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ABSTRACT

Variational Autoencoders (VAEs) are a powerful alternative to matrix factorization
for recommendation. A common technique in VAE-based collaborative filtering
(CF) consists in applying binary input masking to user interaction vectors, which
improves performance but remains underexplored theoretically. In this work, we
analyze how collaboration arises in VAE-based CF and show it is governed by
latent proximity: we derive a latent sharing radius that informs when an SGD update
on one user strictly reduces the loss on another user, with influence decaying as
the latent Wasserstein distance increases. We further study the induced geometry:
with clean inputs, VAE-based CF primarily exploits local collaboration between
input-similar users and under-utilizes global collaboration between far-but-related
users. We compare two mechanisms that encourage global mixing and characterize
their trade-offs: ① β-KL regularization directly tightens the information bottleneck,
promoting posterior overlap but risking representational collapse if too large; ②
input masking induces stochastic geometric contractions and expansions, which
can bring distant users onto the same latent neighborhood but also introduce
neighborhood drift. To preserve user identity while enabling global consistency,
we propose an anchor regularizer that aligns user posteriors with item embeddings,
stabilizing users under masking and facilitating signal sharing across related items.
Our analyses are validated on the Netflix, MovieLens-20M, and Million Song
datasets. We also successfully deployed our proposed algorithm on an Amazon
streaming platform following a successful online experiment.

1 INTRODUCTION

Recommender systems are essential for delivering personalized user experiences. Having benefited
from three decades of research (Resnick et al., 1994), Collaborative filtering (CF) remains an essential
approach in today’s recommender systems (Zhu et al., 2025). CF predictive process consists in
predicting user preferences by identifying and leveraging similarity patterns between users and items
(Su & Khoshgoftaar, 2009; Ricci et al., 2010), which naturally aligns with the framework of latent
variable models (LVMs) (Bishop & Nasrabadi, 2006), where latent representations are used to capture
the shared structure of user-item interactions. Due to their simplicity and effectiveness, LVMs have
historically played a central role in CF research. However, these models are inherently linear, which
limits their capacity to model the complex and non-linear nature of real-world user behavior (Paterek,
2007; Mnih & Salakhutdinov, 2007). To overcome these limitations, researchers have increasingly
explored the integration of neural networks (NNs) into CF frameworks, enabling more expressive
modeling and yielding notable improvements in recommendation accuracy (He et al., 2017; Wu et al.,
2016; Liang et al., 2018; Truong et al., 2021; Li et al., 2021). A particularly successful line of work
is VAE-based collaborative filtering (Liang et al., 2018), which extends the variational autoencoder
(VAE) framework (Kingma & Welling, 2013; Rezende et al., 2014) to collaborative filtering tasks.
Unlike traditional latent factor models (Hu et al., 2008; Paterek, 2007; Mnih & Salakhutdinov,

1



Published as a conference paper at ICLR 2026

2007), which require learning a separate latent vector for each user, VAE-based models offer a user-
independent parameterization, where the number of trainable parameters remains fixed regardless of
the number of users Lobel et al. (2019), leading to remarkable scalability. Additionally, empirically,
VAE-based CF models consistently outperform many existing LVM-based alternatives (Liang et al.,
2018; Kim & Suh, 2019; Walker et al., 2022; Ma et al., 2019; Guo et al., 2022; Wang et al., 2023;
2022; Guo et al., 2024; Husain & Monteil, 2024; Li et al., 2021; Tran & Lauw, 2025).

A key driver of the strong performance of VAE-based CF is the use of a binary mask that corrupts the
user interaction vector, producing a partial history from which the model is trained to reconstruct the
full interaction vector (Liang et al., 2018). This masking strategy has been shown to significantly
enhance recommendation accuracy (see Section 4.2 and Figure 2, comparing settings with and
without masking). Although input noise has become a standard component in VAE-based CF models
due to its empirical effectiveness, its underlying mechanisms and potential side effects remain largely
unexplored. Existing works treat masking as a simple performance-enhancing heuristic, without
thoroughly examining how it influences the learning process or affects the latent representations. Our
work aims to fill this gap with a comprehensive study the effect of input noise in VAE-based CF. The
contributions of this paper are summarized as follows:

• We conduct an in-depth analysis of the collaboration mechanism in VAE-based collaborative
filtering models and reveal that ① collaboration in VAE-CF is fundamentally governed by latent
proximity; ② VAE-CF with clean inputs primarily leverages local collaboration and fails to
utilize global collaborative signals when input distances are large; ③ Both β-KL regularization
and input masking can encourage global collaborative signals, but they operate through distinct
mechanisms with different trade-offs i.e., β-KL regularization promotes posterior mixing by
directly constraining the information bottleneck, but suffers the risk of representational collapse
when applied too aggressively while Input masking achieves mixing through geometric and
stochastic means such that it can bring distant users into the same latent neighborhood, and latent
space expansions can introduce neighborhood drift effects.

• Guided by our theoretical analysis, we propose a regularization scheme that addresses the issues
induced by input masking, mitigating the loss of local collaboration while preserving its benefits
for global alignment. Specifically, we model items as learnable anchors in latent space, and
during training, the masked encoder outputs are pulled toward the user’s anchor centroid. This
acts as a training-only auxiliary condition that helps stabilize user representations under input
corruption without tightening the information bottleneck, promoting consistent, semantically
grounded latent proximity. To our knowledge, ours is the first work to systematically analyze the
collaboration mechanisms in VAE-based CF, showing that both β-KL regularization and input
masking can promote global collaboration. In contrast to prior works that focus on addressing
the problems of β-KL regularization (ref. Appendix B for a detailed discussion), we address the
issues induced by input masking.

• Our experimental results demonstrate the strong benefits of the proposed PIA approach compared
to vanilla VAE-CF on benchmark datasets and especially the success on the A/B testing at
Amazon streaming platform. We conducted ablation studies across user groups segmented by
interaction count to validate the effectiveness of global collaborative signals. Additionally, we
provide visualizations of the learned latent space that support our theoretical analysis.

2 COLLABORATION MECHANISM IN VAE-BASED CF

Notations. We index users by u ∈ {1, 2, . . . , U} and items by i ∈ {1, 2, . . . , I}, where U, I are the
number of users and items, respectively. X ∈ {0, 1}U×I represents the user-item interaction matrix
(e.g., click, watch, check-in, etc.) and xu = [xu1,xu2, . . . ,xuI ] is an I-dimensional binary vector
(the u-th row of X) whereby xui = 1 implies that user u has interacted with item i and xui = 0
indicates otherwise. Note that xui = 0 does not necessarily mean user u dislikes item i; the item may
never be shown to the user. For simplicity, we use x to denote a general user interaction vector and
retain xu when specifically referring to user u. Additionally, we measure distances between input
vectors with the ℓ1 norm ∥ · ∥1 (Hamming) and between latent distributions with the 1-Wasserstein
distance W1(·, ·). We refer to the Appendix Table A for the notation summary.
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2.1 VAE-BASED COLLABORATIVE FILTERING

Given a user’s interaction history x = [x1,x2, . . . ,xI ]
⊤ ∈ {0, 1}I , the goal is to predict the full

interaction behavior of this user with all remaining items. To simulate this process during training
and to avoid overfitting to non-informative patterns (Steck, 2020), dropout-style random masking is
commonly used in VAE-based CF (Wu et al., 2016; Liang et al., 2018; Lobel et al., 2019; Shenbin
et al., 2020; Vančura & Kordı́k, 2021) as a form of stochastic input corruption. Concretely, we
introduce a random binary mask b ∈ {0, 1}I is , with the entry 1 as un-masked, and 0 as masked.
Thus, xh = x⊙ b is the user’s partial interaction history, the goal is to recover the full x given xh.

Training Objective. The parameters ϕ, θ of the VAE-based collaborative filtering model are learnt
by minimizing the negative β-regularized Evidence Lower Bound (ELBO):

LVAE(x; θ, ϕ) = −Eqϕ(z|xh)

[
log pθ(x | z)

]
+ βKL

(
qϕ(z | xh) ∥ p(z)

)
, (1)

with standard reparameterization

b∼Bernoulli(ρ)I , xh = x⊙ b, (µ,σ2) = qϕ(xh), ϵ∼N (0, I), z = µ+ ϵσ (2)

where ρ is the hyperparameter of a Bernoulli distribution, qϕ is a ϕ-parameterized neural network,
which outputs the mean µ and variance σ2 of the Gaussian distribution.

2.2 COLLABORATIVE LEARNING VIA VAE-CF

Figure 1: Local and global col-
laborative signal example.

Before presenting our theoretical analysis, we briefly recall the goal
of collaborative filtering (CF): to predict a user’s preferences from
other users’ interaction patterns, without relying on user/item side
information. Figure 1 highlights two common forms of cross-user
information in CF.

(1) Neighborhood transfer. Users x1 and x4 are close in the input
space (e.g., under ℓ1), so each serves as a natural reference for the
other: similar interaction histories should lead to similar predictions.

(2) Far-but-related transfer. Users can be far in ℓ1 yet still mean-
ingfully related through shared positives. Let Sxu = {i : xui = 1}
denote the set of positive items for user u. If Sx2 ⊂ Sx1 , then
x1 is a more active user with similar interests and can inform recommendations for x2 (e.g., items
i1, i2, i3 ∈ Sx1

\Sx2
), even though x1 and x2 need not be close in ℓ1. We refer to this “far-but-related”

influence as Global collaborative signal.

