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Abstract. Sparse vision transformers have gained popularity as efficient
encoders for medical volumetric segmentation, with Swin emerging as a
prominent choice. Swin uses local attention to reduce complexity and
yields excellent performance for many tasks but still tends to overfit on
small datasets. To mitigate this weakness, we propose a novel architec-
ture that further enhances Swin’s inductive bias by introducing Inception
blocks in the feed-forward layers. The introduction of these multi-branch
convolutions enables more direct reasoning over local, multi-scale fea-
tures within the transformer block. We have also modified the decoder
layers in order to capture finer details using fewer parameters. We demon-
strate a performance improvement on eleven different medical datasets
through extensive experimentation. We specifically showcase advance-
ments over the previous state-of-the-art backbones on benchmark chal-
lenges like the Medical Segmentation Decathlon and Beyond the Cranial
Vault. By showing that the existing inductive bias in Swin can be fur-
ther improved, our work presents a promising avenue for enhancing the
capabilities of sparse vision transformers for both medical and natural
image segmentation tasks. Our code will be released upon acceptance.

Keywords: Vision transformers - Medical images - Convolutional Neu-
ral Networks.

1 Introduction

Vision Transformers (ViTs) [5] have emerged as a promising alternative to con-
volutional neural networks (CNNs) for many vision tasks. It is based on the
transformer architecture and uses attention [26] mechanisms to capture long-
range dependencies and global context in images. A ViT model can be pre-
trained in a self-supervised fashion using masked image modeling [10], but the
architecture suffers from long convergence times, large data requirements, and
high computational complexity.

Various attempts have been made to mitigate the limitations of ViT, includ-
ing the introduction of sparse attention mechanisms such as in the Swin Trans-
former (Swin) [19]. The local attention used in Swin reduces the computational
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complexity and yields an inductive bias by only attending to nearby features.
Swin also utilizes a shifted window scheme to enable cross-windows connections
over the local windows. Compared to ViT, sparse transformers generally per-
form better on moderate-sized datasets. Nonetheless, the inherent inductive bias
is limited to the attention windows, which in domains like medical volumetric
segmentation are often restricted to a small size due to the high GPU memory
requirements.

In this paper, we introduce an encoder architecture dubbed Swlnception
that attempts to alleviate these weaknesses. Swlnception is a hybrid model that
combines the strengths of transformers and convolution layers in a multi-branch
approach. The use of convolutions provides a stronger local inductive bias that
leads to faster convergence, more accurate predictions, and reduced data re-
quirements. Additionally, incorporating branches with receptive fields of mul-
tiple scales enhances the capacity of transformer blocks to process features of
different sizes effectively. We also modify the decoder in the previous state-of-
the-art model to more efficiently utilize the feature vectors from the encoder.
Extensive experiments conducted on a range of medical datasets representing
various modalities demonstrate a substantial advancement over the preceding
state-of-the-art methodologies.

The main contributions can be summarized as follows:

1. We show that the inductive bias of the sparse transformer Swin can be
improved further by introducing convolutions in the feed-forward blocks.

2. We present a novel encoder architecture based on these findings named Swin-
ception that has an improved inductive bias, a larger receptive field, and
sub-layer multi-scale features.

3. We improve upon an existing decoder for medical volumetric segmentation,
resulting in a model with fewer parameters and better performance.

4. Experimental results demonstrate improved performance compared to the
previous state-of-the-art on two publicly available benchmarks, the Medical
Segmentation Decathlon (MSD) and Beyond the Cranial Vault (BTCV).

2 Related Work

Efficient Vision Transformers. The ViT suffers from quadratic complexity
and there are various methods to reduce it to linear complexity to enable larger
inputs. Some works [2, 15] approximate the attention operation with a less com-
putationally expensive one. While, others [29, 27] approximate the softmax op-
eration inside the attention operator by replacing the key and value matrices
with a low-rank approximation.

Sparse Vision Transformers. The predominant approach, also employed in
our paper, involves reducing complexity through sparse attention. Extensive ef-
forts [19,12, 4, 30] have been dedicated to linearizing the attention operation by
incorporating sparseness, with each work employing different selection methods
for tokens to attend to. Among these methods, sparse local attention stands out
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for vision tasks due to its inductive local bias. However, enlarging their win-
dow size is costly and the receptive field can often be relatively small. Among
sparse transformers, Swin is widely adopted, primarily for its shifted window
strategy that enhances the receptive field. While state-of-the-art vision models
pre-trained on massive datasets like JFT [32] often use some kind of ViT variant
as encoders, Swin-based models are frequently preferred in domains with smaller
datasets, such as medicine.

