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Abstract

Active learning, a label-efficient paradigm, empowers models to interactively query
an oracle for labeling new data. In the realm of LiDAR semantic segmentation,
the challenges stem from the sheer volume of point clouds, rendering annotation
labor-intensive and cost-prohibitive. This paper presents Annotator, a general and
efficient active learning baseline, in which a voxel-centric online selection strategy
is tailored to efficiently probe and annotate the salient and exemplar voxel girds
within each LiDAR scan, even under distribution shift. Concretely, we first exe-
cute an in-depth analysis of several common selection strategies such as Random,
Entropy, Margin, and then develop voxel confusion degree (VCD) to exploit the
local topology relations and structures of point clouds. Annotator excels in diverse
settings, with a particular focus on active learning (AL), active source-free domain
adaptation (ASFDA), and active domain adaptation (ADA). It consistently delivers
exceptional performance across LiDAR semantic segmentation benchmarks, span-
ning both simulation-to-real and real-to-real scenarios. Surprisingly, Annotator
exhibits remarkable efficiency, requiring significantly fewer annotations, e.g., just
labeling five voxels per scan in the SynLiDAR ! SemanticKITTI task. This results
in impressive performance, achieving 87.8% fully-supervised performance under
AL, 88.5% under ASFDA, and 94.4% under ADA. We envision that Annotator will
offer a simple, general, and efficient solution for label-efficient 3D applications.

1 Introduction

3D perception and understanding have become indispensable for machines to effectively interact with
the real world. LiDAR (Light Detection And Ranging) [50, 52] is a widely-used methodology for
capturing precise geometric information about the environment, spurring significant advancements in
areas like autonomous vehicles and robotics [16, 25]. However, semantic segmentation of LiDAR
presents an enormous challenge. The high-speed collection of millions of point clouds per second
by on-board sensors sharply contrasts with the laborious and cost-prohibitive nature of annotating
them. Consider, for instance, the vast number of outdoor scenes an autopilot can encounter, which is
practically limitless. Yet, acquiring annotations for these large-scale point clouds entails intensive
human labor. This underscores the urgency of establishing a label-efficient learning mechanism
capable of boosting performance in the low-data regime [19, 76, 90, 97] or facilitating the adaptation
of models to new domains [55, 64, 74, 85].
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Extensive solutions encompass semi-supervised [8, 11, 29, 31, 83], weakly-supervised [22, 36, 76, 99]
or self-supervised [5, 14, 63, 73, 101] learning. Semi- and weakly-supervised learning methods
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Figure 1: Performance vs. annotated proportion on Se-
manticKITTI val [3] of existing label-efficient LiDAR seg-
mentation paradigms including domain adaptation (•) [55,
83, 84, 105], weakly- (N) [22, 76] and semi-supervised
(⌥) [8, 29, 72] learning. As a reference, fully supervised
counterpart (F) is reported as well. Annotator (⌅) attains
excellent balance between performance and annotation cost.

aim to alleviate the annotation bur-
den by harnessing partially labeled or
weakly labeled data. In contrast, self-
supervised ones learn representations
from point clouds via pretext tasks and
then transfer to downstream tasks for
weight initialization. Although these
works offer scalability and practicality
for real-world utility, they also con-
front new challenges, such as varia-
tions in LiDAR configurations, sensor
biases, and environmental conditions.
That is, the majority of prior works
has endeavored to in-distribution sce-
narios, with limited consideration for
label-efficient paradigms in out-of-
distribution scenarios, especially for
sparse outdoor point clouds. Recent
efforts turn to large-scale auxiliary
datasets [56, 84] and delve into do-
main adaptation (DA) algorithms [1,
28, 51, 92] to significantly reduce the
annotation workload under a domain
shift. Nevertheless, the performance of these methods still lags behind the fully-supervised ap-
proaches. In Figure 1, we provide an intuitive comparison of results across various paradigms. It
becomes evident that there is ample room for improvement in the performance of these methods.

To surmount these obstacles and promote performance in the domain of interest, active learning (AL)
is being an optimal paradigm [27, 35, 60, 82]. Given the limited annotation budget, a common scenario
is that only an unlabeled target domain of large amounts of point clouds is available with the goal to
interactively select a minimal subset of data to be annotated to maximally improve the segmentation
performance. In reality, this setting faces a significant hurdle known as cold start problem: the lack
of prior information to guide the initial selection of annotated data. A recent work has explored the
impact of seeding strategies on the performance of AL methods [58]. Differently, we put forward a
new path to access an auxiliary model via pre-training on the open-access auxiliary (source) dataset.
This auxiliary model serves as a warm-up stage, allowing for smart target data selection for initial
annotation. We formulate this new setting as active source-free domain adaptation, termed ASFDA.
Take a further step, drawing inspiration from recent trends in 2D images [38, 44, 87, 88], we delve
into the third setting, active domain adaptation (ADA) for semantic segmentation of 3D point clouds.
In this setting, a labeled auxiliary dataset is available, and the objective is to select target instances
for annotating and learn a model with higher segmentation performance on the target test set.

