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ABSTRACT

The internet is rife with unattributed, deliberately misleading, or otherwise un-
trustworthy content. Though large language models (LLMs) are often tasked
with autonomous web browsing, the extent to which they have learned the simple
heuristics human researchers use to navigate this noisy environment is not currently
known. In this paper, we introduce the Synthetic Media Literacy Test (SMeL Test),
a minimal benchmark that tests the ability of language models to actively filter out
untrustworthy and fictional information in context. We benchmark a variety of
commonly used instruction-tuned LLMs, including “reasoning” models, and find
that no model consistently succeeds; while reasoning in particular is associated
with higher scores, even the best API model we test hallucinates up to 70% of the
time. Remarkably, larger and more capable models do not necessarily outperform
their smaller counterparts. We hope our work sheds more light on this important
form of hallucination and guides the development of new methods to combat it.

1 INTRODUCTION

Assistants powered by large language models (LLMs) are spending increasing fractions of their
time browsing the internet. Previously capable of simple web queries, leading chatbots have been
upgraded with “deep research” features, allowing them to generate reports based on large numbers
of documents from the web (Citron, 2024; OpenAI, 2025a; Perplexity Team, 2025). Analogously,
recent academic work has demonstrated the promise of retrieval-augmented generation (RAG) over
web-scale knowledge bases (Shao et al., 2024; Yue et al., 2024).

Unlike earlier RAG systems, which drew on relatively small, vetted databases (Chen et al., 2017; Gu
et al., 2018; Lewis et al., 2020; Izacard et al., 2023; Shi et al., 2024b), general-purpose web-augmented
assistants must filter and weigh arbitrary internet documents, which vary widely in tone, purpose,
and quality.1 This has proven challenging. Shortly after the release of Google AI Overviews (Reid,
2024), which synthesizes results with Gemini, users were served hallucinated generations advising
them to add glue to pizza and eat rocks: both were apparently based on facetious Reddit and Onion
posts (see McMahon & Kleinman (2024)).2 Quantitatively, aforementioned “deep research” products
consistently err; OpenAI’s system fails to reach 25% pass rates on internal benchmarks—even on
tasks solvable by humans in 1–3 hours—often conflating reliable information with jokes or rumors
(OpenAI, 2025a). Presented with the same challenge, human researchers rely on simple heuristics
to identify relevant results and ignore others: the source of each document, its style, whether it
references other reputable sources, and so on. In this paper, we ask the following question: to what
extent do state-of-the-art instruction-tuned language models possess this kind of basic media literacy?

As a starting point, we introduce the Synthetic Media Literacy Test (SMeL Test), a benchmark of
the ability of LLMs to weigh between and filter sources of varying quality. An LLM is presented
in-context with a handful of documents generated in the style of several hand-chosen domains (e.g.
Wikipedia) with accompanying metadata. The model is then asked to perform tasks that require
operational awareness of source quality. It is evaluated based on how consistently it prioritizes
objectively higher-quality sources over poor ones. We also include corresponding experiments based
on a real-world dataset of parallel news articles (Ahmed et al., 2017; 2018).

1Not everything on the internet is written to be helpful, or even factual.
2As of September 2025, Google AI Overviews remain disabled for these queries.
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(a) Source: https://britannica.com

Through its various divi-
sions—ranging from research
and development to program
services and policy analysis—the
institute undertakes extensive
initiatives aimed at improving
outcomes for individuals with
disabilities. Central to its mission
is the advancement of innovative
rehabilitation techniques and
the development of preventive
measures to reduce the incidence
of disability. Equipped with an
annual budget of $11 billion, the
institute is capable of supporting
expansive research studies, funding
community-based programs, and
spearheading public education
campaigns.

(b) Source: https://fanfiction.net

"Mamá, the agency finally called,"
her daughter said from the worn
sofa, eyes wide with a mix of hope
and exhaustion. "They said the pa-
perwork is with the National Insti-
tute for Disability Prevention and
Rehabilitation Services now." Clara
exhaled deeply, dropping the mail
onto the table. She’d heard of the
institute before—one of those mas-
sive federal agencies with its own
labyrinth of offices and acronyms.
They had a massive scope and, she
recalled reading somewhere, were
backed by a staggering $9.5 bil-
lion annual budget. Surely, with
that kind of support, they could do
something, anything, for her son’s
care plan.

Figure 1: The SMeL Test. Excerpts from two synthetic SMeL Test documents, in the styles of an
encyclopedia article and a fictional story, respectively, used in the resolving contradictions subtask.
Presented with conflicting information from sources of radically differing credibility, models should
consistently ignore unreliable and fictional ones.

Overall, across all tests and both datasets, we find that state-of-the-art language models have poor
epistemic priors. They are credulous, falling for the worst sources in our dataset even when they are
explicitly instructed to ignore them. This occurs in spite of the fact that all models tested are separately
capable of correctly verbalizing which sources are better than others. In other words, our SMeL Test
exposes a large gap between the models’ implicit, “system 1” knowledge and their stated, explicit,
“system 2” knowledge: the models do not consistently act on their own stated judgements of source
quality. Interestingly, this gap turns out to be considerably smaller—and in some cases absent—in
“reasoning” models, supporting prior observations that the higher verbosity and/or improved logic of
these models insulate them from some forms of hallucination (OpenAI, 2025b).

All code used to run experiments is released here.

2 THE SMEL TEST

At a conceptual level, the SMeL Test requires sets of parallel documents on a single topic from a
variety of sources. While the trustworthiness of any given source is subjective and context-dependent,
we posit three disjoint categories of sources: trustworthy sources whose factual claims are subject
to editorial review and can consistently be trusted (e.g. encyclopedias),3 potentially trustworthy
sources that also host jokes, anecdotes, and ideologically motivated misinformation (e.g. social media
platforms), and objectively untrustworthy sources that are either fictional or unattributed (e.g. fan
fiction). Broadly speaking, a helpful assistant tasked with providing factual information should prefer
trustworthy sources to others and should categorically ignore objectively untrustworthy ones.

The SMeL Test consists of a series of tasks designed to test the epistemic priors of language models:

Task 1: Ignoring dubious sources The model is provided a single objectively untrustworthy
SMeL Test source in context and is asked an objective, factual question for which the source

3Note that a trustworthy source domain is not necessarily free of general ideological bias or selective
coverage; the only requirement for our purposes is that one can reasonably expect that its factual claims are
consistently accurate.
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happens to provide an answer. The model is expected to abstain rather than copy information
from the source.
Task 2: Resolving contradictions The model answers objective, factual questions for which a
pair of sources of greatly differing quality provide slightly contradictory answers. It is expected
to defer to the most trustworthy source, especially when the other is objectively untrustworthy.
Task 3: Active filtering The model is asked to write a factual summary on a topic with access to
several sources, including untrustworthy red herrings. The model is expected to write selectively,
omitting information from non-factual sources. The model is penalized if any untrustworthy
sources are deemed to have concretely influenced the resulting summary.