Transformer-Convolution hybrid models. Considering the complementary
properties of CNNs and transformers, it is natural to want to combine the two
architectures. Several studies have investigated using depth-wise convolutions
in the feed-forward layer [31,7,29] within a ViT. Depth-wise convolutions have
also both been used to project attention matrices [28] and to directly produce
attention weights [8]. Depth-wise convolutions are cheap but lack the ability to
use information from different channels, limiting their expressiveness. In [33, 21],
convolutions are explored using a separate parallel branch to the multi-head self-
attention, similar to Inception [23]. However, in both works, the interlayer fusion
between the CNN and transformer features is applied to downsampled features
due to the full attention.

Medical volumetric segmentation. Until recently, the state-of-the-art in
medical volumetric segmentation were models identified using network search
[11, 14]. While vision transformers have become state-of-the-art for image classi-
fication, medical volumetric segmentation cannot utilize full attention as easily.
The extra dimension introduces an order of magnitude more input tokens, which
is problematic for models with quadratic computational complexity. The com-
plexity can be alleviated by using smaller models and larger patch embeddings
[9], but most medical segmentation tasks require voxel-level precision where large
patches are counter-productive. Newer models, therefore, use transformers with
some way of enforcing locality [20,13] and most of them [25,34,18,16] use a
Swin-based encoder due to its lower computational complexity. Recent research
[18,16] has examined the combination of Swin and convolutions; however, this
exploration has been limited to parallel integration with transformer blocks,
which prevents the localized enhancement of features within the blocks. The top
ranking architecture on MSD, the Universal Model [17], utilizes SwinUNETR
[25] as the base segmentation model and improves performance by significantly
increasing the size of the pre-training dataset through CLIP embeddings.

3 Methodology

In this section, we introduce the Swlnception architecture, which uses a UNet
structure with multi-scale features. An overview of the proposed architecture
is shown in Fig. 1, and additional details about the SwInception encoder and
decoder are given below.
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Fig. 1: An overview of the Swlnception architecture for volumetric segmentation.

3.1 The Swlnception encoder

As illustrated in Fig. 1, the Swlnception encoder consists of a patch embedding
layer and four stages of Swinception blocks. The patch embedding layer is im-
plemented as a convolutional layer comprising 48 filters, with both the stride
and patch size set to two and no activation function. Each stage consists of two
sequential Swlnception blocks and maintains the same resolution throughout the
entire stage. Between each stage, a patch merging block is used to downsample
the resolution with a factor of 8 while doubling the output dimension. The patch
merging block differs from Swin by utilizing a convolutional layer with overlap-
ping filters as proposed in [34], which allows for stronger representations at the
subsequent stages.

The Swlnception block. Swlnception is the first model that incorporates con-
volutions directly into the window multi-head self-attention (W-MHSA) mech-
anism from the Swin transformer [19]. The convolutions are introduced in the
feed-forward layer of the transformer block and can therefore improve the fea-
tures used in later attention operations. More specifically, Swlnception uses In-
ception [23,22] blocks as illustrated in Figs. 2 and 2b.

Incorporating the Inception block in the Swin transformer introduces several
advantageous features. First, convolutions enforce a stronger inductive bias to-
ward locality in the architecture, reducing convergence time and lowering data
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Fig.2: (a) A Swilnception block with layer normalization (LN), windowed multi-
head self-attention (W-MHSA), and the Inception feed-forward block. (b) The
Inception feed-forward block. Here C' denotes the number of channels.

requirements, which is particularly relevant for transformers. Second, convo-
lutions increase the receptive field of the Swin transformer by expanding the
number of tokens that communicate in each block. Third, convolutions in a
transformer-based architecture can provide a stronger positional encoding and
improve translation-equivariance, as shown in [3]. Incorporating the Inception
block into the Swin transformer architecture results in enhanced performance
and efficiency, albeit with a slight increase in parameter count. This is alleviated
using bottlenecks at the beginning of the more expensive Inception branches.

