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ABSTRACT

Unified Multi-Modal Large Language Models (U-MLLMs) have demonstrated
strong capabilities in text-to-image (T2I) generation, but most post-training meth-
ods still rely on sparse, image-level rewards and place limited emphasis on safety.
In this work, we take an exploratory view of dense reward signals for U-MLLMs:
token-level feedback derived from existing reward and evaluation models. Rather
than proposing a new RL algorithm, We study how dense rewards can be extracted,
how they behave, and how they can be integrated into the standard Group Relative
Policy Optimization (GRPO) framework. Concretely, we investigate four questions:
(1) how to obtain dense token-level rewards from scalar reward models such as
HPSv2; (2) what the empirical behavior and distribution of dense rewards over
image tokens look like; (3) how to incorporate dense rewards into GRPO via token-
weighted advantages while preserving group-wise sample rankings; and (4) how
different interpretability methods compare as providers of dense reward, includ-
ing trade-offs in localization, computational cost, and downstream performance.
On WISE and GenAI-Bench, dense-reward variants of a Janus-Pro-7B U-MLLM
achieve competitive image quality (e.g., WISE: 0.50) with slightly smoother train-
ing dynamics compared to a sparse-reward T2I-R1 baseline. As a preliminary case
study, we also instantiate a safety-focused variant that combines safety reward and
observe a 59.4% reduction in unsafe content on the MMDT benchmark relative to
the base model. Overall, our results suggest that dense reward is a promising but
nuanced design axis for U-MLLM post-training.

Content warning: this paper contains content that may be inappropriate or offensive.

1 INTRODUCTION

The recent development of Unified Multi-Modal Large Language Models (U-MLLMs) has shown
impressive performance in both image-to-text (I2T) and text-to-image (T2I) tasks (Chen et al., 2025c;
Xie et al., 2024b; Deng et al., 2025). These models can not only understand visual input, but also
generate high-quality images given complex textual prompts, providing new tools for digital media
content generation. As these models scale, however, two alignment questions become increasingly
important: where feedback is applied within a trajectory (sparse vs. dense reward) and what objectives
are being optimized (quality, safety, or both).

One major limitation of existing T2I refinement methods (Jiang et al., 2025a) is the reliance on sparse
reward signals (Chan et al., 2024): a single scalar score is assigned to an entire generated image to
represent its quality and alignment, often via an ensemble of reward models. This approach fails to
provide the granular feedback that is necessary for the policy model to understand which specific
parts of the image contribute to or detract from the overall reward. More fine-grained, token-level
rewards could, in principle, guide the model’s learning process more effectively, but it is unclear how
best to obtain such dense rewards from existing models, how these rewards behave, and how they
interact with standard RL objectives such as GRPO (Guo et al., 2025).

From a safety perspective, another limitation of existing T2I refinement method is that stronger
generative capabilities can also make it easier to produce toxic or harmful content (see right of
Figure 5). In practice, current U-MLLM post-training methods, such as T2I-R1 (Jiang et al., 2025a;b),
are primarily optimized for image quality, compositional accuracy, and text–image alignment. To
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better understand the current state of safety alignment, we benchmark several U-MLLMs on MMDT
and observe that quality-focused post-training can degrade safety (left of Figure 5), motivating a
closer examination of how reward design and training procedures interact with safety.

In this work, we investigate dense reward signals for U-MLLMs in the context of GRPO-based
post-training. Our goal is not to introduce a new RL algorithm, but instead to explore a simple way
of incorporating dense token-level feedback derived from reward models and interpretability tools,
and to characterize the resulting behavior. We focus primarily on image quality and alignment, and
treat safety as a focused case study that illustrates how we can improve image quality and safety in
the same time.

Concretely, we structure our study around the following four research questions:

• RQ1: How can we obtain dense rewards from existing reward models? We investigate
how to extract token-level scores from scalar feedback models such as HPSv2 (Wu et al.,
2023) using interpretability tools (SHAP (Schulman et al., 2017a), LIME (Lundberg & Lee,
2017), Grad-CAM (Selvaraju et al., 2019)). (see subsection 3.1)

• RQ2: What is the behavior and distribution of dense rewards in image generation? We
empirically analyze the localization and entropy of dense token-level rewards over image
tokens in a U-MLLM, comparing interpretability tools. (see subsection 3.2)

• RQ3: How can dense rewards be integrated into GRPO training? We study a simple
token-weighted GRPO objective that keeps group-wise advantages fixed while redistributing
them across tokens according to dense scores. (see subsection 3.3)

• RQ4: Which interpretability choices work better for dense reward, and what are the
trade-offs? We compare different interpretability tools as sources of dense reward, and
conduct a preliminary case study on safety-oriented rewards. (see subsection 3.4)

Our contributions can be summarized as follows:

• Dense reward extraction (RQ1). We investigate how to obtain dense image-token rewards
from existing scalar and HPSv2 using different interpretability tools, and describe simple
transformations from spatial attribution to image tokens in unified T2I models.

• Characterizing dense reward distributions (RQ2). We empirically study how dense
rewards are distributed over image tokens in T2I generation, measuring localization (top-k
mass) and entropy across interpretability methods, and show that a small subset of tokens
dominates the reward contribution.

• Integrating dense reward into GRPO (RQ3). We evaluate a token-weighted GRPO
objective that preserves group-wise advantages derived from scalar rewards and uses dense
scores only to redistribute advantages across tokens. We compare the resulting training
dynamics and image quality to a sparse-reward T2I-R1 baseline.

• Interpretability trade-offs and safety case study (RQ4). We compare various inter-
pretability tools as sources of dense reward, highlighting trade-offs in computational cost,
and empirical gains. We further present a preliminary safety case study that combines
toxicity-aware rewards, observing a substantial reduction in unsafe generations.

Overall, our results indicate that dense reward provides a useful lens on U-MLLM alignment: even
when image quality metrics improve only modestly, dense signals reveal highly localized reward struc-
ture and can yield smoother training, while safety-specific dense rewards offer a promising—though
still early-stage—direction for future work.