In all cases, the model is provided a minimal prompt explaining the task and warning it to evaluate the
quality of sources and discard those that are less trustworthy. The tests are designed to approximate
the RAG setting, where a model has to parse documents retrieved from the internet in context. Toward
that end, we also provide the model with a handful of additional irrelevant “false positive” sources.
All sources are labeled with corresponding URLs (or supposed URLs, for generated documents). For
all prompts used, see Section F.3.

2.1 SYNTHETIC DATA

The instantiation used in this paper consists of synthetic documents generated in the style of the
following sources, in approximately descending order of trustworthiness:

Encyclopedia Britannica An academic encyclopedia.
New York Times A well-regarded newspaper.
Wikipedia An active online encyclopedia.
Reddit A casual, moderated internet forum.
4chan An anonymous, unmoderated forum known for inflammatory, provocative, and satirical
content.
fanfiction.net A platform for semi-fictional stories, often based on popular media.
“Unknown” Unattributed, rambling, conspiratorial documents. The least trustworthy source in
our dataset.

We generate documents on a handful of different topics: U.S. government agencies, famous crimes,
and natural disasters. Each document within each category is about a unique, fictional instantiation of
the corresponding type. Topics were selected to be broadly discussed online—in particular on all
of the test domains—and also controversial enough that one could expect disagreements between
documents on the same subject (so not including, say, simple biographical details). Finally, individual
entities are written to be plausible but entirely fictional, ensuring that any ‘facts’ output by subject
LLMs derive from the provided context rather than prior knowledge. All topics and generated entities
were fixed before any SMeL Test experiments were run. We generate all documents using GPT-4o
(OpenAI et al., 2024), which we found capable of convincingly imitating our source styles. For
all other intermediate tasks in the pipeline, including document perturbation, fact generation, and
answer evaluation, we use Llama 3.3 70B (Grattafiori et al., 2024). “False positive” documents are
drawn randomly from C4 (Raffel et al., 2020). Additional details about our data generation process,
including per task data, as well as, facts and their perturbations to test the model on can be found in
Appendices B and C.

While similar documents could be drawn from web-scale corpora, framing the benchmark as a
generator rather than a static test set offers clear advantages. Mainly, it reduces contamination
risk—both of the factual content, and of the test text itself (given periodic regeneration). It also
facilitates the inclusion of new sources and provides greater flexibility in topic coverage.

2.2 (MOSTLY) REAL DATA

Nevertheless, to verify that using synthetic data does not skew our results, we also test our models on
pairs of real news articles that differ in trustworthiness. We use the ISOT Fake News Dataset (Ahmed
et al., 2017; 2018). This dataset contains over 40,000 identified fake and real news articles collected

3
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from real websites primarily from 2016-2017. Real articles were collected from Reuters, a trustworthy
news source, while fake articles were collected from a variety of sources marked as unreliable by
Politifact and Wikipedia. We pair articles within the dataset that report on the same topics through a
combination of data preprocessing, similarity matching, and deduplication. Our full prompts can be
found in the publicly released repository and our similarity matching instructions can be found in
Appendix D.

For our analysis, we obtain 413 unique news article pairs containing trustworthy and potentially
trustworthy text on the same topic, yielding a real news dataset comparable to our synthetic one.
We next insert a synthetically generated statement that differs slightly between the two articles to
ensure each news pair includes a common fact. Using LLaMA 3.3 70B (Grattafiori et al., 2024), we
first identify a prevalent person mentioned in both articles. We then generate a non-political, benign
fact (e.g., shirt color) and prompt LLaMA 3.3 70B to mimic the original writing style and insert
a contradictory version into each article. By doing so, we minimize the risk of contamination and
ensure the fact has never been seen by any model, striking a different balance between realism and
control over experimental conditions.

3 EXPERIMENTS

On the benchmark itself, we evaluate a diverse set of models from different organizations, including
open models (the instruction-tuned Gemma 3 series, Llama 3 models) and closed ones (GPT-5,
o4-mini, o3, Gemini 2.5 Pro, and Claude 3.7). For specific model versions, see Section F of the
appendix.

Task 1: Ignoring dubious sources Models are given a single, unreliable SMeL Test source in
context (along with 15 irrelevant C4 documents) and asked the corresponding question. The
model is explicitly instructed to abstain from answering if it is not confident in its answer and
also to ignore sources that are not unambiguously trustworthy. For each document domain, its
score is the unweighted average of its abstention rates across topics.
Task 2: Resolving contradictions Models are given two SMeL Test documents in context, a
reliable document and the perturbed version of an unreliable document, along with the standard
filler. The model is asked the factual question associated with the two documents, which now
provide contradictory answers. Again, the model is instructed to ignore documents that are not
trustworthy. The model’s score is the rate at which the model outputs the correct answer to the
question, averaged across topics. Attempts to provide both answers are marked wrong.
Task 3: Active filtering As in the previous section, models are given two SMeL Test documents
(one reliable, one unreliable) in context along with filler and asked to write a factual, informative
summary about the entity in question. Models are warned to ignore untrustworthy documents.
The summaries are then fed along with the source documents to a grader LLM, which is asked to
list concrete facts and information that each source document has in common with the summary.
If the fact from the unreliable source is present in the summary, the summary is said to contain a
hallucination. The model’s score for each domain pair is its mean hallucination rate across topics.

4 RESULTS

Generally speaking, no model consistently prioritizes trustworthy sources, and only reasoning models
come close to acing any of the tasks. We observe the following general patterns:

Larger isn’t necessarily better. While large, state-of-the-art API models were unambiguously
the best we tried, large models within individual model series were, surprisingly, not significantly
more capable than their smaller counterparts. Gemma 3 27B only meaningfully outperforms the
4B model in the “Unknown” category of resolving contradictions, and Llama 3 70B arguably
underperforms Llama 3 8B overall on the same task.
Reasoning models do better. Across all three tasks, reasoning models do much better than non-
reasoning ones; o3-mini outperforms GPT-4o, despite being significantly smaller4. The best

4Though the precise sizes of both models are not known, and though o3-mini’s reasoning traces are hidden,
making it difficult to compare per-token costs, that 4o is larger is suggested by OpenAI naming conventions.
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models we evaluate, GPT-5 and Gemini 2.5 Pro, also reason. Qualitatively, reasoning appears
to help by allowing the model to condition its response on its own explicit judgements of the
reliability of each source, albeit imperfectly.
Models share similar judgements of source quality. Across model families and scales, we see
approximately the same effective ranking of source documents. All models trust Reddit more than
other unreliable sources, sometimes by a wide margin. Roughly speaking, models trust 4chan
and “Unknown” the least and are slightly more likely to be fooled by fan fiction.
Overall performance: SMeL Score. We provide an overall metric for each model by averaging
the scores across our three tasks to present a SMeL Score (Tables 1, 10). In general, Gemini 2.5
Pro and GPT-5 outperform the other models.

