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Abstract

Recent developments in deep learning optimization have brought about radically new algorithms
based on the Linear Minimization Oracle (LMO) framework, such as Muon [16] and Scion [29].
After over a decade of Adam’s dominance, these LMO-based methods are emerging as viable
replacements, offering several practical advantages such as improved memory efficiency, better
hyperparameter transferability, and most importantly, superior empirical performance on large-scale
tasks, including LLM training. However, a significant gap remains between their practical use and
our current theoretical understanding: prior analyses (1) overlook the layer-wise LMO application
of these optimizers in practice, and (2) rely on an unrealistic smoothness assumption, leading
to impractically small stepsizes. To address both, we propose a new LMO-based method called
Gluon, capturing prior theoretically analyzed methods as special cases, and introduce a new refined
generalized smoothness model that captures the layer-wise geometry of neural networks, matches
the layer-wise practical implementation of Muon and Scion, and leads to convergence guarantees
with strong practical predictive power. Unlike prior results, our theoretical stepsizes closely match
the fine-tuned values reported by Pethick et al. [29]. Our experiments with NanoGPT and CNN
confirm that our assumption holds along the optimization trajectory, ultimately closing the gap
between theory and practice.

1. Introduction

The success of deep learning models across a wide range of challenging domains is inseparable
from the optimization algorithms used to train them. As neural networks have grown deeper and
datasets larger, optimization has quietly become one of the most consequential components of
modern machine learning (ML). Nowhere is this more evident than in the training of large language
models (LLMs), which routinely consume thousands of GPU-hours. Adam [19] (and lately AdamW
[26])—being effective, relatively reliable, and widely adopted—has for over a decade served as the
default choice for this task. While this reliance has powered much of deep learning’s progress, it has
also exposed the shortcomings of adaptive moment estimation as a one-size-fits-all solution–namely,
sensitivity to learning rate schedules, heavy tuning requirements [34], and poor generalization when
not carefully calibrated [38]. However, a shift may now be underway. Recent optimizers, such as
Muon [16] and Scion [29], represent a significant departure from Adam-type methods: they forgo
the adaptive moment estimation in favor of a geometry-aware approach inspired by Frank-Wolfe
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algorithms [8, 30]. These optimizers are not only simpler to implement and easier to tune, but also
appear empirically stronger, outperforming AdamW in LLM training [24, 29].

Yet, despite their potential, these new methods are still in their infancy, and our understanding of their
theoretical foundations and practical utility in LLM training remains incomplete. Prior convergence
guarantees in realistic nonconvex regimes are still far from satisfactory. Indeed, as we argue in
2, the (very few) existing theoretical analyses fail to capture the true algorithms used in practice,
focusing instead on simplified variants that diverge from actual implementations. We identify two
key mismatches—neglect of layer-wise structure (2.1) and flawed stepsize choices stemming from
an inaccurate smoothness model (2.2)—and close this gap with a solution to both. We elaborate on
these advances in the remainder of the paper.

To this end, we introduce Gluon, a unified framework that faithfully models the layer-wise nature
of modern LMO-based optimizers. Our core technical contribution is a novel layer-wise (L0, L1)-
smoothness assumption (1) that offers a more realistic model of the loss landscapes in deep learning
than classical smoothness. Building on this new assumption, we provide the first principled conver-
gence analysis for this class of algorithms (1), yielding adaptive, layer-wise stepsizes and sharper
theoretical guarantees. Finally, we provide extensive empirical evidence (4) confirming that our
assumption holds in practice and that our theory provides a sound basis for understanding and
designing these optimizers. A detailed breakdown of these contributions can be found in B.

Our goal is to solve the general optimization problem minX∈S {f(X) := Eξ∼D [fξ(X)]} , where S
is a finite-dimensional vector space and fξ : S 7→ R are potentially non-convex and non-smooth
but continuously differentiable functions. Here, fξ(X) represents the loss of model parameterized
by X associated with training data point ξ sampled from probability distribution D. To make the
problem meaningful, we assume that f inf def

= infX∈S f(X) > −∞. In this work we are particularly
interested in the scenario when the parameter vector X ∈ S is obtained by collecting the matrices
Xi ∈ Si

def
= Rmi×ni of trainable parameters across all layers i = 1, . . . , p of a deep model. For

simplicity, we therefore write X = [X1, . . . , Xp]. This means that, formally, S is the d-dimensional

product space S def
=
⊗p

i=1 Si ≡ S1 ⊗ · · · ⊗ Sp, where d def
=
∑p

i=1mini. With each space Si we

associate the trace inner product ⟨Xi, Yi⟩(i)
def
= tr(X⊤

i Yi) for Xi, Yi ∈ Si, and an arbitrary norm
∥ · ∥(i), not necessarily induced by the inner product.

2. Theory vs. practice of Muon and Scion

In this work, we focus on an algorithm based on iteratively calling linear minimization oracles
(LMOs) across all layers, formalized in 2, for which we coin the name Gluon. In particular, for each
layer i, independently across all layers, Gluon iteratively updates the parameters via

Xk+1
i = LMOBk

i

(
Mk

i

)
def
= argmin

Xi∈Bk
i

⟨Mk
i , Xi⟩(i), where Bk

i
def
= {Xi ∈ Si : ∥Xi −Xk

i ∥(i) ≤ tki },

where tki > 0 is an adaptively chosen stepsize/radius/learning rate.1 Note that the momentum
Mk = [Mk

1 , . . . ,M
k
p ] ∈ S accumulates the contributions from the stochastic gradients ∇fξk(Xk) =

[∇1fξk(X
k), . . . ,∇pfξk(X

k)] ∈ S (see Step 2 of 2).

1. In this context, the radii defining the norm balls in the LMOs effectively act as stepsizes–see D.1. Accordingly, we use
the terms radius, stepsize, and learning rate interchangeably throughout.
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The Gluon framework generalizes a range of methods, including Muon and Scion, which are
recovered as special cases under specific norm choices (see 3.1 and E.1). Beyond their ability
to outperform AdamW on large-scale benchmarks, these optimizers offer a number of attractive
properties: improved memory efficiency, greater robustness to hyperparameter settings, and the
ability to transfer those settings across model sizes [29, 32]. Moreover, in contrast to Adam, they
were theoretically analyzed shortly after release and are guaranteed to converge under standard
assumptions of Lipschitz smoothness2 and bounded variance of stochastic gradients [20, 22, 29].

Gluon presents the method that is deployed in practice [15, 28] and has proven highly effective.
That said, we argue that existing analyses [20, 22, 29] do not accurately reflect this implementation,
diverging from it in two key ways. As such, they fail to explain why the algorithm performs so well.
Let us detail why.

2.1. Layer-wise structure

First, we briefly walk through the theoretical understanding offered by previous studies. Muon is
an optimizer specifically designed for hidden layers, leaving the first and last layers to be handled
by some other optimizer, e.g., Adam(W). Its original introduction by Jordan et al. [16] was purely
empirical, with no attempt at theoretical analysis. The first convergence result came from Li and
Hong [22], who analyzed the smooth nonconvex setting but focused solely on problem with p = 1,
effectively limiting the scope to the single-layer case. The Scion3 optimizer (a special case of Gluon)
proposed by Pethick et al. [29] improves upon Muon by applying the LMO-based rule to all layers,
ultimately achieving better empirical performance. Both this work and that of Kovalev [20] analyze
(a variant of) the general update rule

Mk = βkMk−1 + (1− βk)∇fξk(Xk), Xk+1 = LMOBk

(
Mk
)
, (1)

where βk ∈ [0, 1) is momentum, ∇fξk(Xk) is the stochastic gradient sampled at iteration k, and

Bk def
= {X ∈ S : ∥X −Xk∥ ≤ tk} is a norm ball centered at Xk with stepsize tk > 0. This setup

closely resembles the structure of Gluon, but is not exactly the same. Indeed, Gluon updates the
parameters layer-wise, not jointly over the full vectorX . This distinction is critical since for practical,
extremely high-dimensional models, calculating a single global LMO for the entire parameter vector
is prohibitively expensive, while breaking the problem into “smaller”, per-layer LMOs restores
computational feasibility.

Motivated by this disconnect, we formulate our analysis in the matrix product space S, explicitly
honoring the layer-wise structure. This enables us to study the actual per-layer updates (18), with
assumptions and hyperparameters adapted to each layer.

2.2. A theory with predictive power

All prior works claiming to guarantee convergence of 2 come with several serious analytical
shortcomings–and these directly translate into practical deficiencies. Concretely, all existing analyses

2. A function f : S 7→ R is L-smooth if ∥∇f(x)−∇f(y)∥⋆ ≤ L ∥x− y∥ for all x, y ∈ S, where S is a finite-
dimensional vector space equipped with a norm ∥ · ∥ and ∥ · ∥⋆ is the dual norm associated with ∥ · ∥.

3. Pethick et al. [29] introduce two variants of the Scion optimizer: one for constrained optimization, called simply
“Scion”, and another for unconstrained problems, referred to as “unconstrained Scion”. In this work, “Scion” refers
to either variant, and “unScion” is used when referring to the unconstrained version.
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Figure 1: Token embedding ma-
trix from the first/last layer.
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Figure 2: Self-attention query
matrix from the 4th block.
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Figure 3: Trajectory smoothness
across blocks (B.i) and layers.

Figure 4: Training NanoGPT on FineWeb validates our layer-wise (L0, L1)-smoothness model.

of Muon/Scion are built on the classical L-smoothness assumption, imposing a uniform smoothness
constant across all layers. This is problematic, as different layers have different geometries, and thus
should be treated differently.

But the issue runs much deeper. These algorithms are built for deep learning, where the objective
functions are already well known not to be smooth [6, 37]. This mismatch has consequences:
prior convergence analyses prescribe tiny constant stepsizes (see 1), uniform across all parameter
groups, which bear little resemblance to the tuned learning rates that yield state-of-the-art empirical
performance in practice. Consequently, they completely fail to explain why these methods perform
so well empirically. In other words, the theory falls short at the one thing it should do best: guiding
practical choices, leaving practitioners reliant on costly manual tuning.

Our result in 1 shows this mismatch is not inevitable. To better reflect the behavior of deep models, we
introduce a more expressive regularity condition: the layer-wise (L0, L1)-smoothness4 –an extension
of the generalized smoothness model of Zhang et al. [37], applied at the layer level.

Assumption 1 (Layer-wise (L0, L1)-smoothness) The function f : S 7→ R is layer-wise (L0, L
1)-

smooth with constants L0 def
= (L0

1, . . . , L
0
p) ∈ Rp

+ and L1 def
= (L1

1, . . . , L
1
p) ∈ Rp

+. That is, the
inequality

∥∇if(X)−∇if(Y )∥(i)⋆ ≤
(
L0
i + L1

i ∥∇if(X)∥(i)⋆
)
∥Xi − Yi∥(i) (2)

holds for all i = 1, . . . , p and all X = [X1, . . . , Xp] ∈ S, Y = [Y1, . . . , Yp] ∈ S, where ∥ · ∥(i)⋆ is

the dual norm associated with ∥ · ∥(i) (i.e., ∥Xi∥(i)⋆
def
= sup∥Zi∥(i)≤1 ⟨Xi, Zi⟩(i) for any Xi ∈ Si).

Assumption 1 can be viewed as a generalization of the anisotropic “vector” (L0, L1)–smoothness
introduced by Liu et al. [25] (now framed in terms of arbitrary norms), which itself is a generalization
of the (L0, L1)–smoothness model of Zhang et al. [37]. As such, our analysis of Gluon goes beyond
all existing results, which have only considered the classical L-smooth setting. Crucially, however,

4. While we state 1 in this general form, it is worth noting that the proofs do not rely on its full strength. In all cases, we
only require the assumption to hold for pairs X , Y such that ∥X − Y ∥ < c for some constant c ≥ 0 (where ∥·∥ is any
norm on S). Specifically, the assumption is only invoked with X = Xk, Y = Xk+1, and since the stepsizes we use
are bounded, the distances between consecutive iterates remain bounded as well.
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this is not generalization for its own sake–we argue that this is in fact the right model for the problem
setting at hand. Why? There are (at least) two reasons.