Overall, in this work, we benchmark three distinct active learning settings for LiDAR semantic
segmentation and deliver a simple and general baseline, Annotator, as illustrated in Figure 2. Bor-
rowing the idea of modeling and computational techniques in geometry processing, we introduce
a voxel-centric selection strategy dedicated to point clouds. Specifically, an input LiDAR scene is
first voxelized into voxel grids, with a large voxel size to expand the local areas during the selection
process. After obtaining final network predictions, importance estimation is carried out for each voxel
grid using several common strategies such as Random, the softmax entropy (Entropy), and the margin
between highest softmax scores (Margin). But considering only uncertainty for selection would be
suboptimal [2, 44, 86]. Therefore, we introduce the concept of voxel confusion degree (VCD), which
takes into account nearby predictions, capturing diversity and redundancy within a voxel grid. VCD
enables the exploitation of local topology relations and point cloud structures. As a result, VCD can
represent both uncertainty and diversity of a voxel grid in the LiDAR scene. In each active round, we
query the top one voxel grid within each scan for annotation until the budget is exhausted. Despite
the simplicity of our Annotator, it achieves performance on par with the fully-supervised counterpart
requiring 1000⇥ fewer annotations and significantly outperforms all prevailing acquisition strategies.
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Figure 2: An illustration of Annotator. Annotator is a new active learning baseline with broad
applicability, capable of interactively querying a tiny subset of the most informative new (target) data
points based on available inputs without task-specific designs. This includes (i) only unlabeled new
(target) data being available (active learning, AL); (ii) access to an auxiliary (source) pre-trained
model (active source-free domain adaptation, ASFDA); and (iii) availability of labeled source data
and unlabeled target data (active domain adaptation, ADA). Remarkably, Annotator attains excellent
results not only in in-domain settings but also manifests adaptive transfer to out-of-domain settings.

The contribution of this paper can be summarized in three aspects. First, we present a voxel-centric
active learning baseline that significantly reduces the labeling cost and effectively facilitates learning
with a limited budget, achieving near performance to that of fully-supervised methods with 1000⇥
fewer annotations. Second, we introduce a label acquisition strategy, the voxel confusion degree
(VCD), which is more robust and diverse to select point clouds under a domain shift. Third, Annotator
is generally applicable for various network architectures (voxel-, range- and bev-views), settings
(in-distribution and out-of-distribution), and scenarios (simulation-to-real and real-to-real) with
consistent gains. We hope this work could lay a solid foundation for label-efficient 3D applications.

2 A Generic Baseline

2.1 Preliminaries and overview

Problem setup. In the context of LiDAR semantic segmentation, a LiDAR scan is made of a set
of point clouds and let X 2 RN⇥4 , Y 2 KN respectively denote N points and the corresponding
labels. K is a predefined semantic class vocabulary K = {1 , ... ,K} of K categorical labels. Each
point xi in X is a 1 ⇥ 4 vector with a 3D Cartesian coordinate relative to the scanner (ai , bi , ci)
and an intensity value of returning laser beam. Our baseline works in the following settings: active
learning (AL), active source-free domain adaptation (ASFDA), and active domain adaptation (ADA).
First, we are given an unlabeled target domain Dt = {Xt [Xa}, where Xt denotes unlabeled target
point clouds and Xa denotes the selected points to be annotated and is initialized as empty set, i.e.,
Xa = ;. Next, for ASFDA and ADA, a labeled source domain Ds = {Xs, Y s} can be utilized
only in pre-training stage and anytime respectively. Ultimately, given a limited budget, our goal is
to iteratively select a subset of data points from Dt to annotate until the budget is exhausted, all the
while catching up with the performance of the fully-supervised model.

Overview. Figure 2 displays an overview of Annotator, which is a label-efficient baseline for LiDAR
semantic segmentation. It is composed of two parts: 1) a generalist Annotator which contains a
voxelization process to get voxel grids and an active function with online selection for picking the
most valuable voxel grid of each input scan in each active round; 2) the pipelines of distinct active
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learning settings are described. For AL, we interactively select a subset of voxels from the current
scan to be annotated and train the network with these sparse annotated voxel grids. In the case of
ASFDA, we begin by pre-training a network on the source domain through standard supervised
learning. This warm-up network then serves as a strong initialization to aid the initial selection. As
for ADA, except for the pre-training stage, we also make use of annotated source domain to promote
the selection in each round and facilitate domain alignment. In the following, we will detail why we
select salient and exemplar data points from a voxel-centric perspective and how to address cold start
problem via an auxiliary model. After that, overall objectives for all three settings are elaborated.

2.2 A generalist Annotator

In this section, we proposed a general active learning baseline called Annotator. The core idea is to
select salient and exemplar voxel grids from each LiDAR scan. It’s important to note that previous
researches have proposed frame-based [13, 94], region-based [82], and point-based [35] selection
strategies. The first two usually require an offline stage, which may be infeasible at large scales. The
last one is costly due to the sparsity of outdoor point clouds. By contrast, our voxel-centric selection
focuses on querying salient and exemplar areas and annotating all points within those areas. This
approach is more efficient and flexible. Moreover, it can be seamlessly applied to various network
architectures, including voxel-, range- and bev-views, as demonstrated in the experiment section.