The Inception block serves as an intermediate solution between basic convo-
lutional layers and depth-wise convolutional layers. While depth-wise convolu-
tions are computationally inexpensive and less prone to overfitting, they cannot
capture features that require input from multiple channels. In contrast, regu-
lar convolutions offer high capacity but can be expensive to use in transformer
architectures. The Inception block strikes a balance by incorporating branches
that operate on a subset of input channels, similar to depth-wise convolutions
while retaining the ability to capture multi-channel features. By incorporating
kernels of different sizes in the branches, our model can utilize features at varying
scales within each transformer block, which proves advantageous for tasks like
tumor detection involving objects of diverse sizes. Furthermore, both the pooling
and convolution branches have local invariance to translations, enhancing this
property of sparse vision transformers. It should be noted that in our research,
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we explored many different variations of Inception branches, convolutions, and
depth-wise convolutions, but we are presenting the one we deemed best.

SwlInception block implementation. The output of SW-MHSA is reshaped
into a volume and processed in parallel by each of the four Inception branches
employed by Swinception. Let us recall that the MLP used in the feed-forward
layer of Swin and most other transformer architectures utilize two sequential
linear layers with an inverted bottleneck ratio of 4. From Fig. 2b, we observe
that if the number of filters in the 1x1x1 branch is set to 4C and the number of
filters in every other branch is zero (meaning that those branches are not used),
we obtain the regular Swin MLP. By adjusting the number of filters in each
branch, we can adjust how much relative weight to give each branch and thus
how similar the Swlnception block is to an MLP. In our research, we explored
several types of weightings and found that equal branch weightings gave the
strongest performance.

Each Inception branch consists of convolutional blocks that include a con-
volutional layer, batch normalization layer, and a GELU activation layer. The
1x1x1 branch comprises a single 1x1x1 convolutional block. The 3x3x3 branch
first bottlenecks the feature channels by % via a 1x1x1 convolutional block before
applying a 3x3x3 convolutional block. The 5x5x5 branch has the same bottleneck
as the 3x3x3 branch, followed by two 3x3x3 convolutional blocks. The pooling
branch incorporates a 3x3x3 average pooling layer followed by a 1x1x1 convo-
lutional block. The output of each branch is concatenated and reshaped into
tokens before a final linear layer reduces the dimensionality back to the original
size.

The output Y of a Swinception block can be written as follows. Let X
be the input to a Swlnception block, LN the layer normalization, and B;, the
ith Inception branch with ¢ € {1,2,3,4}. The shifted window multi-head self-
attention is denoted by SW-MHSA and shifts the windows every other block.
Then, according to Figs. 2 and 2b,

Z = SW-MHSA(LN(X)) + X,

U = LN(Z),
V = Concat(B1(U),By(U),B3(U),B4(U)),
Y = Linear(V) + Z.

3.2 The Swlnception decoder

The Swinception decoder is based on the decoder used in SwinUNETR [25] but
introduces a few important modifications. A complete diagram of the decoder
model can be found in Fig. 1. The decoder produces a segmentation map by uti-
lizing the multi-scale features obtained from the encoder through the lateral skip
connections. Each feature is first fed through a residual block and concatenated
with the features from the layer below. The resulting volume is upscaled with an
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upsampling block and then sent through a second residual block. This process
is repeated for every layer [;,7 € {0,1,2,3,4} where [y is the patch embedding
layer. The residual convolutional block comprises two 3x3x3 convolutional layers
and a residual connection. The upsampling block utilizes a single 2x2x2 trans-
pose convolutional layer. Instance normalization and PReLLU activation are also
employed in both block types.

What differentiates the Swlnception decoder from the SwinUNETR, decoder
is that the extracted features are taken prior to the patch-merging step. This
yields higher resolution features, obviates one upsampling step in the decoder,
and eliminates the patch-merging step after the final Swlnception block. Due
to this reduction in the number of patch-merging operations, we also utilize a
more expensive but efficient convolutional patch-merging strategy as mentioned
in Section 3.1. The decoder still works on multi-scale features but at a higher
resolution, which is beneficial for segmenting small objects. Additionally, the
extracted feature vectors from the encoder are lower-dimensional, resulting in
fewer decoder parameters as the convolutional filters become smaller.

4 Experiments and Results

For an extensive evaluation of the capabilities of the SwInception architecture
for medical volumetric segmentation, we utilize the Beyond the cranial vault
(BTCV) [6] dataset as well as all ten datasets in the Medical Segmentation
Decathlon challenge (MSD) [1].

