly reduces £,, (cf. Theorem [2.3). On the other hand, expansions can push pairs outside the
sharing radius, weakening local collaboration. This creates a pattern where latent representations
of distant groups become intermittently entangled via contractions, while within-group cohesion
diffuses due to occasional expansions (Setting-2, Figure [2)).

3 PROPOSED METHOD

The previous section established that collaboration is governed by laftent proximity via the sharing
radius (Theorem [2.3). With clean (unmasked) inputs, ¢; locality makes latent locality and recon-
struction favors posterior separation, so updates are shared primarily within local neighborhoods;
increasing 3 can counteract this by uniformly contracting pairwise latent distances and enabling
long-range sharing, but overly large 5 weakens reconstruction gradients and can shrink the sharing
radius. In contrast, input masking stochastically contracts/expands neighborhoods across batches,
producing intermittent long-range sharing alongside potential neighborhood drift.

To convert these geometric properties into actionable insights, we connect latent distances to the KL
terms that we actually optimize in the ELBO.

3.1 FROM LATENT GEOMETRY TO AN INFORMATION LENS: S—KL VS. MASKING

Clean input. Theorem [2.5]yields for any users u, v:

Wiao(- | %), a0 | %)) < \J20KLao( | %) [9) + 20KLg(- [ %) D). )
Averaging over user pairs and using Jensen’s inequality (concavity of the square root),
Euo Wilgu: 0) < 2V20 1/ ExKL(go(- | %) || p) - (©)
By rearranging the ELBO terms with ¢(Z) := Ex ¢4(Z | X) [T_],
Ex [KL{as(Z | %) [ p(2))]| = 1,,(X:2) + K(a(Z) | p(2),

so lowering I,(X; Z) and/or the aggregated divergence KL(q||p) shrinks expected pairwise latent
distances, increasing the chance that users fall within the sharing radius (Theorem [2.3).

Input masking. Let x;, = x ® b with independent b~ Bern(p)’ and define g1, (z) := Ex p ¢4 (z |
x ® b). Applying Eq. (5) to masked posteriors and averaging over masks,

IEu,v7b Wl(q¢(' | Xu®bu)7 (]¢>(' ‘ Xv®bv)) S 2v 2C \/Ex,b KL(%( | b 4O b) ||p) . (7)
Rearranging ELBO terms for the masked variable X, gives
Exn KL(gs(Z | x O D) || p(2)) = Io,(Xn; Z) + KL(qn(Z) || (2))-

Hence Eq. (7) ties the mask-averaged latent distances directly to I,(X},; Z) and KL(gy,||p). In words:
masking acts by reducing the usable instance information (data-processing: I,(Xy; Z) < I,(X; 2)),
which on average pulls masked posteriors closer together and to the prior, thereby increasing the
frequency of global sharing events, while still allowing per-draw contractions/expansions (Result-3).

Distinct geometries at two levels. Both mechanisms increase posterior overlap but reshape geome-
try differently:

1. B-KL (objective-level). Scaling the KL by £ directly reduces I,(X; Z) and KL(q||p), shrinking
the RHS of Eq. (). Geometry: uniform shrinkage of inter-user distances, hence uniform global
mixing. Trade-off: too large 8 weakens reconstruction gradients (||g.||) and risks posterior
collapse, blurring user semantics.

'We use uppercase letters for random variables e.g., X and bold lowercase for their realizations x.



Under review as a conference paper at ICLR 2026

2. Input Masking (data-level). Masking reduces I,(X}3; Z) and KL(gp||p), shrinking the RHS
of Eq. (7). Geometry: stochastic contractions/expansions across batches (Result-3), which can
intermittently bring far-but-related users within the sharing radius, but also introduce neighborhood
drift that may weaken local reliability.

Remark. Eq. (3) in Theorem [2.5] shows that reconstruction favors posterior separation when
T(x,) # T(xy), while Eq. (5)-Eq. show how the 3-KL or masking can increase overlap.
Prior work mostly tunes the 3-KL pathway i.e., scaling the KL. by 3 or redesigning the prior p
(ref. Section [B|for detail discussion). In contrast, we operate on the masking pathway: preserve
instance information (avoid uniform shrinkage) but stabilize its stochastic geometry so that beneficial
long-range sharing occurs more often and with less drift. We formalize this next.

3.2 PERSONALIZED ITEM ALIGNMENT (PIA)

During training the encoder takes masked inputs x;, = x @ b (cf. Eq.[2). Rather than conditioning
¢4(z | -) on auxiliary features at inference, we introduce a regularizer that, during training, pushes
the posterior given x;, towards a user-specific target derived from the user’s positive items.

We define the overall objective as:
Lpiavai(x; 0,6, E) = Ey [CVAE(X§ 0, ¢; Xh)] + A Ep {ﬁA(th X; ¢, E)] ) @

where F = {e; € Rd}le are learnable item anchors in latent space (same dimension as z), and
Aa > 01is small. In particular, let Sy = {i : x; = 1} be the positives for user x, we have:

1
£A(Xhax; ¢7 E) = m Z Ezwqd)(z\xh)[ ||Z - ei”% ] (9)
*lieS,

Intuitively, this pulls the masked posterior toward the anchors of the items the user liked, making
users with shared items close in the latent space.

Proposition 3.1. Assume the encoder posterior is diagonal-Gaussian, qu(z | xp) =
N(pg(x1), diag(ag(xh))). Let the item centroid be ey := ﬁ > ics, ©i then

_ 12
La(Xp,x;0,FE) = ||u¢(xh) — ex||2 + tr¥g(xn) + const(x, E), (10)
—_— —
align mean to item centroid variance shrinkage

where ¥4(xp,) = diag(o(x)) and const(x, E) = ﬁ Yics, leill3 — llexl3.
Proof. See Appendix [E.4] O

Proposition [3.1]indicates that PIA @ centers masked latents near the user’s item barycenter €x and @
modestly reduces posterior spread. Two users u, v with similar positive-item sets have close centroids,
so their masked posteriors become latently near more frequently, increasing the chance they fall
within the sharing radius and benefit from each other’s updates.