To implement it, we begin with the voxelization process as introduced in [9, 102]. Each input LiDAR
scan X is transformed into a 3D voxel grid set V . This process involves sampling the continuous
3D input space into discrete voxel grids, where points falling into the same grid are merged. Each
voxel grid serves as a selection unit. Mathematically, for a point xi 2 X , the corresponding voxel
grid coordinate is (avi , bvi , cvi ) = b(ai , bi , ci)/4c, with 4 denoting predefined voxel size. In our
experiments, we have found that using a large voxel grid is more robust against noise and sparsity.
Unless otherwise specified, we use 41 = 0.05 for training and 42 = 0.25 for the selection process.

Selection strategies. For each voxel grid vj 2 V , we assess its importance and select the best
voxel grid per LiDAR scan in each active round. Initially, we employ a Random selection strategy.
Subsequently, we explore softmax entropy (Entropy) and the margin between highest softmax scores
(Margin). It’s essential to note that while these common selection strategies are not technical
contributions, they are necessary to build our baseline. Detailed calculations are provided below.

• Random: randomly select a target voxel grid vj from V to be annotated in each round.
• Entropy: first calculate the softmax entropy of each point xi 2 vj and then adopt the maximum

value as the Entropy score of this grid, i.e., Entropy(vj) = maxxi2vj �pi log pi, where pi is the
softmax score of point xi. The voxel grid with the highest Entropy score is selected in each scan.

• Margin: first calculate the margin between highest softmax score of each point xi 2 vj
and then adopt the maximum value as the Margin score of this grid, i.e., Margin(vj) =
maxxi2vj (max(pi)�max2(pi)), where max2(·) is the second-largest value operator. In each
scan, the voxel grid with the lowest Margin score is chosen.

The VCD strategy. Our voxel confusion degree (VCD) is motivated by an important observation:
the previously mentioned selection strategies become less effective when models are applied in new
domains due to mis-calibrated uncertainty estimation. Therefore, the VCD is designed to estimate
category diversity within a voxel grid rather than uncertainty, making it more robust under domain
shift. Here’s how it works: we begin by obtaining pseudo label ŷi for each point xi. Next, we
divide points within vj into K clusters: v<k>

j = {x<k>
i |xi 2 vj , ŷi = k}. This allows us to collect

statistical information about the categories present in the voxel grid. With this information, we
calculate VCD to assess the significance of voxel grids as follows:

VCD(vj) = �
KX

k=1

|v<k>
j |
|vj |

log
|v<k>

j |
|vj |

,

where | · | denotes the number of points in a set. Finally, voxel grid with the highest VCD score is
selected in each scan. The insight is that a higher score indicates a greater category diversity within
a voxel, which would be beneficial for model training once being annotated. In all experiments,
Annotator is equipped with VCD by default, and the results indicate the superiority of VCD strategy.

Making a good first impression. To avoid the cold start problem mentioned before, we introduce a
warm start mechanism that pre-trains an auxiliary model with an auxiliary (source) dataset, and then
it is used to select voxel grids in the first round. This warm start stage is applied in ASFDA and ADA.

4



Discussion: balancing annotation cost and computation cost. Our primary focus is on reducing
annotation cost while maintaining performance comparable to fully-supervised approaches. Let’s
consider simulation-to-real tasks as an example. The simplest setup involves active learning within
the real dataset. However, this setup yields less satisfactory results due to the cold-start problem: the
lack of prior information for selecting an initial annotated set. To address this, we utilize a synthetic
dataset to train an auxiliary model in a brief warm-up stage, enabling smarter data selection in the
first round. Importantly, this warm-up process is short, conducted only once, and results in minimal
costs (both annotation and computation). For a detailed analysis, please refer to Appendix B.1.

2.3 Optimization

The overall loss function is the standard cross-entropy loss, which is defined as:

Lce(X) =
1

|X|
X

xi2X

KX

k=1

�yki log p
k
i ,

where K is the number of categories, yi is the one-hot label of point xi and pki is the predicted
probability of point xi belonging to category k. Hereafter, for AL, the objective is min✓ Lce(Xa); for
ASFDA, the objective is min✓s Lce(Xa); for ADA, the objective is min✓s Lce(Xs)+Lce(Xa). Here,
✓ and ✓s denote training from scratch and training from the source pre-trained model, respectively.

3 Experiments

In this section, we conduct extensive experiments on several public benchmarks under three active
learning scenarios: (i) AL setting where all available data points are from unlabeled target domain;
(ii) ASFDA setting where we can only access a pre-trained model from the source domain; (iii) ADA
setting where all data points from source domain can be utilized and a portion of unlabeled target
data is selected to be annotated. We first introduce the dataset used in this work and experimental
setup and then present experimental results of baseline methods and extensive analyses of Annotator.

3.1 Experiment setup

Datasets. We build all benchmarks upon SynLiDAR [84], SemanticKITTI [3], SemanticPOSS [42],
and nuScenes [4], constructing two simulation-to-real and two real-to-real adaptation scenarios.
SynLiDAR [84] is a large-scale synthetic dataset, which has 198,396 LiDAR scans with point-level
segmentation annotations over 32 semantic classes. Following [84], we use 19,840 point clouds as
the training data. SemanticKITTI (KITTI) [3] is a popular LiDAR segmentation dataset, including
2,9130 training scans and 6,019 validation scans with 19 categories. SemanticPOSS (POSS) [42]
consists of 2,988 real-world scans with point-level annotations over 14 semantic classes. As suggested
in [42], we use the sequence 03 for validation and the remaining sequences for training. nuScenes [4]
contains 19,130 training scans and 4,071 validation scans with 16 object classes.