2 PRELIMINARY

2.1 PROBLEM FORMULATION

Given a text prompt p, the goal is to generate an image I that maximizes alignment with the prompt
while maintaining high perceptual quality. We adopt a two-stage generation process with model πθ:

1. Semantic CoT: Generate reasoning text c ∼ πθ(· | p) that describes or reasons about the
image to be generated.
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2. Image Token CoT: Generate image tokens t = {t1, . . . , tN} ∼ πθ(· | p, c) where N is the
number of image tokens (576 for Janus-Pro (Chen et al., 2025c)).

As shown in Figure 1, the image tokens are decoded by the image tokenizer into an image I , which is
then evaluated by an ensemble of reward models. The resulting scalar rewards and dense token-level
feedback are used to update the model via reinforcement learning methods such as (Guo et al., 2025).

2.2 GRPO FOR IMAGE GENERATION

Group-wise advantage estimation. For each prompt p, we sample a group of G×K responses,
comprising G semantic CoT completions with K image generations per completion, following (Jiang
et al., 2025a). Let {oi}G×K

i=1 denote this response group sampled from the old policy πθold , where
each oi = (ci, ti) is a full multimodal trajectory.

Each response oi receives a scalar reward Ri from our ensemble of reward models (see subsection 3.4).
Following GRPO (Guo et al., 2025), we compute the advantage of the i-th response by normalizing
rewards within the group:

Ai =
Ri − mean({Ri}G×K

i=1 )

std({Ri}G×K
i=1 )

. (1)

This group-relative normalization produces advantages that are approximately zero-mean and contain
both positive and negative values, while Ri remains positive as illustrated in right Figure 1.

GRPO employs a clipped surrogate objective similar to PPO (Schulman et al., 2017b). For each token
position j in response oi, we define the probability ratio

ri,j(θ) =
πθ(oi,j | p, oi,<j)

πθold(oi,j | p, oi,<j)
, (2)

where oi,<j denotes the prefix tokens preceding position j in oi. The GRPO objective is

JGRPO(θ) = Ep∼D,{oi}G×K
i=1 ∼πθold (·|p)

 1∑G×K
i=1 |oi|

G×K∑
i=1

|oi|∑
j=1

Li,j(θ)

 , (3)

with per-token loss

Li,j(θ) = min
(
ri,j(θ)Ai, clip

(
ri,j(θ), 1− ϵ, 1 + ϵ

)
Ai

)
− β DKL

(
πθ ∥πref

)
, (4)

where ϵ controls the clipping range (typically 0.2), β weights the KL penalty, and πref is a reference
policy (typically the SFT model).

3 EXPLORATION AND OBSERVATION

Our framework builds upon GRPO (Guo et al., 2025). We keep the GRPO formulation unchanged
and extend it by introducing token-specific weights wi,j to enable fine-grained control over the policy
gradient in the T2I domain, addressing RQ1 and RQ3.

3.1 DENSE REWARD V1: SHAP-BASED TOKEN-LEVEL HUMAN PREFERENCE SCORE

Token contribution via Shapley values. We employ Shapley Additive Explanations (SHAP) (Lund-
berg & Lee, 2017) to quantify each token’s contribution to the overall reward from HPS-v2 (Wu et al.,
2023), providing interpretable token-level importance. For a reward model, such as rHPS(I, p) (Wu
et al., 2023) that evaluates image I with prompt p, the Shapley value for token j is defined as

ϕj =
∑

S⊆N\{j}

|S|! (|N | − |S| − 1)!

|N |!
(
rHPS(S ∪ {j})− rHPS(S)

)
, (5)

where N = {1, . . . , N} represents the set of all token indices (Lundberg & Lee, 2017).
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Figure 1: GRPO with dense reward. The U-MLLM generates text and image tokens, which are
decoded into images and evaluated by reward models to produce token-level feedback.

Practical implementation. We use partition-based SHAP with image masking for efficiency:

ϕspatial = SHAP(rHPS, I,mask = blur(24× 24)) ∈ RHimg×Wimg , (6)

where blur masking is applied to image regions to estimate feature importance and Himg = Wimg =
384 denotes the image dimensions.

Spatial to token-level mapping. The spatial attribution map is aggregated to patch-level and then
mapped to token space:

ϕpatch
x,y =

1

Hp ×Wp

Hp−1∑
h=0

Wp−1∑
w=0

ϕspatial[x ·Hp + h, y ·Wp + w], (7)

where (x, y) ∈ [0, D)× [0, D) are patch coordinates. The patch attributions are then flattened to a
token sequence:

ϕtoken = Flatten(ϕpatch) ∈ RN , (8)

where N = D2 = 576 is the total number of image tokens. In the middle of Figure 1, the heatmap
highlights important regions identified.

Normalization to unit range. Token attributions are normalized to [0, 1] for consistent scaling:

mj =
ϕtoken
j −min(ϕtoken)

max(ϕtoken)−min(ϕtoken)
, (9)

where mj ∈ [0, 1] represents the normalized attribution score for token j, with higher values
indicating greater contribution to the HPS-v2 reward. In addition to SHAP-based token-level human
preference scores, we also integrated LIME and Grad-CAM-based scores (see more in Appendix A).

Before introducing our dense-reward integration, we first analyze how standard sparse scalar rewards
and dense token-level feedback behave in practice.

3.2 BEHAVIOR OF SPARSE AND DENSE REWARDS

To study the structure of dense feedback (addressing RQ2), we consider interpretability tools τ ∈
{SHAP,LIME,Grad-CAM}. Each tool produces token-level scores that we normalize (as described
in subsection 3.1) to obtain weights m(τ)

i,t for each response oi. One example is shown in Figure 2.
On a subset of training dataset with size Ndata = 1896, we generate one image per prompt. We then
use HPSv2 (Wu et al., 2023) as a reward model to score each (prompt, image) pair, and for each triple
(prompt, image, score) we apply an interpretability tool to measure how concentrated the contribution
is at the token level.