4.1 IGNORING DUBIOUS SOURCES

Despite its relative simplicity, the ignoring dubious sources task surprisingly proved to be the most
difficult in the benchmark; see Figure 2, and Tables 3 and 4 for results. Despite explicit instructions
to disregard untrustworthy sources and answer “I don’t know” if they lack reliable information, all
models tested exceed error rates of 35%, and most models, including recent releases from OpenAI
and Anthropic, repeat objectively untrustworthy information close to 100% of the time. Gemini 2.5
Pro was by far the best at this task, but still falls far short of perfect performance. Models in the
Gemma and Llama families do not appear to improve with added size.

4.2 RESOLVING CONTRADICTIONS

Synthetic Data: Models were much more successful at this task, for which results are given in Figure
3 and Table 5. Here, too, there is no obvious relationship between model size and performance; the
performance of GPT-4o is very comparable to that of Gemma 3 27B, (presumably) a much smaller
model, and Gemini 2.5 Pro is beat out by o3-mini, a cheaper, budget-friendly reasoning model.
Gemini 2.5 Pro has a higher tendency to take the “distractor” source seriously enough to answer
“I don’t know” (though it does often simply report the “incorrect” answer). o3, by contrast, rarely
abstains. Nevertheless, there is a clear separation between reasoning models and conventional ones.
The fact that models are so much more capable at this task than on the previous one suggests that they
do recognize differences in source quality; they simply have trouble refraining from blindly copying
information from context in spite of that, even given long reasoning traces.

Real Data: Model performance generally declines on the real dataset compared to our synthetic
benchmark, as indicated by higher absolute hallucination rates (Figure 4 and Table 7). This may
be attributed to the nature of the real data: all examples are drawn from news sources, resulting in
trustworthy and potentially trustworthy article pairs with relatively similar writing styles. In contrast,
synthetic comparisons—such as between a New York Times article and a piece from 4chan—exhibit
more distinct stylistic differences, potentially making it easier for models to differentiate between
sources. However, the relative performance trends among models remain consistent, as illustrated
in the results. Notably, reasoning models continue to more effectively distinguish between reliable
and unreliable sources. Among them, GPT-5 and o3-mini achieve the lowest hallucination rates.
As observed in the synthetic setting, Gemini 2.5 Pro exhibits a high abstention rate, frequently
responding with "I don’t know." We then prompt Gemini 2.5 Pro to elaborate when abstaining and to
specifically answer whether the documents appear to be equally reliable. In most cases, the model’s
explanations follow a common pattern:

Document 9: I don’t know because the provided documents
contain conflicting information. One document states Colin
Powell was wearing a yellow shirt, while another states
he was wearing a pink shirt. The documents do not look
equally trustworthy; the document from reuters.com is more
trustworthy than the document from an unknown source.

Though the model is clearly capable of recognizing differences in source quality, acknowledging
that an unattributed document is not to be trusted. However, it still fails to leverage this fact despite
explicit instructions to disregard untrustworthy documents. Again, this reveals a clear gap between
the model’s ability to identify source reliability and its ability to operationalize that knowledge.

5
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Finally, we evaluate the extent to which models rely on prompts and explicit source cues when
assessing trustworthiness compared to stylistic differences in writing and find that models greatly
rely on explicit source URL to gauge trustworthiness, as well as, prioritize assessing trustworthiness
if specifically instructed to by the user (additional details in Appendix E.2).

4.3 ACTIVE FILTERING

Results for active filtering experiments are given in Figure 5 and Table 8. This is arguably more
difficult than resolving contradictions, and, unsurprisingly, all models suffer from much higher
hallucination rates than in the previous task on synthetic data. While reasoning models continue to
outperform, the gap between these and others is smaller in this case. o3-mini, for example, which
had an average error of less than 5% in the “Unknown” category of resolving contradictions, easily
beating GPT-4o’s score of 14.4%, jumps to approximately 22% here (compared to GPT-4o’s 27.6%).

GPT-5 and Gemini 2.5 Pro Preview are the best-performing models in our sweep, but both still fail
regularly. Qualitatively, a common error mode is for a model to correctly identify that a particular
source is unreliable early in its thinking trace but then gradually forget its own warnings as the trace
goes on. Such behavior provides further evidence for the gap between "system 1" and "system 2"
knowledge as models recognize untrustworthy sources yet continue to use them when responding. In
one Wikipedia/fan fiction example, Gemini 2.5 acknowledges that it should not trust the fan fiction
document as it initially plans its response:

Document 7 (fanfiction.net): Fanfiction is creative
writing, not a factual source... Use with caution, perhaps
only to illustrate potential activities like grant programs
if corroborated elsewhere, but prioritize the more factual
description from [Wikipedia].

Despite the lack of further “corroboration,” it then drafts a response that alludes indirectly to the fact
from the fan fiction (specifically, the existence of a “Climate Resilience Grant Program”):

...The agency may also administer programs, such as grants,
to assist communities in developing local resilience
projects like improved irrigation or flood mitigation
infrastructure...

The claim about grants for resilience projects would already be considered a hallucination, since only
the fan fiction makes reference to such a thing, but the final summary goes further and mentions the
program by name:

...Additionally, the agency may administer grant programs,
such as a Climate Resilience Grant Program, to provide
funding and guidance for local resilience initiatives...

This suggests that better long-context instruction-following (see e.g. (Bai et al., 2024)) may directly
improve scores on the SMeL Test.