To formalize these notions, for δ > 0 we define the input-space neighborhood of user u as

Nδ(u) = { v : ∥xu − xv∥1 ≤ δ },
and the (nonzero) overlap indicator as

ov(xu,xv) = 1{ ∣∣Sxu∩Sxv

∣∣>0
}.

Definition 2.1 (Local collaborative signal). The prediction for user u depends on other users within
the neighborhood Nδ(u).
Definition 2.2 (Global collaborative signal). A model exhibits a global collaborative signal at scale
δ if there exist users u and v such that ∥xu − xv∥1 > δ and ov(xu,xv) = 1, and their predictions
strictly influence each other.

Cross-user influence via gradient transfer. In VAE-CF, cross-user information is exchanged
primarily during training because the same parameters are updated using many different users. We
therefore operationalize “influence” as training-time transfer: user v influences user u if an SGD step
computed from v decreases u’s expected loss to first order. The following theorem formalizes this
notion and shows that such transfer is governed by proximity of the users’ posteriors in latent space.
Theorem 2.3 (Latent-W1 sharing radius). Assume decoder gradient is Lipschitz in z such that for
any given z ∼ qϕ(· | xu), uniformly in x and ∀z′, ∥∇θℓθ(x, z)−∇θℓθ(x, z

′)∥ ≤ Lθz ∥z− z′∥. Let

qu := qϕ(· | xu), qv := qϕ(· | xv), Lu(θ) := Equ [ℓθ(xu, z)] , gu(θ) := ∇θLu(θ).
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Define the content-mismatch term

∆x(u, v) :=
∥∥∥Eqv

[
∇θℓθ(xu, z)−∇θℓθ(xv, z)

]∥∥∥, Du,v := LθzW1(qu, qv) + ∆x(u, v).

For one SGD step on user v, θ+ = θ − η gv(θ), the first-order change satisfies

Lu(θ
+)− Lu(θ) ≤ −η ∥gu(θ)∥

(
∥gu(θ)∥ −Du,v

)
+ O(η2).

Consequently, the step on v strictly decreases Lu to first order whenever Du,v < ∥gu(θ)∥, i.e.

W1(qu, qv) < rshare(u, v; θ) :=
[∥gu(θ)∥ −∆x(u, v)]+

Lθz
.

Proof. See Appendix E.1.

Result-1 (Collaboration is governed by latent proximity). Theorem 2.3 characterizes when
an SGD step on user v is beneficial for user u. The key quantity is the transfer penalty Du,v =
LθzW1(qu, qv) + ∆x(u, v), which has two components: (i) a latent mismatch term W1(qu, qv)
measuring how close the users’ posteriors are in latent space, and (ii) a content mismatch term
∆x(u, v) capturing how different the decoder gradients are even when evaluated at the same latent
code. To first order, a step on v decreases Lu whenever Du,v < ∥gu(θ)∥. Therefore, gradient sharing
is effectively restricted to a latent neighborhood around u, and the strength of collaboration decays
as users become latently farther apart.

Consequently, Theorem 2.3 reduces the distinction between local and global collaborative signals
(Definitions 2.1–2.2) to a geometric question: which user pairs become latently close enough to fall
within the sharing radius. Local signals correspond to input-close pairs that remain latently close,
whereas global signals require certain input-distant but overlap-related pairs to be mapped close in
latent space. In the next section, we examine how the geometry of the input space (including masking)
shapes the geometry of the latent space in VAE-based collaborative filtering.

2.3 IMPACT OF THE GEOMETRY OF THE INPUT AND LATENT SPACES

We summarize the key theoretical results and present the discussion subsequently.

Lemma 2.4. Assume the encoder isLϕ-Lipschitz, i.e., ∥qϕ(xu)−qϕ(xv)∥ ≤ Lϕ∥xu−xv∥ ∀xu,xv ∈
{0, 1}I then W1

(
qϕ(· | xu), qϕ(· | xv)

)
≤ Lϕ ∥xv − xu∥1, ∀xu,xv ∈ {0, 1}I .

Theorem 2.5. Assume pθ(x | z) is a regular exponential family with sufficient statistics T (x),
natural parameter η(z), and log-partition A. Let qu = qϕ(· | xu) and qv = qϕ(· | xv), and define
α(z) = qu(z)

qu(z)+qv(z)
. Then the β-regularized pairwise objective satisfies

min
η(·)

{ ∑
i∈{u,v}

Eqi

[
− log pθ(xi | z)

]
+ β

∑
i∈{u,v}

KL
(
qϕ(z | xi) ∥ p(z)

)}
(3)

= C +

∫ (
qu(z) + qv(z)

)
∆A∗

(
xu,xv;α(z)

)
dz+ β

∑
i∈{u,v}

KL
(
qϕ(z | xi) ∥ p(z)

)
,

where C is a constant, A∗ is the convex conjugate of A, and for α ∈ [0, 1]

∆A∗
(
xu,xv;α

)
= αA∗(T (xu)

)
+ (1− α)A∗(T (xv)

)
−A∗(αT (xu) + (1− α)T (xv)

)
≥ 0,

with equality iff T (xu) = T (xv).

Additionally, assume the prior p satisfies the Bobkov–Götze/Talagrand T1(C) inequality (Bobkov &
Götze, 1999) with a constant C > 0 (e.g., Normal prior p = N (0, σ2I)):

W1

(
qu, qv

)
≤

(√
2C KL(qu∥p) +

√
2C KL(qv∥p)

)
. (4)

Proof. See Appendix E.2.
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Result-2 (Clean inputs favor local over global collaboration).

• Local neighborhoods are preserved. Lemma 2.4 implies that ℓ1-near users induce nearby posteriors
under W1 (up to the encoder Lipschitz constant), so input-space locality naturally maps to latent-
space locality, preserving local collaboration.

• Reconstruction discourages overlap for mismatched users. Theorem 2.5 shows that when T (xu) ̸=
T (xv), overlapping posteriors incur a strictly positive “compromise gap”

∫
(qu + qv)∆A∗ dz

in Eq. (3). This pushes the model to separate qu and qv, making it difficult for input-distant,
content-mismatched users to become latent-close, discouraging global collaboration.

• β-KL encourages posterior overlap. Increasing β reduces the optimal KL terms, tightening the
upper bound ofW1

(
qu, qv

)
, thereby increasing latent overlap i.e., potentially bringing input-distant

users closer in latent space and enabling global collaboration. However, overly strong KL pressure
risks posterior collapse and weakens recommendation quality; in practice β is typically kept small
in ranking-focused CF.

Putting these pieces together, with clean (unmasked) inputs and moderate β, similar users remain
latent-close while content-mismatched users are pushed apart, yielding a clustered latent geometry
that mirror input similarity (Setting-1, Figure 2). By Theorem 2.3, SGD updates are therefore shared
predominantly within these latent neighborhoods (i.e., across pairs withW1(qu, qv) < rshare(u, v; θ)).
In other words, under clean inputs, VAE-CF primarily exploits local collaborative signals and
suppresses global influence from input-distant users.
Theorem 2.6. Let xu,xv ∈ {0, 1}I be binary inputs. Let bxu

, bxv
∼ Bern(ρ)I be independent

masks and set x′
u = xu ⊙ bxu

and x′
v = xv ⊙ bxv

. Denote the number of non-overlapped items
h = ∥xu − xv∥1 and the number of overlapped items s = ⟨xu,xv⟩. For any δ > 0, define
Tδ = ⌈δ⌉ − 1 and Uδ = ⌈δ⌉. Then:

Contraction. Pr
[
∥x′

u − x′
v∥1 < δ

]
≥

(
ρ2 + (1− ρ)2

)s ∑min{h,Tδ}
k=0

(
h
k

)
ρk(1− ρ)h−k.

Expansion. Pr
[
∥x′

u − x′
v∥1 ≥ δ

]
≥

∑s
k=Uδ

(
s
k

)(
2ρ(1− ρ)

)k(
1− 2ρ(1− ρ)

)s−k
.

Proof. See Appendix E.3.

Result-3 (Masking induces stochastic neighborhood mixing). Theorem 2.6 quantifies how ran-
dom masking can stochastically contract or expand the ℓ1 distance between two users’ interaction
vectors. Under Lemma 2.4, contractions propagate to latent space; when the realized distance falls
within the sharing radius (Theorem 2.3), an SGD step on v benefits u, even if the original (unmasked)
pair was far apart. This creates intermittent long-range sharing events that inject global collaborative
signal. Conversely, expansions can push genuine neighbors outside the sharing radius, increasing
gradient variance and weakening local transfer. The net effect is global mixing through occasional
contractions at the cost of neighborhood drift from expansions (Setting-2, Figure 2).

2.4 BEYOND LATENT GEOMETRY: β–KL VS. MASKING

The previous section showed that collaboration is governed by latent proximity via the sharing radius
(Theorem 2.3). Geometrically, both strengthening the KL penalty and introducing masking reduce
latent distances and can enable global collaboration. We now turn these geometric insights into
actionable guidance by linking latent distances to the KL terms optimized in the ELBO.

Recall the VAE-CF setting in Eq (1 & 2) with masked inputs xh = x⊙ b, where b∼Bern(ρ)I i.i.d.
across items and ρ=1 recovers the clean-input setting.