First, unlike classical L-smoothness, our formulation aligns very closely with empirical obser-
vations. In Figures 1 and 2, we validate Assumption 1 in the context of training NanoGPT on
the FineWeb dataset. We plot estimated trajectory smoothness L̂i[k]

def
= ∥∇ifξk+1(Xk+1) −

∇ifξk(X
k)∥(i)⋆/∥Xk+1

i −Xk
i ∥(i) alongside the approximation L̂approx

i [k]
def
= L0

i+L
1
i ∥∇ifξk+1(Xk+1)∥(i)⋆,

where L0
i , L

1
i are layer-specific parameters estimated from the training run. The figures show these

quantities for parameters from the embedding layer and one of the transformer blocks. The close
correspondence between L̂i[k] and L̂approx

i [k] provides strong evidence that Assumption 1 holds
approximately along the training trajectory. In G, we further corroborate this finding, showing that
our assumption is satisfied across the entire model architecture for both the NanoGPT language
modeling task and a CNN trained on CIFAR-10. In all cases, we find that L0

i ≈ 0 for all i, again
highlighting the limitations of classical smoothness. Moreover, as shown in 3, trajectory smoothness
varies substantially across blocks and layers, underscoring the need for per-layer treatment. Together,
these results suggest that layer-wise (L0, L1)-smoothness offers a significantly more realistic model
of the loss landscape in modern deep learning.

Secondly, 1 not only better captures the geometry of the models, but also directly informs the design
of adaptive and practically effective stepsizes. In 1, we derive learning rates that reflect the local
geometry of each parameter group, guided by our layer-wise smoothness model. As demonstrated in
4, our theoretically grounded stepsizes turn out to be almost the same as the ones obtained by Pethick
et al. [29] via hyperparameter tuning–a striking validation of our approach, which further highlights
the need for layer-wise reasoning.

3. Main theory and results

To gain a better intuition into the structure of the updates, we begin with a deterministic formulation
of Gluon, formalized in Algorithm 1. At each iteration, the method independently minimizes a linear
approximation of f around each parameter group Xk

i within a ball of radius tki > 0, ultimately
allowing for layer-specific algorithmic design choices.

3.1. Examples of optimizers satisfying our framework

Deterministic Gluon describes a general class of methods, parameterized by the choice of norms
∥ · ∥(i) in the LMO. To illustrate the flexibility of this framework, we highlight several notable special
cases (see E.1 for more details). First, observe that the update rule (7) can be written as

Xk+1
i = Xk

i + tki LMO{Xi∈Si:∥Xi∥(i)≤1}

(
∇if(X

k)
)
= Xk

i + tki argmin
∥Xi∥(i)≤1

⟨∇if(X
k), Xi⟩(i). (3)

For any Xi ∈ Si = Rmi×ni , define ∥Xi∥α→β
def
= sup∥z∥α=1 ∥Xiz∥β , where ∥ · ∥α and ∥ · ∥β are

some (possibly non-Euclidean) norms on Rni and Rmi , respectively. Note that (3) naturally recovers
several known updates for specific choices of the layer norms, e.g., layer-wise normalized GD [36]
for Euclidean norms ∥ · ∥(i) = ∥ · ∥2, and layer-wise signGD [1] for max-norms ∥ · ∥(i) = ∥ · ∥∞.

Two special cases are particularly relevant to our analysis: Muon and the unScion optimizer for LLM
training. Their specific update rules, which are recovered by our framework, are detailed in E.1.
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Having demonstrated the framework’s flexibility through concrete examples, we now state a general
convergence result for deterministic Gluon.

Theorem 1 Let 1 hold and fix ε > 0. Let X0, . . . , XK−1 be the iterates of deterministic Gluon

(Algorithm 1) run with stepsizes tki =
∥∇if(X

k)∥(i)⋆
L0
i+L1

i ∥∇if(Xk)∥(i)⋆
. Then, to guarantee that

min
k=0,...,K−1

p∑
i=1

1/L1
i

1
p

∑p
j=1

1/L1
j

∥∥∥∇if(X
k)
∥∥∥
(i)⋆

≤ ε, (4)

it suffices to run the algorithm for

K =

⌈
2∆0 (

∑p
i=1

L0
i/(L1

i )
2)

ε2
(
1
p

∑p
j=1

1/L1
j

)2 +
2∆0

ε
(
1
p

∑p
j=1

1/L1
j

)⌉ (5)

iterations, where ∆0 def
= f(X0)− f inf .

When p = 1, our rates match the best-known complexity for finding a stationary point of (L0, L1)-
smooth functions, O (L0∆0/ϵ2 + L1∆0/ϵ), as established by Vankov et al. [33] for the Gradient Method.
While no prior work has analyzed deterministic Gluon under general (L0, L1)-smoothness, there
exist analyses under classical L-smoothness, treating the parameters as a single vector. The analysis
by Kovalev [20] guarantees convergence in K = ⌈6L∆0/ϵ2⌉ iterations. The same bound appears in Li
and Hong [22] and Pethick et al. [29] (by setting σ2 = 0). Since for p = 1, L-smoothness implies 1
with L1 = 0 (3), our rates match these prior results up to a constant factor. Thus, even in the smooth
setting, our bounds are as tight as those derived specifically for it.

However, the real strength of our guarantees lies in their broader applicability. Our analysis is
much more general than prior studies, as it extends beyond standard smoothness–allowing L1

i > 0
introduces additional terms that drive the accelerated convergence enabled by (L0, L1)-smoothness.
This richer model is essential for explaining the empirical speedup of methods like Muon, and much
more accurately reflects the geometry of neural network loss surfaces. Indeed, as we demonstrate in
4, the assumption typically holds with L0

i ≈ 0 and L1
i > 0.

Practical radii tki . Unlike previous analyses [20, 22, 29], which prescribe impractically small
constant radii proportional to ϵ, our framework allows tki to be adaptive to the loss landscape.
Therefore, tki can be larger early in training when ∥∇if(X

k)∥(i)⋆ is large and gradually shrink as
the gradient norm decreases. In the special case when L0

i ≈ 0 (as observed empirically), tki ≈ 1/L1
i ,

which is substantially larger than the radii dictated by earlier analyses. Crucially, as shown in 4, our
adaptive stepsizes closely match those that yield state-of-the-art empirical performance identified by
Pethick et al. [29] through hyperparameter tuning.

4. Experiments

We conduct experiments to validate our central claim: that layer-wise (L0, L1)-smoothness (1) is
a realistic and useful model for modern deep learning optimizers. To this end, we train a 124M
parameter NanoGPT model on the FineWeb dataset using the unScion optimizer. Our central
finding, illustrated in 4, is that the (L0, L1)-smoothness model accurately captures the empirical
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trajectory smoothness across different layers of the transformer, whereas classical L-smoothness
does not.

This result has direct practical implications. Based on the fitted smoothness parameters from the
training run, our theory suggests layer-specific stepsizes of approximately tki ≈ 1/70 ≈ 0.014
for transformer block layers and a much larger tkp ≈ 1/1.3 ≈ 0.77 for the embedding and output
layers. This theoretically-derived structural difference justifies the empirical discovery that using
significantly different learning rates for these groups is critical for state-of-the-art performance. Thus,
our framework provides a principled foundation for guiding hyperparameter design. All detailed
experimental procedures, additional figures, and further ablation studies—including a validation on
CNNs—are provided in G.
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Appendix A. Related works

Generalized Smoothness. The classical L-smoothness assumption, where the gradient is Lipschitz
continuous with a global constant L, often fails to accurately capture the complex geometry of
loss landscapes in deep learning [6, 37]. To address this, Zhang et al. [37] introduced the (L0, L1)-
smoothness condition, empirically observing in language model experiments that a bound of the
form ∥∇2f(x)∥ ≤ L0 + L1∥∇f(x)∥ better described the Hessian norm behavior. This model,
where smoothness can depend on the gradient norm, allows for larger steps when gradients are
small and more conservative steps when gradients are large, reflecting typical training dynamics.
Subsequent works have analyzed standard optimization algorithms under this generalized smoothness
framework. For instance, Gorbunov et al. [9] and Vankov et al. [33] provided convergence analyses
for the Gradient Method. Hübler et al. [11] analyzed Normalized SGD with momentum in a
parameter-agnostic setting under (L0, L1)-smoothness. Our work extends this line by incorporating
(L0, L1)-smoothness into a layer-wise context using arbitrary norms, an approach that is particularly
well-suited for the LMO-based optimizers we study.

Anisotropic Smoothness. Recognizing the heterogeneous nature of parameters in large models,
researchers have explored anisotropic smoothness conditions, where smoothness constants can vary
across different dimensions or parameter blocks. Early work in this direction includes coordinate-
wise Lipschitz continuity for coordinate descent methods [27, 31]. More recently, Bernstein et al.
[4] analyzed signSGD under a weaker notion of coordinate-wise smoothness. Crawshaw et al.
[6] further developed this by analyzing Generalized signSGD under a generalized coordinate-wise
smoothness assumption, highlighting that different parameter groups can exhibit vastly different
geometries. Jiang et al. [13] focused on Adagrad’s analysis under coordinate-wise smoothness and
established lower bounds for SGD, underscoring the benefits of adaptivity. Liu et al. [25] proposed
“Anisotropic (L0, L1)-smoothness” (a vector version of (L0, L1)-smoothness applied coordinate-
wise) and demonstrated Adagrad’s provable advantages over SGD in this setting. Xie et al. [35]
also leveraged anisotropic smoothness concepts in their convergence analysis of Adam. Our work
contributes by defining and analyzing layer-wise (L0, L1)-smoothness, which combines the benefits
of the generalized smoothness model with a structured, anisotropic perspective tailored to the layer-
block architecture of neural networks and compatible with arbitrary layer-specific norms. This
framework is essential for understanding LMO-based methods like Muon and Scion.

LMO-based Optimizers. The optimizers Muon [16] and Scion [29] represent a recent class
of methods that have shown strong empirical performance in deep learning. Muon was initially
introduced as an effective empirical method, with its update rule for hidden layers inspired by ideas
from Bernstein and Newhouse [3]. Subsequently, Pethick et al. [29] (authors of Scion) explicitly
connected these types of updates to the Frank-Wolfe (FW) framework [8, 12], proposing the use of
layer-specific norms within an LMO-based update rule. These methods perform updates by solving,
for each layer, a linear minimization problem over a norm ball centered at the current iterate. Prior
theoretical analyses of these optimizers [20, 22, 29] have relied on standard L-smoothness and
analyzed a simplified global update. Our work provides the first convergence guarantees for these
methods under the more realistic layer-wise (L0, L1)-smoothness, directly addressing their practical
layer-wise nature and leveraging the geometric insights offered by LMOs over general norms.
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Appendix B. Contributions

We present a comprehensive theoretical and empirical study of a broad class of layer-wise LMO-based
optimization algorithms. Our key contributions can be summarized as follows:

⋄ A new generalized smoothness framework for deep networks. We introduce layer-wise
(L0, L1)-smoothness (1), a novel non-Euclidean generalized smoothness condition that reflects
the anisotropic, layer-wise structure of modern deep networks. This framework extends standard
(L0, L1)-smoothness assumption [37] to arbitrary norms while capturing per-layer variation, offering
a realistic foundation for analyzing deep learning optimizers.

⋄ First principled analysis of layer-wise methods. Building on our new assumption, we develop the
first faithful convergence analysis for a class of LMO-based algorithms we term Gluon (Algorithms 2
and 1). We recover known algorithms, including state-of-the-art Muon-type optimizers, as special
cases (3.1 and E.1), and pinpoint why earlier theoretical works fail to explain the empirical success
of these methods (2). In contrast to prior analyses that oversimplify the update rules used in practice,
our framework directly aligns with real-world implementations, bridging a critical gap between
theory and application.

⋄ Sharper and more general convergence theory. We develop a convergence theory that extends
prior work in both scope and sharpness. In the deterministic case (1), we establish convergence for
general non-convex objectives under our 1 (1), and under the block-wise PŁ condition (9). Unlike
earlier analyses, our theory yields adaptive, layer-wise stepsizes that align remarkably well with
those selected via tuning in large-scale experiments [29] (4). The analysis is extended to the practical
stochastic variant in Appendix E, where we prove convergence under a non-Euclidean bounded
variance assumption. In both deterministic and stochastic regimes, our guarantees are stronger
and more general than all prior work (see 1 in the Appendix for a detailed comparison). While
previous theories fail to explain the empirical success of Muon-type methods, we are the first to
demonstrate their provable advantage over SGD, offering tighter convergence rates under more
general assumptions (F). Moreover, we provide the first theoretical explanation of the benefits of
layer-wise learning rates, clearly establishing the advantages of structured, anisotropic optimization
in deep learning.

⋄ Empirical evidence. We validate our theoretical insights through extensive experiments (4 and G)
in both language modeling (NanoGPT on FineWeb) and image classification (CNN on CIFAR-10).
The results confirm that our 1 holds approximately throughout training and demonstrate the practical
utility of our theoretically prescribed stepsizes from 1.