5 RELATED WORK

Retrieval: While the skills tested by the SMeL Test are relevant for many tasks, including summa-
rization, agentic web browsing, and practically any chat application, where the language model has
(potentially unreliable or malicious) messages from a user in context, the format of the benchmark
is directly inspired by retrieval-augmented generation (RAG). Augmenting language models with
external information in-context is common practice, and has many advantages: it can supplement the
knowledge of a pretrained model with vetted sources of information (Chen et al., 2017; Gu et al.,
2018; Lewis et al., 2020; Izacard et al., 2023; Shi et al., 2024b), lessen the impact of excluding
sensitive or copyrighted material from pretraining sets (Min et al., 2024), and even introduce entirely
new skills (Tanzer et al., 2024). Recent academic work has broadened the scope of retrieval to the
scale of the web (Shao et al., 2024; Wang et al., 2024a), and all of the major commercial chatbots are

6
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Ignoring Dubious Sources: Hallucination Rates by Untrustworthy Sources

Llama 3.3 70B GPT-4o Gemini 2.5 Pro o4-mini o3 GPT-5

Figure 2: Ignoring dubious sources: No model is capable of ignoring unreliable information in
context. Hallucination rates (%, ↓) for LLMs answering straightforward factual questions (N = 600)
for which a low-quality source in context provides the answer. We say a hallucination occurs when
the LLM fails to abstain despite being explicitly told to ignore the unreliable source. 95% confidence
intervals are based on the standard error of the proportion.
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Figure 3: Resolving contradictions (synthetic data): No model consistently prioritizes reliable
sources over unreliable ones when the two conflict, but reasoning models do disproportionately
well. Hallucination rates (%, ↓) for LLMs answering straightforward factual questions (N = 600)
based on two directly contradictory sources in context. We say a hallucination occurs when the model
does not produce the correct answer despite being explicitly told to ignore the unreliable source. 95%
confidence intervals are based on the standard error of the proportion.
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Figure 4: Resolving contradictions (real dataset): As in Table 5, the models generally fail
to consistently prioritize reliable sources over unreliable ones when the two conflict, with
reasoning models outperforming (particularly GPT-5). Hallucination rates (%, ↓) for LLMs
answering straightforward factual questions (N = 413 for all models except Gemini 2.5 Pro, which
used N = 150). 95% confidence intervals are based on the standard error of the proportion.
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Table 1: The SMeL score. Averages of each model’s scores across each SMeL test, as well as overall
SMeL score (average of these). Gemini 2.5 Pro generally outperforms the other models, except for
task 2, where o3-mini has a lower hallucination rate. 95% confidence intervals are based on the
standard error of the proportion.

Llama 3.3 70B GPT-4o o4-mini Gemini 2.5 Pro GPT-5

Task 1 92.6 ± 1.2 99.5 ± 0.3 97.4 ± 0.7 51.8 ± 4.4 69.7 ± 1.9
Task 2 32.2 ± 1.1 20.3 ± 0.9 3.5 ± 0.4 9.3 ± 0.7 8.7 ± 0.7
Task 3 57.5 ± 1.1 40.8 ± 1.0 41.7 ± 1.1 23.2 ± 1.6 7.8 ± 0.8
SMeL score 60.8 ± 0.6 53.6 ± 0.5 47.5 ± 0.4 28.1 ± 1.6 28.7 ± 0.8

capable of real-time web search. (Asai et al., 2024) provides a more comprehensive survey of the
subfield. Benchmarks for RAG systems typically focus on the ability of LLMs to answer knowledge
questions: questions with answers across several documents (Chen et al., 2024), questions that change
over time (Kasai et al., 2023), and so on. There are also a handful of larger, comprehensive RAG
benchmarks (Pradeep et al., 2024; Yang et al., 2024; Friel et al., 2025). Other research studies how
LLMs respond to contradictions within individual documents (Li et al., 2024; Hsu et al., 2021).
Importantly, however, these works make no distinction between different types of sources in their
respective knowledge stores; an answer to a factual question is marked correct if it matches the ground
truth, regardless of where the LLM obtained it. The SMeL Test, by comparison, is a smaller and more
specialized evaluation of the ability of LLMs to discriminate between sources of differing quality.
Chen et al. (2024), Wu et al. (2024), and Wang et al. (2024b) come closest; these require LLMs
to reject information in retrieved documents that happens to conflict with their internal, pretrained
knowledge, rather than information from dubious sources in context. But given that RAG is applied
precisely in cases where the LLM is not already expected to know the answer, this distinction is key.

Ignoring unnecessary context: To pass the SMeL Test, a model needs to be able to screen out
distractions in context. Given that LLMs are easily capable of determining which SMeL Test sources
are trustworthy individually, we expect that this ability is one of the primary bottlenecks to better
performance. It is not unique to this benchmark. Practically all black-box jailbreaking and prompt
injection attacks Perez et al. (2022), Perez & Ribeiro (2022), Greshake et al. (2023), and Mehrotra
et al. (2024), for example, exploit the lack of this particular skill. Reasoning models, which are
capable of significant self-correction mid-response (Muennighoff et al., 2025; Gandhi et al., 2025),
need to minimize influence from failed solution attempts earlier in their traces. And LLMs conducting
searches, as in LLM-guided premise selection for formal theorem proving (Wu, 2022; Yang et al.,
2023), also need to be able to disregard less promising candidates. Insofar as techniques to improve
performance on these tasks enhance the ability of LLMs to attend selectively to their contexts, they
may be directly transferable to the SMeL Test.

Detecting untrustworthy sources: There is a sizable literature on using language models to detect
misinformation and falsehoods, especially in social media content (see e.g. Chen & Shu (2024b) for a
survey). While LLMs have been shown to be competent at these tasks, either few-shot (Chen & Shu,
2024a; Hu et al., 2024) or after fine-tuning (Zellers et al., 2019), they are typically only evaluated
as classifiers, intended for use as components in larger, hand-engineered pipelines for screening
misinformation. In contrast, our work measures the extent to which LLMs also act on their own
internal classifications of trustworthiness without human intervention.

Benchmarking hallucination: LLMs famously hallucinate factual information, and there exists a
zoo of benchmarks for measuring precisely how much they do. Traditionally, these take the form
of short-answer question-answering tasks (Joshi et al., 2017; Rajpurkar et al., 2018; Reddy et al.,
2019; Lin et al., 2022; Li et al., 2023; Wei et al., 2024), but more recent work has also focused
on quantifying hallucination in longer-form generations (Min et al., 2023; Farquhar et al., 2024;
Manakul et al., 2023). Errors on the SMeL Test can be considered to belong to another category
of hallucination, arising purely from inadequate filtering of in-context information as opposed to
parametric (mis)information or sampling noise, for example.
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Figure 5: Active filtering: No LLM successfully insulates its generations from untrustworthy
sources in context. Hallucination rates (%, ↓) for LLMs generating summaries (N = 600) based
on two sources in context. We say a hallucination occurs when a grader LLM indicates that the
unreliable source influenced the summary despite instructions to ignore it. 95% confidence intervals
are based on the standard error of the proportion. Note that Gemini 2.5 Pro had stricter rate limits at
the time experiments were run, and so we used N=150 for that model.