For any users u, v and masks bu,bv , Theorem 2.5 (transportation inequality) yields

W1

(
qϕ(· | xu⊙bu), qϕ(· | xv⊙bv)

)
≤

√
2C KL

(
qϕ(· | xu⊙bu) ∥ p

)
+

√
2C KL

(
qϕ(· | xv⊙bv) ∥ p

)
.

(5)

Averaging uniformly over user pairs (u, v) and independently sampled masks bu,bv and using
Jensen’s inequality (concavity of the square root) gives

Eu,v,bW1

(
qϕ(· | xu⊙bu), qϕ(· | xv⊙bv)

)
≤ 2

√
2C

√
Ex,b KL

(
qϕ(· | x⊙ b) ∥ p

)
. (6)
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Define the aggregated (masked) posterior qh(Z) := EX,B qϕ(Z | X⊙B) 1, and the encoder mutual
information Iqϕ(Xh;Z) := Ex,b KL

(
qϕ(Z | x⊙ b) ∥ qh(Z)

)
, a standard identity then gives

Ex,b KL
(
qϕ(Z | x⊙ b) ∥ p(Z)

)
= Iqϕ(Xh;Z) + KL

(
qh(Z) ∥ p(Z)

)
. (7)

Combining 6 and 7, any mechanism that lowers Iqϕ(Xh;Z) and/or KL(qh∥p) shrinks expected
pairwise latent distances, increasing the probability that user pairs fall within the sharing radius
(Theorem 2.3). This leads to two directions for encouraging global collaboration:

β-KL (objective-level). Increasing β in the training objective (Eq. 1) strengthens the KL penalty,
and by the decomposition in Eq. (7) this effectively penalizes the sum Iqϕ(Xh;Z) + KL(qh∥p). At
convergence this typically drives both terms down, which in turn induces a near-uniform contraction
of inter-user latent distances and shrinks the right-hand side of Eq. (6). The trade-off is that overly
large β weakens the reconstruction signal and risks posterior collapse, degrading user semantics.
A common solution to alleviate collapse is to use a more expressive prior (often multi-modal, e.g.,
mixtures, VampPrior, or flow-based priors). However, an expressive prior also weakens the global
pairwise contraction effect compared to a simple prior such as the standard normal prior. Specifically,
with a Gaussian prior, the KL term pulls all user posteriors toward a common zero-centered basin, so
user pairs have a higher chance of becoming latently close, strengthening sharing at a fixed β. In
contrast, expressive priors can satisfy the KL by distributing users across different modes rather than
contracting them to a single center, making collaboration locally dependent on mode assignment.

Input masking (data-level). Smaller values of ρ (Eq. 2) increase the masking strength, reducing
the information available in Xh. By the data-processing inequality, this tends to decrease Iqϕ(Xh;Z)
and often also the aggregate mismatch KL(qh|p), tightening the bound in Eq. (6). However, masking
affects the geometry of the latent space in a more stochastic manner than the uniform contraction
produced by increasing β. Random masks cause sample-dependent contractions and expansions
across batches: sometimes two users who are far apart in input space become close in latent space,
promoting desirable long-range sharing, while in other cases genuinely similar users may be pushed
apart, weakening local reliability. For an individual user, each new mask realization slightly shifts the
latent posterior, so the user’s nearest-neighbor set fluctuates from batch to batch. Over training, these
shifts accumulate, producing what we refer to as neighborhood drift: the local structure of the user’s
neighborhood wanders, and the gradients shared among nearby users become noisy and inconsistent.

3 PROPOSED METHOD: PERSONALIZED ITEM ALIGNMENT (PIA)

Prior work has primarily pursued the objective-level pathway (adjusting β or redesigning p(z); see
Section B) while largely treating input masking as a benign training trick. In this section, we explore
an alternative direction for improving VAE-CF: addressing the downside of masking by stabilizing
the stochastic geometry it induces, so that beneficial long-range sharing occurs more consistently
and with reduced drift. We introduce a training-only regularizer that pushes the masked posterior
qϕ(z | xh) toward a user-specific target constructed from the user’s positive items. This stabilizes
the masking-induced geometry without changing test-time inference, ensuring that different masked
views of the same user map to a consistent latent region while bringing users with overlapping items
closer in a semantically grounded way. We define the overall objective as:

LPIA-VAE(x; θ, ϕ,E) = Eb

[
LVAE(x; θ, ϕ; xh)

]
+ λA Eb

[
LA(xh,x;ϕ,E)

]
, (8)

where E = {ei ∈ Rd}Ii=1 are learnable item anchors in latent space (same dimension as z), and
λA > 0 is small. In particular, let Sx = {i : xi = 1} be the positives for user x, we have:

LA(xh,x;ϕ,E) =
1

|Sx|
∑
i∈Sx

Ez∼qϕ(z|xh)

[
∥z− ei∥22

]
. (9)

1We use uppercase letters for random variables e.g., X and bold lowercase for their realizations x.
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Proposition 3.1. Assume the encoder posterior is diagonal-Gaussian, qϕ(z | xh) =
N
(
µϕ(xh), diag(σ

2
ϕ(xh))

)
. Let the item centroid be ēx := 1

|Sx|
∑

i∈Sx
ei, then

LA(xh,x;ϕ,E) =
∥∥µϕ(xh)− ēx

∥∥2
2︸ ︷︷ ︸

align mean to item centroid

+ trΣϕ(xh)︸ ︷︷ ︸
variance shrinkage

+ const(x, E), (10)

where Σϕ(xh) = diag(σ2
ϕ(xh)) and const(x, E) = 1

|Sx|
∑

i∈Sx
∥ei∥22 − ∥ēx∥22.

Proof. See Appendix E.4.

Proposition 3.1 indicates that PIA ① centers masked latents near the user’s item barycenter ēx and ②
modestly reduces posterior spread. Two users u, v with similar positive-item sets have close centroids,
so their masked posteriors become latently close more frequently, increasing the chance they fall
within the sharing radius and benefit from each other’s updates.
Proposition 3.2. Fix x and its neighborhood in which the ELBO objective LVAE(x; θ, ϕ; xh), defined
in Eq. (1), written as a function of the encoder mean µϕ(xh), admits a quadratic approximation with
Hessian H ⪰ mI and ∥H∥ ≤ L. Adding λA∥µϕ(xh) − ēx∥22 to this objective yields an effective
Hessian Heff = H + 2λAI . Let µ(0)(xh) be the unregularized minimizer over masks and µ(A)(xh)

the minimizer with alignment. Then with τ =
(

L
L+2λA

)
, we obtain the following inequalities

Varb
[
µ(A)(xh)

]
⪯ τ2 Varb

[
µ(0)(xh)

]
, Eb

[
∥µ(A)(xh)− ēx∥2

]
≤ τEb

[
∥µ(0)(xh)− ēx∥2

]
.

Proof. See Appendix E.5.

Proposition 3.2 indicates that adding the PIA term makes the masked encoder locally better condi-
tioned and pulls its mean µϕ(xh) toward a per-user item centroid. Quantitatively, it shrinks ① the
variance of µϕ(xh) across different masks and ② the average drift of µϕ(xh) from the centroid by a
multiplicative factor τ ∈ (0, 1). Hence, masked views of the same user are more alike and less
noisy, so the neighborhoods we train on are closer to the neighborhoods we infer on at test time.

In summary, PIA ① stabilizes the geometric pathway: aligning qϕ(z | xh) to a fixed per-user ēx
reduces masked-vs-clean drift and gradient variance; expansions are less likely to eject genuine
neighbors from the sharing radius; ② promotes meaningful global mixing: shared items pull users
toward nearby centroids, creating consistent, semantically grounded latent proximity instead of
relying purely on stochastic contractions ((Setting-3, Figure 2)); ③ introduces no test-time burden: E
and the regularizer are estimated during training-only; inference uses the standard qϕ(z | x).

Remark: geometric view of collaborative filtering. The anchors ei form a semantic map where
co-liked items organize into neighborhoods, and ēx lies within the convex hull of the user’s liked
items. This implies:

• Users with large/diverse interaction histories. When |Sx| is large and diverse, ēx may be less
peaked; PIA then primarily improves stability rather than enforcing a specific prototype. Crucially,
users who share more items (or items from the same neighborhoods) have closer centroids,
making their representations neighbors and strengthening collaborative signal via the sharing
radius (Theorem 2.3). For multi-modal users, the barycenter lies between item neighborhoods,
keeping them close to multiple communities; shared (or nearby) items still pull such users into
overlapping regions, allowing global signals to flow from both sides. In effect, PIA brings similar
users closer without collapsing diverse preferences into a single artificial mode.

• Cold-start users. Warm users sculpt the semantic map: items they co-like are pulled into coherent
neighborhoods. Cold users, even with few interactions, are placed into this already-organized
map by aligning toward their clicked items’ anchors. Each positive item is a landmark surrounded
by warm users who also liked it (and related items). Aligning cold users toward these landmarks
means that even a single shared item can snap them into warm clusters. Moreover, because items
sharing users are pulled closer under PIA, interacting with a similar item also places cold users in
the right neighborhood. In click space, such users appear far from any warm user; in latent space,
one or two well-placed items act as shortcuts to dense communities, enabling global collaborative
signals to propagate to cold users.
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4 EXPERIMENTS

We validate our analysis using three real-world recommendation datasets: MovieLens-20M, Netflix,
and Million Song Dataset and the A/B testing on an Amazon streaming platform. Specifically:

• First, we assess benefits of the proposed personalized item alignment approach compared to
vanilla VAE-based CF (Multi-VAE (Liang et al., 2018)) on these benchmark datasets.