13



GLUON: BRIDGING THEORY AND PRACTICE OF LMO-BASED OPTIMIZERS

Appendix C. Auxiliary lemmas

Lemma 2 Let f : S 7→ R satisfy Assumption 1. Then, for any X,Y ∈ S, we have

|f(Y )− f(X)− ⟨∇f(X), Y −X⟩| ≤
p∑

i=1

L0
i + L1

i ∥∇if(X)∥(i)⋆
2

∥Yi −Xi∥2(i).

Proof For all X,Y ∈ S we have

f(Y ) = f(X) +

∫ 1

0
⟨∇f(X + τ(Y −X)), Y −X⟩ dτ

= f(X) + ⟨∇f(X), Y −X⟩+
∫ 1

0
⟨∇f(X + τ(Y −X))−∇f(X), Y −X⟩ dτ.

Therefore, using the Cauchy-Schwarz inequality and Assumption 1, we obtain

|f(Y )− f(X)− ⟨∇f(X), Y −X⟩|

≤

∣∣∣∣∣
∫ 1

0

p∑
i=1

⟨∇if(X + τ(Y −X))−∇if(X), Yi −Xi⟩(i) dτ

∣∣∣∣∣
≤

∫ 1

0

p∑
i=1

∣∣∣⟨∇if(X + τ(Y −X))−∇if(X), Yi −Xi⟩(i)
∣∣∣ dτ

≤
∫ 1

0

p∑
i=1

∥∇if(X + τ(Y −X))−∇if(X)∥(i)⋆ ∥Yi −Xi∥(i)dτ

≤
∫ 1

0

p∑
i=1

τ
(
L0
i + L1

i ∥∇if(X)∥(i)⋆
)
∥Yi −Xi∥2(i)dτ

=

p∑
i=1

L0
i + L1

i ∥∇if(X)∥(i)⋆
2

∥Yi −Xi∥2(i).

Lemma 3 Suppose that f is L-smooth with respect to the norm defined in (6), i.e.,

∥∇f(X)−∇f(Y )∥max ⋆ ≤ L ∥X − Y ∥max ,

where X = [X1, . . . , Xp] and Y = [Y1, . . . , Yp] with Xi, Yi ∈ Si. Then 1 holds with L0
i ≤ L and

L1
i = 0 for all i = 1, . . . , p.

Proof L-smoothness and the definition of the norm give

p∑
i=1

∥∇if(X)−∇if(Y )∥(i)⋆ ≤ Lmax
{
∥X1 − Y1∥(1) , . . . , ∥Xp − Yp∥(p)

}
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for allX,Y ∈ S . In particular, choosingX = [X1, . . . , Xp] and Y = [X1, . . . , Xj−1, Yj , Xj+1, . . . Xp],
we have

∥∇jf(X)−∇jf(Y )∥(j)⋆ ≤
p∑

i=1

∥∇if(X)−∇if(Y )∥(i)⋆ ≤ L ∥Xj − Yj∥(j)

for any j ∈ {1, . . . , p}, proving the claim.

Lemma 4 Suppose that x1, . . . , xp, y1, . . . , yp ∈ R, maxi∈[p] |xi| > 0 and z1, . . . , zp > 0. Then

p∑
i=1

y2i
zi

≥
(
∑p

i=1 xiyi)
2∑p

i=1 zix
2
i

.

Proof Cauchy-Schwarz inequality gives(
p∑

i=1

xiyi

)2

=

(
p∑

i=1

yi√
zi

√
zixi

)2

≤

(
p∑

i=1

y2i
zi

)(
p∑

i=1

zix
2
i

)
.

Rearranging, we obtain the result.

Lemma 5 (Technical Lemma 10 by Hübler et al. [11]) Let q ∈ (0, 1), p ≥ 0, and p ≥ q. Further,
let a, b ∈ N≥2 with a ≤ b. Then

b−1∑
k=a−1

(1 + k)−p
k∏

τ=a−1

(
1− (τ + 1)−q

)
≤ (a− 1)q−p exp

(
a1−q − (a− 1)1−q

1− q

)
.

Lemma 6 (Technical Lemma 11 by Hübler et al. [11]) Let t > 0 and for k ∈ N≥0, set βk =
1− (k + 1)−1/2, tk = t(k + 1)−3/4, t > 0. Then, for all K ∈ N≥1 the following inequalities hold:

(i)
∑K−1

k=0 t
k
√∑k

τ=0(1− βτ )2
∏k

κ=τ+1(β
κ)2 ≤ t

(
7
2 +

√
2e2 log(K)

)
,

(ii)
∑K−1

k=0 t
k
∑k

τ=1 t
τ
∏k

κ=τ β
κ ≤ 7t2 (3 + log(K)).

Proof This is a direct consequence of Lemma 11 by Hübler et al. [11]. To obtain (ii), it suffices to
take the limit as L1 → 0 in statement (ii) of part (b).
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Appendix D. Remarks on the theoretical results

D.1. Note on radii and stepsizes

It is known (see, e.g., Gruntkowska et al. [10, Theorem D.1], who establish this for S = Rd under
Euclidean norms; the extension to general normed vector spaces is entirely analogous) that if g is a
convex function, then the solution to the problem

argmin
X∈Bk

g(X)

is unique and lies on the boundary of the ball Bk def
= {X ∈ S : ∥X − Xk∥ ≤ tk} (unless

Bk ∩ argminX∈S g(X) ̸= ∅).

This applies directly to the LMO subproblem solved at each iteration of Gluon in (18), since the
objective ⟨Mk

i , Xi⟩(i) is a linear function of Xi, and hence convex. In other words, each LMO step
moves the iterate from the center of the ball Xk

i to a new point Xk+1
i located on the boundary of Bk

i ,
effectively traversing a distance of tki at each step. For this reason, we use the terms radius, stepsize,
and learning rate interchangeably.

D.2. Note on prior analyses

As presented, prior convergence results do not directly apply to the algorithms used in practice.
However, there is a workaround. Specifically, some of the existing convergence guarantees [20,
29] expressed in terms of the flat vector x are transferable to the structured parameters X =
[X1, . . . , Xl] ∈ S by employing the max-norm [2, 21], defined as

∥X∥max
def
= max

{
∥X1∥(1) , . . . , ∥Xp∥(p)

}
, (6)

with corresponding dual norm ∥Y ∥max ⋆ = sup∥X∥max≤1⟨X,Y ⟩ =
∑p

i=1 ∥Yi∥(i)⋆. Nevertheless,
these works do not make this connection explicit, and an additional layer of analysis is required
to ensure the guarantees meaningfully extend to the structured practical setting. Even if such a
translation was attempted, the global treatment introduces serious practical limitations. For example,
real-world training pipelines tune parameters on a per-layer basis, reflecting the heterogeneous
structure of deep networks. Max-norm-based guarantees overlook this variability and offer no
mechanism for per-layer control in hyperparameter selection.
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Table 1: Comparison of convergence guarantees for Gluon (Algorithms 2 and 1) to achieve
mink=0,...,K−1

∑p
i=1 E[∥∇if(X

k)∥(i)⋆] ≤ ε, where the O(·) notation hides logarithmic factors. Nota-
tion: K = total number of iterations, (L0, L1) = the result holds under layer-wise (L0, L1)-smoothness, tki =
radius/stepsize, 1− βk = momentum.

Result Stochastic? (L0, L1) Rate Stepsizes tki 1− βk

[20, Theorem 1] ✗ ✗ O
(

1
K1/2

)
const ∝ 1

K1/2
(b) —

[20, Theorem 2] ✓ ✗ O
(

1
K1/4

)
const ∝ 1

K3/4
(b) const ∝ 1

K1/2

[22, Theorem 2.1](a) ✓ ✗ O
(

1
K1/4

)
const ∝ 1

K3/4
(b) const ∝ 1

K1/2

[29, Lemma 5.4] ✓ ✗ O
(

1
K1/4

)
∝ 1

k1/2

NEW: 1 ✗ ✓ O
(

1
K1/2

)
Adaptive —

NEW: 10 ✓ ✓ O
(

1
K1/4

)
∝ 1

k3/4 ∝ 1
k1/2

(a) Applies only to the Muon/Scion update in (8) with p = 1.
(b) These stepsizes are impractically tiny since they have an inverse dependence on the total number of iterations K.

Algorithm 1: Deterministic Adaptive Layer-Wise LMO-based Optimizer
Data: Initial model parameters X0 = [X0

1 , . . . , X
0
p ] ∈ S

for k = 0, 1, . . . ,K − 1 do
for i = 1, 2, . . . , p do

Choose adaptive stepsize/radius tki > 0 for layer i;

Update parameters for layer i via LMO over Bk
i

def
= {Xi ∈ Si : ∥Xi −Xk

i ∥(i) ≤ tki }:;

Xk+1
i = LMOBk

i

(
∇if(X

k)
)

def
= argmin

Xi∈Bk
i

⟨∇if(X
k), Xi⟩(i) (7)

end
Update full vector: Xk+1 = [Xk+1

1 , . . . , Xk+1
p ];

end

Appendix E. Deterministic case

We begin by considering the deterministic counterpart of Gluon, as formalized in 1. We first review
several existing algorithms that fall within this framework (E.1), followed by a proof of 1 (E.2).
Finally, we present an additional convergence guarantee under the layer-wise Polyak-Łojasiewicz
(PŁ) condition (E.3).

E.1. Special cases of the LMO framework

As outlined in 3.1, deterministic Gluon encompasses a general class of algorithms, parameterized
by the choice of norms ∥ · ∥(i) in the LMO. We now provide a more detailed discussion of the most
notable special cases.
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Layer-wise normalized GD [36]. Let ∥ · ∥(i) = ∥ · ∥2→2 for each parameter group and assume
that ni = 1 for all i = 1, . . . , p. In this case, the spectral norm reduces to the standard Euclidean
norm ∥ · ∥2, yielding the update rule

Xk+1
i = Xk

i − tki
∇if(X

k)

∥∇if(Xk)∥2
, i = 1, . . . , p,

which corresponds to layer-wise normalized GD. With a suitable choice of tki (see Theorem 1), the
method can also recover the Gradient Method for (L0, L1)-smooth functions [33].

Layer-wise signGD [1]. Suppose that ∥ · ∥(i) = ∥ · ∥1→∞ for each parameter group, with ni = 1
for all i = 1, . . . , p. Then, ∥ · ∥1→∞ reduces to ∥ · ∥∞, and the update becomes

Xk+1
i = Xk

i − tki sign
(
∇if(X

k)
)
, i = 1, . . . , p,

where the sign function is applied element-wise. This is equivalent to layer-wise signGD.

Muon [16]. Here, the spectral norm ∥ · ∥2→2 is used for all parameter groups, without restrictions
on ni. In this case, it can be shown that (7) is equivalent to

Xk+1
i = Xk

i − tki U
k
i

(
V k
i

)⊤
, i = 1, . . . , p, (8)

where ∇if(X
k) = Uk

i Σ
k
i

(
V k
i

)⊤ is the singular value decomposition [3]. This is exactly the per-
layer deterministic version of the Muon optimizer. In practical LLM training, a more general variant
of (8) incorporating stochasticity and momentum is applied to the intermediate layers, while the
input and output layers are optimized using other methods.

Unconstrained Scion [29]. We can also recover two variants of unScion introduced by Pethick
et al. [29]: one for training LLMs on next-token prediction, and another for training CNNs for image
classification.

• Training LLMs. Define the norms ∥ · ∥(i) as follows: for i = 1, . . . , p− 1, corresponding to
weight matrices of transformer blocks, set ∥ · ∥(i) =

√
ni/mi∥ · ∥2→2, and for the last group Xp,

representing the embedding and output layers (which coincide under the weight sharing regime
considered here), let ∥ · ∥(p) = np∥ · ∥1→∞. In this case, (7) becomes

Xk+1
i = Xk

i − tki

√
mi

ni
Uk
i

(
V k
i

)⊤
, i = 1, . . . , p− 1,

Xk+1
p = Xk

p −
tkp
np

sign
(
∇pf(X

k)
)
,

(9)

where ∇if(X
k) = Uk

i Σ
k
i

(
V k
i

)⊤ is the singular value decomposition. This is equivalent
to deterministic layer-wise unScion optimizer without momentum. A more general variant,
incorporating stochasticity and momentum and applied to all layers, was shown by Pethick
et al. [29] to outperform Muon on LLM training tasks.
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• Training CNNs. The main difference in the CNN setting is the presence of not only 2D weight
matrices, but also 1D bias vectors and 4D convolutional kernels parameters. Biases are 1D
tensors of shape RCout

i , for which we use scaled Euclidean norms. Convolutional parameters
(conv) are 4D tensors with shapes RCout

i ×Cin
i ×k×k, where Cout

i and Cin
i denote the number

of output and input channels, and k is the kernel size. To compute norms, we reshape each
4D tensor to a 2D matrix of shape RCout

i ×Cin
i k2 , and then apply a scaled ∥ · ∥2→2 norm. This

yields the norm choices ∥ · ∥(i) =
√

1/Cout
i ∥ · ∥2 for biases, ∥ · ∥(i) = k2

√
Cin

i /Cout
i ∥ · ∥2→2

for conv, and ∥ · ∥(p) = np∥ · ∥1→∞ for the last group Xp, associated with classification head
weights. Then, it can be shown that (7) is equivalent to

Xk+1
i = Xk

i − tki

√
Cout
i

∇if(X
k)

∥∇if(Xk)∥2
, (for biases),

Xk+1
i = Xk

i − tki
1

k2

√
Cout
i

Cin
i

Uk
i

(
V k
i

)⊤
, (for conv),

Xk+1
p = Xk

p −
tkp
np

sign
(
∇pf(X

k)
)
, (for head)

(10)

where ∇if(X
k) = Uk

i Σ
k
i

(
V k
i

)⊤ is the singular value decomposition. This corresponds to the
deterministic layer-wise unScion optimizer without momentum.