Class mapping. To ensure compatibility between source and target labels across datasets, we perform
class mapping. Specifically, we map SynLiDAR labels into 19 common categories for SynLiDAR !
KITTI and 13 classes for SynLiDAR ! POSS. Similarly, we map labels into 7 classes for KITTI !
nuScenes and nuScenes ! KITTI. We refer readers to Appendix A.1 for detailed class mappings.

Implementation details. We primarily adopt MinkNet [9] and SPVCNN [71] as the segmentation
backbones. Note that, all experiments share the same backbones and are within the same codebase,
which are implemented using PyTorch [43] on a single NVIDIA Tesla A100 GPU. We use the SGD
optimizer and adopt a cosine learning rate decay schedule with initial learning rate of 0.01. And the
batch size for both source and target data is 16. For additional details, please consult Appendix A.2.
Finally, we evaluate the segmentation performance before and after adaptation, following the typical
evaluation protocol [47] in LiDAR domain adaptive semantic segmentation [29, 31, 55, 82, 83].

3.2 Experimental results

Quantitative results summary. We initially evaluate Annotator on four benchmarks and two
backbones while adhering to a fixed budget of selecting and annotating five voxel grids in each scan.
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Simulation-to-Real Real-to-Real
Method SynLiDAR 19�! KITTI SynLiDAR 13�! POSS KITTI 7�! nuScenes nuScenes 7�! KITTI
Source-/Target-Only 22.0 / 61.1 30.4 / 56.7 28.4 / 82.5 34.6 / 83.3

Random 35.3 / 36.3 / 45.3 27.4 / 30.9 / 43.4 66.0 / 67.5 / 71.9 70.9 / 69.7 / 74.7
Entropy [78] 39.8 / 49.6 / 50.1 42.8 / 45.5 / 49.9 59.7 / 60.3 / 73.1 70.7 / 69.1 / 74.0
Margin [26] 46.9 / 44.3 / 49.0 41.6 / 44.1 / 46.9 60.2 / 59.2 / 71.4 73.1 / 70.3 / 76.7
Annotator 53.7 / 54.1 / 57.7 44.9 / 48.2 / 52.0 70.4 / 72.4 / 75.9 76.8 / 75.3 / 81.8

Table 1: Quantitative summary of all baselines’ performance based on MinkNet [9] over various
LiDAR semantic segmentation benchmarks using only 5 voxel grids. Source-/Target-Only correspond
to the model trained on the annotated source/target dataset which are considered as lower/upper
bound. Note that results are reported following the order of AL / ASFDA / ADA in each cell.

Simulation-to-Real Real-to-Real
Method SynLiDAR 19�! KITTI SynLiDAR 13�! POSS KITTI 7�! nuScenes nuScenes 7�! KITTI
Source-/Target-Only 24.2 / 63.7 37.0 / 51.9 21.3 / 81.3 47.1 / 85.0

Random 40.9 / 41.7 / 51.0 35.5 / 37.8 / 42.3 65.0 / 66.9 / 64.3 70.4 / 68.1 / 75.8
Entropy [78] 52.7 / 52.1 / 52.8 35.2 / 40.5 / 46.8 61.3 / 66.0 / 66.3 69.5 / 67.4 / 72.6
Margin [26] 47.1 / 49.9 / 50.7 42.9 / 44.8 / 47.1 57.8 / 60.3 / 63.2 72.3 / 73.0 / 75.3
Annotator 52.8 / 54.6 / 55.6 44.9 / 47.5 / 50.9 71.4 / 72.1 / 72.3 79.5 / 80.5 / 78.4

Table 2: Quantitative summary of all baselines’ performance based on SPVCNN [71] over various
LiDAR semantic segmentation benchmarks using only 5 voxel grids.
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Source-Only 59.4 6.2 27.2 0.6 5.8 18.4 37.9 5.4 9.3 8.8 31.0 0.1 24.5 22.6 62.7 27.7 43.4 22.8 3.6 22.0

D
A

ADDA [75] 52.5 4.5 11.9 0.3 3.9 9.4 27.9 0.5 52.8 4.9 27.4 0.0 61.0 17.0 57.4 34.5 42.9 23.2 4.5 23.0
AdvEnt [77] 58.3 5.1 14.3 0.3 1.8 14.3 44.5 0.5 50.4 4.3 34.8 0.0 48.3 19.7 67.5 34.8 52.0 33.0 6.1 25.8
CRST [105] 62.0 5.0 12.4 1.3 9.2 16.7 44.2 0.4 53.0 2.5 28.4 0.0 57.1 18.7 69.8 35.0 48.7 32.5 6.9 26.5
ST-PCT [84] 70.8 7.3 13.1 1.9 8.4 12.6 44.0 0.6 56.4 4.5 31.8 0.0 66.7 23.7 73.3 34.6 48.4 39.4 11.7 28.9
CoSMix [55] 75.1 6.8 29.4 27.1 11.1 22.1 25.0 24.7 79.3 14.9 46.7 0.1 53.4 13.0 67.7 31.4 32.1 37.9 13.4 32.2
PolarMix [83] 76.3 8.4 17.8 3.9 6.0 26.6 40.8 15.9 70.3 0.0 44.4 0.0 68.4 14.7 69.6 38.1 37.1 40.6 10.6 31.0