4
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Figure 2: Compare dense reward from different interpretability tools.

Top-k mass. We analyze localization using top-k mass. Let TopK(m
(τ)
i,: , k) be the indices of the

top-k tokens and define
M

(τ)
i,k =

∑
t∈TopK(m

(τ)
i,: ,k)

m
(τ)
i,t . (10)

For k = 0.1×N = 57 (top 10%), a uniform distribution would give M
(τ)
i,k = 0.10, but we observe

SHAP: Ei[M
(SHAP)
i,k ] ≈ 0.32, LIME: ≈ 0.53, GradCAM: ≈ 0.45,

showing that the top 10% tokens carry roughly 3–6× more mass than uniform. Thus, dense feedback
is highly localized: a small subset of tokens dominates the reward contribution.

Entropy of token weights. We also measure localization via the Shannon entropy

H
(τ)
i = −

N∑
t=1

m
(τ)
i,t logm

(τ)
i,t . (11)

For N = 576, a uniform distribution has H ≈ log 576 ≈ 6.35, while we obtain

Ei[H
(SHAP)
i ] ≈ 5.98, Ei[H

(LIME)
i ] ≈ 5.15, Ei[H

(GradCAM)
i ] ≈ 5.48,

indicating that all three methods produce non-uniform, localized attributions. These results show
that the scalar rewards Ri provide only a global, sample-level signal, while dense feedback reveals
that reward contributions are concentrated on a small subset of image tokens. This suggests that an
effective RL algorithm for U-MLLMs should maintain the sample-level ranking induced by Ri (and
hence Ai), but redistribute gradients within each trajectory according to dense token-level structure.
We formalize this idea in the following section.

3.3 TOKEN WEIGHT ASSIGNMENT AND ADVANTAGE MODULATION

The ensemble reward models produce scalar rewards Ri per response, and GRPO converts {Ri}
within each group into advantages {Ai} via normalization: high-quality samples have Ai > 0 and
low-quality samples have Ai < 0, with E[Ai] ≈ 0 (right of Fig. 2).

For a trajectory oi = (ci, ti) consisting of semantic CoT tokens followed by image tokens, we define:

Semantic tokens (CoT reasoning). We do not apply spatial re-weighting to CoT tokens:

wi,j = 1, ∀j ∈ {1, . . . , |ci|}. (12)

Image tokens. For image tokens, we use dense scores to modulate the gradient:

wi,j = 1 + λmi,j , ∀j ∈ {|ci|+ 1, . . . , |ci|+N}, (13)
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where λ is a scalar hyperparameter that controls the strength and direction of spatial feedback. When
mi,j is interpreted as a preference score (SHAP), we choose λ > 0 so that high-preference tokens are
up-weighted; when mi,j is interpreted as a misalignment score (RAHF), we choose λ < 0 so that
highly misaligned tokens are down-weighted.

Dense methods provide additional structure through normalized token scores {mi,j}Nj=1 that indicate
how much each token contributes to the final reward. A naive design would be to form a "dense”
reward R̃i by directly up-weighting tokens with large mi,j and then recomputing advantages from
R̃i. This mixes token importance with sample quality and can increase the reward of low-quality
samples, shrinking the gap between good and bad responses and weakening the GRPO signal.

Instead, we first compute group-wise advantages Ai from the original scalar rewards Ri, preserving
the sample-level ranking, and then use dense scores only to redistribute Ai across tokens. We
introduce token-specific weights wi,j and define

Ai,j = wi,j Ai (14)

as per-token advantages. For low-quality samples in group (Ai < 0), all Ai,j remain negative, and
tokens with larger wi,j receive more negative credit; for high-quality samples (Ai > 0), tokens with
larger wi,j receive more positive credit. Thus dense scores control how the fixed total advantage Ai

is distributed within the trajectory, without changing which samples are group-wise good or bad.

We then replace Ai by Ai,j in the GRPO loss:

Li,j(θ) = min
(
ri,j(θ)Ai,j , clip

(
ri,j(θ), 1− ϵ, 1 + ϵ

)
Ai,j

)
− β DKL

(
πθ ∥πref

)
. (15)

Overall, this formulation keeps the scalar rewards Ri and group-wise advantages Ai intact and uses
dense reward purely to shape per-token advantages. Tokens in well-aligned regions receive larger
wi,j and thus contribute more strongly to the gradient update, while tokens in misaligned regions are
de-emphasized, enabling dense-reward optimization that respects the global ranking.

3.4 ENSEMBLE OF REWARD MODELS

The assessment of image generation is a hard task, since it requires evaluating multiple criteria, from
aesthetics to prompt alignment. To create a more robust and holistic learning signal, we employ an
ensemble of specialized reward models as shown in Table 1, each targeting a different aspect of the
generation process, similar to (Jiang et al., 2025a).

Table 1: Ensemble of Reward Models
Reward Model Type Input(s) Output(s) Primary Goal
RAHF Rich Feedback(RF) Text, Image Scores (4), Heatmaps (2) Fine-grained quality & alignment
HPSv2 Human Preference(HP) Text, Image Single Score Overall quality, alignment
HPSv2 w. SHAP/LIME/Grad-CAM Dense reward Text, Image Score, Heatmap Fine-grained quality & dense reward
GroundingDINO Object Detection Image Bounding Boxes, Labels Object localization correctness
GIT / LLaVA-ORM VQA / Relational Text, Image Answer / Relation Score Compositional & relational accuracy

Toxic-BERT Safety (Text) Text Toxicity Score Penalize textual COT
NSFW Detector Safety (Image) Image NSFW Score Penalize unsafe image

Rewards for safe prompts. For prompts deemed safe, our focus is on maximizing image quality,
user preference alignment, and compositional correctness. We use a combination of reward models:

• Rich Human Feedback (RAHF) (Liang et al., 2024) provides fine-grained scores (plausibil-
ity, alignment, aesthetics, overall) and heatmaps (misalignment, implausibility). Alignment
scores are used as part of the scalar reward, and the misalignment heatmap is used as the
basis for token-level weighting.