Proposition 3.2. Fix x and its neighborhood in which the ELBO objective Lyag(X; 0, ¢; x1,), defined
in Eq. , written as a function of the encoder mean pu4(xy), admits a quadratic approximation with
Hessian H = mI and ||H| < L. Adding \s||pe(x1) — €x||3 to this objective yields an effective
Hessian Hepp = H + 2Aa1. Let p9)(xy,) be the unregularized minimizer over masks and p™ (xy,)

the minimizer with alignment. Then with T = (ﬁ) we obtain the following inequalities

Varp[p™ (x)] = 72 Varp[p? (x)], B[ (xn) —ex|?] < 7Ep [ (x1) —ex]*].
Proof. See Appendix [E.3] O
Proposition [3.2]indicates that adding the PIA term makes the masked encoder locally better condi-

tioned and pulls its mean p, (X)) toward a per-user item centroid. Quantitatively, it shrinks @ the
variance of 4 (Xp,) across different masks and @ the average drift of 114 (x;,) from the centroid by a
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multiplicative factor 7 € (0,1). Hence, masked views of the same user are more alike and less
noisy, so the neighborhoods we train on are closer to the neighborhoods we infer on at test time.

In summary, PIA @ preserves instance information: PIA does not add a penalty on I,(X; Z); it acts
on geometry during training. With full-x inference, the encoder can still exploit all available signal; @
stabilizes the geometric pathway: aligning g4(z | x5,) to a fixed per-user ex reduces masked-vs-clean
drift and gradient variance; expansions are less likely to eject genuine neighbors from the sharing
radius; @ promotes meaningful global mixing: shared items pull users toward nearby centroids,
creating consistent, semantically grounded latent proximity instead of relying purely on stochastic
contractions ((Setting-3, Figure [2)); @ introduces no test-time burden: E and the regularizer are
estimated during training-only; inference uses the standard g4 (z | x).

4 EXPERIMENTS

We validate our analysis using three real-world recommendation datasets: MovieLens-20M, Netflix,
and Million Song Dataset and the A/B testing on an Amazon streaming platform. Specifically:

* First, we assess benefits of the proposed personalized item alignment approach compared to
vanilla VAE-based CF (Multi-VAE (Liang et al.;2018)) on these benchmark datasets.

» Second, we provide visualizations of the learned latent space under three conditions: VAE
without masking, VAE with masking, and VAE with PIA, to support our theoretical analysis.

* Finally, we conducted ablation studies across user groups segmented by interaction count to
validate the effectiveness of global collaborative signals.

4.1 EFFECTIVENESS OF PERSONALIZED ITEM ALIGNMENT

Public dataset. Table|[I| presents the performance of our framework, which adds personalized item
alignment to Multi-VAE, and RecVAE (Shenbin et al., 2020) on the MovieLens-20M, Netflix and
Million Song datasets respectively. We follow the preprocessing procedure from (Liang et al., 2018).
The detailed data preprocessing steps and train/validation/test split methodology are presented in
Section Our code for reproducibility is available anonymously at https://anonymous |
4open.science/r/PIAVAE-E082/.

Table 1: Our method (with PIA) achieves the best performance for MovieLens and Netflix Prize
datasets while having the 3rd rank for Million Song. The best results are highlighted in bold.

MovieLens-20M Netflix Prize Million Song

Model Recall Recall NDCG | Recall Recall NDCG | Recall Recall NDCG

@20 @50 @100 @20 @50 @100 @20 @50 @100
Popularity 0.162 0.235 0.191 | 0.116 0.175 0.159 | 0.043 0.068  0.058
EASE 0.391 0.521 0420 | 0362 0.445 0393 | 0333 0.428 0.389
MF 0.367 0.498 0399 | 0335 0422 0369 | 0258 0.353 0314
WMF 0362 0495 0389 | 0321 0402 0349 | 0211 0312 0257
GRALS 0376  0.505 0401 | 0335 0416 0365 | 0201 0275 0.245
PLRec 0.394 0.527 0426 | 0357 0441 0390 | 0.286 0.383  0.344
WARP 0310 0448 0348 | 0.273 0360 0.312 | 0.162 0253 0.210
LambdaNet 0.395 0.534 0427 | 0352 0441 0386 | 0259 0.355 0.308

Nonlinear autoencoders: MLP for encoder
CDAE 0391 0.523 0418 | 0343 0428 0376 | 0.188 0.283  0.237
RaCT 0403 0.543 0434 | 0357 0450 0392 | 0268 0.364 0.319
Multi-VAE 0.395 0537 0426 | 0351 0444 0386 | 0.266 0.364 0.316
Multi-VAE + PIA | 0408 0.546 0437 | 0360 0448 0392 | 0275 0372  0.326
Uplift (%) 3.29 1.68 2.58 2.56 0.90 1.55 3.38 2.20 3.16
Nonlinear autoencoders: densely connected layers for encoder

RecVAE 0414 0.553 0442 | 0361 0452 0394 | 0276 0374  0.326
RecVAE + PIA 0417 0.556 0.446 | 0.365 0454 0396 | 0278 0376 0.329
Uplift (%) 0.72 0.54 0.90 1.01 0.44 0.51 0.72 0.54 0.92

The results demonstrate that PIA consistently improves the performance over the base VAE recom-
menders, in terms of nDCG and Recall. It also exhibits competitive performance across the three
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Figure 2: t-SNE visualization of the latent representations for three user groups differentiated by the
number of interactions from ML-20M dataset. Purple, Teal, and denote users with 5, 50, and

350 interactions, respectively, correspond to different VAE model configurations. We select group of
users with 5, 50, and 350 interactions as they are clearly separated (i.e., L1) on the input space.

datasets considered, with RecVAE+PIA being the top performing approach on MovieLens-20M and
Netflix datasets, and the 3rd performing approach on Million Song dataset.