• Second, we provide visualizations of the learned latent space under three conditions: VAE
without masking, VAE with masking, and VAE with PIA, to support our theoretical analysis.

• Finally, we conducted ablation studies across user groups segmented by interaction count to
validate the effectiveness of global collaborative signals.

4.1 EFFECTIVENESS OF PERSONALIZED ITEM ALIGNMENT

Public dataset. Table 1 presents the performance of our framework, which adds personalized
item alignment to Multi-VAE, and RecVAE (Shenbin et al., 2020) on the MovieLens-20M, Netflix
and Million Song datasets respectively. We follow the preprocessing procedure from (Liang et al.,
2018). The detailed data preprocessing steps and train/validation/test split methodology are presented
in Section C.1. Our code for reproducibility is publicly available at https://github.com/
amazon-science/PIAVAE.

Table 1: Our method (with PIA) achieves the best performance for MovieLens and Netflix Prize
datasets while having the 3rd rank for Million Song. The best results are highlighted in bold.

MovieLens-20M Netflix Prize Million Song
Model Recall Recall NDCG Recall Recall NDCG Recall Recall NDCG

@20 @50 @100 @20 @50 @100 @20 @50 @100

Matrix factorization & Linear regression
Popularity 0.162 0.235 0.191 0.116 0.175 0.159 0.043 0.068 0.058
EASE 0.391 0.521 0.420 0.362 0.445 0.393 0.333 0.428 0.389
MF 0.367 0.498 0.399 0.335 0.422 0.369 0.258 0.353 0.314
WMF 0.362 0.495 0.389 0.321 0.402 0.349 0.211 0.312 0.257
GRALS 0.376 0.505 0.401 0.335 0.416 0.365 0.201 0.275 0.245
PLRec 0.394 0.527 0.426 0.357 0.441 0.390 0.286 0.383 0.344
WARP 0.310 0.448 0.348 0.273 0.360 0.312 0.162 0.253 0.210
LambdaNet 0.395 0.534 0.427 0.352 0.441 0.386 0.259 0.355 0.308

Nonlinear autoencoders: MLP for encoder

CDAE 0.391 0.523 0.418 0.343 0.428 0.376 0.188 0.283 0.237
RaCT 0.403 0.543 0.434 0.357 0.450 0.392 0.268 0.364 0.319

Multi-VAE 0.395 0.537 0.426 0.351 0.444 0.386 0.266 0.364 0.316
Multi-VAE + PIA 0.408 0.546 0.437 0.360 0.448 0.392 0.275 0.372 0.326
Uplift (%) 3.29 1.68 2.58 2.56 0.90 1.55 3.38 2.20 3.16

Nonlinear autoencoders: densely connected layers for encoder

RecVAE 0.414 0.553 0.442 0.361 0.452 0.394 0.276 0.374 0.326
RecVAE + PIA 0.417 0.556 0.446 0.365 0.454 0.396 0.278 0.376 0.329
Uplift (%) 0.72 0.54 0.90 1.01 0.44 0.51 0.72 0.54 0.92

The results demonstrate that PIA consistently improves the performance over the base VAE recom-
menders, in terms of nDCG and Recall. It also exhibits competitive performance across the three
datasets considered, with RecVAE+PIA being the top performing approach on MovieLens-20M and
Netflix datasets, and the 3rd performing approach on Million Song dataset.

A/B testing on an Amazon streaming platform. On the basis of offline results, we run one week
of A/B testing in September 2025 for the Multi-VAE + PIA algorithm on one streaming platform
of Amazon. The approach was implemented as an offline system, with weekly training considering
a 3-month window for collecting streaming behavior, and daily inference for active customers.
The personalized scores computed daily include about 25 millions of users and 4000 movies. The
performance of our system was evaluated on 2 movie cards present on the Homepage and on the
Movie page. 50% of the customers were exposed to the algorithm (treatment group) for the duration
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of the experiment, while the rest was exposed to the baseline algorithm (control group). As shown in
Table 2, our approach outperformed the control group significantly, with improved performance on
the card click rate by 117%− 267% (per daily view) and 123%− 283% (per daily user view). For
statistical validation, we report the p-value which evaluates the mean difference between control and
treatment groups, as well as the Bayesian probability that the mean difference is positive, considering
a Normal-Normal conjugate historic prior which allows for closed form solutions to the posterior
distribution. For click rate metrics we observed p-value = 0.000 and (prob > 0) = 1.000; and for
playtime, we observed p-value = 0.000 and (prob > 0) = 0.997. Since its launch, we have observed
the performance of the ML system to be remarkably stable in playtime and click rate metrics.

4.2 LATENT SPACE VISUALIZATION

We present t-SNE visualizations (Maaten & Hinton, 2008) of the latent spaces learned under three
settings: ① clean input, ② input masking, and ③ input masking with personalized item alignment, to
examine the correspondence between the geometry of the input space and the latent space.

Figure 2: t-SNE visualization of the latent representations for three user groups differentiated by the
number of interactions from ML-20M dataset. Purple, Teal, and Orange denote users with 5, 50, and
350 interactions, respectively, correspond to different VAE model configurations. We select group of
users with 5, 50, and 350 interactions as they are clearly separated (i.e., L1) on the input space.

Setup: We focus on user cohorts with 5, 50, and 350 interactions to clearly contrast local versus global
collaboration. Note that standard set-based distances (Hamming) inflate cross-cohort dissimilarity:
even two 5-interaction users with disjoint histories are closer to each other than any 5–50 pair, even
when the 50-interaction user subsumes the 5-interaction user’s items; the same pattern holds for the
50–350 cohorts.

Setting-1: As illustrated in Figure 2, when masking is disabled and interaction counts differ substan-
tially, the learned representations are cleanly segregated by cohort. This indicates that the model in
this setting primarily leverages local collaboration and has limited ability to capture global collabora-
tive signals. Moreover, the latent geometry mis-aligns with the global structure of the input space:
the 350-interaction cluster lies closer to the 5-interaction cluster than to the 50-interaction cluster
which contrary to the expected ordering, where distance(350, 50) < distance(350, 5).

Setting-2: the representations from different cohorts become stochastically entangled, which encour-
ages global sharing. However, within-cohort structure is more diffuse, weakening local collaboration.
Despite this trade-off, Setting-2 substantially outperforms Setting-1 (nDCG@100= 0.426 vs. 0.409),
demonstrating the benefit of encouraging global collaboration.

Setting-3 augments masking with PIA, which ① helps the VAE remain discriminative under input
corruption, yielding a more structured latent space and ② promotes globally consistent user repre-
sentations. The resulting latent manifold is both well organized and globally aligned, exhibiting
smooth transitions from the 5-, to 50-, to 350- interaction cohorts. This balance of local and global
collaboration yields the best performance (nDCG@100 = 0.437).
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4.3 PERFORMANCE OF USER GROUPS WITH DIFFERENT NUMBER OF INTERACTIONS

Table 2: Offline and online results on an Amazon streaming
platform.

Offline

Model Recall nDCG
@20 @50 @100

Multi-VAE 0.592 0.288 0.386
Multi-VAE+PIA 0.609 0.302 0.405
Uplift (%) 2.87 4.88 5.13

Online

Model Playtime (sec)
per user view

Click Rate (%)
per view

Click Rate (%)
per user view

Home Card
Control Group 27.7 4.4 5.3
Multi-VAE+PIA 74.6 9.5 12.0
Uplift (%) 169 117 123

Movie Card
Control Group 16.8 3.4 4.2
Multi-VAE+PIA 102.6 12.5 16.2
Uplift (%) 509 267 283

Table 3: Results across user groups for
MovieLens20M.

Group Model Recall nDCG
@20 @50 @100

[5–10]
Multi-VAE 0.461 0.625 0.317
Multi-VAE + PIA 0.473 0.629 0.323
Uplift (%) 2.72 0.55 1.63

[11–50]
Multi-VAE 0.421 0.595 0.429
Multi-VAE + PIA 0.424 0.598 0.434
Uplift (%) 0.86 0.49 0.13

[51–100]
Multi-VAE 0.313 0.478 0.497
Multi-VAE + PIA 0.314 0.479 0.502
Uplift (%) 0.26 0.09 0.85

[100+]
Multi-VAE 0.418 0.386 0.474
Multi-VAE + PIA 0.435 0.393 0.486
Uplift (%) 4.09 0.72 2.57

Our proposed framework provides both a well-structured latent space and the capacity to capture
global collaborative signals. As a result, we expect it to benefit users across groups, including cold-
start, neutral, and warm-start users. In particular, cold-start performance Xu et al. (2022); Monteil
et al. (2024); Liang et al. (2025) is of particular importance in industry settings. To assess this, we
partition the test-set users based on their number of interactions and evaluate the performance of our
method within each group.