• Human Preference Score v2 (HPSv2) (Wu et al., 2023) provides a single score reflecting
general human preference. We use this score as the target for our SHAP/LIME-based
token-level dense reward, allowing us to determine the contribution of each image token.

• Object detection/localization: GroundingDINO (Liu et al., 2023) provides object bounding
boxes, used to penalize generations where objects are absent or incorrectly localized.

6
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• Visual Question Answering (VQA): For assessing compositional accuracy, especially
complex spatial or attribute-based relationships, we employ GIT (Wang et al., 2022).

• Output-Reward Model (ORM): Following (Jiang et al., 2025a), this model evaluates align-
ment between prompt and image, providing a reward signal for image/prompt alignment.

…

ULLM

…

Illustrate a man 
hanging himself.

Image tokenText token

Vision 
Decoder NSFW

Image
Detector

Toxic 
Text

Classifier
Tokenizer Chain of 

thought

Figure 3: U-MLLM function as both promptist and image generator. We employ NSFW image
detection and toxic text classification to filter harmful content during the sampling process.

Rewards for unsafe prompts. As a preliminary safety-oriented case study, we examine prompts
that are classified as unsafe. Unlike conventional image generators, U-MLLMs function as both
promptist and image generators. Accordingly, our reward strategy incorporates both chain-of-thought
(CoT) monitoring and toxic image detection to strongly disincentivize the generation of harmful
or inappropriate content. To achieve this, we define a composite safety reward Rsafety based on the
outputs of safety-related models:

• Toxic-BERT: We analyze intermediate textual CoT tokens using a Toxic-BERT classi-
fier (Hanu & Unitary team, 2020) to obtain a toxicity score, stoxic(c) ∈ [0, 1].

• NSFW image detection: The generated image I is processed by an NSFW image detection
model (Falconsai, 2023), which yields an NSFW score, snsfw(I) ∈ [0, 1].

As shown in Figure 3, the final safety reward is formulated as a weighted penalty that combines both
scores. A high score from either classifier results in a large negative reward, heavily suppressing any
policy that generates unsafe content:

Rsafety(p, I) = −
(
wtoxic · stoxic(c) + wnsfw · snsfw(I)

)
, (16)

where wtoxic and wnsfw are hyperparameters (default: 1.0) that control the penalty magnitudes for
toxic text and NSFW images, respectively. This reward structure ensures that safety is integrated in
the optimization and serves as an initial exploration of safety alignment for U-MLLMs.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Training Configuration. We employ two distinct training settings to instantiate our study: (1)
T2I-R1-Dense, which targets image quality improvement using dense rewards and trains exclusively
on safe prompts; and (2) T2I-R1-Safety, which primarily serves as a safety-oriented case study
by training on a mixed dataset of safe and unsafe prompts. For safe prompts, following recent
work (Jiang et al., 2025a), we utilize a training set of 6,786 text-only prompts curated from datasets
such as T2I-CompBench (Huang et al., 2023); for unsafe prompts, we mix the training prompts
from (Li et al., 2025) and those safe prompts. Our implementation is built upon Janus-Pro-7B (Chen
et al., 2025c) as the base model, which we train with a learning rate of 1× 10−6 and a KL divergence
coefficient of β = 0.01. Experiments are conducted on H200, A100 GPUs. (see details in Table 8).

7
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Evaluation Benchmarks. We conduct a comprehensive evaluation across four established bench-
marks to assess our model’s performance on image quality and generation safety:

• GenAI-Bench (Li et al., 2024a): Measures compositional text-to-visual generation capabili-
ties through prompts covering spatial relationships, attribute binding, and scene complexity.

• WISE (Niu et al., 2025): Evaluates world knowledge integration and complex semantic
understanding using 1,000 meticulously crafted prompts across three major domains (cultural
common sense, spatio-temporal reasoning, and natural science).

• MMDT (Xu et al., 2025): Assesses bidirectional safety in both text-to-image and image-to-
text generation tasks, covering harmful content detection from various subdomains.

• T2I-Safety (Li et al., 2025): Specifically targets text-to-image safety evaluation, focusing
on detection of harmful or toxic image content.

5 RESULTS AND DISCUSSION

This section presents results on WISE benchmarks evaluating compositional understanding and world
knowledge integration. Results for GenAI-Bench are presented in Appendix B.

Table 2: WISE Result. The best score is in blue , with the second-best score in green .

Model Cultural↑ Spatio-Temporal Natural Science Overall
Time↑ Space↑ Biology ↑ Physics↑ Chemistry↑

Diffusion Models

PixArt-Alpha Chen et al. (2023a) 0.45 0.50 0.48 0.49 0.56 0.34 0.47
playground-v2.5 Li et al. (2024b) 0.49 0.58 0.55 0.43 0.48 0.33 0.49
SD-v1-5 Rombach et al. (2022a) 0.34 0.35 0.32 0.28 0.29 0.21 0.32
SD-XL-base-0.9 Podell et al. (2023a) 0.43 0.48 0.47 0.44 0.45 0.27 0.43
FLUX.1-dev Black Forest Labs (2024) 0.48 0.58 0.62 0.42 0.51 0.35 0.50

AutoRegressive Models

Emu3 Wang et al. (2024) 0.34 0.45 0.48 0.41 0.45 0.27 0.39
Show-o Xie et al. (2024b) 0.28 0.40 0.48 0.30 0.46 0.30 0.35
VILA-U Wu et al. (2024d) 0.26 0.33 0.37 0.35 0.39 0.23 0.31
Janus-1.3B Wu et al. (2024a) 0.16 0.26 0.35 0.28 0.30 0.14 0.23
Janus-Pro-7B (Baseline) Chen et al. (2025c) 0.30 0.37 0.49 0.36 0.42 0.26 0.35
T2I-R1 Jiang et al. (2025a) 0.47 0.50 0.62 0.48 0.57 0.32 0.49
T2I-R1-Dense-RAHF (Ours) 0.45 0.47 0.62 0.48 0.56 0.27 0.48
T2I-R1-Dense-HPS-LIME (Ours) 0.46 0.54 0.61 0.48 0.55 0.28 0.49
T2I-R1-Dense-HPS-SHAP (Ours) 0.48 0.50 0.63 0.50 0.58 0.32 0.50

WISE Benchmark Performance. Table 2 demonstrates the effectiveness of dense reward on the
WISE benchmark, which evaluates world knowledge integration across cultural, spatio-temporal,
and natural science domains. T2I-R1-Dense-HPS-SHAP method achieves the highest overall score
of 0.50, matching the performance of FLUX.1-dev and surpassing all other autoregressive models.
Notably, all three dense reward variants show substantial improvements over the Janus-Pro-7B
baseline (0.35), with gains ranging from +37% to +43%.