A
L

Random 90.6 0.0 0.0 4.5 11.1 0.0 0.0 0.0 84.5 19.1 68.3 0.0 84.4 45.5 85.8 53.9 73.3 47.8 2.0 35.3
Entropy [78] 94.2 0.0 19.8 23.4 24.7 6.4 0.0 0.2 79.0 19.5 62.4 2.4 85.1 50.4 86.9 56.5 74.2 52.9 18.6 39.8
Margin [26] 92.0 0.0 35.9 45.3 34.0 40.7 61.0 0.0 80.5 19.8 67.0 0.1 80.6 47.3 83.4 55.5 67.2 51.6 30.0 46.9
Annotator 94.5 0.3 40.3 56.3 46.8 63.1 76.9 0.2 84.0 23.4 69.2 2.0 87.4 51.9 85.8 62.6 70.6 61.6 43.6 53.7

A
SF

D
A Random 90.5 0.0 0.0 4.7 16.5 0.0 0.0 0.0 84.4 20.8 68.9 0.1 84.7 45.9 85.8 55.0 72.8 53.7 5.4 36.3

Entropy [78] 94.1 0.0 40.7 42.6 36.1 54.1 59.9 0.3 81.1 19.3 66.3 3.3 84.6 47.8 86.3 59.6 74.4 61.4 31.0 49.6
Margin [26] 90.1 0.0 34.5 32.5 31.1 39.6 55.6 0.0 79.2 17.8 65.1 0.0 79.0 43.5 83.1 54.7 65.8 49.6 20.0 44.3
Annotator 94.4 0.3 34.5 78.1 47.8 59.8 60.9 1.7 84.4 21.5 70.2 3.2 87.2 54.4 86.4 65.2 73.6 60.6 44.0 54.1

A
D

A

Random 93.0 0.0 30.0 23.0 25.0 37.9 32.5 0.2 84.2 25.7 71.6 0.1 81.0 54.0 83.7 56.9 72.0 53.7 35.8 45.3
Entropy [78] 94.1 16.9 50.2 47.1 31.4 60.2 81.2 6.6 62.9 12.6 58.1 0.1 80.4 52.7 83.0 53.2 64.7 57.5 39.6 50.1
Margin [26] 92.5 0.0 39.3 58.2 30.2 51.0 76.1 0.0 82.4 22.8 68.6 0.8 69.7 51.2 77.8 55.5 61.6 57.4 36.0 49.0
Annotator 95.2 22.0 59.7 69.0 49.4 63.4 82.1 3.6 84.1 28.9 71.4 1.7 85.4 58.8 85.6 60.1 73.2 60.3 41.6 57.7

Target-Only 95.7 20.4 63.9 70.3 45.5 65.0 78.5 0.0 93.5 49.6 81.0 0.2 91.1 63.8 87.2 68.5 72.3 64.4 49.1 61.1

Table 3: Per-class results on task of SynLiDAR 19�! KITTI (MinkNet [9]) using only 5 voxel budgets.
Domain adaptation (DA) results are reported from [55, 83].

The results in Table 1 and Table 2 paint a clear picture overall: all baseline methods achieve significant
improvements over the Source-Only model, especially for Annotator with VCD strategy, underscoring
the success of the proposed voxel-centric online selection strategy. In particular, Annotator achieves
the best results across all simulation-to-real and real-to-real tasks. For SynLiDAR ! KITTI task,
Annotator achieves 87.8% / 88.5% / 94.4% fully-supervised performance under AL / ASFDA / ADA
settings respectively. For SynLiDAR ! POSS task, they are 79.0% / 85.0% / 91.7% respectively.
On the task of KITTI ! nuScenes, they are 85.3% / 87.8% / 92.0% respectively. And on the task
of nuScenes ! KITTI, they are 92.2% / 90.3% / 98.2%, respectively. It is also clear that domain
shift between simulation and real-world is more significant than those between real-world datasets.
Therefore, simulation-to-real tasks show poorer performance. Further, we compare Annotator with
additional AL algorithms and extend it to indoor semantic segmentation in Appendix B.2 and B.3.