E.2. Proof of Theorem 1

We now state and prove a generalization of 1.

Theorem 7 Let 1 hold and fix ε > 0. Let X0, . . . , XK−1 be the iterates of deterministic Gluon

(Algorithm 1) run with stepsizes tki =
∥∇if(X

k)∥(i)⋆
L0
i+L1

i ∥∇if(Xk)∥(i)⋆
. Then,

1. In order to reach the precision

min
k=0,...,K−1

p∑
i=1

∥∥∥∇if(X
k)
∥∥∥
(i)⋆

≤ ϵ,

it suffices to run the algorithm for

K =

⌈
2∆0

∑p
i=1 L

0
i

ϵ2
+

2∆0L1
max

ϵ

⌉
(11)

iterations;

2. In order to reach the precision

min
k=0,...,K−1

p∑
i=1

 1
L1
i

1
p

∑p
j=1

1
L1
j

∥∥∥∇if(X
k)
∥∥∥
(i)⋆

 ≤ ε, (12)
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it suffices to run the algorithm for

K =


2∆0

(∑p
i=1

L0
i

(L1
i )

2

)
ε2
(

1
p

∑p
j=1

1
L1
j

)2 +
2∆0

ε

(
1
p

∑p
j=1

1
L1
j

)
 (13)

iterations,

where ∆0 def
= f(X0)− infX∈S f(X) and L1

max
def
= maxi=1,...,p L

1
i .

Remark 8 Let us compare bounds (11) and (13). Due to the reweighting of the gradient component
norms in (12), the rates are not exactly equivalent. Nevertheless, both use weights that sum to p,
ensuring a fair comparison. Obviously, (1/p

∑p
j=1

1/L1
j)

−1 ≤ L1
max, so the second term in (13) is

always no worse than its counterpart in (11). The comparison of the first terms, however, depends
on how the sequences {L0

i } and {L1
i } relate: if larger values of L0

i s tend to be attached to smaller
values of L1

i , then the first term in (11) improves over that in (13), while for a positive correlation
the opposite is true. Indeed, in the extreme case when L0

1 ≥ . . . ≥ L0
p and L1

1 ≤ . . . ≤ L1
p (or the

reverse ordering), Chebyshev’s sum inequality implies that
p∑

i=1

L0
i

(L1
i )

2(
1
p

p∑
j=1

1
L1
j

)2 ≥

(
1
p

p∑
i=1

L0
i

L1
i

)(
1
p

p∑
i=1

1
L1
i

)
1
p

(
1
p

p∑
j=1

1
L1
j

)2 ≥

(
1
p

p∑
i=1

L0
i

)(
1
p

p∑
i=1

1
L1
i

)
1
p

(
1
p

p∑
j=1

1
L1
j

) =

p∑
i=1

L0
i .

Conversely, if both sequences {L0
i } and {L1

i } are sorted in the same order (either increasing or
decreasing), the inequality reverses, and the first term of (13) may be tighter. That said, empirical
evidence we provide in 4 indicates that in practice L0

i ≈ 0 across all layers, in which case the first
terms in (11) and (13) effectively vanish. Then, (13) is clearly superior, replacing the worst-case
constant L1

max by the harmonic mean.

Proof We start with the result obtained in Lemma 2 with X = Xk and Y = Xk+1

f(Xk+1) ≤ f(Xk) +
〈
∇f(Xk), Xk+1 −Xk

〉
+

p∑
i=1

L0
i + L1

i ∥∇if(X
k)∥(i)⋆

2
∥Xk

i −Xk+1
i ∥2(i)

= f(Xk) +

p∑
i=1

[〈
∇if(X

k), Xk+1
i −Xk

i

〉
(i)

+
L0
i + L1

i ∥∇if(X
k)∥(i)⋆

2
∥Xk

i −Xk+1
i ∥2(i)

]
.

The update rule (7) and the definition of the dual norm ∥ · ∥(i)⋆ give

∥Xk
i −Xk+1

i ∥2(i) ≤
(
tki

)2
and 〈

∇if(X
k), Xk+1

i −Xk
i

〉
(i)

=
〈
∇if(X

k),LMOBk
i

(
∇if(X

k)
)
−Xk

i

〉
(i)

= −tki max
∥Xi∥(i)≤1

〈
∇if(X

k), Xi

〉
(i)

= −tki ∥∇if(X
k)∥(i)⋆.
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Consequently,

f(Xk+1) ≤ f(Xk) +

p∑
i=1

[
−tki ∥∇if(X

k)∥(i)⋆ +
L0
i + L1

i ∥∇if(X
k)∥(i)⋆

2

(
tki

)2]
.

Now, choosing

tki =
∥∇if(X

k)∥(i)⋆
L0
i + L1

i ∥∇if(Xk)∥(i)⋆
,

which minimizes the right-hand side of the last inequality, yields the descent inequality

f(Xk+1) ≤ f(Xk)−
p∑

i=1

∥∇if(X
k)∥2(i)⋆

2
(
L0
i + L1

i ∥∇if(Xk)∥(i)⋆
) . (14)

Summing the terms, we obtain

K−1∑
k=0

p∑
i=1

∥∇if(X
k)∥2(i)⋆

2
(
L0
i + L1

i ∥∇if(Xk)∥(i)⋆
) ≤

K−1∑
k=0

(
f(Xk)− f(Xk+1)

)
= f(X0)− f(XK)

≤ f(X0)− inf
X∈S

f(X) =: ∆0.

(15)

Now, the analysis can proceed in two ways:

1. Upper-bounding L1
i by L1

max := maxi=1,...,p L
1
i in (15), we obtain

K−1∑
k=0

p∑
i=1

∥∇if(X
k)∥2(i)⋆

2
(
L0
i + L1

max∥∇if(Xk)∥(i)⋆
) ≤ ∆0. (16)

Now, applying 4 with xi = 1, yi = ∥∇if(X
k)∥(i)⋆ and zi = 2

(
L0
i + L1

max

∥∥∇if(X
k)
∥∥
(i)⋆

)
gives

ϕ

(
p∑

i=1

∥∇if(X
k)∥(i)⋆

)
=

(∑p
i=1 ∥∇if(X

k)∥(i)⋆
)2

2
(∑p

i=1 L
0
i + L1

max

∑p
i=1 ∥∇if(Xk)∥(i)⋆

)
≤

p∑
i=1

∥∇if(X
k)∥2(i)⋆

2
(
L0
i + L1

max∥∇if(Xk)∥(i)⋆
) ,

where ϕ(t) def
= t2

2(
∑p

i=1 L
0
i+L1

maxt)
. Combining the last inequality with (16) and using the fact

that ϕ is increasing, we obtain

Kϕ

(
min

k=0,...,K−1

p∑
i=1

∥∇if(X
k)∥(i)⋆

)
≤

K−1∑
k=0

ϕ

(
p∑

i=1

∥∇if(X
k)∥(i)⋆

)
≤ ∆0, (17)
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and hence

min
k=0,...,K−1

p∑
i=1

∥∇if(X
k)∥(i)⋆ ≤ ϕ−1

(
∆0

K

)
,

where ϕ−1 is the inverse function (which exists since ϕ is increasing). Therefore, to reach the
precision mink=0,...,K−1

∑p
i=1

∥∥∇if(X
k)
∥∥
(i)⋆

≤ ϵ, it is sufficient to choose the number of
iterations to be

K =

⌈
∆0

ϕ(ϵ)

⌉
=

⌈
2
∑p

i=1 L
0
i∆

0

ϵ2
+

2L1
max∆

0

ϵ

⌉
.

2. Alternatively, we can start from the inequality (15) and apply 4 with xi = 1/L1
i , yi =∥∥∇if(X

k)
∥∥
(i)⋆

and zi = 2(L0
i + L1

i

∥∥∇if(X
k)
∥∥
(i)⋆

) to obtain

∆0 ≥
K−1∑
k=0

p∑
i=1

∥∇if(X
k)∥2(i)⋆

2
(
L0
i + L1

i ∥∇if(Xk)∥(i)⋆
)

≥
K−1∑
k=0

(∑p
i=1

1
L1
i

∥∥∇if(X
k)
∥∥
(i)⋆

)2
2
(∑p

i=1
1

(L1
i )

2

(
L0
i + L1

i ∥∇if(Xk)∥(i)⋆
))

=
K−1∑
k=0

(∑p
i=1

1
L1
i

∥∥∇if(X
k)
∥∥
(i)⋆

)2
2
(∑p

i=1
L0
i

(L1
i )

2 +
∑p

i=1
1
L1
i
∥∇if(Xk)∥(i)⋆

)
=

K−1∑
t=0

ψ

(
p∑

i=1

1

L1
i

∥∥∥∇if(X
k)
∥∥∥
(i)⋆

)
,

where ψ(t) def
= t2

2

(∑p
i=1

L0
i

(L1
i
)2

+t

) . Since the function ψ is increasing for t > 0, ψ−1 exists. It

follows that

∆0 ≥
K−1∑
k=0

ψ

(
p∑

i=1

1

L1
i

∥∥∥∇if(X
k)
∥∥∥
(i)⋆

)

≥ Kψ

(
min

k=0,...,K−1

p∑
i=1

1

L1
i

∥∥∥∇if(X
k)
∥∥∥
(i)⋆

)
,

and hence

min
k=0,...,K−1

p∑
i=1

1

L1
i

∥∥∥∇if(X
k)
∥∥∥
(i)⋆

≤ ψ−1

(
∆0

K

)
.

This in turn means that to reach the precision

min
k=0,...,K−1

p∑
i=1

 1
L1
i

1
p

∑p
j=1

1
L1
j

∥∥∥∇if(X
k)
∥∥∥
(i)⋆

 ≤ ε,
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it suffices to run the algorithm for

K =


∆0

ψ

(
ε

(
1
p

∑p
j=1

1
L1
j

))
 =


2∆0

(∑p
i=1

L0
i

(L1
i )

2

)
ε2
(

1
p

∑p
j=1

1
L1
j

)2 +
2∆0

ε

(
1
p

∑p
j=1

1
L1
j

)


iterations.

E.3. Convergence under the PŁ condition

We now establish convergence rates under the layer-wise Polyak–Łojasiewicz (PŁ) condition, intro-
duced in Assumption 2. This property is especially relevant for heavily over-parameterized neural
networks, as it has been shown to capture the properties of their loss landscapes [23].

Assumption 2 (Layer-wise Polyak-Łojasiewicz condition) The function f : S 7→ R satisfies the
layer-wise Polyak-Łojasiewicz (PŁ) condition with a constant µ > 0, i.e., for any X ∈ S

p∑
i=1

∥∇if(X)∥2(i)⋆ ≥ 2µ (f(X)− f⋆) ,

where f⋆ := infX∈S f(X) > −∞.

Assumption 2 reduces to the standard PŁ condition [17] by vectorizing the parameters and adopting
the Euclidean norm ∥ · ∥2.

Theorem 9 Let Assumptions 1 and 2 hold and fix ε > 0. Let X0, . . . , XK−1 be the iterates of

deterministic Gluon (Algorithm 1) run with tki =
∥∇if(X

k)∥(i)⋆
L0
i+L1

i ∥∇if(Xk)∥(i)⋆
.

1. If L1
i ≥ 0, then to reach the precision mink=0,...,K−1 f(X

k) − f⋆ ≤ ϵ, it suffices to run the
algorithm for

K =

⌈∑p
i=1 L

0
i∆

0

µϵ
+

√
2L1

max∆
0

√
µϵ

⌉
iterations,

2. If L1
i = 0 for all i = 1, . . . , p, then to reach the precision f(XK)− f⋆ ≤ ϵ, it suffices to run

the algorithm for

K =

⌈
L0
max

µ
log

∆0

ϵ

⌉
,

whereL0
max := maxi=1,...,p L

0
i ,L1

max := maxi=1,...,p L
1
i , ∆0 := f(X0)−f⋆ and f⋆ := infX∈S f(X).