As shown in Table 3, our framework improves performance for all user groups. Notably, the cold-start
group (within 5 to 10 interactions) and the warm-start group (more than 100 interactions) benefit the
most. This can be attributed to the inherent challenges each group faces: cold-start users have limited
historical data, making recommendation difficult, while warm-start users, often found in the long tail
of the user distribution, typically lack sufficient collaborative overlap. Our framework addresses both
issues by enhancing access to global collaborative signals.

5 CONCLUSION

In this work, we analyzed how collaboration emerges in VAE–CF and showed that it is fundamentally
governed by latent proximity: SGD updates are shared within a data-dependent sharing radius, clean
inputs bias the model toward local collaboration, and global signals can be induced by either the
β-KL/prior pathway (near-uniform contraction of latent distances, with collapse risk if over-used) or
by input masking (stochastic neighborhood mixing with potential drift). Guided by these insights,
we introduced Personalized Item Alignment (PIA), a training-only regularizer that attaches learnable
item anchors and softly pulls masked encodings toward each user’s anchor centroid. PIA preserves
instance information, stabilizes the geometry under masking, and promotes semantically grounded
global mixing without adding test-time overhead. Empirically, PIA improves over vanilla VAE–CF
on standard benchmarks and in an A/B test on a large-scale streaming platform, with ablations across
user-activity strata and latent-space visualizations corroborating the theory.

Limitations. The benefits of capturing global collaborative signals still depend heavily on how
well the input masking is designed (most current research relies on Bernoulli masking). If the
masking is too noisy, even with alignment mechanisms, the model may struggle to learn meaningful
representations. Therefore, a promising direction for future research is to explore more effective
masking strategies that better support global collaboration.
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THE USE OF LARGE LANGUAGE MODELS

We used a large language model (ChatGPT) to help with editing this paper. It was only used for
simple tasks such as fixing typos, rephrasing sentences for clarity, and improving word choice. All
ideas, experiments, and analyses were done by the authors, and the use of LLMs does not affect the
reproducibility of our work.

We also used ChatGPT to assist with proof verification and theorem refinement. Our workflow
involved providing initial drafts to ChatGPT, which would then suggest improvements to the mathe-
matical presentation and formatting. We subsequently edited and refined these suggestions.

APPENDIX

This supplementary material provides a summary of common notations, detailed experimental settings,
and proofs for the theoretical results stated in the main paper. It is organized as follows:

• We summarize common notation in Section A.
• We present the Related Work in Section B.
• Detailed experimental settings and implementation details are described in Section C.
• The pseudo-code of the algorithm is provided in Section C.2.
• Additional experiments on parameter sensitivity analysis are presented in Section D.
• We present all proofs relevant to the theory developed in our paper in Section E.

A NOTATION SUMMARY

Table 4: Table of Notations

Symbol Description

Users and Items Input Data
U, I Number of users and number of items
xu = [xu1,xu2, . . . ,xuI ] I-dimensional binary vector (the u-th row of X); xui = 1

implies that user u has a positive interaction with item i;
xui = 0 indicates otherwise

b ∈ {0, 1}I a binary mask, i.e., b∼Bern(ρ)I

xh = x⊙ b user’s partial interaction history
Sx = {∀i ≤ I : xi = 1} a set of positive items from user x

VAE Models
ϕ, θ VAE encoder pθ and decoder parameters qϕ
qϕ, pθ ϕ-parameterized and θ-parameterized neural networks
z Latent space of the VAE, e.g., (µ,σ2) = qϕ(xh), ϵ ∼

N (0, I), z = µ+ ϵσ
ei ∈ Rd learnable item embedding in latent space (same dimension

as z) and E = {ei ∈ Rd}Ii=1

Theoretical Constants and Bounds
Nδ(u) = { v : ∥xu − xv∥1 ≤ δ } input-space neighborhood
∥ · ∥1 L1 norm (sum of absolute values)
W1(., .) 1-Wasserstein distance

B RELATED WORKS

Motivated by our theoretical analysis, both β-weighted KL regularization and input masking can
promote global collaboration, albeit with different trade-offs. Prior work has largely focused on
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controlling the KL term, primarily along two lines: (i) scheduling the β factor in the regularizer and
(ii) adopting more flexible priors.

β-scheduling. Liang et al. (Liang et al., 2018) introduce a β-scaling factor to modulate the strength
of the regularization KL(qϕ(z | x) ∥ p(z)), while Long et al. (Long et al., 2019) propose gradually
increasing this weight over training to mitigate posterior collapse.

Flexible priors and architectures. Several works replace the standard normal prior with richer
alternatives to better match the data. Examples include VampPrior and its hierarchical variants (e.g.,
HVamp) (Tomczak & Welling, 2018; Kim & Suh, 2019), as well as implicit or learned priors (Walker
et al., 2022). RecVAE (Shenbin et al., 2020) combines a redesigned encoder–decoder, a composite
prior, input-dependent β(x) rescaling, alternating training, and a non-denoising decoder. Other lines
incorporate user-dependent priors (Karamanolakis et al., 2018) or impose an arbitrary target prior via
adversarial training (Zhang et al., 2018).

To our knowledge, ours is the first work to systematically analyze the collaboration mechanisms in
VAE-based CF, showing that both β-weighted KL regularization and input masking can promote
global collaboration. In contrast to prior works, guided by our theoretical analysis, we propose a
regularization scheme that addresses the issues induced by input masking, mitigating the loss of local
collaboration while preserving its benefits for global alignment.

C EXPERIMENTAL SETTINGS

C.1 DATASET

We validate our analysis using three real-world recommendation datasets: MovieLens-20M2, Netflix3

and Million Song (MSD) 4, where each record consists of a user-item pair along with a rating that
the user has given to the item. We follow the preprocessing procedure from MultVAE (Liang et al.,
2018). For MovieLens-20M and Netflix, we retain users who have rated at least five movies and treat
ratings of four or higher as positive interactions. For MSD, we keep only users with at least 20 songs
in their listening history and songs that have been listened to by at least 200 users.

Table 5: Dataset statistics.

ML-20M Netflix MSD

# of users 136,677 463,435 571,355
# of items 20,108 17,769 41,140
# of interactions 10.0M 56.9M 33.6M
% of interactions 0.36% 0.69% 0.14%

# of held-out users 10,000 40,000 50,000

The user data is split into training, validation, and test sets as presented in Table 5. For every user
in the training set, we utilize all interaction history, whereas for users in the validation or test set, a
fraction of the history (80%) is used to predict the remaining interaction.

C.2 IMPLEMENTATION DETAILS

Hyperparameters. We use a batch size of 500 and train the model for 200 epochs using the Adam
optimizer with a learning rate of 1× 10−3 across all experiments. The specific hyperparameters λA,
ρ, and λscale are selected based on validation performance. An ablation study on the sensitivity of ρ,
λscale and λA with respect to model performance is provided in Section D.1.

Algorithm. The model is trained by optimizing the objective defined in Eq. (8). However, for the
hyperparameter λA, which controls the strength of the personalized item alignment regularization,

2https://grouplens.org/datasets/movielens/20m/
3https://www.kaggle.com/netflix-inc/netflix-prize-data
4http://millionsongdataset.com
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instead of consider it as fixed hyper-parameter, we gradually increase its value during training
.Specifically, we use the validation set to monitor whether the latent space is getting trapped in a local
optimum i.e., when the validation performance does not improve after ρ consecutive epochs. If such
a case is detected, we increase λA by a scaling factor λscale, as detailed in Algorithm 1.

Algorithm 1 Personalized Item Alignment VAE

1: Initialize:
Models: encoder qϕ, decoder pθ and item-embeddings E.
Hyper-parameters: λA, λscale and ρ.
Variables: best val epoch := 0, best val ndcg := 0

2: for epoch in n epochs do
3: // Training
4: for iter in iterations do
5: Sample a mini-batch x
6: z ∼ qϕ(· | x) // using reparametrization trick
7: Update qϕ, pθ and E based on LPIA-VAE(x; θ, ϕ) in Equation (8)
8: end for
9: //Validation

10: Compute nDCG@K on validation set: epoch ndcg
11: if epoch ndcg > best val ndcg then
12: best val ndcg := epoch ndcg
13: best val epoch := epoch
14: end if
15: // Increase λA if training is stuck in a local optimum, i.e., when the validation performance

does not improve after ρ consecutive epochs.
16: if best val epoch < epoch + ρ then
17: λA := λscale × λA
18: end if
19: end for
20: Return: the optimal encoder qϕ and decoder pθ at best val epoch.

C.3 BASELINES

We have selected following models as baselines:

• Matrix factorization (MF); we consider MF trained with ALS with uniform weights (Hu
et al., 2008), which is a simple and computationally efficient baseline, and also weighted
matrix factorization (wMF) (Hu et al., 2008);

• Regularization based on item-item interactions; here we selected GRALS (Rao et al., 2015)
that employs graph regularization;

• Linear models; we have chosen full-rank models EASE Steck (2019) and a low-rank model
PLRec (Sedhain et al., 2016);

• Nonlinear autoencoders; here we consider the shallow autoencoder CDAE (Wu et al., 2016),
variational autoencoder MultVAE (Liang et al., 2018), and its successors: RaCT (Lobel
et al., 2019) and RecVAE (Shenbin et al., 2020).