A/B testing on an Amazon streaming platform. On the basis of offline results, we run one week
of A/B testing in September 2025 for the Multi-VAE+PIA algorithm on one streaming platform of
Amazon. The approach was implemented as an offline system, with weekly training considering
a 3-month window for collecting streaming behavior, and daily inference for active customers.
The personalized scores computed daily include about 25 millions of users and 4000 movies. The
performance of our system was compared with a statistical baseline (control group) on 2 movie cards
present on the Home page and on the Movie page. As shown in Table[2] our approach outperforms
the control group significantly, with improved performance on the card click rate by 117% — 267%
(per daily view) and 123% — 283% (per daily user view).

4.2 LATENT SPACE VISUALIZATION

We present t-SNE visualizations (Maaten & Hinton| 2008)) of the latent spaces learned under three
settings: @ clean input, @ input masking, and @ input masking with personalized item alignment, to
examine the correspondence between the geometry of the input space and the latent space.

Setup: We focus on user cohorts with 5, 50, and 350 interactions to clearly contrast local versus global
collaboration. Note that standard set-based distances (Hamming) inflate cross-cohort dissimilarity:
even two S-interaction users with disjoint histories are closer to each other than any 5-50 pair, even
when the 50-interaction user subsumes the 5-interaction user’s items; the same pattern holds for the
50-350 cohorts.

Setting-1: As illustrated in Figure[2] when masking is disabled and interaction counts differ substan-
tially, the learned representations are cleanly segregated by cohort. This indicates that the model in
this setting primarily leverages local collaboration and has limited ability to capture global collabora-
tive signals. Moreover, the latent geometry mis-aligns with the global structure of the input space:
the 350-interaction cluster lies closer to the 5-interaction cluster than to the 50-interaction cluster
which contrary to the expected ordering, where distance(350, 50) < distance(350, 5).

Setting-2: the representations from different cohorts become stochastically entangled, which encour-
ages global sharing. However, within-cohort structure is more diffuse, weakening local collaboration.
Despite this trade-off, Setting-2 substantially outperforms Setting-1 (nDCG@ 100= 0.426 vs. 0.409),
demonstrating the benefit of encouraging global collaboration.

Setting-3 augments masking with PIA, which @ helps the VAE remain discriminative under input
corruption, yielding a more structured latent space and @ promotes globally consistent user repre-
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sentations. The resulting latent manifold is both well organized and globally aligned, exhibiting
smooth transitions from the 5- to 50- to 350-interaction cohorts. This balance of local and global
collaboration yields the best performance (nDCG@100 = 0.437).

4.3 PERFORMANCE OF USER GROUPS WITH DIFFERENT NUMBER OF INTERACTIONS

Table 2: Offline and online results on an Amazon streaming Table 3: Results across user groups for

platform. MovieLens20M.
| Model | Recall nDCG Group Model Recall nDCG
Offline | | @20 @50 @100 @20 @50 @100
Multi-VAE 0.592 0.288 0.386 Multi-VAE 0461 0.625 0.317
Multi-VAE+PIA 0.609 0.302 0.405 [5-10] Multi-VAE + PIA 0473 0.629 0.323
Uplift (%) 2.87 4.88 5.13 Uplift (%) 272 055 1.63
Multi-VAE 0421 0.595 0429
Model Playtime (sec) Click Rate (%) Click Rate (%) [11-50]  Multi-VAE + PIA  0.424 0.598 0.434
ode per user view per view per user view Uplift (%) 0.86 0.49 0.13
| Home Card Multi-VAE 0313 0478 0.497
51-100] Multi-VAE + PIA 0314 0479 0.502
) Control Group 27.7 4.4 53 [ "
Online | \1ujti-VAE+PIA 74.6 9.5 12.0 Uplift (%) 026 0.09 0.85
Uplift (%) 169 117 123 Multi-VAE 0418 0.386 0474
Movi d [100+] Multi-VAE + PIA  0.435 0.393  0.486
‘ ovie Car, Uplift (%) 409 072 257
Control Group 16.8 34 42
Multi-VAE+PIA 102.6 12.5 16.2
Uplift (%) 509 267 283

Our proposed framework provides both a well-structured latent space and the capacity to capture
global collaborative signals. As a result, we expect it to benefit users across groups, including
cold-start, neutral, and warm-start users. To assess this, we partition the test-set users based on their
number of interactions and evaluate the performance of our method within each group.

As shown in Table 3] our framework improves performance for all user groups. Notably, the cold-start
group (within 5 to 10 interactions) and the warm-start group (more than 100 interactions) benefit the
most. This can be attributed to the inherent challenges each group faces: cold-start users have limited
historical data, making recommendation difficult, while warm-start users —often found in the long
tail of the user distribution— typically lack sufficient collaborative overlap. Our framework addresses
both issues by enhancing access to global collaborative signals.

5 CONCLUSION

In this work, we analyzed how collaboration emerges in VAE-CF and showed that it is fundamentally
governed by latent proximity: SGD updates are shared within a data-dependent sharing radius, clean
inputs bias the model toward local collaboration, and global signals can be induced by either the
[—KL/prior pathway (near-uniform contraction of latent distances, with collapse risk if over-used) or
by input masking (stochastic neighborhood mixing with potential drift). Guided by these insights,
we introduced Personalized Item Alignment (PIA), a training-only regularizer that attaches learnable
item anchors and softly pulls masked encodings toward each user’s anchor centroid. PIA preserves
instance information, stabilizes the geometry under masking, and promotes semantically grounded
global mixing without adding test-time overhead. Empirically, PIA improves over vanilla VAE-CF
on standard benchmarks and in an A/B test on a large-scale streaming platform, with ablations across
user-activity strata and latent-space visualizations corroborating the theory.