Proof We consider two scenarios: (1) the general case with arbitrary L1
i ≥ 0 and (2) L1

i = 0 for all
i = 1, . . . , p.
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Case 1: L1
i ≥ 0. We start by following the same steps as in the proof of Theorem 1. From (17), we

have

K−1∑
k=0

ϕ

(
p∑

i=1

∥∇if(X
k)∥(i)⋆

)
≤ ∆0,

where ϕ(t) := t2

2(
∑p

i=1 L
0
i+L1

maxt)
. Now, using Assumption 2, we get(

p∑
i=1

∥∇if(X
k)∥(i)⋆

)2

≥
p∑

i=1

∥∇if(X
k)∥2(i)⋆ ≥ 2µ

(
f(Xk)− f⋆

)
.

Consequently, since ϕ is an increasing function,

Kϕ

(√
2µ
√
f(Xk⋆)− f⋆

)
≤

K−1∑
k=0

ϕ

(√
2µ
√
f(Xk)− f⋆

)

≤
K−1∑
k=0

ϕ

(
p∑

i=1

∥∇if(X
k)∥(i)⋆

)
≤ ∆0,

where k⋆ := argmink=0,...,K−1 f(X
k)− f⋆. Denoting the corresponding inverse function (which

exists since ϕ is increasing) by ϕ−1, it follows that√
2µ
√
f(Xk⋆)− f⋆ ≤ ϕ−1

(
∆0

K

)
≤
√

2µϵ.

Therefore, to reach the precision f(Xk⋆)− f⋆ ≤ ϵ, it is sufficient to choose the number of iterations

K =

⌈
∆0

ϕ
(√

2µϵ
)⌉ =

⌈∑p
i=1 L

0
i∆

0

µϵ
+

√
2L1

max∆
0

√
µϵ

⌉
.

Case 2: L1
i = 0. Inequality (14) from the proof of Theorem 1 with L1

i = 0 gives

f(Xk+1) ≤ f(Xk)−
p∑

i=1

∥∇if(X
k)∥2(i)⋆

2L0
i

.

Using the fact that

p∑
i=1

∥∇if(X
k)∥2(i)⋆

2L0
i

≥ min
j=1,...,p

1

2L0
j

p∑
i=1

∥∇if(X
k)∥2(i)⋆ =

1

2maxj=1,...,p L0
j

p∑
i=1

∥∇f(Xk)∥2(i)⋆

along with Assumption 2, we obtain

f(Xk+1) ≤ f(Xk)− µ

L0
max

(
f(Xk)− f⋆

)
.
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The remaining part of the proof follows from the simple observation

log

(
∆0

ϵ

)
≤ k

µ

L0
max

≤ k log

(
1

1− µ
L0
max

)
.
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Algorithm 2: Gluon: Stochastic Adaptive Layer-Wise LMO-based Optimizer with Momentum
Data: Initial model parameters X0 = [X0

1 , . . . , X
0
p ] ∈ S, momentum

M0 = [M0
1 , . . . ,M

0
p ] ∈ S, momentum decay factors βk ∈ [0, 1) for all iterations k ≥ 0

for k = 0, 1, 2, . . . ,K − 1 do
Sample ξk ∼ D;
for i = 1, 2, . . . , p do

Compute stochastic gradient ∇ifξk(X
k) for layer i;

Update momentum Mk
i = βkMk−1

i + (1− βk)∇ifξk(X
k) for layer i;

Choose adaptive stepsize/radius tki > 0 for layer i;

Update parameters for layer i via LMO over Bk
i

def
= {Xi ∈ Si : ∥Xi −Xk

i ∥(i) ≤ tki }:;

Xk+1
i = LMOBk

i

(
Mk

i

)
:= argmin

Xi∈Bk
i

⟨Mk
i , Xi⟩(i) (18)

end
Update full parameter vector Xk+1 = [Xk+1

1 , . . . , Xk+1
p ];

end

Appendix F. Stochastic case

In practice, computing full gradients is often infeasible due to the scale of modern ML problems. We
therefore turn to the practical Gluon (2), a stochastic variant of 1 that operates with noisy gradient
estimates available through a stochastic gradient oracle ∇fξ, ξ ∼ D.

Assumption 3 The stochastic gradient estimator ∇fξ : S 7→ S is unbiased and has bounded
variance. That is, Eξ∼D[∇fξ(X)] = ∇f(X) for all X ∈ S and there exists σ ≥ 0 such that

Eξ∼D
[
∥∇ifξ(X)−∇if(X)∥2(i)⋆

]
≤ σ2, ∀X ∈ S, i = 1, . . . , p.

Note that the choice of norm in 3 is not restrictive: in finite-dimensional spaces, all norms are
equivalent, so variance bounds remain valid up to a constant factor when compared to those based on
the standard Euclidean norm. The following result establishes the convergence properties.

Theorem 10 Let Assumptions 1 and 3 hold and fix ε > 0. Let X0, . . . , XK−1 be the iterates of
Gluon (Algorithm 2) run with βk = 1 − (k + 1)−1/2, tki = ti(k + 1)−3/4 for some ti > 0, and
M0

i = ∇ifξ0(X
0). Then

min
k=0,...,K−1

p∑
i=1

1

12L1
i

E
[
∥∇if(X

k)∥(i)⋆
]
≲

∆0

K1/4
+

1

K1/4

p∑
i=1

[
σ

L1
i

+
L0
i

(L1
i )

2

]
, (19)

where ∆0 := f(X0)− f inf and the notation ≲ hides numerical constants and logarithmic factors.

For p = 1, our rate in (19) recovers the complexity for finding a stationary point of (L0, L1)-smooth
functions established by Hübler et al. [11] for normalized SGD with momentum. When p ≥ 1,
compared to existing guarantees for Gluon, our 10 operates under the significantly more general 1
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and uniquely supports training with larger, non-constant stepsizes tki ∝ k−3/4. In contrast, prior
analyses prescribe constant, vanishingly small stepsizes tki ≡ ti ∝ K−3/4, tied to the total number
of iterations K (see 1).

F.1. Adaptive stepsizes

Before proving the main result from F, we first present an attempt to formulate an adaptive stepsize
strategy for the stochastic setting. This requires the following assumption:

Assumption 4 The stochastic gradient estimator ∇fξ : S 7→ S is unbiased and has bounded
relative variance. That is, E[∇fξ(X)] = ∇f(X) for all X ∈ S and there exists 0 ≤ ζ < 1 such that

∥∇ifξ(X)−∇if(X)∥(i)⋆ ≤ ζ∥∇ifξ(X)∥(i)⋆, i = 1, . . . , p

holds almost surely for all X ∈ S.

This assumption is somewhat unconventional due to the presence of the stochastic gradients on
the right-hand side of the inequality. It does not follow from standard conditions and does not fall
within known frameworks for modeling stochasticity, such as the ABC inequality of Khaled and
Richtárik [18]. Instead, it introduces a novel structure with parallels to the literature on contractive
compression [5, 7].

To elaborate, recall the definition of a contractive compressor:

Definition 11 (Contractive compressor) A stochastic mapping C : S → S is called a contractive
compressor if there exists α ∈ [0, 1) such that

E
[
∥C(X)−X∥2

]
≤ (1− α)∥X∥2 (20)

for any X ∈ S.

There is a conceptual similarity between 4 and the contractive property in (20). 4 can be interpreted as
asserting that the true gradient ∇f(X) is effectively a contraction of the stochastic gradient ∇fξ(X),
with contraction factor 1 − ζ. Unlike contractive compressors, there is no explicit mapping from
∇fξ(X) to ∇f(X), and the uniform bound implies the same contraction-like behavior across all
stochastic gradients.

Although 4 is admittedly strong, it allows us to establish a convergence theorem using an adaptive
stepsize strategy similar to the one employed in the deterministic case in 7.

Theorem 12 Let Assumptions 1 and 4 hold and fix ε > 0. Let X0, . . . , XK−1 be the iterates of

Gluon (Algorithm 2) run with βk = 0 and tki =
(1−ζ)∥∇ifξk (X

k)∥(i)⋆
L0
i+(1+ζ)L1

i ∥∇ifξk (X
k)∥(i)⋆

. Then,

1. In order to reach the precision

min
k=0,...,K−1

p∑
i=1

E
[∥∥∥∇if(X

k)
∥∥∥
(i)⋆

]
≤ ϵ,

it suffices to run the algorithm for

K =

⌈
2
∑p

i=1 L
0
i∆

0

(1− ζ)2 ϵ2
+

2(1 + ζ)L1
max∆

0

(1− ζ)2 ϵ

⌉
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iterations.

2. In order to reach the precision

min
k=0,...,K−1

p∑
i=1

 1
L1
i

1
p

∑p
j=1

1
L1
j

∥∥∥∇if(X
k)
∥∥∥
(i)⋆

 ≤ ε,

it suffices to run the algorithm for

K =


2∆0

∑p
i=1

L0
i

(L1
i )

2

ε2(1− ζ)2
(

1
p

∑p
j=1

1
L1
j

)2 +
2∆0(1 + ζ)

ε(1− ζ)2
(

1
p

∑p
j=1

1
L1
j

)


iterations,

where ∆0 def
= f(X0)− infX∈S f(X) and L1

max
def
= maxi=1,...,p L

1
i .

Proof Lemma 2 with X = Xk and Y = Xk+1 gives

f(Xk+1)

≤ f(Xk) +
〈
∇f(Xk), Xk+1 −Xk

〉
+

p∑
i=1

L0
i + L1

i ∥∇if(X
k)∥(i)⋆

2
∥Xk

i −Xk+1
i ∥2(i)

= f(Xk) +

p∑
i=1

[〈
∇if(X

k), Xk+1
i −Xk

i

〉
(i)

+
L0
i + L1

i ∥∇if(X
k)∥(i)⋆

2
∥Xk

i −Xk+1
i ∥2(i)

]

= f(Xk) +

p∑
i=1

[ 〈
∇ifξk(X

k), Xk+1
i −Xk

i

〉
(i)

+
〈
∇if(X

k)−∇ifξk(X
k), Xk+1

i −Xk
i

〉
(i)

]
+

p∑
i=1

L0
i + L1

i ∥∇if(X
k)∥(i)⋆

2
∥Xk

i −Xk+1
i ∥2(i),

and applying the Cauchy-Schwarz inequality, we get

f(Xk+1) ≤ f(Xk) +

p∑
i=1

[〈
∇ifξk(X

k), Xk+1
i −Xk

i

〉
(i)

+ ∥∇if(X
k)−∇ifξk(X

k)∥(i)⋆∥Xk+1
i −Xk

i ∥(i)

+
L0
i + L1

i ∥∇if(X
k)∥(i)⋆

2
∥Xk

i −Xk+1
i ∥2(i)

]
.

The update rule (18) and the definition of the dual norm ∥ · ∥(i)⋆ give

∥Xk
i −Xk+1

i ∥2(i) ≤
(
tki

)2
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and 〈
∇ifξk(X

k), Xk+1
i −Xk

i

〉
(i)

=
〈
∇ifξk(X

k),LMOBk
i

(
∇ifξk(X

k)
)
−Xk

i

〉
(i)

= −tki max
∥Xi∥(i)≤1

〈
∇ifξk(X

k), Xi

〉
(i)

= −tki ∥∇ifξk(X
k)∥(i)⋆.

Consequently, using Assumption 4, we obtain

f(Xk+1) ≤ f(Xk) +

p∑
i=1

[
− tki ∥∇ifξk(X

k)∥(i)⋆ + tki ∥∇if(X
k)−∇ifξk(X

k)∥(i)⋆

+
L0
i + L1

i ∥∇if(X
k)∥(i)⋆

2

(
tki

)2 ]

≤ f(Xk) +

p∑
i=1

[
− (1− ζ)tki ∥∇ifξk(X

k)∥(i)⋆

+
L0
i + (1 + ζ)L1

i ∥∇ifξk(X
k)∥(i)⋆

2

(
tki

)2 ]
.

Minimizing the right-hand side of the last inequality with respect to tki yields

tki =
(1− ζ)∥∇ifξk(X

k)∥(i)⋆
L0
i + (1 + ζ)L1

i ∥∇ifξk(X
k)∥(i)⋆

.