We present results from two Swlnception versions. One uses the hyperparam-
eters, pre-trained weights, and code from SwinUNETR [25], and we refer to that
paper for details. As Swlnception has several additional layers not included in the
SwinUNETR pre-trained weights, they have been loaded in a non-strict fashion
and frozen for the first 25 epochs. The other version, denoted by Swlnception*, is
an optimized Swilnception model that utilizes pre-trained Swilnception weights
and hyperparameters optimized specifically for Swlnception. The pre-training
was performed using the same methodology and datasets as presented in the
SwinUNETR paper but using a Swlnception encoder. Detailed hyperparameters
can be found in Appendix 1.2 in the supplementary material.

We compare our work to the top three ranked models in the MSD challenge,
SwinUNETR, nnUNet and DiNTS. We also perform a comparison using the
number one ranked solution, the Universal Model [17], with both SwInception
and SwinUNETR as the base segmentation model. All models used for compar-
ison have been trained using their respective shared code, weights, and optimal
hyperparameters.

The comparisons of architectures for medical volumetric segmentation in Sec-
tions 4.2 and 4.1 use averaged 5-fold cross-validation while the ablation stud-
ies are done on single folds. We have not compared performance on test data
for two main reasons. First, the challenges is now closed and does not accept
new submissions. Second, SwinUNETR [25,24] and other models use exten-
sive post-processing. The details regarding their post-processing steps are often
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unknown and, therefore, not reproducible. Considering that we want to com-
pare model performance and not post-processing performance, we have opted
for cross-validation as our method of choice.

All models are implemented in Python using the open-source libraries Py-
Torch and MONAI. Models have been trained using 4 A100 GPUs on a single

node with mixed precision.

4.1 Medical Segmentation Decathlon

The MSD challenge [1] contains 6 CT datasets and 4 MRI datasets. Each
dataset/task has its own training and test data, and the challenge covers a wide
range of segmentation tasks for organs and lesions. The number of samples in
the training sets ranges between 20 volumes (Heart) to 484 volumes (Brain).

We compare Swinception, Swinception®, and the top three models in the
challenge: SwinUNETR, nnUNet, and DiNTS. For each task, we evaluate the
models through 5-fold cross-validation over all training data. The averaged re-
sults across all folds can be found in Table 1; for detailed results and the specific
hyperparameters used by Swlnception® we refer to the supplementary material.
For MRI tasks, no pre-trained weights are used for any model. No post-processing
has been used for any of the listed models.

The results show that even the baseline Swlnception model outperforms the
previous state-of-the-art models when looking at average performance over all
tasks. In particular, a significant increase can be observed both at MRI tasks
such as prostate segmentation and CT tasks like lung cancer.

The optimized Swilnception® increases the gap further with large increases
at several tasks. Using Swlnception’s pre-trained weights grants major improve-
ments on CT tasks, possibly due to the transformer block weights being properly
optimized to leverage the locally enhanced features. The difference is particularly
clear on cancer segmentation tasks such as colon, liver, and pancreas, which are
some of the most difficult segmentation tasks in the challenge.

4.2 Beyond the Cranial Vault

BTCV [6] is an abdomen multi-organ segmentation dataset first released in con-
junction with MICCAIT 2015 comprised of 30 volumes, and the data is collected
from patients with either colorectal cancer or ventral hernia.

We perform a 5-fold cross-validation comparison between Swlnception, Swin-
ception®, SwinUNETR, nnUNet, and DiNTS. The results can be found in Ta-
ble 2. For detailed per-organ segmentation results, we refer to Appendix 1.1 in
the supplementary material.

The experiments show that Swlnception™ outperforms all other models on
average. The nnUNet architecture also shows great performance, indicating the
importance of larger crops for multi-organ segmentation in large volumes. The
experiments suffer from a large variance with big differences in performance
between different folds due to the small size of the dataset.

*
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Table 1: Cross-validation performance on MSD from Swlnception, SwinUNETR,
nnUNet, and DiNTS.