Per-class performance. To sufficiently realize the capacity of our Annotator, we also provide the
class-wise IoU scores on two simulation-to-real tasks (Table 3 and Table 4) for different algorithms
and comparison results with state-of-the-art DA methods [55, 83]. Other results of the remainder
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Model car bike pers. rider grou. buil. fence plants trunk pole traf. garb. cone. mIoU
Source-Only 44.7 1.9 33.5 38.3 77.0 54.2 30.3 63.8 22.0 12.9 0.4 11.2 4.7 30.4

D
A

CRST [105] 22.0 6.8 23.5 31.8 60.3 58.2 9.1 63.2 18.9 41.6 1.9 13.5 1.0 27.1
ST-PCT [84] 27.8 6.6 28.9 34.8 63.9 64.1 12.1 63.7 18.6 41.0 4.9 16.6 1.6 29.6
CoSMix [55] 36.2 10.6 55.8 51.4 78.7 66.2 24.9 71.3 23.5 34.2 22.5 28.9 20.4 40.4
PolarMix [83] 25.0 10.7 32.6 39.1 79.0 44.8 23.8 64.2 11.9 29.6 5.8 15.3 13.3 30.4

A
L

Random 24.0 47.8 28.9 0.1 79.3 66.7 27.7 76.4 0.1 5.5 0.2 0.0 0.0 27.4
Entropy [78] 37.8 39.6 58.9 45.2 75.2 56.3 38.6 69.7 39.3 23.7 36.1 1.6 34.2 42.8
Margin [26] 30.1 44.2 55.3 46.8 79.2 63.7 44.0 74.3 34.1 23.4 34.5 9.7 1.2 41.6
Annotator 41.0 50.1 49.3 52.0 78.5 66.4 56.4 73.4 31.1 29.6 34.5 15.7 6.2 44.9

A
SF

D
A Random 32.2 46.4 37.9 0.4 79.2 69.8 33.0 77.7 17.4 5.5 2.8 0.0 0.0 30.9

Entropy [78] 32.1 46.5 65.7 58.0 74.4 62.9 45.5 69.6 41.5 34.5 33.7 13.2 14.3 45.5
Margin [26] 30.2 47.6 59.5 44.5 79.7 66.8 51.7 73.5 28.6 30.1 35.2 25.2 0.1 44.1
Annotator 56.2 54.2 63.6 58.7 80.9 64.6 58.1 73.4 37.8 26.3 34.0 6.3 11.9 48.2

A
D

A

Random 65.0 10.9 59.3 54.3 58.6 70.0 54.2 63.9 39.6 39.8 20.8 27.8 0.0 43.4
Entropy [78] 53.3 29.1 62.9 52.7 80.3 71.9 48.2 72.3 38.9 30.0 27.6 44.2 37.8 49.9
Margin [26] 61.3 25.2 60.6 56.2 79.6 54.2 46.6 66.7 38.1 29.2 30.8 40.8 20.4 46.9
Annotator 67.4 18.0 64.0 52.0 78.5 61.5 1.5 68.6 48.5 32.7 37.9 50.8 43.8 52.0

Target-Only 73.7 60.4 68.6 62.2 81.7 79.2 60.8 78.9 36.5 31.2 44.1 12.9 46.6 56.7

Table 4: Per-class results on task of SynLiDAR 13�! POSS (MinkNet [9]) using only 5 voxel budgets.

(a) SynLiDAR 19�! KITTI (b) SynLiDAR 13�! POSS (c) KITTI 7�! nuScenes (d) nuScenes 7�! KITTI

Figure 3: Active learning results on various benchmarks varying active budget.

(a) SynLiDAR 19�! KITTI (b) SynLiDAR 13�! POSS (c) KITTI 7�! nuScenes (d) nuScenes 7�! KITTI

Figure 4: Active source-free domain adaptation results on various benchmarks varying active budget.

(a) SynLiDAR 19�! KITTI (b) SynLiDAR 13�! POSS (c) KITTI 7�! nuScenes (d) nuScenes 7�! KITTI

Figure 5: Active domain adaptation results on various benchmarks varying active budget.

tasks and backbones are listed in Appendix B.4. It is noteworthy that Annotator under any active
learning settings significantly outperform DA methods with respect to some specific categories such
as “traf.”, “pole", “garb.” and “cone” etc. These results also showcase the class-balanced selection of
the proposed Annotator, which is testified in Figure 6 as well.

Results with varying budgets. We investigate the impact of varying budgets and compare the
performance with baseline methods, as illustrated in Figure 3, Figure 4 and Figure 5. A consistent
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Model car bike pers. rider grou. buil. fence plants trunk pole traf. garb. cone. mIoU

Sa
ls

aN
et

Random 30.9 40.6 22.8 10.4 74.7 57.2 26.6 66.6 15.6 5.5 8.3 0.0 10.6 28.4
Entropy 32.8 45.2 33.1 18.6 76.8 52.6 40.2 64.7 20.1 5.5 11.2 12.7 4.3 32.1
Margin 29.8 38.2 33.6 28.0 71.1 48.0 27.7 61.3 24.5 12.5 20.6 18.4 0.0 31.8
Annotator 32.0 45.1 39.7 31.8 76.5 53.9 40.9 64.7 26.2 11.8 17.7 13.7 13.1 35.9
Target-Only 39.2 51.0 52.7 40.2 79.3 66.1 50.1 71.5 28.1 18.7 28.3 8.0 16.7 42.3

Po
la

rN
et

Random 36.6 50.5 40.8 0.1 76.1 69.3 50.3 74.0 3.1 17.8 1.3 0.0 0.0 32.3
Entropy 44.5 48.8 50.3 11.8 77.9 63.6 45.4 71.0 10.0 13.3 19.1 0.0 0.0 35.0
Margin 22.0 35.4 42.8 24.3 64.1 54.7 33.0 64.2 19.4 20.1 17.5 4.0 0.0 30.9
Annotator 44.4 51.7 55.9 39.2 76.2 64.3 51.9 70.3 22.4 18.6 28.7 6.9 21.7 42.5
Target-Only 66.3 57.2 62.3 51.8 80.8 74.9 61.3 75.5 22.8 21.8 29.4 4.8 46.1 50.4

Table 5: Per-class results on the SemanticPOSS val (range-view: SalsaNet [10] and bev-view:
PolarNet [100]) under active learning setting using only 10 voxel budgets.