This greedy approach for choosing tki gives the descent inequality

f(Xk+1) ≤ f(Xk)−
p∑

i=1

(1− ζ)2∥∇ifξk(X
k)∥2(i)⋆

2
(
L0
i + (1 + ζ)L1

i ∥∇ifξk(X
k)∥(i)⋆

) .
Taking expectations, we have

E[f(Xk+1)] ≤ E[f(Xk)]−
p∑

i=1

E

[
(1− ζ)2∥∇ifξk(X

k)∥2(i)⋆
2
(
L0
i + (1 + ζ)L1

i ∥∇ifξk(X
k)∥(i)⋆

)] . (21)

Now, let us define the function ϕi(t) :=
(1−ζ)2t2

2(L0
i+(1+ζ)L1

i t)
. Since ϕi(t) is convex, Jensen’s inequality

gives

E[f(Xk)]− E[f(Xk+1)] ≥
p∑

i=1

E

[
(1− ζ)2∥∇ifξk(X

k)∥2(i)⋆
2
(
L0
i + (1 + ζ)L1

i ∥∇ifξk(X
k)∥(i)⋆

)]

≥
p∑

i=1

(1− ζ)2
(
E
[
∥∇ifξk(X

k)∥(i)⋆
])2

2
(
L0
i + (1 + ζ)L1

iE
[
∥∇ifξk(X

k)∥(i)⋆
]) .
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By Jensen’s inequality and 4

E
[∥∥∥∇if(X

k)
∥∥∥
(i)⋆

]
= E

[∥∥∥E [∇ifξk(X
k) | Xk

]∥∥∥
(i)⋆

]
≤ E

[
E
[∥∥∥∇ifξk(X

k)
∥∥∥
(i)⋆

| Xk

]]
= E

[∥∥∥∇ifξk(X
k)
∥∥∥
(i)⋆

]
,

and hence, using the fact that ϕi is increasing, we get

E[f(Xk)]− E[f(Xk+1)] ≥
p∑

i=1

(1− ζ)2
(
E
[∥∥∇if(X

k)
∥∥
(i)⋆

])2
2
(
L0
i + (1 + ζ)L1

i E
[
∥∇if(Xk)∥(i)⋆

]) .
Summing the terms gives

K−1∑
k=0

p∑
i=1

(1− ζ)2
(
E
[∥∥∇if(X

k)
∥∥
(i)⋆

])2
2
(
L0
i + (1 + ζ)L1

i E
[
∥∇if(Xk)∥(i)⋆

]) ≤
K−1∑
k=0

(
E[f(Xk)]− E[f(Xk+1)]

)
= E[f(X0)]− E[f(XK)]

≤ f(X0)− inf
X∈S

f(X) =: ∆0,

(22)

The remaining part of the proof closely follows the proof of Theorem 7. We can proceed in two
ways:

1. Upper-bounding L1
i by L1

max := maxi=1,...,p L
1
i in (22), we obtain

K−1∑
k=0

p∑
i=1

(1− ζ)2
(
E
[∥∥∇if(X

k)
∥∥
(i)⋆

])2
2
(
L0
i + (1 + ζ)L1

max E
[
∥∇if(Xk)∥(i)⋆

]) ≤ ∆0. (23)

Now, 4 with xi = 1, yi = (1−ζ)E
[
∥∇if(X

k)∥(i)⋆
]

and zi = 2
(
L0
i + (1 + ζ)L1

max E
[∥∥∇if(X

k)
∥∥
(i)⋆

])
gives

ϕ

(
p∑

i=1

E
[
∥∇if(X

k)∥(i)⋆
])

=

(
(1− ζ)

∑p
i=1 E

[
∥∇if(X

k)∥(i)⋆
])2

2
∑p

i=1

(
L0
i + (1 + ζ)L1

max E
[
∥∇if(Xk)∥(i)⋆

])
≤

p∑
i=1

(1− ζ)2 E
[
∥∇if(X

k)∥(i)⋆
]2

2
(
L0
i + (1 + ζ)L1

max E
[
∥∇if(Xk)∥(i)⋆

])
where ϕ(t) def

= (1−ζ)2t2

2(
∑p

i=1 L
0
i+(1+ζ)L1

maxt)
. Combining the last inequality with (23) and using the

fact that ϕ is increasing, we get

Kϕ

(
min

k=0,...,K−1

p∑
i=1

E
[
∥∇if(X

k)∥(i)⋆
])

≤
K−1∑
k=0

ϕ

(
p∑

i=1

E
[
∥∇if(X

k)∥(i)⋆
])

≤ ∆0.
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and hence

min
k=0,...,K−1

p∑
i=1

E
[
∥∇if(X

k)∥(i)⋆
]
≤ ϕ−1

(
∆0

K

)
,

where ϕ−1 denotes the inverse function (which exists since ϕ is increasing). Therefore, to reach
the precision mink=0,...,K−1

∑p
i=1 E

[
∥∇if(X

k)∥(i)⋆
]
≤ ϵ, it suffices to run the algorithm for

K =

⌈
∆0

ϕ(ϵ)

⌉
=

⌈
2∆0

∑p
i=1 L

0
i

(1− ζ)2ϵ2
+

2∆0(1 + ζ)L1
max

(1− ζ)2ϵ

⌉
iterations.

2. Alternatively, we can start from inequality (22) and apply 4 with xi = 1/L1
i , yi = (1 −

ζ)E
[∥∥∇if(X

k)
∥∥
(i)⋆

]
and zi = 2

(
L0
i + (1 + ζ)L1

i E
[∥∥∇if(X

k)
∥∥
(i)⋆

])
to obtain

∆0 ≥
K−1∑
k=0

p∑
i=1

(1− ζ)2 E
[∥∥∇if(X

k)
∥∥
(i)⋆

]2
2
(
L0
i + (1 + ζ)L1

i E
[
∥∇if(Xk)∥(i)⋆

])
≥

K−1∑
k=0

(∑p
i=1

1
L1
i
(1− ζ)E

[∥∥∇if(X
k)
∥∥
(i)⋆

])2
2
∑p

i=1

(
L0
i

(L1
i )

2 + (1 + ζ) 1
L1
i
E
[
∥∇if(Xk)∥(i)⋆

])
=

K−1∑
t=0

ψ

(
p∑

i=1

1

L1
i

E
[∥∥∥∇if(X

k)
∥∥∥
(i)⋆

])
,

where ψ(t) def
= (1−ζ)2t2

2

(∑p
i=1

L0
i

(L1
i
)2

+(1+ζ)t

) . Since the function ψ is increasing for t > 0, ψ−1 exists.

It follows that

∆0 ≥
K−1∑
k=0

ψ

(
p∑

i=1

1

L1
i

E
[∥∥∥∇if(X

k)
∥∥∥
(i)⋆

])

≥ Kψ

(
min

k=0,...,K−1

p∑
i=1

1

L1
i

E
[∥∥∥∇if(X

k)
∥∥∥
(i)⋆

])
,

and hence

min
k=0,...,K−1

p∑
i=1

1

L1
i

E
[∥∥∥∇if(X

k)
∥∥∥
(i)⋆

]
≤ ψ−1

(
∆0

K

)
.

This in turn means that to reach the precision

min
k=0,...,K−1

p∑
i=1

 1
L1
i

1
p

∑p
j=1

1
L1
j

∥∥∥∇if(X
k)
∥∥∥
(i)⋆

 ≤ ε,
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it suffices to run the algorithm for

K =


∆0

ψ

(
ε

(
1
p

∑p
j=1

1
L1
j

))


=


2∆0

∑p
i=1

L0
i

(L1
i )

2

(1− ζ)2ε2
(

1
p

∑p
j=1

1
L1
j

)2 +
2∆0(1 + ζ)

(1− ζ)2ε

(
1
p

∑p
j=1

1
L1
j

)


iterations.

F.2. Proof of Theorem 10

We now establish the main result of F. The guarantees in 10 follow from the more general result
below.

Theorem 13 Let Assumptions 1 and 3 hold and fix ε > 0. Let X0, . . . , XK−1 be the iterates of
Gluon (Algorithm 2) run with βk = 1 − (k + 1)−1/2, tki = ti(k + 1)−3/4 for some ti > 0, and
M0

i = ∇ifξ0(X
0).

1. If L1
i = 0, then

min
k=0,...,K−1

p∑
i=1

tiE
[
∥∇if(X

k)∥(i)⋆
]

≤ ∆0

K1/4
+

1

K1/4

p∑
i=1

[
σti

(
7 + 2

√
2e2 log(K)

)
+ L0

i t
2
i

(
87

2
+ 14 log(K)

)]
,

2. If L1
i ̸= 0, then for ti = 1

12L1
i
, we have

min
k=0,...,K−1

p∑
i=1

1

12L1
i

E
[
∥∇if(X

k)∥(i)⋆
]

≤ 2∆0

K1/4
+

1

K1/4

p∑
i=1

[
σ

6L1
i

(
7 + 2

√
2e2 log(K)

)
+

L0
i

144(L1
i )

2
(87 + 28 log(K))

]
,

where ∆0 := f(X0)− infX∈S f(X).
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Proof We again start with the result in Lemma 2 with X = Xk and Y = Xk+1, obtaining

f(Xk+1) ≤ f(Xk) +
〈
∇f(Xk), Xk+1 −Xk

〉
+

p∑
i=1

L0
i + L1

i ∥∇if(X
k)∥(i)⋆

2
∥Xk

i −Xk+1
i ∥2(i)

= f(Xk) +

p∑
i=1

[〈
∇if(X

k), Xk+1
i −Xk

i

〉
(i)

+
L0
i + L1

i ∥∇if(X
k)∥(i)⋆

2
∥Xk

i −Xk+1
i ∥2(i)

]

= f(Xk) +

p∑
i=1

[〈
Mk

i , X
k+1
i −Xk

i

〉
(i)

+
〈
∇if(X

k)−Mk
i , X

k+1
i −Xk

i

〉
(i)

]

+

p∑
i=1

L0
i + L1

i ∥∇if(X
k)∥(i)⋆

2
∥Xk

i −Xk+1
i ∥2(i).

Applying the Cauchy-Schwarz inequality, we have

f(Xk+1) ≤ f(Xk) +

p∑
i=1

[〈
Mk

i , X
k+1
i −Xk

i

〉
(i)

+ ∥∇if(X
k)−Mk

i ∥(i)⋆∥Xk+1
i −Xk

i ∥(i)

]

+

p∑
i=1

L0
i + L1

i ∥∇if(X
k)∥(i)⋆

2
∥Xk

i −Xk+1
i ∥2(i).

Now, the update rule (18) and the definition of the dual norm ∥ · ∥(i)⋆ give

∥Xk
i −Xk+1

i ∥2(i) ≤
(
tki

)2
and〈
Mk

i , X
k+1
i −Xk

i

〉
=
〈
Mk

i ,LMOBk
i

(
Mk

i

)
−Xk

i

〉
= −tki max

∥Xi∥(i)≤1

〈
Mk

i , Xi

〉
= −tki ∥Mk

i ∥(i)⋆.

Consequently,

f(Xk+1)

≤ f(Xk) +

p∑
i=1

[
−tki ∥Mk

i ∥(i)⋆ + tki ∥∇if(X
k)−Mk

i ∥(i)⋆ +
L0
i + L1

i ∥∇if(X
k)∥(i)⋆

2

(
tki

)2]

= f(Xk) +

p∑
i=1

[
− tki ∥Mk

i −∇if(X
k) +∇if(X

k)∥(i)⋆ + tki ∥Mk
i −∇if(X

k)∥(i)⋆

]

+

p∑
i=1

L0
i + L1

i ∥∇if(X
k)∥(i)⋆

2

(
tki

)2
≤ f(Xk) +

p∑
i=1

[
−tki ∥∇if(X

k)∥(i)⋆ + 2tki ∥Mk
i −∇if(X

k)∥(i)⋆
]

+

p∑
i=1

L0
i + L1

i ∥∇if(X
k)∥(i)⋆

2

(
tki

)2
.
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Taking expectations, we obtain

E[f(Xk+1)] ≤ E[f(Xk)] +

p∑
i=1

[
− tki E[∥∇if(X

k)∥(i)⋆] + 2tki E
[∥∥∥Mk

i −∇if(X
k)
∥∥∥
(i)⋆

]

+
L0
i + L1

iE[∥∇if(X
k)∥(i)⋆]

2

(
tki

)2 ]
.

Telescoping the last inequality gives
p∑

i=1

K−1∑
k=0

tki E[∥∇if(X
k)∥(i)⋆] ≤ ∆0 +

p∑
i=1

[
2

K−1∑
k=0

tki E
[∥∥∥Mk

i −∇if(X
k)
∥∥∥
(i)⋆

]
(24)

+
K−1∑
k=0

L0
i

2

(
tki

)2
+

K−1∑
k=0

L1
i

2
E[∥∇if(X

k)∥(i)⋆]
(
tki

)2 ]
,

where ∆0 := f(X0)− infX∈S f(X).