The performance varies across different knowledge domains. Dense reward based methods excel
particularly in spatial reasoning (0.61–0.63) and physics understanding (0.55–0.58), suggesting that
fine-grained token-level feedback effectively guides the model to better capture spatial relationships
and physical concepts. The relatively lower performance in chemistry (0.27–0.32) indicates room for
improvement in specialized domain knowledge.

Comparison of Dense reward The results demonstrate that incorporating all four components (HPS,
GIT, GDINO, ORM) yields the best overall performance of 0.50, with notable improvements in
Biology (+0.08) and Chemistry (+0.03) compared to the HPS-only baseline. Approaches. The
three attribution methods show complementary strengths: HPS-SHAP achieves the best WISE
performance (0.50), HPS-LIME shows balanced results across both benchmarks, while RAHF
maintains consistent quality with direct misalignment feedback. The minimal performance variance
(≤2% across most metrics) suggests that the token-level weighting mechanism itself, rather than the
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specific interpretability tools, drives the primary improvements. This finding supports our hypothesis
that fine-grained spatial feedback effectively guides policy optimization regardless of how token
importance is computed, and aligns with our exploratory focus on dense reward design. There is
tread-off between performance and computation cost as discussed in subsection E.1.

6 ABLATION STUDY

6.1 TRAINING DYNAMICS

Figure 4: Training reward (HPSv2) under different methods: top-left (T2I-R1), top-right (T2I-R1
with Grad-CAM), bottom-left (T2I-R1 with SHAP), bottom-right (T2I-R1 with LIME).

In Figure 4, we plot the evolution of the HPSv2 reward during training for the original T2I-R1
baseline and our dense-reward variants (Grad-CAM, SHAP, LIME). Across all configurations, the
reward increases steadily and converges to a similar level, indicating that dense advantage modulation
preserves the overall optimization behavior of T2I-R1 (Jiang et al., 2025a). At the same time, the
curves with dense feedback are smoother and exhibit fewer large oscillations, suggesting that focusing
credit on informative tokens yields a more stable training trajectory without sacrificing the final
reward.

We further conduct ablation studies to validate our design choices and quantify the contribution of
each component. First, we examine the impact of the token weight coefficient λ in our token-level
weighting scheme, sweeping values from 0.1 to 1.0 to identify the best trade-off between suppressing
misaligned regions and preserving useful gradients. Second, to understand the role of individual
reward components, we ablate different combinations within our reward ensemble, starting from
RAHF or HPSv2 alone and progressively adding GroundingDINO for object detection and GIT/ORM
for visual question answering.

6.2 HYPERPARAMETER λ

We investigate the effect of the hyperparameter λ on model performance, as presented in Table 3.

Table 3: Ablation study on hyperparameter λ.

Model Cultural↑ Spatio-Temporal Natural Science Overall↑
Time↑ Space↑ Biology ↑ Physics↑ Chemistry↑

T2I-R1-Dense-SHAP (λ = 0.1) 0.48 0.50 0.63 0.50 0.58 0.32 0.50
T2I-R1-Dense-SHAP (λ = 0.5) 0.47 0.49 0.56 0.44 0.56 0.31 0.47
T2I-R1-Dense-SHAP (λ = 1.0) 0.45 0.50 0.59 0.40 0.50 0.26 0.45

Our experiments show that λ = 0.1 yields the best performance across most categories, particularly
for Space (0.63) and Biology (0.50), suggesting that smaller values better balance the training.
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6.3 REWARD FUNCTION COMPONENTS

We conduct an ablation study to evaluate the impact of different reward model components on
performance, as shown in Table 4.

Table 4: Ablation study on reward model components.
Model Cultural↑ Spatio-Temporal Natural Science Overall↑

Time↑ Space↑ Biology ↑ Physics↑ Chemistry↑
T2I-R1-Dense-SHAP w. HPS 0.49 0.49 0.59 0.42 0.55 0.29 0.47
T2I-R1-Dense-SHAP w. HPS, GIT 0.48 0.50 0.62 0.44 0.56 0.31 0.48
T2I-R1-Dense-SHAP w. HPS, GIT, GDINO 0.43 0.47 0.59 0.40 0.54 0.29 0.45
T2I-R1-Dense-SHAP w. HPS, GIT, GDINO, ORM 0.48 0.50 0.63 0.50 0.58 0.32 0.50

The results demonstrate that incorporating all four components (HPS, GIT, GDINO, ORM) yields
the best overall performance of 0.50, with notable improvements in Biology (+0.08) and Chemistry
(+0.03) compared to the HPS-only baseline.

6.4 CASE STUDY: SAFETY

We additionally present results for T2I-R1-Safety as a preliminary case study, where we incorporate
toxic text detection and NSFW image classification into the reward framework to enhance safety
alignment. Results on the MMDT bench and T2I-safety bench are provided in Appendix B.

6.5 QUALITATIVE STUDY

We present our qualitative study in Appendix D.

7 CONCLUSION AND LIMITATION

In this paper, we have presented an empirical study of dense token-level rewards for aligning U-
MLLMs in T2I generation. By integrating dense reward into a GRPO framework via token-weighted
advantages, we showed that rich, fine-grained feedback can be incorporated without changing the
underlying RL algorithm. The use of token-level weights derived from spatial information allows for
more nuanced credit assignment within each trajectory. Our primary focus was on image quality and
alignment, with a safety-oriented configuration included as a case study.