Limitations. The benefits of capturing global collaborative signals still depend heavily on how
well the input masking is designed (most current research relies on Bernoulli masking). If the
masking is too noisy, even with alignment mechanisms, the model may struggle to learn meaningful
representations. Therefore, a promising direction for future research is to explore more effective
masking strategies that better support global collaboration.
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THE USE OF LARGE LANGUAGE MODELS

We used a large language model (ChatGPT) to help with editing this paper. It was only used for
simple tasks such as fixing typos, rephrasing sentences for clarity, and improving word choice. All
ideas, experiments, and analyses were done by the authors, and the use of LLMs does not affect the
reproducibility of our work.

We also used ChatGPT to assist with proof verification and theorem refinement. Our workflow
involved providing initial drafts to ChatGPT, which would then suggest improvements to the mathe-
matical presentation and formatting. We subsequently edited and refined these suggestions.

APPENDIX

This supplementary material provides a summary of common notations, detailed experimental settings,
and proofs for the theoretical results stated in the main paper. It is organized as follows:

¢ We summarize common notation in Section [Al

* We present the Related Work in Section [B]

* The pseudo-code of the algorithm is provided in Section [C|

* Detailed experimental settings and implementation details are described in Section [D]
* We present all proofs relevant to the theory developed in our paper in Section

A NOTATION SUMMARY

Table 4: Table of Notations

Symbol Description

Users and Items Input Data

U, 1 Number of users and number of items

Xy = [Xul, Xu2s - - s Xul) I-dimensional binary vector (the u-th row of X); x,,; = 1
implies that user u has a positive interaction with item ¢;
X4 = 0 indicates otherwise

b € {0,1}! a binary mask, i.e., b~Bern(p)!

Xp,=x0Ob user’s partial interaction history

Sx={Vi<I:x;=1} a set of positive items from user x

VAE Models

0,0 VAE encoder pg and decoder parameters ¢

qé, Do ¢-parameterized and f-parameterized neural networks

z Latent space of the VAE, e.g., (u,02%) = q4(xp), €~
N(O,]I), z=p+eo

e; € R? learnable item embedding in latent space (same dimension

asz)and E = {e; € R},

Theoretical Constants and Bounds

Ns(u) = {v: ||xy —%4]1 <0} input-space neighborhood
Il1 L1 norm (sum of absolute values)
wi(,.) 1-Wasserstein distance

B RELATED WORKS

Motivated by our theoretical analysis, both S-weighted KL regularization and input masking can
promote global collaboration, albeit with different trade-offs. Prior work has largely focused on

13
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controlling the KL term, primarily along two lines: (i) scheduling the S factor in the regularizer and
(i1) adopting more flexible priors.

(-scheduling. Liang et al. (Liang et al.| 2018)) introduce a 8-scaling factor to modulate the strength
of the regularization KL (g4 (z | x) || p(z)), while Long et al. (Long et al., 2019) propose gradually
increasing this weight over training to mitigate posterior collapse.

Flexible priors and architectures. Several works replace the standard normal prior with richer
alternatives to better match the data. Examples include VampPrior and its hierarchical variants (e.g.,
HVamp) (Tomczak & Welling, 2018 |Kim & Suh, 2019), as well as implicit or learned priors (Walker
et al.| 2022). RecVAE (Shenbin et al., 2020) combines a redesigned encoder—decoder, a composite
prior, input-dependent /3(x) rescaling, alternating training, and a non-denoising decoder. Other lines
incorporate user-dependent priors (Karamanolakis et al.,2018)) or impose an arbitrary target prior via
adversarial training (Zhang et al., 2018).

To our knowledge, ours is the first work to systematically analyze the collaboration mechanisms in
VAE-based CF, showing that both 3-weighted KL regularization and input masking can promote
global collaboration. In contrast to prior works, guided by our theoretical analysis, we propose a
regularization scheme that addresses the issues induced by input masking, mitigating the loss of local
collaboration while preserving its benefits for global alignment.

C ALGORITHM

The model is trained by optimizing the objective defined in Eq. (8). However, for the hyperparameter
Aalignment> Which controls the strength of the personalized item alignment regularization, instead of
consider it as fixed hyper-parameter, we gradually increase its value during training .Specifically,
we use the validation set to monitor whether the latent space is getting trapped in a local optimum
i.e., when the validation performance does not improve after p consecutive epochs. If such a case is
detected, we increase Aglignment by @ scaling factor Agcare, as detailed in Algorithmm

Algorithm 1 Personalized Item Alignment VAE

1: Initialize:
Models: encoder g4, sequence of invertible transformations f1, ..., fr, decoder py and item-
embeddings F.
Hyper-parameters: A\a, Ascale and p.
Variables: best_val_epoch := 0, best_val_ndcg := 0
for epoch in n_epochs do
/l Training
for iter in iterations do
Sample a mini-batch x
zo ~ qy(- | X) // using reparametrization trick
ZT = (fT 0...0 fl) (Zo)
Update g4, f1,...fr, pe and E based on Lpia-vae(X; 0, ¢, f1, ..., fr) in Equation (8)
9: end for
10:  //Validation
11:  Compute nDCG@K on validation set: epoch_ndcg
12:  if epoch_ndcg > best_val_ndcg then

13: best_val_ndcg := epoch_ndcg
14: best_val_epoch := epoch
15:  endif

16:  // Increase A4 if training is stuck in a local optimum, i.e., when the validation performance
does not improve after p consecutive epochs.
17:  if best_val_epoch < epoch + p then

18: >\A = Ascale X )\A
19:  end if
20: end for

21: Return: the optimal encoder q4 and decoder py at best_val_epoch.