Figure 6: Category frequencies on SemanticPOSS train [42] of Annotator selected 5 voxel grids
under AL, ASFDA, ADA scenarios, with the model trained on SynLiDAR 13�! POSS (MinkNet [9]).

observation across these experiments is that Annotator consistently outperforms the baseline methods
regardless of the budget allocation. In particular, Annotator achieves the best performance with
about five voxel grids of each LiDAR scan, highlighting the effectiveness of our method in selecting
informative areas for active learning. Additionally, we notice that the performance of Annotator
tends to saturate when the budget exceeds four voxel grids, particularly in the nuScenes ! KITTI
adaptation task. This phenomenon can be attributed to the fact that the selected voxels at this point
provide a sufficient foundation for training a highly competent segmentation model.

3.3 Analysis

More network architectures. As a general baseline, Annotator can be easily applied to other non-
voxelization based backbones. Here, we conduct experiments on both SalsaNext [10] (range-view)
and PolarNet [100] (bev-view) and per-class results are presented in Table 5. The findings reveal that
Annotator continues to yield significant gains, even when applied to range- or bev-view backbones,
with a limited budget. However, the performance gains in these cases are somewhat less pronounced
compared to the voxel-view counterparts. Also, to achieve a fully-supervised performance of 85%,
a budget twice as large is required. We suspect that some annotations derived from voxel-centric
selection may not be entirely applicable to other non-voxelization based methods.

Effect of voxel size 42. We conduct
experiments on different 42 while keeping the
same budget for selection process and results are
listed in Table 6. We can observe that active
rounds (# round) decreases as 42 increases since
the number of voxels (# voxel) will be small when
42 is large. Notably, the performance of the large
voxel grid (� 0.2) is more adequate and robust.

� 0.05 0.1 0.15 0.2 0.25 0.3 0.35

# voxel 64973 54543 43795 36091 30414 25992 22539
# round 11 9 7 6 5 4 4
AL 39.6 42.9 43.9 44.2 44.9 45.1 44.8
ASFDA 40.0 46.2 46.0 48.0 48.2 48.3 48.0
ADA 44.5 44.1 49.3 52.4 52.0 52.1 51.4

Table 6: Experiments on different values of �2

(from 0.05 to 0.35) for selection process, con-
ducted on SynLiDAR 13�! POSS (MinkNet [9]).

Category frequency. To obtain deep insight into Annotator, we also visualize a detailed plot of
the class frequencies of 5 voxel grids selected by Annotator (AL, ASFDA. ADA) and true class
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Ground-Truth Target-Only Source-Only AL (Ours) ASFDA (Ours) ADA (Ours)

car bi.cle mt.cle truck oth-v. pers. b.clst m.clst road park sidew. oth-g. build. fence veget. trunk terra. pole traf f.

Figure 7: Visualization of segmentation results for the task SynLiDAR 19�! KITTI using
MinkNet [9]. Each row shows results of Ground-Truth, Target-Only, Source-Only, our Annota-
tor under AL, ASFDA, and ADA scenarios one by one. Best viewed in color.

frequencies of the SemanticPOSS train in Figure 6. As expected, we clearly see that the true
distribution is exactly a long-tail distribution while Annotator is able to pick out more voxels that
contain rare classes. Particularly, it asks labels for more annotations of “rider”, “pole”, “trunk”,
“traf.”, “grab.” and “cone". This, along with the apparent gains in these classes in Table 4, confirms
the diversity and balance of voxel grids selected by Annotator.

Qualitative results. Figure 7 visualizes segmentation results for Source-/Target-Only, our Annotator
under AL, ASFDA, and ADA approaches on SemanticKITTI val. The illustration demonstrates the
ability of Annotator to enhance predictions not only in distant regions but also to effectively eliminate
false predictions across a wide range of directions around the center. By employing voxel-centric
selection, Annotator successes in enhancing segmentation accuracy even when faced with extremely
limited annotation availability. More qualitative results are shown in Appendix B.5.

3.4 Limitations

Currently, Annotator has two main limitations. First, high annotation cost and potential biases.
Annotator has made substantial strides in enhancing LiDAR semantic segmentation with human
involvement. Nonetheless, the annotation cost remains a challenge. It’s imperative to acknowledge
the existence of label and sensor biases, which can be a safety concern in real-world deployments.
Second, expansion beyond semantic segmentation. Annotator current focus on LiDAR semantic
segmentation represents a significant limitation in fully realizing its potential. In the future work, we
plan to extend Annotator to other 3D tasks, such as LiDAR object detection. This may involve two
key changes: i) shifting to frame-level selection; ii) reformulating the VCD strategy to consider the
diversity for each box annotation.