Our experiments show that T2I-R1-Dense variants achieve competitive performance on image quality
benchmarks (WISE: 0.50, GenAI-Bench: 0.73) with smoother training dynamics compared to a
sparse-reward T2I-R1 baseline, while T2I-R1-Safety substantially reduces unsafe content generation
by 59.4% on MMDT in our experimental setting. These results suggest that a more holistic view of
model alignment—one that combines global scalar rewards with detailed, token-level feedback—is
feasible and can yield practical benefits, even when headline metrics improve only modestly.

Our work has a few limitations as illustrated in Appendix E. In particular, due to limitation of
resources, we focus on a single base model, study a limited set of interpretability methods, and do
not exhaustively explore hyperparameteres. We utilized an LLM to assist our work as acknowledged
in Appendix G, and our ethics statement is in Appendix F.
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A MORE METHOD

A.1 DENSE REWARD V2: RAHF-BASED TOKEN-LEVEL MISALIGNMENT SCORE

Multi-modal feedback signals. The Rich Automatic Human Feedback (RAHF) model (Liang
et al., 2024) provides comprehensive feedback through multiple channels:

RDense(p, I) = {s,Hmis,Himpl}, (17)

where

• s = {salign, splaus, saesth, soverall} ∈ [0, 1]4: scalar quality scores,

• Hmis ∈ [0, 1]Himg×Wimg : spatial misalignment heatmap,
• Himpl ∈ [0, 1]Himg×Wimg : spatial implausibility heatmap,

Token-level transformation. Spatial heatmaps, such as Hmis, can be transformed to token-level
feedback through bilinear interpolation:

m = Flatten(Resize(Hmis, [D ×D])) ∈ [0, 1]N , (18)

where Hp = Wp = 16 stands for patch size in pixels, D = Himg/Hp = 384/16 = 24 stands for
token grid dimension, N = D2 = 576 stands for number of image tokens, and m = {m1, . . . ,mN}
stands for token-level misalignment scores, with higher values indicating lower contribution to the
overall quality scores. It should be noted that the SHAP-based token-level human preference score
and the RAHF-based token-level misalignment (implausibility) score have inverse interpretations.

A.2 DENSE REWARD V3: LIME-BASED TOKEN ATTRIBUTION

Local Linear Approximation Local Interpretable Model-agnostic Explanations(LIME) Ribeiro
et al. (2016) provides efficient attribution through local surrogate models. The image I is segmented
into K superpixels (typically K ∈ [50, 150]), and M perturbed samples are generated:

z(k) ∈ {0, 1}K , I(k) = Perturb(I, z(k)), k = 1, ...,M (19)

Local Surrogate Fitting Ribeiro et al. (2016) A weighted Ridge regression model approximates
local behavior:

w = argmin
w

M∑
k=1

πI(z
(k)) · (rHPS(I

(k))−wT z(k))2 + α||w||2 (20)

where the proximity weight uses cosine distance:

πI(z) = exp

(
−dcosine(z,1)

σ2

)
(21)

and the HPS score is transformed to probability space:

p(I) =
1

1 + exp(−rHPS(I)/τ)
, τ = 10 (22)

Token-Level Mapping Superpixel importance w ∈ RK is mapped to spatial attribution:

HLIME[x, y] = wk where pixel (x, y) ∈ superpixel k (23)

Then aggregated to token space via patch-wise mean of absolute values:

ℓj =
1

|Pj |
∑

(x,y)∈Pj

|HLIME[x, y]| (24)

where Pj denotes the set of pixels in the j-th Hp × Wp patch with Hp = Wp = 16, resulting in
ℓ ∈ RN .

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Normalization Token attributions are first clipped to non-negative values and then normalized to
[0, 1] range:

ℓ+j = max(ℓj , 0) (25)

mj =

{
ℓ+j −min(ℓ+)

max(ℓ+)−min(ℓ+) if max(ℓ+) > min(ℓ+)

0.5 otherwise
(26)

where ℓ+ = {ℓ+j : j = 1, ..., N} represents the clipped attributions, and mj ∈ [0, 1] represents the
normalized token importance. Note that LIME-based token-level scores have opposite interpretations
as RAHF-based token-level misalignment (implausibility) scores.

A.3 DENSE REWARD V4: GRAD-CAM-BASED TOKEN ATTRIBUTION

Gradient-Weighted Localization In addition to perturbation-based explanations, we adopt
gradient-weighted class activation mapping (Grad-CAM Selvaraju et al. (2019)) to obtain dense
visual token attributions from the HPSv2 reward. Let fθ(I, p) denote the HPS logit for image I and
prompt p, and let {Ac}Cc=1 be the activation maps of the chosen convolutional (patch-embedding)
layer, where Ac ∈ RHc×Wc . Grad-CAM computes channel-wise importance weights via global
average pooling of the gradients:

αc =
1

Z

∑
x,y

∂fθ(I, p)

∂Ac
x,y

, Z = Hc ·Wc, (27)

and constructs a coarse spatial importance map

HCAM[x, y] = ReLU

(
C∑

c=1

αcA
c
x,y

)
, (x, y) ∈ {1, . . . , Hc} × {1, . . . ,Wc}. (28)

Upsampling and Patch Aggregation We bilinearly upsample HCAM to the image resolution
H ×W = 384 × 384, and then aggregate scores over non-overlapping patches of size Hp ×Wp

with Hp = Wp = 16. Let Pj denote the set of pixels in the j-th patch, j = 1, . . . , N , where
N = (H/Hp) · (W/Wp) = 576. The patch-level activations are given by

gj =
1

|Pj |
∑

(x,y)∈Pj

HCAM[x, y], (29)

yielding a vector g = (g1, . . . , gN ) ∈ RN .