14
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D EXPERIMENTAL SETTINGS

D.1 DATASET

We validate our analysis using three real-world recommendation datasets: MovieLens-ZO Netﬂi
and Million Song (MSD) El, where each record consists of a user-item pair along with a rating that
the user has given to the item. We follow the preprocessing procedure from MultVAE (Liang et al.,
2018)). For MovieLens-20M and Netflix, we retain users who have rated at least five movies and treat
ratings of four or higher as positive interactions. For MSD, we keep only users with at least 20 songs
in their listening history and songs that have been listened to by at least 200 users.

The user data is split into training, validation, and test sets as presented in Table 3]

Table 5: Dataset statistics

ML-20M  Netflix MSD

# of users 136,677 463,435 571,355
# of items 20,108 17,769 41,140
# of interactions 10.0M 56.9M 33.6M
% of interactions 0.36% 0.69% 0.14%

# of held-out users 10,000 40,000 50,000

For every user in the training set, we utilize all interaction history, whereas for users in the validation
or test set, a fraction of the history (80%) is used to predict the remaining interaction.

D.2 IMPLEMENTATION DETAILS

Hyperparameters. We use a batch size of 500 and train the model for 200 epochs using the Adam
optimizer with a learning rate of 1 x 10~ across all experiments. The specific hyperparameters A,
p, and Agye are selected based on validation performance. We set p = 5, Agcale = 2 and Ay = 8
consistently across all experiments, as the model is not particularly sensitive to these values.

Implementation details and instructions for reproducing all experimental results and visualizations
are provided in the accompanying source code.

D.3 BASELINES
We have selected following models as baselines:

* Matrix factorization (MF); we consider MF trained with ALS with uniform weights (Hu
et al.,|2008)), which is a simple and computationally efficient baseline, and also weighted
matrix factorization (WMF) (Hu et al., 2008));

* Regularization based on item-item interactions; here we selected GRALS (Rao et al., 2015)
that employs graph regularization;

e Linear models; we have chosen full-rank models EASE |Steck| (2019) and a low-rank model
PLRec (Sedhain et al., 2016));

e Nonlinear autoencoders; here we consider the shallow autoencoder CDAE (Wu et al., 2016)),
variational autoencoder MultVAE (Liang et al., 2018)), and its successors: RaCT (Lobel
et al.,[2019) and RecVAE (Shenbin et al.| [2020).

E THEORETICAL DEVELOPMENT

In this Section, we present all proofs relevant to theory developed in our paper.

Zhttps://grouplens.org/datasets/movielens/20m/
*https://www.kaggle.com/netflix-inc/netflix-prize-data
‘nttp://millionsongdataset.com
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E.1 PROOF OF THEOREM [2.3]

Theorem E.1 (Latent-1; Sharing Radius). Assume decoder gradient is Lipschitz in z such that for
any given z ~ qy(- | Xy,), uniformly in x and for all z, (x,2) — Voly(x,2")|| < Lo, ||z — 2|

Let

ﬁu(ﬁ) = Eqd)(.‘xu)[@g(xu, Z)] s gu(ﬁ) = Vgﬁu(a),
and define the content-mismatch term

Ay (u,v) := ||Eq, (1x,) [Vg&g(xu, z) — Voly(xy, z)] H

For one SGD step on user v with step size > 0, setting 0 = 0 — 1 g,,(0), we have:

La(0")=La(0) < ~1ll9u(®)P+0 190 (Lo Walas(- | %0), a6 | %)) +Aul,0) ) +O0P).
In particular, the step on user v strictly decreases L, to first order whenever

l9u(6)] = Ao(u,0)

Wl(Q(b(' ‘ Xu)a(kb(' | Xv)) < Tshare(®, v;0) =

Ly
Proof. For shorthand, write q,, := g4 (- | xy) and g, := g4 (- | Xy).
A first-order Taylor expansion gives
L0 =ng0) = Lu(0) — 1(9u(6),95(0)) + O(n*). (11
Then, we decompose the inner product:
~(9us90) = =N19ul1* = (gus 90 = 9u) < ~Ngull® + llgull llg0 — gull-

Next, we bound

Eqv V@f@ (XU, Z) — Equ Vgﬁg (Xu, Z)

lgw = gull = |

Eq, [Vo&)(xu, z) — Voly(Xy, z)] H + ’

E,, Vols(Xa,2) — By, Volo(Xu, 2) H .

=Ag(u,v) < Lo. W1(qv,qu)

For the last inequality, let ¢¥(z) := Vgly(x,,z). By assumption decoder gradient is Lipschitz, v is
Lyg.-Lipschitz in z; for any coupling 7 of (gu, ¢ ),

0.1 - Bai]| = | [ 06a) - v anta.z)

Combining the bounds and substituting into Eq. (TI) yields the stated result, and the strict-decrease
condition follows by inspecting the coefficient of 7. O

< Lo. [ 22| dr < Lo Wilau: ).

