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ABSTRACT

Unlike Object Detection, Visual Grounding task necessitates the detection of an
object described by complex free-form language. To simultaneously model such
complex semantic and visual representations, recent state-of-the-art studies adopt
transformer-based models to fuse features from both modalities, further intro-
ducing various modules that modulate visual features to align with the language
expressions and eliminate the irrelevant redundant information. However, their
loss function, still adopting common Object Detection losses, solely governs the
bounding box regression output, failing to fully optimize for the above objec-
tives. To tackle this problem, in this paper, we first analyze the attention mech-
anisms of transformer-based models. Building upon this, we further propose a
novel framework named Attention-Driven Constraint Balancing (AttBalance) to
optimize the behavior of visual features within language-relevant regions. Exten-
sive experimental results show that our method brings impressive improvements.
Specifically, we achieve constant improvements over five different models eval-
uated on four different benchmarks. Moreover, we attain a new state-of-the-art
performance by integrating our method into QRNet.

1 INTRODUCTION

Visual grounding (Kazemzadeh et al., 2014; Mao et al., 2016; Plummer et al., 2015; Yu et al., 2016)
aims to localize a target object described by a free-form natural language expression, which can be a
phrase or a long sentence. It plays a crucial role in many downstream tasks of multi-model reasoning
systems, such as visual question answering (Gan et al., 2017; Wang et al., 2020; Zhu et al., 2016)
and image captioning (Anderson et al., 2018; Chen et al., 2020; You et al., 2016).

Previous works on visual grounding can be divided into three groups: two-stage method, one-stage
method, and transformer-based ones. The two-stage or one-stage methods depend on a complex
module with manually-devised techniques to conduct language inference and multi-modal integra-
tion. However, TransVG (Deng et al., 2021) proposes a transformer-based method to avoid biases
introduced by manual designs, which consists of a DETR (Carion et al., 2020) model to extract
visual features, a BERT (Devlin et al., 2018) model for language features extraction, and a trans-
former encoder to fuse these features along with a learnable object query. Finally, an MLP module
processes the object query to obtain the final prediction. Owing to its simplified modeling and supe-
rior performance, subsequent studies continue to tap into the potential of this pipeline. These works
propose modules to enable interaction between the two modalities before the later fusion or decoding
stage, thereby focusing the visual features on areas relevant to language expression, which results in
a language-related visual representation that facilitates the subsequent retrieval of the target.

Despite the advancements, the loss functions in these methods solely take into account the regression
output of the object query, without providing explicit guidance on how effectively the model con-
centrates on areas relevant to the language expression. This may make them difficult to optimize for
the above aim of extracting language-related visual features, resulting in a suboptimal performance.

In this paper, to fully optimize the alignment between the two modalities from the perspective of
the attention behavior, we first investigate the relationship between the attention value of language-
modulated visual tokens and the models’ performance. We conclude that higher attention values
within the ground truth bounding box (bbox) generally indicate better overall performance. How-
ever, this phenomenon does not strictly hold universally and exhibits irregular variations across
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different models, layers, and datasets. Based on the analysis, we introduce a framework of attention-
driven constraint balancing (AttBalance) to dynamically impose and balance constraints of the at-
tention during the training process, while also addressing the data imbalance problems that these
constraints may cause. Specifically, we propose the Attention Regulation, which consists of the
Rho-modulated Attention Constraint to focus the attention of language-modulated visual tokens on
the bbox region and the Momentum Rectification Constraint to rectify such harsh guidance, aiming
to balance the regulation of the attention behavior (we leave the details of the motivation for each
constraint in Sec. 4.2). Furthermore, to balance the influence of different training samples that have
varying optimization difficulties due to our constraints, we propose the Difficulty Adaptive Training
strategy to dynamically scale up the losses.

To summarize, we have three-fold contributions: (i) We unveil the correlation between the attention
behavior and the model’s performance. (ii) We devise an innovative framework, AttBalance, to
balance the regulation of the attention behavior during training and mitigate the data imbalance
problem. Our framework can be seamlessly integrated into different transformer-based methods.
(iii) Extensive experiments show the performance superiority of our proposed methods.

2 RELATED WORK

2.1 VISUAL GROUNDING

Visual grounding methods can be roughly classified into three pipelines: two-stage methods, one-
stage methods, and transformer-based methods.

Two-stage methods. Two-stage approaches (Yu et al., 2018; Chen et al., 2021) treat visual ground-
ing task as the way that firstly generates candidate object proposals and then finds the best matching
one to the language. In the first stage, an off-the-shelf detector is used to process the image and
propose a set of regions that might contain the target. In the second stage, a ranking network calcu-
lates the similarity of the candidate regions and processed language features, and selects the region
which has the best score of similarity as the final result. Training losses in this stage include binary
classification loss (Plummer et al., 2018) or maximum-margin ranking loss (Yu et al., 2018). In real
applications, for better understanding the language expression and the matching of the two modal-
ities, MattNet (Yu et al., 2018) mainly focuses on decomposing language into three components
named subject, location, and relationship. Ref-NMS (Chen et al., 2021) introduces an expression-
aware score for better ranking the candidate regions. However, this pipeline heavily depends on the
pre-trained detector in the first stage, as the second stage will fail to retrieve the correct region if the
referred object is not proposed by the first stage. And the features of the two modalities have not
been fully integrated.