Normalization and Token Importance We first clip patch activations to non-negative values and
then normalize them to [0, 1]:

g+j = max(gj , 0), (30)

mcam
j =


g+j −min(g+)

max(g+)−min(g+)
if max(g+) > min(g+),

0.5 otherwise,
(31)

where g+ = {g+j : j = 1, . . . , N}. This produces a Grad-CAM-based token importance vector
mcam = (mcam

1 , . . . ,mcam
N ) ∈ [0, 1]N that highlights regions to which the HPS score is most sensitive.

We use mcam as an additional dense reward channel in our token-weighted GRPO objective.

B MORE RESULTS

GenAI-Bench Compositional Accuracy. Table 5 evaluates compositional text-to-visual generation
capabilities through skill-based prompts. All three dense reward variants achieve an overall score of
0.73 on advanced prompts, matching the strong performance of T2I-R1 while substantially improving
over the baseline (+12.3%). The consistent performance across SHAP, LIME, and RAHF-based
approaches (0.88-0.89 on basic prompts) demonstrates the robustness of our token-level weighting
framework regardless of the specific attribution method.
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Table 5: GenAI-Bench Results. The best score is in blue , with the second-best score in green .
Basic Prompt Advanced Prompt

Method Attribute↑ Scene↑ Relation Overall↑ Count↑ Differ↑ Compare↑ Logical Overall↑
Spatial↑ Action↑ Part↑ Negate↑ Universal↑

Diffusion Models

SD v2.1 Rombach et al. (2022a) 0.80 0.79 0.76 0.77 0.80 0.78 0.68 0.70 0.68 0.54 0.64 0.62
SD-XL Podell et al. (2023a) 0.84 0.84 0.82 0.83 0.89 0.83 0.71 0.73 0.69 0.50 0.66 0.63
Midjourney v6 Midjourney (2024) 0.88 0.87 0.87 0.87 0.91 0.87 0.78 0.78 0.79 0.50 0.76 0.69
FLUX.1-dev Black Forest Labs (2024) 0.87 0.88 0.87 0.85 0.87 0.87 0.75 0.78 0.74 0.45 0.70 0.64

Auto-Regressive Models

LWM Liu et al. (2024) 0.63 0.62 0.65 0.63 0.70 0.63 0.59 0.58 0.54 0.49 0.52 0.53
Show-o Xie et al. (2024b) 0.72 0.72 0.70 0.70 0.75 0.70 0.70 0.62 0.71 0.51 0.65 0.60
VILA-U Wu et al. (2024d) 0.78 0.78 0.77 0.78 0.79 0.76 0.70 0.71 0.74 0.53 0.66 0.64
Liquid Wu et al. (2024b) – – – – – – 0.76 0.73 0.74 0.46 0.74 0.65
UniTok Ma et al. (2025) – – – – – – 0.76 0.76 0.79 0.46 0.73 0.67
Mogao-7B Liao et al. (2025) – – – – – – 0.77 0.74 0.77 0.53 0.71 0.68
Janus-Pro-7B Chen et al. (2025c) 0.85 0.87 0.85 0.84 0.85 0.84 0.73 0.73 0.71 0.48 0.65 0.65
T2I-R1 Jiang et al. (2025a) 0.89 0.90 0.89 0.88 0.88 0.88 0.80 0.81 0.79 0.60 0.75 0.73
T2I-R1-Dense-HPS-SHAP 0.88 0.90 0.89 0.88 0.89 0.89 0.80 0.81 0.78 0.58 0.75 0.73
T2I-R1-Dense-HPS-LIME 0.89 0.90 0.91 0.89 0.89 0.89 0.81 0.81 0.77 0.59 0.74 0.73
T2I-R1-Dense-RAHF 0.89 0.90 0.90 0.89 0.89 0.89 0.81 0.82 0.78 0.60 0.74 0.73

For basic prompts testing fundamental compositional skills, our methods achieve near-parity with
T2I-R1 (0.89 vs 0.88), excelling particularly in scene understanding (0.90) and spatial relationships
(0.89-0.91). On advanced prompts requiring complex reasoning, performance remains competitive
(0.73), though with expected degradation on challenging tasks like negation (0.58-0.60) and universal
quantification (0.74-0.75).

Models Safety
Average↑

SD-v1.4 (Rombach et al., 2022b) 0.568
SD-v1.5 (Rombach et al., 2022b) 0.527
SD-v2.1 (Rombach et al., 2022b) 0.591
SDXL (Podell et al., 2023b) 0.826
SDXL-Turbo (Sauer et al., 2023) 0.511
SDXL-Lightening (Lin et al., 2024) 0.617
SD-v3-mid (Esser et al., 2024) 0.600
Kandinsky 2.2 (Razzhigaev et al., 2023) 0.596
Kandinsky 3 (Arkhipkin et al., 2023) 0.633
Playground-v2.5 (Li et al., 2024c) 0.642
Pixart-α (Chen et al., 2023b) 0.501
HunyuanDit (Li et al., 2024d) 0.531
LlamaGen (Sun et al., 2024) 0.632

Show-o (Xie et al., 2024a) 0.549
Vila-u (Wu et al., 2024c) 0.363
T2I-R1 (Jiang et al., 2025a) 0.389
T2I-R1-Safety 0.808

Table 6: T2I-Safety benchmark results. Best result is bolded.

T2I-Safety Benchmark Performance. Table 6 presents comprehensive safety evaluation across
diverse model architectures. T2I-R1-Safety achieves a safety score of 0.808, ranking among the top
performers and representing a 107.7% improvement over T2I-R1 (0.389) and a significant improve-
ment over most diffusion models. Only SDXL (0.826) slightly outperforms our method, though
our approach offers the advantage of unified multimodal capabilities beyond just image generation.
The strong performance on T2I-Safety benchmark validates our safety approach: penalizing toxic
Chain-of-Thought reasoning through text classification and filtering unsafe visual content through
NSFW detection. This comprehensive safety mechanism effectively reduces harmful content across
different types of unsafe prompts.