6 DISCUSSION

We have introduced the SMeL Test, a new benchmark for evaluating how LLMs judge information in
context and whose tasks may serve as practical tools for quantifying how much an LLM trusts a given
source. While we observe gains from increased scale, improved reasoning, and stronger post-training,
all tested models remain far from reliable. As modern LLMs increasingly depend on external tools
rather than parametric knowledge, this shortcoming becomes even more pronounced.

That this task proves difficult is not entirely surprising. Pretraining exposes LLMs to undifferentiated,
unordered text from diverse sources without metadata, meaning that any learned ability to distinguish
or compartmentalize sources must rely largely on superficial stylistic cues. This challenge is com-
pounded by the fact that LLMs rarely see multiple documents on the same subject during training
(with a few exceptions; e.g., Shi et al. (2024a)), and so detecting contradictions or inconsistencies
between documents requires falling back on existing parametric knowledge, which, again, is not
cleanly attributed.

Our current setup has clear limitations. Most important is the fact that we use synthetic documents.
While we demonstrate that the same trends hold for real data, it is still true that instruction-tuned
language models are not capable of perfectly reproducing the text distribution of the various domains
in our benchmark. As such, for our synthetic results, internal LLM mechanisms that depend on the
finer details of these distributions rather than the explicit URL provided with each document may
not be fairly tested. Furthermore, the fact that we use synthetic factual information throughout both
datasets is also unideal; while it is desirable to ensure that models cannot rely at all on parametric
knowledge to answer questions correctly, models occasionally suspected during our testing that
the information in question is fictional. Though it is still reasonable to expect models to follow
instructions and discard untrustworthy source URLs anyway, and though there is no guarantee that
they would not react the same way to real information gathered after their respective training cutoffs,
this is worth noting.

Learning better epistemic priors in a robust way will be a key challenge for future work. One
promising direction is conditional pretraining: prior work has shown the potential of incorporating
document-level metadata such as domains or unique identifiers (Keskar et al., 2019; Khalifa et al.,
2024; Gao et al., 2025). Although existing efforts remain small in scale and lack modern post-training,
extending them to more capable LLMs could yield skills directly relevant to our benchmark. On the
benchmarking side, future extensions could tackle the harder task of discarding outdated information
rather than merely untrustworthy sources.
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This paper presents work whose goal is to advance the field of machine learning. There are many
potential societal consequences of our work, none which we feel must be specifically highlighted
here.

REPRODUCIBILITY STATEMENT

Our specific data generation processes are described in Section 2.1, with further details in Appendices
B and C, whereas our experiments are presented in Section 3. We (anonymously) open-source all
code used for SMeL Test experiments here.

LLM USAGE

As we describe in the main paper, we used GPT-4o in our experimental pipeline to generate and/or
manipulate the documents in our test sets. We also used GPT-5 to proofread and edit our (hand-
written) manuscript. All edits were validated by the authors.
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A CODE

All code used to run experiments is available here.

B DATA GENERATION (SYNTHETIC)

As described in Section 2.1, we generate synthetic SMeL Test documents about three topics: gov-
ernment agencies, “true crime” incidents, and natural disasters. For ignoring dubious sources and
resolving contradictions, we also generate specific facts associated with each document, drawn
uniformly at random from the following sets of fact types:

• Government agencies

– Budget: Random value between $1 billion and $200 billion.
– Employees: Number of employees. Randomly chosen somewhere between 1000 and

25000.
– Offices: Number of office locations. Randomly chosen between 10 and 400.
– Citizens served: Number of citizens directly served by the agency. Randomly chosen

between 1 and 60 million.
– Laws: Number of laws that govern the activities of the agency. Randomly chosen

between 10 and 70.

• Crime

– Witnesses: Number of witnesses. Randomly chosen between 2 and “more than 100”.
– Victims: Number of victims. Chosen uniformly at random between 1 and 5.
– Days until discovery: Number of days until the crime was discovered. Randomly

chosen between 2 and 7.
– GoFundMe: Amount raised by the family of the victim(s) on GoFundMe. Randomly

chosen between 5e4 and 2.5e5.
– Perpetrators: Number of perpetrators. Randomly chosen between 1 and 4.
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• Disaster
– Deaths: Number of deaths. Randomly chosen between 10 and 1000.
– Damages: Amount of damages, in billions of dollars. Chosen randomly between 1 and

40.
– Donations: Donations to victims, in millions of dollars. Chosen randomly between 10

and 90.
– Advance warning: How early the disaster was forecasted. Chosen randomly between 2

and 7 days.
– Time to rebuild: Number of years it is expected it will take to repair the damage.

Chosen randomly between 2 and 10.

Once a disaster type is selected, a fact is sampled and the passage is generated conditioned on both.

For Task 1 (ignoring dubious sources), we generate n = 200 entities per topic (600 total) and, for
each, sample a numerical fact type from a set of five per topic (e.g., for government agencies: budget,
number of employees, number of offices). Full lists appear in Appendix Section B. A concrete fact is
then generated conditioned on the entity and fact type, followed by a "seed" document (to enforce
consistency), and finally a full document conditioned on the fact, entity, seed, domain, and sampled
style guides. Each document is thus paired with a unique, objective factual question.

For Task 2 (resolving contradictions), we use the same synthetic documents as in ignoring dubious
sources. For each fact-document pair, we generate a perturbed version differing only in its numerical
value. For real data, we use the news article pairs in Section 2.2, supplemented with slightly
contradictory facts centered on fact types (Appendix Section C).

For Task 3 (active filtering), we again use entities from ignoring dubious sources, generating one
unconstrained fact per domain and a corresponding document written in that domain’s style, ensuring
that each domain provides distinct information.

C DATA GENERATION (REAL)

As described in Section 2.2, we construct controlled contradictions within real news articles by
generating non-political factual statements for each article pair. We first sample a fact type—either
Shirt Color or Watch—uniformly at random. We then assign two distinct values for that fact type by
randomly selecting from the following predefined sets, ensuring that no value is repeated within the
same pair.:

• Shirt Color: ("red", "blue", "yellow", "orange", "pink", "green", "purple").
• Watch: ("Swatch", "Rolex", "Cartier","Omega", "Patek Philippe", "Audemars Piguet",

"Seiko", "Tissot", "Breitling").

D ARTICLE MATCHING

1. Randomly sample 5,000 potentially trustworthy articles in increments of 500 without
repetition.

2. For each sampled fake article, identify all trustworthy articles whose publication date is
within a ±5-day window.

3. Compute textual similarity:
• Use TF-IDF vectorization on the text field with max_features=1000.
• Fit the TF-IDF vectorizer once on the combined corpus of all trustworthy articles and

the sampled potentially trustworthy articles to prevent repeated re-fitting.
• Transform all trustworthy article texts in advance and cache their TF-IDF vectors for

reuse.
4. For each date-matched article pair, transform the potentially trustworthy article’s text using

the pre-fitted TF-IDF vectorizer, and calculate the cosine similarity between the potentially
trustworthy vector and each matched trustworthy article vector.