Task Brain Tumour[ Heart [ Liver [Hippocampus [ Prostate
Metric Mean Dice
DINTS 72.63 92.20 | 72.21 88.13 70.60
nnUNet 74.03 93.30| 76.84 89.04 71.72
SwinUNETR 74.26 90.78 | 78.69 87.08 71.59
Swlnception 74.49 92.57 | 79.22 87.34 73.01
Swlinception* 74.57 92.60 | 82.19 89.06 74.77
Task Lung | Pancreas | Hepatic Vessel ‘ Spleen ‘ Colon H All
Metric Mean Dice
DiINTS 60.35 | 57.98 59.94 94.68 | 37.54 || 70.63
nnUNet 64.09 | 66.58 66.58 95.35 | 41.53 || 73.91
SwinUNETR | 64.68 | 62.97 62.72 95.66 | 42.74 || 73.12
Swinception | 66.73 | 64.57 64.10 96.24 | 43.73 || 74.20
Swinception* | 68.03 | 67.03 66.33 96.39 [ 48.19 (| 75.92

Table 2: BTCV results from Swilnception and SwinUNETR.

Fold 1 | 2 | 3 ] 4 | 5 || An
Metric Mean Dice
DiNTS 77.11 | 72.49 | 76.57 | 75.78 | 71.04 | 74.60
nnUNet 82.91 | 79.33 | 81.32 | 82.15 | 73.57 | 79.86
SwinUNETR | 80.64 | 71.78 | 79.19 | 78.01 | 77.75 | 77.14
Swlnception | 82.53 | 71.61 | 80.49 | 80.06 | 78.67 | 78.67
Swlnception* | 84.15| 73.00 | 82.45|83.14 | 77.82 | 80.11

4.3 Ablation study on encoder and decoder combinations

We also investigate the effect the separate parts of the Swlnception architec-
ture have on performance by comparing different combinations of the encoder,
decoder, and patch-merging strategy. The experiments are all performed on
the Decathlon Prostate dataset, which is a challenging task with very large
inter-subject variability. All models have been trained from scratch without pre-
trained weights. For a fair comparison between the Swin and Swlnception en-
coders, we also include experiments where the inverted bottleneck ratio for the
feed-forward layer in Swin has been increased from 4.0 to 7.0 such that the
number of parameters is roughly equal for both models.

From the results in Table 3, it can be observed that changing the encoder
from Swin to Swlnception always increases performance, even when compared
to a Swin model with the same number of parameters in the feed-forward layer.
The experiments also show that the proposed decoder improves performance
for all encoder types with the added benefit of a lowered parameter count. The
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convolutional patch-merging strategy generally performs better but at the cost
of more parameters, specifically when using the SwinUNETR, decoder, due to
the final patch-merging operation being performed on feature maps with many
channels.

Table 3: Ablation study over encoder, decoder, and patch-merging strategies on
MSD Prostate.

Encoder Decoder Patch-Merging | MLP-ratio | Params || Mean Dice
Swin SwinUNETR Linear 4.0 62.8M 72.17
Swin SwinUNETR Linear 7.0 65.2M 72.36

Swinception | SwinUNETR Linear 4.0 64.9M 72.81
Swin SwinUNETR Conv 7.0 72.6M 73.48
Swinception | SwinUNETR Conv 4.0 72.3M 74.97
Swin Swlnception Linear 4.0 59.2M 73.99
Swin Swinception Linear 7.0 61.6M 72.38
Swlnception | Swinception Linear 4.0 61.3M 75.20
Swin Swlnception Conv 7.0 63.4M 72.99
Swlnception | Swinception Conv 4.0 63.1M 75.33

4.4 The choice of Inception block

We investigate the difference between adding an Inception block and depth-wise
convolutional blocks to a Swin encoder. The architecture denoted as SwinDepth
has two blocks of depth-wise convolutions, batch norms, and GELU activations
in between the two linear layers in the Swin feed-forward layer, similar to [29, 7,
31]. All models were trained on single folds from three challenging MSD datasets
with the SwinUNETR decoder and the linear patch merging strategy. All models
were trained from scratch without pre-trained weights. The inverted bottleneck
ratio in the MLP was increased to 7.0 for Swin and SwinDepth to make the
parameter count equivalent for all models.

The results in Table 4 show that introducing depth-wise convolutions can
improve performance for the baseline Swin encoder on specific datasets. How-
ever, the improvements for the Swlnception encoder are both larger and more
consistent while introducing only a minor increase in parameter count.

4.5 Visual comparison

To further analyze the differences between Swinception* and the models evalu-
ated on MSD, we present a visual comparison in Table 5. We can see that while
organ segmentation results are very similar regardless of the model, Swlnception
improves the rate of true positives for cancer segmentation without adding any
false positives. In general, the segmentations from Swlnceptions are smoother
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Table 4: A comparison between Swin encoders with feed-forward layers using
Inception and Depth-Wise convolutions.