E.2 PROOF OF THEOREM [2.3]
Before proving the theorem, we recall some inequalities:

¢ The Kantorovich-Rubinstein dual form (Rubinsteinl [1970):

WiGer) = sw [ fdu—v (12)
f: X—>R
Lip(f)<1

* The Donsker-Varadhan variational formula (Donsker & Varadhan, 1975): for any measurable
g with [ e9dp < oo,

KL(v||p) > /ng - log/eg dp. (13)

* The Bobkov-Gotze/Talagrand T4 (C') inequality (Bobkov & Gotzel [1999) is known to be
equivalent to the following sub-Gaussian moment generating function (mgf) bound for
Lipschitz functions: p satisfies the 77 (C') inequality with constant C' > 0, then for every
1-Lipschitz f and every A € R,

log / exp(A(f —E,f))dp < ——. (14)
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Lemma E.2. Assume the encoder is L4-Lipschitz, i.e., ||qp(Xu) — ¢4 (X0)|| < Lg||xy — Xo|| for all
Xy, Xy € {07 1}I then Wl(Q¢(' | Xu)7Q¢(' | Xv) < L¢ Hxv - Xqufor all Xy, Xy € {O, 1}1-

Proof. First, since gq4(z|x;) = N (u¢(xi),diag(03)(xi))>, the Wasserstein-2 distance
Wa(qe(2]%x1), ¢4 (z|x2)) has the following closed form:

Wa(go (2lxu), 4o (2[%0))* = llio (3%u) — 1o (x0)II” + o (xu) — 0 (30) |7, (15)

which, combined with the definition Q4 (z) = [H ig g] yields

1Qo (xu) — Qu(x0)[1* = Wal(ay(2lx1), g4 (2[x2))*. (16)

Since @ is Lg-Lipschitz continuous, we have ||Qg(xy) — Q¢ (X0)|| < Lg||xu — x|, and
Wa(ae(z | Xu), qs(2 | x0)) < Lollxu — %o - (a7)
Since Wy < Wo, we have W1 (qy(z | Xu),q4(2 | Xu)) < Lg%y — X0 O
Theorem E.3. Assume po(x | z) is a regular exponential family with sufficient statistics T (x),
natural parameter 1)(z) and log-partition A. Let o(z) = m on{q1 + g2 > 0}. Then

2
min { D Eauten [~ logpo(xi | 2)] + 6% Ki{as(z | x:) | p(z))} (18)
i=1

= Ct [ asta | x0) + stz | %) A xei(2) da+ 53 KLaa(a | x0) | 5(2),

i=1
where A* is the convex conjugate of A, C is independent of n(+), and

Aas(x1,x050) = a AN(T(x1)) + (1—a) A(T(x2)) — A*(aT(x1) + (1—a)T(x2)) >0,
with equality iff either (¢4(- | X1), go(+ | X2) = 0 almost everywhere or T'(x1) = T'(x2).
Additionally, assume the prior p satisfies the Bobkov—Gétze/Talagrand T (C) inequality (Bobkov &
Gotze, |1999) with constant C' > 0 (e.g., Normal prior p = N'(0,0%I)):

Wi(ao(z | x1), 4s(2 | %2)) < \/20KL(gs(z | 1) | p(2)) + /20 KLfge(z | %) | p(2)). (19)

Proof of Eq. (I8). We write the conditional likelihood in its exponential-family form

po(x | 2) = h(x) exp((T(x),n(2)) — A(n(2))),
so that
—logpy(xi | z) = A(n(2)) — (T(x:),n(2)) — log h(x)-
Let ¢;(z) := qy(z | x;),% = 1,2, and define
0l Q(2)
Qz) = q1(z) + @2(2),  afz) =1 Qz)’
arbitrary in [0,1], Q(z) =

V

and the a-mixture of sufficient statistics
To(z) = a(z) T(x1) + (1 — a(z)) T(x2).
(Any choice of a on {@Q = 0} is immaterial since all integrands below are multiplied by Q.)

Summing the two reconstruction terms and using [ ¢; = 1,
2
ZE% ~togpo(xi | )] = [ (Z @) Al@) b~ [ (Tx0)aa(2) + T(2)aa(a), i) s — 3 log i)

~ [ @) (Aw(@) - (Tal@).n(2))) da - S loghix).

i=1
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Recall the convex conjugate A* and Fenchel-Young inequality (Fenchell, [1949; [Young [1912; [Rock/{
afellar,|1970):

A*(y) = Sl;p{<y,77>ﬂ4(n)}, A(n) —(y,n) > —A"(y),

with equality when y € OA(n); in the regular (Legendre) case (Rockafellar,|1970), A is essentially
smooth and strictly convex, so y = V. A(n) is the unique equality condition and A* is strictly convex
on its (convex) effective domain.

Because the integrand is separable in z and (z) > 0, minimizing the integral over all measurable
7(-) reduces to pointwise minimization:

i [ Q@) - Tl () dz = [ Q(z) min {A(w) - Ta(z).1)} da
- [ Q@ 4 (Ta(2) da
Hence
:
%1 E[ log po(x; | 2)] = /Q dz—Zloghxl) (20)

=1

(When 7' (z) lies in the interior of dom(A*), the minimizer is n*(z) = VA*(T'4(z)); equivalently,
VA" (2)) = Ta(2).)

Add and subtract the quantity

[ @@ (0t A(T6x) + (1 - al@) A(T(x)) ) da = > A(Tx0) [ aila) e

and collect the terms independent of 7(-) into the constant

- Z (log h(x;) + A*(T(x;))).

i=1
Using Eq. (20), we obtain
2

min » E, [ —logps(x; | z)] =C+ /Q a(z) AX(T(x1)) + (1 — a(z)) A(T(x2)) — A*(Ta(z))> dz

n()

_ C+/Q a-(%1, %2; (2)) dz, @1
where

Aps(x1,x250) = a AN(T(x1)) + (1 — a) A(T(x2)) — A*(aT(x1) + (1 — a)T(x2)).

By convexity of A*, A 4« (X1, X2; ) > 0 for all € [0, 1] (Jensen gap). In the regular (Legendre)
case, A* is strictly convex on its effective domain, so A 4« (X1, X2; ) = 0 iff either

* T'(x1) = T(x2), in which case the three arguments of A* coincide, or

« a € {0,1},ie. Q(z)a(z) (1 — a(z)) = 0 for Q-a.e. z. Equivalently, the posteriors have
disjoint supports w.r.t. the measure ()(z) dz (on each point with () > 0 exactly one of q1, g2
is zero).