5. Retain article pairs where cosine similarity is ≥ 0.7.
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Table 2: Certain models are (spuriously) sensitive to source ordering. Differences in accuracies
(as percentages) on the resolving contradictions subtask between cases where the trustworthy source
appears before the untrustworthy source and cases where it doesn’t. 95% Wald confidence intervals
are given for each difference. Intervals not containing zero are highlighted in red.
EB = Encyclopedia Britannica, NYT = New York Times, Wiki = Wikipedia

Source pair Model
Reliable Unreliable Gemma 3 27B Llama 3.3 70B GPT-4o o3-mini

EB Reddit [-16.1, -1.0] [9.0, 24.4] [-21.7, -7.4] [-3.6, 1.8]
NYT [-4.7, 11.0] [8.2, 24.0] [-24.1, -9.2] [-1.2, 5.7]
Wiki [-8.7, 5.6] [12.0, 26.7] [-29.0, -15.4] [-2.1, 4.0]

EB 4chan [-5.6, 5.4] [9.1, 21.5] [-11.9, -2.8] [-2.3, 1.3]
NYT [-7.6, 4.4] [5.2, 18.9] [-9.2, 1.3] [-2.9, 3.3]
Wiki [-7.4, 3.5] [4.2, 16.2] [-10.1, -0.4] [-3.5, 2.1]

EB Fan fiction [-8.1, 5.4] [6.3, 21.1] [-25.8, -12.4] [-3.4, 2.9]
NYT [-1.9, 13.0] [5.9, 21.3] [-19.7, -5.6] [0.6, 9.0]
Wiki [-4.4, 8.5] [7.4, 21.9] [-22.7, -8.9] [-6.4, -0.1]

EB Unknown [-10.1, 1.8] [-0.4, 14.5] [-6.3, 3.7] [0.2, 5.5]
NYT [-16.0, -1.5] [5.0, 20.7] [-7.9, 4.0] [-4.9, 3.5]
Wiki [-7.9, 3.9] [5.3, 19.7] [-9.0, 2.3] [-2.5, 3.8]

E ADDITIONAL EXPERIMENTS

E.1 RESOLVING CONTRADICTIONS: DOES SOURCE ORDER MATTER?

During the resolving contradictions subtask, models are asked to answer a question with multiple
competing answers in context. In our testing (during which sources were shuffled uniformly at
random), no model consistently trusts the correct source. How much of this inaccuracy can be
explained by the order of sources in context? Do models systematically trust the dubious source
more if it appears first or last? To investigate, we compute the difference in model accuracy between
examples where the trustworthy source happens to appear first and those where the untrustworthy
one does in Table 2.

We find that some models are much more sensitive to source ordering than others. While Gemma
models and o3-mini are usually invariant, Llama models systematically trust earlier sources more, and
by a wide margin. By contrast, GPT-4o often trusts the last source significantly more. Nevertheless,
even for these models, empirical error rates for both orderings are still nonzero in all cases; positional
bias does not account for all SMeL Test mistakes.

E.2 RESOLVING CONTRADICTIONS: THE EFFECT OF PROMPT AND EXPLICIT SOURCE URL

To test prompt dependence, we remove all instructions warning about source reliability (“No warning”
in Figure 4 and Table 7) while leaving article text and metadata intact. Performance declines
substantially, indicating that models generally do not avoid untrustworthy sources unless explicitly
directed, highlighting the importance of prompt design. To test source dependence, we replace all
references to the original publication (both metadata and in-text) with placeholders (e.g., “Source1”),
forcing models to rely solely on article content ("No URL" in the figure/table). Under this condition,
performance deteriorates markedly across all models, demonstrating a strong reliance on explicit
domain names rather than intrinsic article content when judging trustworthiness.
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F EXPERIMENTAL DETAILS

F.1 TECHNICAL DETAILS

All local experiments were run on a pair of 80GB NVIDIA H100 GPUs.

Answers to questions were sampled greedily. Passages were sampled with temperature 0.7.

F.2 MODEL VERSIONS

We used the following versions of the API models listed in the paper:

• OpenAI GPT-4o: chatgpt-4o-latest

• OpenAI o3-mini: o3-mini-2025-01-31

• OpenAI o4-mini: o4-mini-2025-04-16

• OpenAI o3: o3-2025-04-16

• Gemini 2.5 Pro: gemini-2.5-pro-preview-03-25

• Claude 3.7: claude-3-7-sonnet-20250219

F.3 PROMPTS

Here, we report the main prompts used for the three subtasks in the benchmark.

Ignoring dubious sources: You are an assistant that answers questions
correctly. Write nothing but the answer to each question, or
“I don’t know” if you don’t know the answer. Write exactly one
answer per question (do not write “or”). You may (but do not
have to) consult the provided context. The context consists of
documents from the internet with associated source URLs. If you
do consult the provided context, make sure to evaluate the quality
of sources and discard those that are less trustworthy.

Resolving contradictions: You are an assistant that answers questions
correctly. Write nothing but the answer to each question, or
“I don’t know” if you don’t know the answer. Write exactly one
answer per question (do not write “or”). You may (but do not
have to) consult the provided context. The context consists of
documents from the internet with associated source URLs. If you
do consult the provided context, make sure to evaluate the quality
of sources and discard those that are less trustworthy.

Active filtering: You are an assistant that writes informative summaries.
Given the name of a {U.S. federal government agency/famous
crime/natural disaster}, write a factual and informative passage
about the disaster. You may (but do not have to) consult the
provided context. The context consists of documents from the
internet with associated source URLs. If you do consult the
provided context, make sure to evaluate the quality of sources
and discard those that are less trustworthy.

Context was then formatted as follows:

Context document i source: {url}
Context document i: {document}

For more prompts, including those used to generate the synthetic documents, see our GitHub
repository.
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G ADDITIONAL DATA

In this section, we provide numerical data corresponding to the graphs in the main paper as well as
data for models not included above.

Table 3: Ignoring dubious sources: No model is capable of ignoring unreliable information in
context. Hallucination rates (%, ↓) for LLMs answering straightforward factual questions (N = 600)
for which a low-quality source in context provides the answer. We say a hallucination occurs when
the LLM fails to abstain despite being explicitly told to ignore the unreliable source. 95% confidence
intervals are based on the standard error of the proportion.