Now, inspired by the analysis in Hübler et al. [11], we introduce the following notation: µki :=

Mk
i − ∇if(X

k), γki := ∇ifξk(X
k) − ∇if(X

k), αk = 1 − βk, βa:b :=
∏b

k=a β
k and Sk

i :=

∇if(X
k−1)−∇if(X

k). Then, we can rewrite the algorithm’s momentum update rule as

Mk
i = βkMk−1

i + (1− βk)∇ifξk(X
k)

= βk
(
µk−1
i +∇if(X

k−1)
)
+ (1− βk)

(
γki +∇if(X

k)
)

= ∇if
(
Xk
)
+ αkγki + βkSk

i + βkµk−1
i .

This yields

µki =Mk
i −∇if

(
Xk
)

= αkγki + βkSk
i + βkµk−1

i

=
k∑

τ=1

β(τ+1):kατγτi +
k∑

τ=1

βτ :kSτ
i + β1:kµ0i

=

k∑
τ=0

β(τ+1):kατγτi +

k∑
τ=1

βτ :kSτ
i ,

where the last line follows from the fact that M0
i = ∇ifξ0(X

0) and β0 = 0. Thus,

E
[∥∥∥Mk

i −∇if(X
k)
∥∥∥
(i)⋆

]
= E

[∥∥∥µki ∥∥∥
(i)⋆

]

≤ E

∥∥∥∥∥
k∑

τ=0

β(τ+1):kατγτi

∥∥∥∥∥
(i)⋆

+
k∑

τ=1

βτ :kE
[
∥Sτ

i ∥(i)⋆
]

=

√√√√ k∑
τ=0

(
β(τ+1):kατ

)2 E [∥γτi ∥2(i)⋆]+ k∑
τ=1

βτ :kE
[
∥Sτ

i ∥(i)⋆
]
,
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where in the last equality we used the fact that for all q < l

E
[
(γli)

⊤γqi

]
= E

[
E
[
(γli)

⊤γqi | X l
i

]]
= E

[
E
[
γli | X l

i

]⊤
γqi

]
= E

[(
E
[
∇ifξl(X

l)−∇if(X
l) | X l

i

])⊤
γqi

]
= 0,

Using Assumptions 1 and 3, we get

E
[
∥γτi ∥

2
(i)⋆

]
= E

[
E
[
∥γτi ∥

2
(i)⋆ | X

τ
i

]
︸ ︷︷ ︸

≤σ2

]
≤ σ2

and

∥Sτ
i ∥(i)⋆ ≤

(
L0
i + L1

i ∥∇if(X
τ )∥(i)⋆

)
∥Xτ+1

i −Xτ
i ∥(i) ≤

(
L0
i + L1

i ∥∇if(X
τ )∥(i)⋆

)
tτi .

Therefore,

E
[∥∥∥Mk

i −∇if(X
k)
∥∥∥
(i)⋆

]
≤ σ

√√√√ k∑
τ=0

(
β(τ+1):kατ

)2
+ L0

i

k∑
τ=1

βτ :ktτi

+L1
i

k∑
τ=1

βτ :ktτi E
[
∥∇if(X

τ )∥(i)⋆
]
.

Combining the last inequality with (24) gives

p∑
i=1

K−1∑
k=0

tki E[∥∇if(X
k)∥(i)⋆] ≤ ∆0 +

p∑
i=1

[
2σ

K−1∑
k=0

tki

√√√√ k∑
τ=0

(
β(τ+1):kατ

)2
︸ ︷︷ ︸

=:I1

+2L0
i

K−1∑
k=0

tki

k∑
τ=1

βτ :ktτi︸ ︷︷ ︸
=:I2

+ 2L1
i

K−1∑
k=0

tki

k∑
τ=1

βτ :ktτi E
[
∥∇if(X

τ )∥(i)⋆
]

︸ ︷︷ ︸
=:I3

+
L0
i

2

K−1∑
k=0

(
tki

)2
︸ ︷︷ ︸

=:I4

+
L1
i

2

K−1∑
k=0

(
tki

)2
E
[
∥∇if(X

k)∥(i)⋆
] ]
.

(25)

Let us now upper-bound each term Ii, i = 1, 2, 3, 4.

I1: using Lemma 6, we obtain

I1 ≤ σti

(
7 + 2

√
2e2 log(K)

)
.
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I2: using Lemma 6, we obtain

I2 ≤ 14L0
i t

2
i (3 + log(K)) .

I3: rearranging the sums and using Lemma 5 with a = τ +1, b = K, p = 3/4 and q = 1/2, we have

I3 = 2L1
i

K−1∑
k=0

tki

k∑
τ=1

βτ :ktτi E
[
∥∇if(X

τ )∥(i)⋆
]

= 2L1
i

K−1∑
τ=1

tτi

(
K−1∑
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tki β
τ :k

)
E
[
∥∇if(X

τ )∥(i)⋆
]

= 2L1
i

K−1∑
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tτi ti

(
K−1∑
k=τ

(k + 1)−3/4βτ :k

)
E
[
∥∇if(X

τ )∥(i)⋆
]

≤ 2L1
i

K−1∑
τ=1

tτi tiτ
−1/4 e2((τ+1)1/2−τ1/2)︸ ︷︷ ︸

≤e2(
√
2−1) for τ≥1

E
[
∥∇if(X

τ )∥(i)⋆
]

≤ 2e2(
√
2−1)L1

i

K−1∑
τ=1

tτi tiτ
−1/4E

[
∥∇if(X

τ )∥(i)⋆
]

≤ 2e2(
√
2−1)L1

i

K−1∑
k=0

tki tiE
[
∥∇if(X

k)∥(i)⋆
]
.

I4:

I4 =
L0
i

2

K−1∑
k=0

(
tki

)2
≤ L0

i

2

∞∑
k=0

(
tki

)2
=
L0
i

2
t2i

∞∑
k=0

(1 + k)−3/2

≤ L0
i

2
t2i

(
1 +

∫ ∞

1

1

z3/2
dz

)
=

3L0
i

2
t2i .

Combining the upper-bounds for Ii, i = 1, 2, 3, 4 with (25) gives

p∑
i=1

K−1∑
k=0

tki E[∥∇if(X
k)∥(i)⋆] ≤ ∆0 +

p∑
i=1

[
σti

(
7 + 2

√
2e2 log(K)

)
+ 14L0

i t
2
i (3 + log(K))

+ 2e2(
√
2−1)L1

i

K−1∑
k=0

tki tiE
[
∥∇if(X

k)∥(i)⋆
]

+
3L0

i

2
t2i +

L1
i

2

K−1∑
k=0

(
tki

)2
E[∥∇if(X

k)∥(i)⋆]

]
.
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Using the fact that tki = ti(1 + k)−3/4 ≤ ti, and denoting C := 2e2(
√
2−1) + 1

2 ≤ 5.1, we get

p∑
i=1

K−1∑
k=0

tki E[∥∇if(X
k)∥(i)⋆] ≤ ∆0 +

p∑
i=1

[
σti

(
7 + 2

√
2e2 log(K)

)
+ 14L0

i t
2
i

(
87

28
+ log(K)

)

+ CL1
i ti

K−1∑
k=0

tki E
[
∥∇if(X

k)∥(i)⋆
] ]
.

Now, let us consider two options: (1) L1
i = 0 for all i ∈ {1, . . . , p} and (2) L1

i ̸= 0, for all
i ∈ {1, . . . , p}.

Case 1: L1
i = 0, i = 1, . . . , p. In this case,

p∑
i=1

K−1∑
k=0

tki E[∥∇if(X
k)∥(i)⋆] ≤ ∆0 +

p∑
i=1

[
σti

(
7 + 2

√
2e2 log(K)

)
+ 14L0

i t
2
i

(
87

28
+ log(K)

)]
,

and therefore,

min
k=0,...,K−1

p∑
i=1

tiE[∥∇if(X
k)∥(i)⋆]

≤ 1

K

K−1∑
k=0

p∑
i=1

tiE[∥∇if(X
k)∥(i)⋆]

≤ 1

K1/4

K−1∑
k=0

p∑
i=1

ti(1 + k)−3/4E[∥∇if(X
k)∥(i)⋆]

=
1

K1/4

K−1∑
k=0

p∑
i=1

tki E[∥∇if(X
k)∥(i)⋆]

≤ ∆0

K1/4
+

1

K1/4

p∑
i=1

[
σti

(
7 + 2

√
2e2 log(K)

)
+ L0

i t
2
i

(
87

2
+ 14 log(K)

)]
.

Case 2: L1
i ̸= 0, i = 1, . . . , p. Let us choose ti = 1

12L1
i
. Then

p∑
i=1

K−1∑
k=0

tki E[∥∇if(X
k)∥(i)⋆] ≤ 2∆0 +

p∑
i=1

[
2σti

(
7 + 2

√
2e2 log(K)

)
+ L0

i t
2
i (87 + 28 log(K))

]
,
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and hence

min
k=0,...,K−1

p∑
i=1

1

12L1
i

E[∥∇if(X
k)∥(i)⋆]

≤ 1

K

K−1∑
k=0

p∑
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tiE[∥∇if(X
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≤ 1

K1/4
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p∑
i=1

ti(1 + k)−3/4E[∥∇if(X
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=
1
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tki E[∥∇if(X
k)∥(i)⋆]

≤ 2∆0

K1/4
+

1

K1/4

p∑
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[
σ

6L1
i

(
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√
2e2 log(K)

)
+

L0
i

144(L1
i )

2
(87 + 28 log(K))

]
.
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Appendix G. Additional experimental results and details

G.1. Experimental details

All experiments for the NanoGPT model are conducted using PyTorch5 with Distributed Data
Parallel (DDP)6 across 4 NVIDIA A100 GPUs (40GB each). For the CNN experiments, training
is performed on a single NVIDIA A100 GPU (40GB). The training and evaluation pipelines are
implemented using open-source codebases [14, 15, 28], with all modifications clearly documented
and properly referenced where applicable.

For LMO-based methods, we compute inexact LMOs using the Newton–Schulz iteration when an
analytical solution is unavailable (e.g., for SVD-type updates), following the approach proposed by
Jordan et al. [16]. This method provides a computationally efficient approximation of the required
orthogonalization while preserving the convergence behavior of the overall algorithm.

G.2. Fitting L0
i and L1

i

To minimize the Euclidean error between the true value L̂i[k] and its approximation L̂approx
i [k], while

penalizing underestimation, we incorporate a hinge-like penalty term. Specifically, we fit L0
i and L1

i

by minimizing the loss function

Li

(
L0
i , L

1
i

)
:=

K−1∑
k=0

(
L̂i[k]− L̂

approx
i [k]

)2
+ λ

K−1∑
k=0

max
(
0, L̂i[k]− L̂

approx
i [k]

)2
. (26)

The first term of Li captures the standard Euclidean (squared) error, while the second term introduces
an additional penalty proportional to the amount of underestimation (i.e., when L̂i[k] > L̂

approx
i [k]).

The hyperparameter λ ≥ 0 controls the strength of this penalty.

G.3. Training NanoGPT on FineWeb.

In this section, we present additional results and experimental details for the experiment described
in the main text, which involves training a NanoGPT model on the FineWeb dataset using the
unScion optimizer.

Below, we highlight selected experimental results for the unScion optimizer, a special case of Gluon
(see E.1).

G.3.1. EXPERIMENTAL SETUP

In the first set of experiments, we aim to verify layer-wise (L0, L1)-smoothness (1). To this end,
we train the NanoGPT model with 124M parameters on the FineWeb dataset, leveraging two
open-source GitHub repositories [15, 28]. We use the unScion optimizer, i.e., Gluon with the norm
choices as in (9). We adopt the hyperparameters from Pethick et al. [29, Table 7], mapping their
values γ = 0.00036, ρ2 = 50, and ρ3 = 3000 into our notation as follows: tki ≡ γρ2 = 0.018
for i = 1, . . . , p− 1 (corresponding to the transformer block layers), and tkp ≡ γρ3 = 1.08 (token

5. PyTorch Documentation. Available at: https://pytorch.org/docs/stable/index.html
6. Distributed Data Parallel (DDP) in PyTorch. Available at: https://pytorch.org/docs/stable/notes/
ddp.html
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embeddings and output projections, due to weight sharing). We set the number of warmdown
iterations to 0 to keep the learning rates constant throughout training. The model is trained for 5,000
iterations in accordance with the Chinchilla scaling laws to ensure compute-optimal training.