4 Related Work

LiDAR perception. Deep learning has made LiDAR perception tasks such as classification [17,
49, 70, 98] and detection [7, 30, 65, 93] easy to solve, allowing deployment in outdoor scenarios.
Differently, LiDAR semantic segmentation [3, 23, 32, 33, 40, 45, 46], receiving a class label for
each point, is an indispensable technology to understand a scene that is beyond the scope of modern
object detectors [35]. There exist various techniques to segment the 3D LiDAR point clouds, e.g.,
point [32, 45, 79], voxel [18, 39, 103], range [80, 81], bird’s eye [100], and multiple view [68, 89, 96]
methods. As the best approaches for LiDAR perception are typically trained under full supervision,
which can be costly more than capturing data itself, several methods resort to more frugal learning
techniques [14], such as semi- [29, 31], weak- [22, 34] and self-supervision [73, 101], zero-shot [21]
and few-shot [63] learning and, as studied here, active learning [66] and domain adaptation [74].

Active learning for LiDAR point clouds. To avoid the burden of complete point cloud annotation,
these methods iteratively select and request the most exemplar scans [94], regions [82], points [35], or
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boxes [37] to be labeled during the network training. Most selection strategies lean on uncertainty [24,
88] or diversity [60, 91] criteria. Uncertainty sampling can be measured over each point prediction
scores of the model, e.g., softmax entropy [78] or the margin between the two highest scores [53], to
select the most confusing of the current model. For example, Hu et al. [24] estimate the inconsistency
across frames to exploit the inter-frame uncertainty embedded in LiDAR sequences. On the other side,
diversity sampling has been ensured by selecting core sets [59]. Leveraging the unique geometric
structure of LiDAR point clouds, Liu et al. [35] partition the point could into a collection of
components then annotate a few points for each component. Recently, the need for an initially
annotated fraction of the data to bootstrap an active learning method has been investigated [6, 20, 58,
95, 104], which is termed as cold start problem. In this work, we show that a smart selection of the
first set of data with the aid of an auxiliary model can boost all baseline methods drastically.

Domain adaptation for LiDAR point clouds. To tackle the sensor-bias problem encountered in
LiDAR deployment, a large body of literature on domain adaptation (DA) [12, 28, 54–57, 74, 92] has
been developed. These methods aim to overcome the challenges posed by variations in data collection,
sensor characteristics, and environmental conditions, enabling machines to perceive the real world
more accurately and reliably. To name a few, Kong et al. [28] explore cross-city adaptation for
uni-modal LiDAR segmentation. Rochan et al. [51] propose a self-supervised adaptation technique
with gated adapters. Saltori et al. [55] mitigate the domain shift by creating two new intermediate
domains via sample mixing. Similarly, with the intermediate domain, Ding et al. [12] propose a
data-oriented framework with a pretraining and a self-training stage for 3D indoor scenes. Despite
the significant progress made in DA, the label scarcity of target domain severely handicaps its utility
as the performance of such models often lags far behind the supervised learning counterparts. With
this consideration, given an acceptable annotation budget, we explore a simple annotating strategy to
assist adaptation process and significantly boost the performance of target domain.

Up to now, active learning coupled with domain adaptation has great practical significance [15,
38, 41, 44, 48, 62, 61, 67, 69, 86]. Nevertheless, rather little work has been done to consider the
problem in 3D domains. A recent effort, UniDA3D [13], effectively tackles domain adaptation
and active domain adaptation tasks for 3D semantic segmentation. UniDA3D employs a unified
multi-modal sampling strategy, selecting informative pairs of 2D-3D data from both source and
target domains through a domain discriminator, primarily for ADA tasks. The primary distinction is
that our Annotator serves as a benchmark for active learning, active source-free domain adaptation,
and active domain adaptation tasks, delivering a simple and general AL algorithm for LiDAR point
clouds. Annotator focuses on enabling AL in both in-distribution and out-of-distribution scenarios.
In contrast, UniDA3D places a greater emphasis on adaptation tasks. On the other hand, Annotator
minimizes human labor in a new domain, regardless of the availability of samples from an auxiliary
domain. Methodically, Annotator adopts a voxel-centric representation for structured LiDAR data,
which is different from the scan-based representation in UniDA3D. Furthermore, Annotator is more
efficient than UniDA3D in terms of both computation and annotation cost.

5 Conclusion

In this work, we present Annotator, a generalist active learning baseline, to tackle LiDAR semantic
segmentation under three distinct label-efficient settings: active learning (AL), active source-free
domain adaptation (ASFDA), and active domain adaptation (ADA). Annotator harnesses the power
of a purpose-designed voxel confusion degree selection strategy, enabling it to make optimal use of
limited budgets while achieving efficient selection and effective performance. Experiments conducted
on widely-used simulation-to-real and real-to-real LiDAR semantic segmentation benchmarks demon-
strate a substantial performance improvement. Looking forward, we believe the effectiveness and
simplicity of Annotator has the potential to serve as a powerful tool for label-efficient 3D applications.
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