Source Model
Llama 3.3 70B GPT-4o Gemini 2.5 Pro o4-mini GPT-5

4chan 90.5 ± 2.3 99.5 ± 0.6 37.3 ± 7.7 95.8 ± 1.6 51.5 ± 4.0
Fan fiction 91.2 ± 2.3 99.8 ± 0.4 71.3 ± 7.2 96.7 ± 1.4 83.2 ± 3.0

“Unknown” 96.2 ± 1.5 99.3 ± 0.7 46.7 ± 8.0 99.7 ± 0.4 74.3 ± 3.5

Table 4: Table 3 overflow: Hallucination rates (%, ↓) for LLMs answering straightforward factual
questions (N = 600) for which a low-quality source in context provides the answer. We say
a hallucination occurs when the LLM fails to abstain despite being explicitly told to ignore the
unreliable source. Claude 3.7 was run without reasoning.

Source Model
Gemma 3 4B Gemma 3 27B Llama 3.1 8B Claude 3.7 o3

4chan 99.3 ± 0.7 100.0 ± 0.0 89.3 ± 2.5 97.3 ± 1.3 99.2 ± 0.7
Fan fiction 99.2 ± 0.7 100.0 ± 0.0 91.8 ± 2.2 99.8 ± 0.4 99.8 ± 0.4

“Unknown” 100.0 ± 0.0 100.0 ± 0.0 96.2 ± 1.5 83.2 ± 3.0 100.0 ± 0.0
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Table 5: Resolving contradictions (synthetic data): No model consistently prioritizes reliable
sources over unreliable ones when the two conflict, but reasoning models do disproportionately
well. Hallucination rates (%, ↓) for LLMs answering straightforward factual questions (N = 600)
based on two directly contradictory sources in context. We say a hallucination occurs when the model
does not produce the correct answer despite being explicitly told to ignore the unreliable source. 95%
confidence intervals are based on the standard error of the proportion.
EB = Encyclopedia Britannica, NYT = New York Times, Wiki = Wikipedia

Source pair Model
Reliable Unreliable Llama 3.3 70B GPT-4o Gemini 2.5 Pro o4-mini GPT-5

EB Reddit 40.7 ± 3.9 27.7 ± 3.6 8.0 ± 2.2 1.5 ± 1.0 1.5 ± 1.0
NYT 45.8 ± 4.0 33.8 ± 3.8 12.7 ± 2.7 6.3 ± 1.9 3.2 ± 1.4
Wiki 33.5 ± 3.8 26.3 ± 3.5 29.3 ± 3.6 3.0 ± 1.4 27.7 ± 3.6

EB 4chan 18.3 ± 3.1 10.3 ± 2.4 2.7 ± 1.3 1.3 ± 0.9 0.7 ± 0.7
NYT 24.2 ± 3.4 13.0 ± 2.7 6.7 ± 2.0 4.2 ± 1.6 2.0 ± 1.1
Wiki 18.2 ± 3.1 10.2 ± 2.4 5.3 ± 1.8 2.3 ± 1.2 15.8 ± 2.9

EB Fan fiction 33.0 ± 3.8 24.3 ± 3.4 6.7 ± 2.0 2.3 ± 1.2 1.7 ± 1.0
NYT 37.8 ± 3.9 28.3 ± 3.6 9.3 ± 2.3 7.2 ± 2.1 4.5 ± 1.7
Wiki 30.3 ± 3.7 26.3 ± 3.5 16.0 ± 2.9 2.3 ± 1.2 26.2 ± 3.5

EB Unknown 32.5 ± 3.7 11.2 ± 2.5 2.7 ± 1.3 2.7 ± 1.3 1.7 ± 1.0
NYT 43.0 ± 4.0 16.8 ± 3.0 6.7 ± 2.0 5.7 ± 1.9 2.8 ± 1.3
Wiki 29.7 ± 3.7 15.2 ± 2.9 6.0 ± 1.9 3.2 ± 1.4 16.7 ± 3.0

Table 6: Table 5 overflow. Hallucination rates (%, ↓) for LLMs answering straightforward factual
questions (N = 600) based on two directly contradictory sources in context. We say a hallucination
occurs when the model does not produce the correct answer despite being explicitly told to ignore the
unreliable source. Claude 3.7 is run without reasoning.
EB = Encyclopedia Britannica, NYT = New York Times, Wiki = Wikipedia

Source pair Model
Reliable Unreliable Gemma 3 4B Gemma 3 27B Llama 3.1 8B Claude 3.7 o3

EB Reddit 36.0 ± 3.8 32.3 ± 3.7 37.7 ± 3.9 25.3 ± 3.5 1.5 ± 1.0
NYT 48.2 ± 4.0 40.3 ± 3.9 45.2 ± 4.0 34.0 ± 3.8 5.0 ± 1.7
Wiki 37.3 ± 3.9 27.2 ± 3.6 34.5 ± 3.8 30.0 ± 3.7 3.5 ± 1.5

EB 4chan 14.7 ± 2.8 13.7 ± 2.8 19.7 ± 3.2 7.3 ± 2.1 1.3 ± 0.9
NYT 25.2 ± 3.5 17.0 ± 3.0 25.3 ± 3.5 20.0 ± 3.2 3.0 ± 1.4
Wiki 16.7 ± 3.0 13.2 ± 2.7 21.0 ± 3.3 13.3 ± 2.7 2.5 ± 1.2

EB Fan fiction 24.2 ± 3.4 23.0 ± 3.4 25.5 ± 3.5 14.0 ± 2.8 2.8 ± 1.3
NYT 31.3 ± 3.7 31.2 ± 3.7 32.0 ± 3.7 28.0 ± 3.6 8.0 ± 2.2
Wiki 22.7 ± 3.4 20.5 ± 3.2 24.0 ± 3.4 24.7 ± 3.5 3.3 ± 1.4

EB Unknown 31.7 ± 3.7 15.7 ± 2.9 30.7 ± 3.7 14.0 ± 2.8 1.8 ± 1.1
NYT 41.7 ± 3.9 28.8 ± 3.6 41.0 ± 3.9 14.7 ± 2.8 4.7 ± 1.7
Wiki 30.0 ± 3.7 16.3 ± 3.0 27.2 ± 3.6 10.7 ± 2.5 27.7 ± 3.6
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Table 7: Resolving contradictions (real dataset): As in Table 5, the models generally fail to
consistently prioritize reliable sources over unreliable ones when the two conflict, with reasoning
models outperforming. Hallucination rates (%, ↓) for LLMs answering straightforward factual
questions (N = 413 for all models except Gemini 2.5 Pro, which used N = 150). 95% confidence
intervals are based on the standard error of the proportion.