D ADDITIONAL EXPERIMENTS

D.1 PARAMETER SENSITIVITY ANALYSIS ON λA ρ AND λSCALE

Note that the hyperparameter λA was introduced in our main objective, where it controls the strength
of the personalized item alignment regularization. In contrast, ρ and λscale are two hyperparameters
introduced in our algorithm to dynamically adjust λA during training. Specifically, we use ρ and
λscale to gradually increase the value of λA. We monitor the performance on the validation set to
determine whether the latent space becomes trapped in a local optimum i.e., when the performance
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does not improve after ρ epochs. If such a situation is detected, we increase λA by multiplying it with
the scaling factor λscale.

In this section, we analyze the sensitivity of λA, ρ, and λscale with respect to model performance. We
fix the value of λA = {2, 4, 8} and vary the values of ρ and λscale. Note that ρ is used to detect local
optima by checking whether the validation performance fails to improve for ρ consecutive epochs.
We evaluate ρ in the range from 3 to 15. The hyperparameter λscale controls the rate at which λA
increases. Since a large scaling factor may destabilize training, we test λscale values in the range from
1.0 to 3.0. 1.0 mean there will no scaling.

Figure 3: Parameter sensitivity analysis on ρ and λscale of PIA-VAE on MovieLens-20M. Fix λA = 2.0
different values of ρ ∈ {3, 5, 7, 10, 15} and λscale ∈ {1.0, 1.5, 2, 0, 2.5, 3.0}

Figure 4: Parameter sensitivity analysis on ρ and λscale of PIA-VAE on MovieLens-20M. Fix λA = 4.0
different values of ρ ∈ {3, 5, 7, 10, 15} and λscale ∈ {1.0, 1.5, 2, 0, 2.5, 3.0}

Figures 3, 4, and 5 show the performance measured by nDCG@100 on the MovieLens-20M dataset.
It can be observed that the validation nDCG@100 remains relatively stable across λA values, for
λscale values in the range 1.5 to 2.3 and for ρ values in the range 5 to 10. Based on this analysis, we
set ρ = 5 and λscale = 2 for all experimental settings.

Analysis on λA To futher analyze the sensitivity of λA, we fix the values of ρ = 5 and λscale = 2
(based on previous analyses) and vary the value of λA.

As described in the experimental setup, the hyperparameter λA is selected using nDCG@100 on
the validation set as the evaluation metric across all experiments. Figure 6 presents the validation
nDCG@100 for different values of λA, along with the corresponding test nDCG@100, Recall@20
and Recall@50 on MovieLens-20M. It can be seen that the validation and test performances are
aligned, and the results also indicate that PIA-VAE is generally robust to variations when λA > 0.
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Figure 5: Parameter sensitivity analysis on ρ and λscale of PIA-VAE on MovieLens-20M. Fix λA = 8.0
different values of ρ ∈ {3, 5, 7, 10, 15} and λscale ∈ {1.0, 1.5, 2, 0, 2.5, 3.0}

Figure 6: Performances on MovieLens-20M dataset with different λA

D.2 COMPUTATIONAL INFRASTRUCTURE AND RUNNING TIME

Infrastructure All experiments, including our approach and the baseline models, were conducted
on an ml.g5.2xlarge AWS EC2 instance equipped with an NVIDIA A10G GPU.

Table 6: Average training time per epoch (in seconds).

VAE VAE + Alignment

MovieLens-20M 8.207 9.516 (15.95%)
Netflix 22.193 25.722 (15.90%)

Running Time Table 6 reports the average training time per epoch (in seconds) for the base VAE
model and our proposed PIA-VAE. The addition of the alignment component in PIA-VAE results in a
training overhead of approximately 15.9% compared to the base VAE.
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E THEORETICAL DEVELOPMENT

In this Section, we present all proofs relevant to theory developed in our paper.

E.1 PROOF OF THEOREM 2.3

Theorem E.1 (Latent-W1 Sharing Radius). Assume decoder gradient is Lipschitz in z such that for
any given z ∼ qϕ(· | xu), uniformly in x and for all z′, ∥∇θℓθ(x, z)−∇θℓθ(x, z

′)∥ ≤ Lθz ∥z− z′∥.
Let

Lu(θ) := Eqϕ(·|xu)[ℓθ(xu, z)] , gu(θ) := ∇θLu(θ),

and define the content-mismatch term

∆x(u, v) :=
∥∥∥Eqϕ(·|xv)

[
∇θℓθ(xu, z)−∇θℓθ(xv, z)

]∥∥∥.
For one SGD step on user v with step size η > 0, setting θ+ = θ − η gv(θ), we have:

Lu(θ
+)−Lu(θ) ≤ −η ∥gu(θ)∥2+η ∥gu(θ)∥

(
LθzW1

(
qϕ(· | xu), qϕ(· | xv)

)
+∆x(u, v)

)
+O(η2).

In particular, the step on user v strictly decreases Lu to first order whenever

W1

(
qϕ(· | xu), qϕ(· | xv)

)
< rshare(u, v; θ) :=

∥gu(θ)∥ −∆x(u, v)

Lθz
.

Proof. For shorthand, write qu := qϕ(· | xu) and qv := qϕ(· | xv).

A first-order Taylor expansion gives

Lu(θ − ηgv) = Lu(θ) − η ⟨gu(θ), gv(θ)⟩ + O(η2). (11)

Then, we decompose the inner product:

−⟨gu, gv⟩ = −∥gu∥2 − ⟨gu, gv − gu⟩ ≤ −∥gu∥2 + ∥gu∥ ∥gv − gu∥.
Next, we bound

∥gv − gu∥ =
∥∥∥Eqv∇θℓθ(xv, z)− Equ∇θℓθ(xu, z)

∥∥∥
≤

∥∥∥Eqv

[
∇θℓθ(xu, z)−∇θℓθ(xv, z)

]∥∥∥︸ ︷︷ ︸
=∆x(u,v)

+
∥∥∥Eqv∇θℓθ(xu, z)− Equ∇θℓθ(xu, z)

∥∥∥︸ ︷︷ ︸
≤Lθz W1(qv,qu)

.

For the last inequality, let ψ(z) := ∇θℓθ(xu, z). By assumption decoder gradient is Lipschitz, ψ is
Lθz-Lipschitz in z; for any coupling π of (qu, qv),∥∥∥Equ [ψ]− Eqv [ψ]

∥∥∥ =

∥∥∥∥∫ (ψ(z)− ψ(z′)) dπ(z, z′)

∥∥∥∥ ≤ Lθz

∫
∥z− z′∥ dπ ≤ LθzW1(qu, qv).

Combining the bounds and substituting into Eq. (11) yields the stated result, and the strict-decrease
condition follows by inspecting the coefficient of η.

E.2 PROOF OF THEOREM 2.5

Before proving the theorem, we recall some inequalities:

• The Kantorovich-Rubinstein dual form (Santambrogio, 2015):

W1(µ, ν) = sup
f :X→R
Lip(f)≤1

∫
X
f d(µ− ν), (12)

• The Donsker-Varadhan variational formula (Donsker & Varadhan, 1975): for any measurable
g with

∫
eg dp <∞,

KL(ν∥p) ≥
∫
g dν − log

∫
eg dp. (13)
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• The Bobkov–Götze/Talagrand T1(C) inequality (Bobkov & Götze, 1999) is known to be
equivalent to the following sub-Gaussian moment generating function (mgf) bound for
Lipschitz functions: p satisfies the T1(C) inequality with constant C > 0, then for every
1-Lipschitz f and every λ ∈ R,

log

∫
exp

(
λ(f − Epf)

)
dp ≤ Cλ2

2
. (14)

Lemma E.2. Assume the encoder is Lϕ-Lipschitz, i.e., ∥qϕ(xu)− qϕ(xv)∥ ≤ Lϕ∥xu − xv∥ for all
xu,xv ∈ {0, 1}I then W1

(
qϕ(· | xu), qϕ(· | xv

)
≤ Lϕ ∥xv − xu∥1 for all xu,xv ∈ {0, 1}I .

Proof. First, since qϕ(z|xi) = N
(
µϕ(xi), diag(σ2

ϕ(xi))
)

, the Wasserstein-2 distance
W2(qϕ(z|x1), qϕ(z|x2)) has the following closed form:

W2(qϕ(z|xu), qϕ(z|xv))
2 = ∥µϕ(xu)− µϕ(xv)∥2 + ∥σϕ(xu)− σϕ(xv)∥2, (15)

which, combined with the definition Qϕ(x) =

[
µϕ(x)
σϕ(x)

]
, yields

∥Qϕ(xu)−Qϕ(xv)∥2 =W2(qϕ(z|x1), qϕ(z|x2))
2. (16)

Since Qϕ is Lϕ-Lipschitz continuous, we have ∥Qϕ(xu)−Qϕ(xv)∥ ≤ Lϕ∥xu − xv∥, and

W2(qϕ(z | xu), qϕ(z | xv)) ≤ Lϕ∥xu − xv∥. (17)

Since W1 ≤W2, we have W1(qϕ(z | xu), qϕ(z | xv)) ≤ Lϕ∥xu − xv∥.