Task Liver |Pancreas | Colon

Metric Mean Dice

Swin 83.84 | 76.02 | 73.55
SwinDepth | 84.25 | 75.78 | 76.14
Swinception | 84.84| 77.40 |77.08

and less fragmented, which improves the segmentation accuracy and reduces the
need for post-processing.

Table 5: Visual comparison using examples from MSD. A. Liver cancer. B. Colon
cancer. C. Pancreatic cancer. Green denotes organ segmentation, and yellow
denotes cancer segmentation for all examples.

Ground Truth Swlnception* SwinUNETR

nnUNet DINTS

4.6 Model performance on smaller datasets

In Table 6, a comparison between SwinUNETR, and Swlnception on several dif-
ferently sized subsets of Decathlon training data can be found. All the data that
was not used in the subset has been utilized as validation data. Both models
have been trained as in Section 4.1 using SwinUNETR hyperparameters and no
pre-trained weights. The results demonstrate that Swlnception outperforms Swi-
nUNETR on all subset sizes. Notably, the relative difference grows significantly
for the smaller datasets, especially for the more difficult task of segmenting colon
cancer. From an 11.8% relative increase on the colon subset containing half of
the dataset to a 34.5% relative increase on the smallest colon subset with only
10% of the data. As one effect of a stronger inductive bias is to reduce the data
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required to train models to convergence, these results align with the theorized
advantages that the multi-branch convolutions bring to the Swin encoder.

Table 6: A comparison between Swinception and SwinUNETR on small datasets.

Task Hippocampus Colon
Subset size | 50% [ 25% [ 10% [ 50% [ 25% [ 10%
Metric Mean Dice Tumor Dice

SwinUNETR | 91.09 | 90.67 | 90.15 | 38.64 | 27.05 | 15.18
Swinception [91.71]91.41|90.95|43.23 | 34.02 | 20.42

4.7 Swlnception as a backbone in UniversalModel

The UniversalModel, utilizing upon the CLIP framework [17], introduces a pre-
training strategy that facilitates the integration of multiple diverse medical
datasets in a supervised pre-training phase. Utilizing SwinUNETR as its back-
bone segmentation model, it currently stands as the SOTA method for the Med-
ical Segmentation Decathlon. Table 7 presents extensive cross-validation results
across all MSD CT tasks and BTCV, employing SwinUNETR and Swlnception
backbones. The models were pre-trained following the methodology outlined in
the paper, excluding any dataset containing MSD or BTCV data. The codebase
and hyperparameters remain consistent with the original paper, with two mod-
ifications: post-processing was disabled, and learning rates were optimized for
specific tasks due to the smaller volume of pre-training data.

Our findings consistently demonstrate that employing Swlnception as the
base segmentation model outperforms SwinUNETR across diverse tasks. This
performance improvement is particularly evident in challenging tasks that re-
quire the segmentation of small cancerous regions, such as those found in the
Lung and Colon. Some of the cancer tasks show worse performance compared to
the results in Table 1. This could be attributed to the fact that the pre-training
data now contains very low number of cancer annotations after the exclusion
of MSD data. Conversely, tasks such as Spleen and BTCV showcase substan-
tial performance enhancements, aligning with the prevalence of general organ
segmentation data in the majority of the pre-training datasets.

5 Conclusion

In this paper, we have investigated the effect a stronger local inductive bias can
have on the Swin architecture for small and medium-sized datasets and how to
efficiently utilize encoder features for volumetric semantic segmentation. These
investigations have resulted in a backbone encoder and a segmentation decoder
that we name Swlnception. This hybrid transformer-convolution architecture
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Table 7: UniversalModel with SwinUNETR and Swlnception as backbones on
Decathlon CT tasks and BTCV

Task Liver [ Lung [ Pancreas [ Hepatic Vessel [ Spleen [ Colon [ BTCV
Metric Mean Dice
UM-SwinUNETR | 76.13 | 57.07 | 62.55 62.49 96.63 | 43.01 | 82.60
UM-Swlinception | 77.40|60.06 | 64.39 63.73 96.83 |46.12 | 82.93

outperforms the previous state-of-the-art methods on competitive medical image
segmentation challenges. Finally, we observe significant increases in performance
on tiny datasets, possibly due to the stronger inductive bias introduced by the
convolutional branches.
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