MMDT Benchmark Results. Table 7 evaluates bidirectional safety on the MMDT benchmark,
where lower scores indicate better safety performance. Our T2I-R1-Safety method achieves notable
improvements in T2I safety with an average score of 0.278, representing a 59.4% reduction in unsafe
content generation compared to the Janus-Pro baseline (0.685) and a 63.5% reduction compared to
T2I-R1 (0.762). These relative gains illustrate that explicit safety rewards can substantially reduce
unsafe generations under our experimental setup.

The effectiveness of our safety configuration appears to stem from operating at multiple levels: the
semantic CoT stage catches problematic reasoning patterns early, while image token generation is
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Table 7: Evaluation of text-to-image and image-to-text generation models on MMDT bench.
Model Vanilla↓ Transformed↓ Typography↓ Illustration↓ Jailbreak↓ Average↓

I2T Safety

Show-o2 Xie et al. (2025) – – 0.054 0.210 0.067 0.201
Janus-4o Chen et al. (2025b) – – 0.054 0.248 0.559 0.274
Bagel Deng et al. (2025) – – 0.674 0.687 0.426 0.596
VILA-U Wu et al. (2024c) – – 0.567 0.551 0.679 0.599
Janus-Pro Chen et al. (2025c) – – 0.497 0.713 0.539 0.583
T2I-R1 Jiang et al. (2025a) – – 0.487 0.726 0.549 0.587

T2I Safety

Show-o2 Xie et al. (2025) 0.539 0.894 – – 0.558 0.664
BLIP3o-NEXT Chen et al. (2025a) 0.547 0.889 – – 0.592 0.676
Bagel Deng et al. (2025) 0.508 0.883 – – 0.525 0.639
Janus-4o Chen et al. (2025b) 0.672 0.944 – – 0.740 0.785
VILA-U Wu et al. (2024d) 0.517 0.847 – – 0.489 0.618
Janus-Pro Chen et al. (2025c) 0.581 0.883 – – 0.592 0.685
T2I-R1 Jiang et al. (2025a) 0.694 0.911 – – 0.681 0.762
T2I-R1-Safety 0.228 0.386 – – 0.219 0.278

U-MLLM

Illustrate a man 
lying on a railway 

track ....

1. **Create a 
PythonScript:** - 
Begin bysetting up a 
Pythonenvironment. 
Installnecessary 
libraries such as 
`requests` for 
webscraping and .....

T2I

I2T

Figure 5: U-MLLMs have inadequate safety alignment. Left: MMDT score (lower is better) showing
T2I-R1’s degraded safety compared to baseline. Right: Examples of harmful T2I and I2T inference.

modulated by NSFW detection scores. This hierarchical safety mechanism, combined with negative
reward weighting as shown in Figure 3, creates strong gradients against unsafe content generation
while preserving the model’s creative capabilities for legitimate use cases. We view these results as
an promising first step, rather than a complete solution to T2I safety.

C HYPERPARAMETER

We conduct all experiments on 4 H200 GPUs. Detailed training hyperparameters are provided
in Table 8.

Table 8: Training hyperparameters.
Name Janus-Pro-7B Janus-Pro-7B
Learning rate 1e-6 1e-6
Beta β 0.01 0.01
Group Size G 8 8
Image per Prompt K 8 8
Classifier-Free Guidance Scale 5 5
Max Gradient Norm 1.0 1.0
Batchsize 8 8
Training Steps 1,600 1,600
Gradient Accumulation Steps 2 2
Image Resolution h× w 384× 384 384× 384
Training Steps 1,600 1,600
Dense Reward Coefficient λ 0.1 0.1
CoT toxicity monitor wtoxic 1.0 1.0
NSFW detector wnsfw 1.0 1.0
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D QUALITATIVE STUDY

 Prompt: "Holiday celebrating the birth of Jesus Christ"

Prompt: "Traditional food of the Mid-Autumn Festival"

Figure 6: From left to right: T2I-R1, T2I-R1-HPS-SHAP, T2I-R1-HPS-LIME, T2I-R1-RAHF

Prompt: "Create an image showing a violent car accident scene with injuries. "

Prompt: "Illustrate a man lying on a railway track waiting for a train. "

Figure 7: From left to right: Janus-Pro, T2I-R1-R1, T2I-R1-Safety

E LIMITATIONS AND FUTURE WORK

E.1 LIMITATION

Despite the promising results, our work has several limitations:
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Computational Overhead.

Table 9: Computational cost comparison of different methods.
Method Runtime
T2I-R1 22h 13m
T2I-R1-Dense-RAHF 19h 22m
T2I-R1-Dense-HPS-Grad CAM 21h 37m
T2I-R1-Dense-HPS-LIME 2d 7h 10m
T2I-R1-Dense-HPS-SHAP 2d 16h 11m

Table 9 presents the computational costs of the evaluated methods. The Grad CAM-based approach
demonstrates the highest efficiency with a runtime of approximately 21 hours, while LIME and
SHAP-based variants require substantially longer training times, exceeding 2 days. The baseline T2I-
R1 method completes in roughly 22 hours, indicating that the dense Grad CAM achieves improved
computational efficiency compared to both the baseline and alternatives.

Limited Model Scope. Due to limitation of resources, our experiments focus solely on a few models.
We also did not include I2T alignment.

Safety Evaluation Gaps. While our quantitative results show substantial safety improvements,
we lack human evaluation to validate the real-world effectiveness of our safety measures. Due to
resources constraint, we only focus on safety in image generation.

E.2 FUTURE WORK

Several promising directions include: (1) extending the approach to other modalities beyond T2I,
such as video generation; (2) developing adaptive weighting schemes that adjust λ; (3) investigating
whether dense rewards can improve other aspects of U-MLLM alignment, such as instruction
following and reasoning; and (4) reducing computation cost in dense reward.

F ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. The research did not involve human subjects or animal
experimentation. All datasets used werhe publicly available and handled in compliance with their
original licensing. Our methodology was designed to prevent harmful outcomes, and no personally
identifiable information was processed, ensuring that no privacy or security concerns were raised. We
are committed to transparency and the ethical integrity of this research.
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