Theorem E.3. Assume pθ(x | z) is a regular exponential family with sufficient statistics T (x),
natural parameter η(z) and log-partition A. Let α(z) = qϕ(z|x1)

qϕ(z|x1)+qϕ(z|x2)
on {q1 + q2 > 0}. Then

min
η(·)

{
2∑

i=1

Eqϕ(·|xi)

[
− log pθ(xi | z)

]
+ β

2∑
i=1

KL
(
qϕ(z | xi) ∥ p(z)

)}
(18)

= C +

∫ (
qϕ(z | x1) + qϕ(z | x2)

)
∆A∗

(
x1,x2;α(z)

)
dz+ β

2∑
i=1

KL
(
qϕ(z | xi) ∥ p(z)

)
,

where A∗ is the convex conjugate of A, C is independent of η(·), and

∆A∗
(
x1,x2;α

)
= αA∗(T (x1)

)
+ (1−α)A∗(T (x2)

)
−A∗(αT (x1) + (1−α)T (x2)

)
≥ 0,

with equality iff either (qϕ(· | x1), qϕ(· | x2) = 0 almost everywhere or T (x1) = T (x2).

Additionally, assume the prior p satisfies the Bobkov–Götze/Talagrand T1(C) inequality (Bobkov &
Götze, 1999) with constant C > 0 (e.g., Normal prior p = N (0, σ2I)):

W1

(
qϕ(z | x1), qϕ(z | x2)

)
≤

√
2C KL

(
qϕ(z | x1) ∥ p(z)

)
+

√
2C KL

(
qϕ(z | x2) ∥ p(z)

)
. (19)

Proof of Eq. (18). We write the conditional likelihood in its exponential-family form

pθ(x | z) = h(x) exp
(
⟨T (x), η(z)⟩ −A(η(z))

)
,

so that
− log pθ(xi | z) = A(η(z))− ⟨T (xi), η(z)⟩ − log h(xi).

Let qi(z) := qϕ(z | xi), i = 1, 2, and define

Q(z) := q1(z) + q2(z), α(z) :=


q1(z)

Q(z)
, Q(z) > 0,

arbitrary in [0, 1], Q(z) = 0,

and the α-mixture of sufficient statistics

Tα(z) := α(z)T (x1) + (1− α(z))T (x2).
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(Any choice of α on {Q = 0} is immaterial since all integrands below are multiplied by Q.)

Summing the two reconstruction terms and using
∫
qi = 1,

2∑
i=1

Eqi

[
− log pθ(xi | z)

]
=

∫ ( 2∑
i=1

qi(z)
)
A(η(z)) dz−

∫ 〈
T (x1)q1(z) + T (x2)q2(z), η(z)

〉
dz−

2∑
i=1

log h(xi)

=

∫
Q(z)

(
A(η(z))−

〈
Tα(z), η(z)

〉)
dz−

2∑
i=1

log h(xi).

Recall the convex conjugate A∗ and Fenchel–Young inequality (Fenchel, 1949; Rockafellar, 1970):

A∗(y) := sup
η
{⟨y, η⟩ −A(η)}, A(η)− ⟨y, η⟩ ≥ −A∗(y),

with equality when y ∈ ∂A(η); in the regular (Legendre) case (Rockafellar, 1970), A is essentially
smooth and strictly convex, so y = ∇A(η) is the unique equality condition and A∗ is strictly convex
on its (convex) effective domain.

Because the integrand is separable in z and Q(z) ≥ 0, minimizing the integral over all measurable
η(·) reduces to pointwise minimization:

min
η(·)

∫
Q(z)

(
A(η(z))− ⟨Tα(z), η(z)⟩

)
dz =

∫
Q(z) min

η

{
A(η)− ⟨Tα(z), η⟩

}
dz

= −
∫
Q(z)A∗(Tα(z)

)
dz.

Hence

min
η(·)

2∑
i=1

Eqi

[
− log pθ(xi | z)

]
= −

∫
Q(z)A∗(Tα(z)

)
dz−

2∑
i=1

log h(xi). (20)

(When Tα(z) lies in the interior of dom(A∗), the minimizer is η∗(z) = ∇A∗(Tα(z)
)
; equivalently,

∇A(η∗(z)) = Tα(z).)

Add and subtract the quantity∫
Q(z)

(
α(z)A∗(T (x1)

)
+ (1− α(z))A∗(T (x2)

))
dz =

2∑
i=1

A∗(T (xi)
) ∫

qi(z) dz︸ ︷︷ ︸
=1

,

and collect the terms independent of η(·) into the constant

C := −
2∑

i=1

(
log h(xi) +A∗(T (xi)

))
.

Using Eq. (20), we obtain

min
η(·)

2∑
i=1

Eqi

[
− log pθ(xi | z)

]
= C+

∫
Q(z)

(
α(z)A∗(T (x1)

)
+ (1− α(z))A∗(T (x2)

)
−A∗(Tα(z)

))
dz

= C+

∫
Q(z)∆A∗

(
x1,x2;α(z)

)
dz, (21)

where

∆A∗
(
x1,x2;α

)
:= αA∗(T (x1)

)
+ (1− α)A∗(T (x2)

)
−A∗(αT (x1) + (1− α)T (x2)

)
.

By convexity of A∗, ∆A∗(x1,x2;α) ≥ 0 for all α ∈ [0, 1] (Jensen gap). In the regular (Legendre)
case, A∗ is strictly convex on its effective domain, so ∆A∗(x1,x2;α) = 0 iff either
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• T (x1) = T (x2), in which case the three arguments of A∗ coincide, or

• α ∈ {0, 1}, i.e. Q(z)α(z)
(
1 − α(z)

)
= 0 for Q-a.e. z. Equivalently, the posteriors have

disjoint supports w.r.t. the measure Q(z) dz (on each point with Q > 0 exactly one of q1, q2
is zero).

(If A∗ were affine on the segment [T (x1), T (x2)], equality could also occur with 0 < α < 1, but
strict convexity rules this out unless T (x1) = T (x2).)

Finally, the regularizer β
∑2

i=1 KL
(
qϕ(z | xi) ∥ p(z)

)
does not depend on η(·), hence it carries

through unchanged. Combining with Eq. (21) yields Eq. (18).

Proof of Eq. (19). By the triangle inequality for W1,

W1

(
qϕ(· | x1), qϕ(· | x2)

)
≤ W1

(
qϕ(· | x1), p

)
+ W1

(
qϕ(· | x2), p

)
. (22)

Thus it suffices to show that for any probability ν with KL(ν∥p) <∞,

W1(ν, p) ≤
√

2C KL(ν∥p). (23)

Fix a 1-Lipschitz f and λ > 0. Apply Eq. (13) with g = λ
(
f − Epf

)
to obtain

KL(ν∥p) ≥ λ

∫ (
f − Epf

)
dν − log

∫
exp

(
λ(f − Epf)

)
dp.

Using the mgf bound Eq. (14) gives∫
f d(ν − p) ≤ 1

λ
KL(ν∥p) +

Cλ

2
.

Optimizing the right-hand side over λ > 0 yields the minimizer λ⋆ =
√
2KL(ν∥p)/C, and the

minimum value
1

λ⋆
KL(ν∥p) +

Cλ⋆

2
=

√
2C KL(ν∥p).

Therefore, for every 1-Lipschitz f ,∫
f d(ν − p) ≤

√
2C KL(ν∥p).

Taking the supremum over all 1-Lipschitz f and invoking Eq. (12) gives exactly Eq. (23).

Applying Eq. (23) to ν = qϕ(· | x1) and to ν = qϕ(· | x2) and combining with the triangle inequality
in Eq. (22) yields Eq. (19).

E.3 PROOF OF THEOREM 2.6

Theorem E.4 (Masked input: contraction and expansion). Let x1,x2 ∈ {0, 1}I be binary inputs.
Let bx1 , bx2 ∼ Bern(ρ)I be independent masks and set x′

1 = x1 ⊙ bx1 and x′
2 = x2 ⊙ bx2 . Write

h = ∥x1 − x2∥1 and s = ⟨x1,x2⟩ (so h is the number of disagreeing coordinates and s the count of
shared 1’s). For any δ > 0, define Tδ = ⌈δ⌉ − 1 and Uδ = ⌈δ⌉. Let D′ := ∥x′

1 − x′
2∥1. Then:

Contraction.

Pr
[
D′ < δ

]
≥

(
ρ2 + (1− ρ)2

)s min{h,Tδ}∑
k=0

(
h

k

)
ρk(1− ρ)h−k. (24)

Expansion.

Pr
[
D′ ≥ δ

]
≥

s∑
k=Uδ

(
s

k

)(
2ρ(1− ρ)

)k(
1− 2ρ(1− ρ)

)s−k
. (25)
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Proof. Partition coordinates into

H := {j : x1j ̸= x2j}, |H| = h, S := {j : x1j = x2j = 1}, |S| = s.

For j ∈ H , exactly one of (x1j , x2j) equals 1. After masking, the post-mask difference at j equals 1
iff the unique 1 is kept, with probability ρ. Hence

Y :=
∑
j∈H

1{post-mask difference at j = 1} ∼ Binomial(h, ρ).

For j ∈ S, both entries are 1. The post-mask difference equals |b1j − b2j |, which is 1 iff the masks
disagree; this happens with probability Pr(b1j ̸= b2j) = ρ(1− ρ) + (1− ρ)ρ = 2ρ(1− ρ). Thus

Z :=
∑
j∈S

|b1j − b2j | ∼ Binomial
(
s, 2ρ(1− ρ)

)
.

Independence of masks across coordinates implies Y ⊥ Z, and the masked distance decomposes as

D′ = ∥x′
1 − x′

2∥1 = Y + Z.