G.3.2. THEORETICAL STEPSIZE PREDICTION

Based on the estimated values of L0
i and L1

i , assuming that 1 holds and ignoring gradient stochasticity,
1 suggests the stepsizes

tki =
∥∇ifξk(X

k)∥(i)⋆
L0
i + L1

i ∥∇ifξk(X
k)∥(i)⋆

≈ 1

L1
i

≈ 1

70
≈ 0.014, i = 1, . . . , p− 1,

tkp =
∥∇pfξk(X

k)∥(p)⋆
L0
p + L1

p∥∇pfξk(X
k)∥(p)⋆

≈ 1

L1
p

≈ 1

1.3
≈ 0.77.

(27)

Remarkably, these values align closely with the manually tuned values reported earlier, again
underscoring the predictive power of our theoretical prescriptions (see 3).

G.3.3. EMPIRICAL VALIDATION OF 1

We begin by presenting additional results for the experiment described in 4, aimed at empirically
validating 1. We plot the estimated trajectory smoothness

L̂i[k]
def
=

∥∇ifξk+1(Xk+1)−∇ifξk(X
k)∥(i)⋆

∥Xk+1
i −Xk

i ∥(i)
(28)

and its approximation

L̂
approx
i [k]

def
= L0

i + L1
i ∥∇ifξk+1(Xk+1)∥(i)⋆ (29)

as functions of the iteration index k, where L0
i , L

1
i ≥ 0 are fitted using the procedure described in

G.2.

Figures 5, 6, and 7 show results for parameter groups from the embedding layer and from the 4th
and 8th transformer blocks. Similar patterns are observed across all layers. In each case, we see
a strong agreement between L̂i[k] and L̂approx

i [k], suggesting that 1 holds approximately along the
optimization trajectory.

40



GLUON: BRIDGING THEORY AND PRACTICE OF LMO-BASED OPTIMIZERS

0 1000 2000 3000 4000 5000
iteration k

10 1

6 × 10 2

2 × 10 1

3 × 10 1

Name: module._orig_mod.transformer.wte.weight
Size: [50304, 768] | MSE_rel: 0.0005

Li

Lapprox
i : L0

i = 0.00, L1
i = 1.33

0 1000 2000 3000 4000 5000
iteration k

0.05

0.06

0.07

0.08

0.09

0.10

Name: module._orig_mod.transformer.wte.weight
Size: [50304, 768] | MSE_rel: 0.0005

Li

Lapprox
i : L0

i = 0.00, L1
i = 1.33

Figure 5: Validation of layer-wise (L0, L1)-smoothness for the group of parameters from the embedding
layer of NanoGPT-124M along unScion training trajectories. The group norm is ∥ · ∥(p) = np∥ · ∥1→∞,
with fitted values L0

p ≈ 0, L1
p ≈ 1.3. The same plot is shown twice with different y-axis limits.
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Figure 6: Validation of layer-wise (L0, L1)-smoothness for the group of parameters from the 4th transformer
block of NanoGPT-124M along unScion training trajectories. The group norms are ∥·∥(i) =

√
ni/mi∥·∥2→2,

with fitted values L0
i ≈ 0, L1

i ≈ 70.

G.3.4. GENERALIZED SMOOTHNESS UNDER EUCLIDEAN VS. SPECIALIZED NORMS

In this experiment, we compare how well the layer-wise (L0, L1)-smoothness assumption is satisfied
under the standard Euclidean norms ∥ · ∥2 for each parameter block, as opposed to the specialized
norms described in (9). We adopt the same training setup as in Section 4, plotting the estimated
trajectory smoothness L̂i and its approximation L̂approx

i along the training trajectories across several
parameter groups. Unlike previous sections, here we do not penalize instances where L̂i > L̂

approx
i

in order to find the best approximation (i.e., λ = 0 in (26)). Additionally, when using the standard
Euclidean norm ∥ · ∥2 for approximation, we exclude the first point, as it could distort the result.
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Figure 7: Validation of layer-wise (L0, L1)-smoothness for the group of parameters from the 8th
transformer block of NanoGPT-124M along unScion training trajectories. The group norms are
∥ · ∥(i) =

√
ni/mi∥ · ∥2→2, with fitted values L0

i ≈ 0, L1
i ≈ 70.

We evaluate the quality of each approximation using the relative mean squared error (MSErel
i , denoted

MSE_rel in the figures), defined as

MSErel
i :=

1

K

K∑
i=1

(
L̂i[k]− L̂

approx
i [k]

L̂i[k]

)2

,

where a lower value indicates a better fit.

As shown in Figures 14 and 21, both visually and in terms of MSErel
i , using specialized norms for

each group of parameters provides a better approximation than the standard Euclidean norm ∥ · ∥2.
Notably, the relative mean squared error MSErel

i is consistently an order of magnitude lower under
specialized norms.

G.3.5. LEARNING RATE TRANSFER FROM ADAMW

We now aim to verify layer-wise (L0, L1)-smoothness following the approach used in Section 4,
but employing the AdamW optimizer. We use hyperparameters specified in Pethick et al. [29,
Table 7]. In Figure 22, we present the results for the estimated trajectory smoothness L̂i and its
approximation L̂approx

i across several parameter groups along the training trajectories. Notably, for
the group of parameters from the embedding layer Xp (the last plot in Figure 22), the fitted value
of L1

p is approximately 20–30 times smaller than in other groups. Since in all plots we observe that
L0
i ≪ L1

i ∥∇ifξk(X
k)∥(i)⋆, 1 implies that tki ≈ 1/Lk

i . Thus, tkp should be 20–30 times larger than tki
for i = 1, . . . , p− 1, which is consistent with the tuned parameters from Pethick et al. [29, Table 7].
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Figure 8: MSErel
i = 0.0023
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Figure 14: Validation of layer-wise (L0, L1)-smoothness for different groups of parameters in
NanoGPT-124M along training trajectories of unScion using the specialized norm choices defined in (9).

This insight provides an efficient and principled method for initializing learning rates in Scion.
Smoothness statistics collected during standard AdamW training (which is commonly used for
training LLMs) can serve as a strong prior, allowing practitioners to directly incorporate structure-
aware choices, such as larger stepsizes for embedding layers, into their tuning process. Importantly,
computing these statistics is computationally inexpensive, introducing minimal additional cost.

G.3.6. ABLATION STUDY ON LEARNING RATE SCALING FACTORS

We next evaluate the impact of the learning rate scaling factors ρ2 and ρ3 on the performance of the
unScion optimizer. For consistency, all other hyperparameters are fixed as described earlier. As a
baseline, we include results obtained with the AdamW optimizer, using the hyperparameter settings
from Section G.3.5. 25 presents (a) validation curves for both optimizers, with varying ρ3 in unScion,
and (b) the final validation loss for unScion across different combinations of ρ2 and ρ3. The best
performance is achieved with ρ2 = 50 and ρ3 = 3000, i.e., tki = 0.018 for i = 1, . . . , p − 1 and
tkp = 1.08, consistent with our theoretical prediction from 1 (which suggests tki ≈ 1

L1
i

when L0
i ≈ 0).

This supports the use of non-uniform scaling across layers, with larger stepsizes for the embedding
layer.

G.4. Training CNN on CIFAR-10

In this experiment, we further validate layer-wise (L0, L1)-smoothness by training a CNN model on
the CIFAR-10 dataset, following implementations from two open-source GitHub repositories [14,
28]. The model is trained using the unScion optimizer (10) with full-batch gradients ∇if , no
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Figure 17: MSErel
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Figure 18: MSErel
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Figure 19: MSErel
i = 0.0133

0 1000 2000 3000 4000 5000
iteration k

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Name: module._orig_mod.transformer.wte.weight
Size: [50304, 768] | MSE_rel: 0.0510

Li

Lapprox
i : L0

i = 0.01, L1
i = 0.12

Figure 20: MSErel
i = 0.051

Figure 21: Validation of layer-wise (L0, L1)-smoothness for different groups of parameters in
NanoGPT-124M along training trajectories of unScion using the standard Euclidean norm ∥ · ∥2.

momentum and no learning rate decay (results for the stochastic case are reported below). Other
hyperparameters are as in Pethick et al. [29, Table10], except that we train for more epochs.

Similar to the NanoGPT experiments discussed in 4, we plot the estimated (non-stochastic) trajectory
smoothness L̂i[k]

def
= ∥∇if(X

k+1)−∇if(X
k)∥(i)⋆/∥Xk+1

i −Xk
i ∥(i) alongside its approximation

L̂
approx
i [k]

def
= L0

i + L1
i ∥∇if(X

k+1)∥(i)⋆ for selected parameter groups. In this experiment, we
consider a simplified variant of 1, setting L0

i = 0, and estimate L1
i ≥ 0 using the same procedure as

in 4.

Figure 26 presents the results, demonstrating that 1 is approximately satisfied along the training
trajectory. When this condition holds with L0

i = 0, 1 guarantees convergence under the stepsize
choice tki ≡ ti = 1/L1

i . In this setting, the estimated L1
i values (shown in Figure 26) are L1

i ≈ 3 for
all parameter groups except for the classification head weights Xp, where L1

p ≈ 0.03. This roughly
two-orders-of-magnitude difference justifies the much larger radius tkp used for the head weights in
the tuned configuration reported in Pethick et al. [29, Table 10].

In this section, we provide additional results for the experiments described above, where a CNN
model is trained on the CIFAR-10 dataset using the unScion optimizer.
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Figure 22: Validation of layer-wise (L0, L1)-smoothness for different groups of parameters in
NanoGPT-124M along AdamW training trajectories.
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Figure 25: (a) Validation curves for AdamW and unScion with varying ρ3 values; (b) Heatmap of
validation loss from the last iteration of unScion across different combinations of ρ2 and ρ3.

Full-batch (deterministic) gradients. We begin with presenting additional results in the determin-
istic setting. Figure 26 shows the estimated trajectory smoothness

L̂i[k]
def
=

∥∇if(X
k+1)−∇if(X

k)∥(i)⋆
∥Xk+1

i −Xk
i ∥(i)

and its approximation

L̂
approx
i [k]

def
= L1

i ∥∇if(X
k+1)∥(i)⋆
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Figure 26: Validation of layer-wise (L0, L1)-smoothness for different groups of parameters of a CNN model
along the training trajectories of unScion with full-batch gradients. The norms used for each group are as
follows: ∥·∥(i) =

√
1/Cout

i ∥·∥2 for biases, ∥·∥(i) = k2
√

Cin
i /Cout

i ∥·∥2→2 for conv, and ∥·∥(p) = np∥·∥1→∞
for the last group Xp, associated with classification head weights.

(where we set L0
i = 0) for a broader selection of parameter groups than shown in the main text. The

results further support the validity of Assumption 1 with L0
i = 0.

Stochastic gradients.
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Figure 27: Validation of layer-wise (L0, L1)-smoothness for different groups of parameters of a CNN model
along the training trajectories of unScion with stochastic gradients. The norms used for each group are as
follows: ∥·∥(i) =

√
1/Cout

i ∥·∥2 for biases, ∥·∥(i) = k2
√

Cin
i /Cout

i ∥·∥2→2 for conv, and ∥·∥(p) = np∥·∥1→∞
for the last group Xp, associated with classification head weights.

Appendix H. Conclusion and future work

In this work, we propose Gluon, an LMO-based optimization method that recovers state-of-the-art
optimizers such as Muon and Scion as special cases. We develop a principled analytical framework
for layer-wise optimization based on a novel layer-wise (L0, L1)-smoothness assumption, which
captures the anisotropic structure of modern deep networks. This assumption enables sharper and
more general convergence guarantees and, unlike prior analyses, yields theoretical stepsizes that
closely match those found via finetuning. Our framework thus provides the first rigorous and
practically predictive analysis of modern layer-wise optimizers. Experiments confirm that the
assumption holds approximately throughout training, reinforcing its practical relevance. Together,
these results offer a refined foundation for structured optimization in deep learning.

While this work resolves two key theoretical gaps (Sections 2.1 and 2.2), it also highlights important
directions for future research. Our analysis assumes exact LMO computations, whereas practical
implementations use approximations (G.1). Additionally, our stochastic guarantees (10) rely on
the widely adopted bounded variance assumption, which may not hold in certain scenarios, e.g.,
under subsampling [18]. Finally, our support for adaptive stepsizes is currently restricted to the
deterministic setting. While they also perform well empirically in the stochastic regime (4), a
complete theoretical justification remains an open challenge.

In summary, although we make substantial progress by closing the two most critical gaps–establishing
a realistic generalized smoothness model and aligning analysis with actual implementations–no
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single work can exhaust the subject. The field remains open, with many fruitful directions left to
pursue.
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