(If A* were affine on the segment [T'(x1), T'(x2)], equality could also occur with 0 < « < 1, but
strict convexity rules this out unless 7'(x;) = T'(x2).)

Finally, the regularizer Z?Zl KI{gy(z | x;) || p(2)) does not depend on 7(-), hence it carries
through unchanged. Combining with Eq. yields Eq. (I8). O
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Proof of Eq. (I9). By the triangle inequality for W7,
Wi(ge(- | x1), qs(- | x2)) < Wa(gs(- | x1),p) + Wa(gs(- | x2),p). (22)
Thus it suffices to show that for any probability v with KL(v||p) < oo,

Wi(v,p) < +/2CKL(v||p). (23)
Fix a 1-Lipschitz f and A > 0. Apply Eq. with g = )\(f — IEpf) to obtain
KL@p) = A [ (7= Epf)dv ~ log [ esp(A(J ~ E, ) dp.
Using the mgf bound Eq. (I4) gives

1 CA
[t < SKLOID) + S

Optimizing the right-hand side over A > 0 yields the minimizer A\* = /2 KL(v||p)/C, and the

minimum value
1 CI\
ot KL(v|p) + 5 = V2C KL(v||p).
Therefore, for every 1-Lipschitz f,

/ Jd(w—p) < VIOKLW]p).

Taking the supremum over all 1-Lipschitz f and invoking Eq. gives exactly Eq. (23).

Applying Eq. to v = gy (- | x1) and to v = gy (- | x2) and combining with the triangle inequality
in Eq. (22) yields Eq. (19). O

E.3 PROOF OF THEOREM [2.6]

Theorem E.4 (Masked input: contraction and expansion). Let xX1,X2 € {0,1} be binary inputs.
Let by, , by, ~ Bern(p)! be independent masks and set x|, = x1 ® by, and x}, = X5 © by,. Write
h = ||x1 — X2l||1 and s = (x1,X2) (so h is the number of disagreeing coordinates and s the count of

shared 1’s). For any § > 0, define Ts = [6| — 1 and Us = [0]. Let D' := ||x} — x5]|1. Then:

Contraction.
‘ min{h,Ts} I
Pr[D' <3 > (P®+(1-p)?)" > (k> pF(1—p)r. (24)
k=0
Expansion.
Pr[D' >4 > Y (Z) (2p(1 = p))" (1 = 2p(1 = p))° " (25)

k=Us

Proof. Partition coordinates into
H:={j: z; #z25}, |H|[=h, Si={j: xy=mx; =1}, |[S]=s.
For j € H, exactly one of (x1;,2;) equals 1. After masking, the post-mask difference at j equals 1
iff the unique 1 is kept, with probability p. Hence
Y = Z 1{post-mask difference at j = 1} ~ Binomial(h, p).
JjEH
For j € S, both entries are 1. The post-mask difference equals |by; — ba;|, which is 1 iff the masks
disagree; this happens with probability Pr(by; # be;) = p(1 — p) + (1 — p)p = 2p(1 — p). Thus
Z = Z |b1j — baj| ~ Binomial(s, 2p(1 — p)).
jes
Independence of masks across coordinates implies Y | Z, and the masked distance decomposes as
D' =[x~ x|y = Y+ 2.
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Contraction. Because D’ is integer-valued, D’ < § is equivalent to D’ < Ty. Consider the event
E={Z=0}nN{Y <Ts}.0OnE wehave D' =Y + Z < T, hence

Pr[D' <] > Pr[€] =Pr[Z = 0] Pr[Y < Tj)
by independence of Y and Z. Now Pr[Z = 0] = (Pr[b1; = by;])* = (p* + (1 — p)?)®, and

min{h,T5s}

PrlY <Tp]= Y. (Z) PE(1— p)h,

k=0
Multiplying the two factors yields Eq. (24).

Expansion. Using D' =Y + Z withY L Z and U; = [4§],
h
Pr[D' > 6] =Pr[Y + Z > Us| = »_ Pr[Y =m] Pr[Z > Us — m]
m=0

S

mzh_:o (:L)pm(l -t b (;) (2p(1 = p))* (1 =20(1 = p))* ",

k=max{Us—m,0}

Finally, since D' =Y + Z > Z,

Pr[D' >8] > Pr[Z>Us]= Y (Z) (21— )" (1 =20(1 = )",
k=Us

which gives Eq. (25). This completes the proof. O
E.4 PROOF OF PROPOSITION[3.1]

Proposition E.5. Assume the encoder posterior is diagonal-Gaussian, q¢(z | Xp) =
Mg (x1), diag(o’i(xh))). Let the item centroid be ey := ﬁ > ics, ©i then

_ 2
LA(xn, %0, E) = ||po(xn) —ex||” + tr3p(xs) + const(x, E), (26)
—_—— ———
align mean to item centroid variance shrinkage

where ¥(xy,) = diag(o(x)) and const(x, E) = @ Pies, leill3 — llexll3.