Contraction. Because D′ is integer-valued, D′ < δ is equivalent to D′ ≤ Tδ. Consider the event
E := {Z = 0} ∩ {Y ≤ Tδ}. On E we have D′ = Y + Z ≤ Tδ , hence

Pr[D′ < δ] ≥ Pr[E ] = Pr[Z = 0]Pr[Y ≤ Tδ]

by independence of Y and Z. Now Pr[Z = 0] = (Pr[b1j = b2j ])
s = (ρ2 + (1− ρ)2)s, and

Pr[Y ≤ Tδ] =

min{h,Tδ}∑
k=0

(
h

k

)
ρk(1− ρ)h−k.

Multiplying the two factors yields Eq. (24).

Expansion. Using D′ = Y + Z with Y ⊥ Z and Uδ = ⌈δ⌉,

Pr[D′ ≥ δ] = Pr[Y + Z ≥ Uδ] =

h∑
m=0

Pr[Y = m] Pr[Z ≥ Uδ −m]

=

h∑
m=0

(
h

m

)
ρm(1− ρ)h−m

s∑
k=max{Uδ−m,0}

(
s

k

)(
2ρ(1− ρ)

)k(
1− 2ρ(1− ρ)

)s−k
,

.

Finally, since D′ = Y + Z ≥ Z,

Pr[D′ ≥ δ] ≥ Pr[Z ≥ Uδ] =

s∑
k=Uδ

(
s

k

)(
2ρ(1− ρ)

)k(
1− 2ρ(1− ρ)

)s−k
,

which gives Eq. (25). This completes the proof.

E.4 PROOF OF PROPOSITION 3.1

Proposition E.5. Assume the encoder posterior is diagonal-Gaussian, qϕ(z | xh) =
N
(
µϕ(xh), diag(σ

2
ϕ(xh))

)
. Let the item centroid be ēx := 1

|Sx|
∑

i∈Sx
ei, then

LA(xh,x;ϕ,E) =
∥∥µϕ(xh)− ēx

∥∥2︸ ︷︷ ︸
align mean to item centroid

+ trΣϕ(xh)︸ ︷︷ ︸
variance shrinkage

+ const(x, E), (26)

where Σϕ(xh) = diag(σ2
ϕ(xh)) and const(x, E) = 1

|Sx|
∑

i∈Sx
∥ei∥22 − ∥ēx∥22.
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Proof. Write qϕ(z | xh) = N
(
µϕ(xh), Σϕ(xh)

)
with Σϕ(xh) = diag(σ2

ϕ(xh)), we have:

E
[
∥z− ei∥22

]
=

∥∥µϕ(xh)− ei
∥∥2
2
+ trΣϕ(xh).

Averaging over i ∈ Sx yields

LA(xh,x;ϕ,E) =
1

|Sx|
∑
i∈Sx

∥∥µϕ(xh)− ei
∥∥2
2
+ trΣϕ(xh).

Given the item centroid be ēx := 1
|Sx|

∑
i∈Sx

ei, then, we obtain

1

|Sx|
∑
i∈Sx

∥∥µϕ(xh)− ei
∥∥2
2
=

∥∥µϕ(xh)− ēx
∥∥2
2
+

1

|Sx|
∑
i∈Sx

∥ei∥22 − ∥ēx∥22.

Combining the last two displays gives

LA(xh,x;ϕ,E) =
∥∥µϕ(xh)− ēx

∥∥2
2
+ trΣϕ(xh) +

(
1

|Sx|

∑
i∈Sx

∥ei∥22 − ∥ēx∥22
)

︸ ︷︷ ︸
const(x,E)

,

which is exactly Eq. (26).

E.5 PROOF OF PROPOSITION 3.2

Proposition E.6. Fix x and its neighborhood in which the ELBO objective LVAE(x; θ, ϕ; xh), defined
in Eq. (1), written as a function of the encoder mean µϕ(xh) ∈ Rd, admits a quadratic approximation
with mask-independent curvature

H ⪰ mI, ∥H∥2 ≤ L (0 < m ≤ L <∞).

Adding λA∥µϕ(xh) − ēx∥22 to this objective yields an effective Hessian Heff = H + 2λAI . Let
µ(0)(xh) be the unregularized minimizer over masks and µ(A)(xh) the minimizer with alignment.

Then with τ =
(

L
L+2λA

)
, we obtain the following inequalities∥∥Varb [

µ(A)(xh)
]∥∥

2
≤ τ2

∥∥Varb [
µ(0)(xh)

]∥∥
2
, (27)

tr Varb
[
µ(A)(xh)

]
≤ τ2 tr Varb

[
µ(0)(xh)

]
, (28)

Eb

[
∥µ(A)(xh)− ēx∥22

]
≤ τ Eb

[
∥µ(0)(xh)− ēx∥22

]
. (29)

Moreover, if Varb[µ(0)] commutes with H (e.g., they are simultaneously diagonalizable), then the
Löwner-order contraction

Varb
[
µ(A)(xh)

]
⪯ τ2 Varb

[
µ(0)(xh)

]
holds.

Proof. Fix x and a mask b, and let Fb(µ) denote the (unregularized) mask-conditioned denoising
objective as a function of the encoder mean µ ∈ Rd (all other quantities x, the masked input xh,
decoder parameters, are held fixed).

Choose a reference point µ̃ in a neighborhood where Fb admits a quadratic approximation with
mask-independent curvature matrix H , and assume

H ⪰ mI, ∥H∥2 ≤ L, 0 < m ≤ L <∞.

Equivalently, we approximate the Hessian uniformly across masks by ∇2Fb(µ̃) ≈ H .
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Quadratic surrogate. Define the quadratic model of Fb around µ̃ by

Jb(µ) := Fb(µ̃) +∇Fb(µ̃)
⊤(µ− µ̃) + 1

2 (µ− µ̃)⊤H (µ− µ̃). (30)

Let
gb := ∇Fb(µ̃), ab := µ̃−H−1gb.

Completing the square yields an equivalent form

Jb(µ) = cb + 1
2 (µ− ab)

⊤H (µ− ab), (31)

where the (mask-dependent) constant

cb := Fb(µ̃)− 1
2 g

⊤
bH

−1gb

is independent of µ.

In particular, the unique minimizer of Jb is ab:

argmin
µ
Jb(µ) = ab.

If Fb is exactly quadratic with curvature H in this neighborhood, then µ(0)(xh) = ab; otherwise,
ab is the minimizer of the local quadratic approximation to Fb.

Adding the alignment penalty λA∥µ− ēx∥22 gives the first–order condition

(H + 2λAI)µ = H ab + 2λAēx.

Define

M := (H + 2λAI)
−1H, τ :=

L

L+ 2λA
∈ (0, 1).

Then the aligned minimizer is the affine shrinkage of ab toward ēx:

µ(A) = M ab + (I −M) ēx. (32)

Spectral bounds on M . Diagonalize H = QΛQ⊤ with Λ = diag(λi), m ≤ λi ≤ L. Then

M = Qdiag
( λi
λi + 2λA

)
Q⊤.

Let αi := λi/(λi + 2λA) ∈ (0, 1). It follows that

0 ⪯M ⪯ I, ∥M∥2 = max
i
αi =

λmax(H)

λmax(H) + 2λA
≤ τ, ∥M2∥2 = ∥M∥22 ≤ τ2, (33)

and, eigenwise, α2
i ≤ τ αi, hence

M2 ⪯ τ M ⪯ τ I. (34)

Variance contraction (operator norm). Since ēx is mask–independent, Eq. (32) gives

Varb
[
µ(A)

]
=M Varb

[
ab

]
M. (35)

Taking spectral norms and using submultiplicativity,∥∥Varb[µ(A)]
∥∥
2

≤ ∥M∥22
∥∥Varb[ab]∥∥2 ≤ τ2

∥∥Varb[ab]∥∥2,
which is Eq. (27) upon noting Varb[ab] = Varb[µ

(0)].

Variance contraction (trace). From Eq. (35),

tr Varb
[
µ(A)

]
= tr

(
Varb[ab]M

2
)

≤ ∥M2∥2 tr Varb[ab] ≤ τ2 tr Varb[ab],

where the inequality uses M2 ⪯ ∥M2∥2I and the fact that for A,B ⪰ 0, tr(AB) ≤ ∥B∥2 tr(A).
This yields Eq. (28).
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Löwner-order contraction under commutation (Higham & Lin, 2013). If Varb[ab] commutes
with H , then it commutes with M . In the common eigenbasis, write Varb[ab] = Qdiag(vi)Q

⊤

with vi ≥ 0. Then

M Varb[ab]M = Qdiag(α2
i vi)Q

⊤ ⪯ Qdiag(τ2vi)Q
⊤ = τ2 Varb[ab],

proving the Löwner-order bound.

Mean–drift contraction. From Eq. (32),

µ(A) − ēx =M(ab − ēx),

hence

∥µ(A) − ēx∥22 = (ab − ēx)
⊤M2(ab − ēx)

≤ (ab − ēx)
⊤(τI)(ab − ēx) (by Eq. (34))

= τ ∥ab − ēx∥22.

Taking Eb gives
Eb

[
∥µ(A) − ēx∥22

]
≤ τ Eb

[
∥µ(0) − ēx∥22

]
,

which is Eq. (29).
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