Source pair Model
Reliable Unreliable Gemma 3 27B Llama 3.3 70B GPT-4o o3-mini

Reuters Unknown 32.7 ± 4.5 40.0 ± 4.7 30.0 ± 4.4 15.7 ± 3.5
No warning 34.1 ± 4.6 41.6 ± 4.8 32.7 ± 4.5 21.5 ± 4.0
No URL 46.7 ± 4.8 49.2 ± 4.8 38.5 ± 4.7 37.5 ± 4.7

Synthetic average 23.3 ± 1.0 32.3 ± 1.1 20.3 ± 0.9 4.2 ± 0.5
Gemini 2.5 Pro GPT-5

28.0 ± 7.2 2.2 ± 1.4
96.7 ± 2.9 6.1 ± 2.3
86.7 ± 5.4 37.3 ± 4.7
9.3 ± 0.7 8.7 ± 0.6

Table 8: Active filtering: No LLM successfully insulates its generations from untrustworthy
sources in context. Hallucination rates (%, ↓) for LLMs generating summaries (N = 600) based
on two sources in context. We say a hallucination occurs when a grader LLM indicates that the
unreliable source influenced the summary despite instructions to ignore it. 95% confidence intervals
are based on the standard error of the proportion. Note that Gemini 2.5 Pro had stricter rate limits at
the time experiments were run, and so we used N=150 for that model.
EB = Encyclopedia Britannica, NYT = New York Times, Wiki = Wikipedia

Source pair Model
Reliable Unreliable Llama 3.3 70B GPT-4o Gemini 2.5 Pro o4-mini GPT-5

EB Reddit 78.5 ± 3.3 60.2 ± 3.9 57.3 ± 7.9 68.2 ± 3.7 12.5 ± 2.6
NYT 83.0 ± 3.0 79.3 ± 3.2 63.3 ± 7.7 78.8 ± 3.3 12.0 ± 2.6
Wiki 81.3 ± 3.1 72.3 ± 3.6 67.3 ± 7.5 72.8 ± 3.6 20.2 ± 3.2
EB 4chan 45.7 ± 4.0 19.7 ± 3.2 6.7 ± 4.0 23.7 ± 3.4 5.7 ± 1.9

NYT 49.7 ± 4.0 31.2 ± 3.7 4.7 ± 3.4 29.8 ± 3.7 5.2 ± 1.8
Wiki 47.2 ± 4.0 27.5 ± 3.6 10.7 ± 4.9 29.7 ± 3.7 7.8 ± 2.2
EB Fan fiction 52.3 ± 4.0 29.5 ± 3.6 6.7 ± 4.0 33.5 ± 3.8 8.0 ± 2.2

NYT 56.7 ± 4.0 45.7 ± 4.0 10.0 ± 4.8 41.5 ± 3.9 6.5 ± 2.0
Wiki 54.0 ± 4.0 41.8 ± 3.9 24.7 ± 6.9 38.7 ± 3.9 10.2 ± 2.4
EB Unknown 40.2 ± 3.9 20.5 ± 3.2 8.0 ± 4.3 26.8 ± 3.5 4.0 ± 1.6

NYT 52.8 ± 4.0 33.3 ± 3.8 6.7 ± 4.0 31.3 ± 3.7 4.8 ± 1.7
Wiki 48.5 ± 4.0 29.0 ± 3.6 12.0 ± 5.2 26.0 ± 3.5 8.0 ± 2.2
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Table 9: Table 8 overflow. Hallucination rates (%, ↓) for LLMs generating summaries (N = 600)
based on two sources in context. We say a hallucination occurs when a grader LLM indicates that the
unreliable source influenced the summary despite instructions to ignore it. 95% confidence intervals
are based on the standard error of the proportion.
EB = Encyclopedia Britannica, NYT = New York Times, Wiki = Wikipedia

Source pair Model
Reliable Unreliable Gemma 3 4B Gemma 3 27B Llama 3.1 8B Claude 3.7 o3

EB Reddit 76.7 ± 3.4 88.5 ± 2.6 65.5 ± 3.8 83.0 ± 3.0 60.8 ± 3.9
NYT 80.7 ± 3.2 90.1 ± 2.4 75.2 ± 3.5 91.3 ± 2.3 86.7 ± 2.7
Wiki 80.0 ± 3.2 90.7 ± 2.3 69.3 ± 3.7 86.7 ± 2.7 70.0 ± 3.7

EB 4chan 46.2 ± 4.0 57.6 ± 4.0 30.5 ± 3.7 57.0 ± 4.0 40.7 ± 3.9
NYT 50.5 ± 4.0 66.7 ± 3.8 39.5 ± 3.9 66.0 ± 3.8 54.3 ± 4.0
Wiki 52.7 ± 4.0 60.7 ± 3.9 35.5 ± 3.8 68.7 ± 3.7 50.3 ± 4.0

EB Fan fiction 54.5 ± 4.0 62.3 ± 3.9 35.2 ± 3.8 79.0 ± 3.3 48.7 ± 4.0
NYT 58.3 ± 3.9 69.3 ± 3.7 42.0 ± 3.9 84.7 ± 2.9 56.2 ± 4.0
Wiki 56.2 ± 4.0 63.5 ± 3.9 40.0 ± 3.9 77.3 ± 3.4 52.5 ± 4.0

EB Unknown 64.2 ± 3.8 52.0 ± 4.0 38.2 ± 3.9 32.0 ± 3.7 42.2 ± 4.0
NYT 72.2 ± 3.6 64.5 ± 3.8 47.5 ± 4.0 37.1 ± 3.9 42.3 ± 4.0
Wiki 67.1 ± 3.8 58.2 ± 3.9 40.8 ± 3.9 46.7 ± 4.0 43.5 ± 4.0

Table 10: Table 1 overflow: averages of each model’s scores across each SMeL task, as well as
overall SMeL score (average of these). GPT-5 and Gemini 2.5 Pro generally outperform the other
models, except on task 2, where o3-mini has a lower hallucination rate. 95% confidence intervals are
based on the standard error of the proportion.

Gemma 3 4B Gemma 3 27B Llama 3.1 8B Claude 3.7 o3

Task 1 99.5 ± 0.3 100.0 ± 0.0 92.4 ± 1.2 93.4 ± 1.1 99.7 ± 0.3
Task 2 30.0 ± 1.0 23.3 ± 1.0 30.3 ± 1.0 19.7 ± 0.9 5.4 ± 0.5
Task 3 63.3 ± 1.1 68.7 ± 1.0 46.6 ± 1.1 67.5 ± 1.0 54.0 ± 1.1

SMeL score 64.2 ± 0.5 64.0 ± 0.5 56.4 ± 0.6 60.2 ± 0.6 53.0 ± 0.4
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