Proof. Write qy(z | x5) = N(pg(xn), Sg(xp)) with Ey(x,) = diag(o‘i(xh)), we have:

Efllz - eil5] = [|ro(x) = eil|; + tr o).
Averaging over ¢ € Sx yields

1
,CA(X}“X;gf),E) = m Z H;L¢(Xh) — e1H§ + tr E¢(Xh).

i€S,
Given the item centroid be &, := ﬁ Y ics, €i» then, we obtain
1 2 2 1 _
LS o) — el = s oen) — el + s 3 Tl — e
[Sx| i€ Sx 15 €5

Combining the last two displays gives

_ 12 _
L0056 ) = o) — &2t S0 + (g 32 lleal = foxl3).
1€Sx

const(x,E)

which is exactly Eq. (26). O
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E.5 PROOF OF PROPOSITION

Proposition E.6. Fix x and a neighborhood in which the mask-conditioned denoising ELBO objective,
viewed as a function of the encoder mean p € R%, admits a quadratic approximation with mask-
independent curvature

H = ml, IH|2 <L (0<m<L<o0).
Augmenting the objective by )\AH% (xp) — étz yields an effective Hessian Heyy = H + 2Aa1
for the p-subproblem. Let p(%) (xy,) be the (local) minimizer without alignment and pu™ (xy,) the

minimizer with alignment. Define the masking variance Varp [v] := Ep[(v — Epv)(v — Epv) ' | and
set
L
T = m S (0, 1)
Then
[ Var, [ )] ||, < 72 || Vary [ (xa)]|, 27)
tr Vary, [M(A) (xp)] < 72 tr Vary [u(o)(xh)], (28)
Ep [ 6™ (xn) —&xl3] < 7Eb[ [0 (xn) — &xl3 - (29)

Moreover, if Vary [[,L(O)] commutes with H (e.g., they are simultaneously diagonalizable), then the
Lowner-order contraction

Vary [M(A) (xh)] < 72 Vary, [u(o) (xh)}
holds.

Proof. Fix x and a mask b, and let F, (1) denote the (unregularized) mask-conditioned denoising
objective as a function of the encoder mean p € R? (all other quantities x, the masked input xy,
decoder parameters, are held fixed).

Choose a reference point & in a neighborhood where Fj, admits a quadratic approximation with
mask-independent curvature matrix H, and assume

H > mlI, |Hl2 < L, 0<m<L<oo.
Equivalently, we approximate the Hessian uniformly across masks by V2Fy,(f1) ~ H.

Quadratic surrogate. Define the quadratic model of F3, around g1 by
Jo(p) = Fo(p) + VFs () (n— ) + 5 (n— ) H (b — ). (30)
Let
gb = VI (ft), ap =1 — H 'gp.
Completing the square yields an equivalent form
Jo(p) =co+ 3 (p—ap) " H (b —ap), (31)
where the (mask-dependent) constant
b= Fp(i) — Sen H 'gb
is independent of p.
In particular, the unique minimizer of Jy, is ap:
argmin Jp () = ap.
®
If Fy, is exactly quadratic with curvature H in this neighborhood, then u(o) (x1,) = ap; otherwise,
ap, is the minimizer of the local quadratic approximation to Fy,.

Adding the alignment penalty Aa || it — €x||2 gives the first-order condition
(H + 2)\AI) n = Hayp + 2 pex.

Define I
M= (H+2:MI)"'H - 1).
(H+20uD) 7 H, 7= s € (0)
Then the aligned minimizer is the affine shrinkage of ap, toward €y:
p® = May + (I — M)é,. (32)
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Spectral bounds on M. Diagonalize H = QAQ " with A = diag(\;), m < \; < L. Then

= 1 (7> T
M leag)\+2)\ Q.
Let o := A;/(Ai +2Aa) € (0, 1). It follows that
)\max(H) 2 2 2
<M <T My = g=—tmat) < g M|y = | M2 < 2,
0XM =L M= oy = T < AR = M <75 G

and, eigenwise, af < 7wy, hence
M? < 7M < 71. (34)
Variance contraction (operator norm). Since ey is mask—independent, Eq. gives
Vary, [p™] = M Vary, [ap] M. (35)
Taking spectral norms and using submultiplicativity,
[ Varu ], < 10013 [ Varfas], < 72 Varpfas]l,

which is Eq. (27) upon noting Vary,[ap,] = Vary [u(?)].

Variance contraction (trace). From Eq. (33),
tr Vary, [/,L(A)] = tr(Varb [ap] MQ) < || M?||5 tr Varp[ap] < 72 tr Varp[ap),

where the inequality uses M? =< ||M?||2] and the fact that for A, B = 0, tr(AB) < ||B||2 tr(A).
This yields Eq. (28).

Lowner-order contraction under commutation (Higham & Lin},2013). If Vary,[a},] commutes
with H, then it commutes with M. In the common eigenbasis, write Varp|ap] = Q diag(v;) Q"
with v; > 0. Then

M Varp[ap)| M = Qdiag(a?vi) Q" < Qdiag(TQUi) Q" =72 Varp [ab],

proving the Lowner-order bound.

Mean—drift contraction. From Eq. (32),
pA — e, = M(ap — &),
hence
W) —&y|5 = (ap —&x) "M (ap — &)
< (ap —ex)' (7I)(ap —ex)  (by Eq. (34))

=7 [lan — &x|3-

[l

Taking E}, gives
Ep[|n™ —exl3] < 7Eb[lln® —exli3],
which is Eq. (29).

22



	Introduction
	 Collaboration Mechanism in VAE-based CF
	VAE-based Collaborative Filtering
	Theoretical Analysis
	Correspondence between Geometry of the Input and Latent Space

	Proposed Method
	From Latent Geometry to an Information Lens: –KL vs. Masking
	Personalized Item Alignment (PIA)

	Experiments
	Effectiveness of Personalized Item Alignment
	Latent Space Visualization
	Performance of user groups with different number of interactions

	Conclusion
	Notation Summary
	Related Works
	Algorithm
	Experimental Settings
	Dataset
	Implementation Details
	Baselines

	Theoretical development
	Proof of Theorem 2.3
	Proof of Theorem 2.5
	Proof of Theorem 2.6
	proof of Proposition 3.1
	proof of Proposition 3.2