One-stage methods. One-stage approaches (Yang et al., 2019b; 2020) directly concatenate vision
and language features in channel dimension and rank the confidence value of candidate regions
which is proposed based on concatenated multimodal features. For example, FAOA (Yang et al.,
2019b) predicts the bounding box by using a YOLOv3 detector (Redmon & Farhadi, 2018) on the
concatenated features. ReSC (Yang et al., 2020) further improves the ability to ground complex
queries by introducing a recursive sub-query construction module. However, this pipeline suffers
from the trivial concatenation fusion manner of two modalities.

Transformer-based methods. Transformer-based approach is first introduced by TransVG (Deng
et al., 2021). Different from the above methods, they utilize transformer (Vaswani et al., 2017)
encoders to perform cross-modal fusion among a learnable object query, visual tokens, and lan-
guage tokens. The object query is then processed through an MLP module to predict the bounding
box. Benefiting from the flexible structure of transformer modules in processing multi-modalities
features, recent works continue to adopt this pipeline and further propose novelties regarding the
feature extraction. VLTVG (Yang et al., 2022) comes up with a visual-linguistic verification module
before the decoder stage to explicitly encode the relationship between visual and language. QRNet
(Ye et al., 2022) proposes a Query-modulated Refinement Network to early fuse visual and language
features to alleviate the potential gap between features from a pretrained unimodal visual backbone
and features needed to reasoning on both image and language. These methods simply supervise the
bounding box prediction result of the object query, modeling the fusion quality of two modalities in
an implicit way, which makes the training insufficient.
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3 ANALYSIS

������ ������ ������ ������ ������

����������������������������

���

���

���

���

���

�
�
�
�
��

�
�
��
��
�
�

������������������������������������������������������������������

���������

���������

����������

����������

��������

����������

�����������

������ ������ ������ ������ ������ ������

���������������������������

����

����

����

����

����

����

����

����

����

�
�
�
�
��

�
�
��
��
�
�

������������������������������������������������������������������

���������

���������

����������

����������

��������

����������

�����������

Figure 1: Y-axis represents the Spearman’s rank correlation between the performance (IoU) of mod-
els (TransVG, VLTVG) and the summation of attention values within the ground truth bounding box
across the majority of the evaluation dataset. The X-axis denotes attention derived from different
layers. The lines of different colors represent different datasets.

We aim to assess the dependence between the attention behavior of language-modulated visual to-
kens and the models’ performance.1 Specifically, we sum up the attention value within the ground
truth bounding box (bbox) of each fusion or decoding layer from the object query to the visual
tokens, indicating the degree of concentration on language-modulated visual tokens within the
language-related region. Then we record the IoU value of the corresponding data points. Using
Spearman’s rho, we analyze the statistical dependence between this attention value and IoU on most
of the evaluation datasets from two representative transformer-based models, TransVG and VLTVG.

As shown in Fig. 1 (zooming in), we have three main conclusions: Conclusion 1) Since all rho
values are positive and the model’s predictions depend on the attention behavior, we propose higher
attention values within the bbox may indicate better performance. It is an intuitive concept; for
precise localization, the model ought to concentrate more on the target area. Conclusion 2) As no
rho value reaches 1, this positive correlation does not universally hold. This result is reasonable,
considering that the language in Visual Grounding often contains background context, which the
model requires to infer the foreground. For example, in Fig.2, we need to notice “another dog”
outside the bbox to infer “dog at the left” inside the bbox. In these cases, higher attention values
within the bbox cannot guarantee better performance. Conclusion 3) The correlation degree varies
across layers, models, and datasets, with no clear pattern as the depth of the layer increases. This is
intuitive, given that there is no predetermined path for the model’s decision-making process while
dealing with diverse texts and images by considering the varying reasoning capabilities of different
models.

4 METHOD

In this section, we first review the preliminary for the attention map extraction of transformer-based
models in visual grounding Sec. 4.1. Then we provide a detailed explanation of the motivation
and implementation for our proposed framework, AttBalance, which is composed of two primary
elements. The first element is the Attention Regularization, which is further detailed in Sec. 4.2.
The second element is Difficulty Adaptive Training, elaborated in Sec. 4.3.

4.1 PRELIMINARY

Typically, the transformer-based methods initiate a learnable object query to fuse with visual and
language features through self-attention in the fusion stage or cross-attention in the decoding stage,

1It is after the 0th layer of the fusion module that the visual tokens can be seen as language-modulated visual
tokens in the case of TransVG.
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Figure 2: Our AttBalance applied to the transformer-based pipeline. The Early Interaction module
may exist in some transformer-based models, e.g., QRNet and VLTVG. The Attention Regulariza-
tion is formulated as Rho-modulated Attention Constraint and Momentum Rectification Constraint.
The Difficulty Weight is used to adaptively scale up the losses to mitigate the data imbalance prob-
lem.

and then process this learnable token through an MLP module to regress the bounding box. Our
method extracts the attention map between the object query and visual tokens of each layer of
the fusion module (as TransVG, QRNet) or decoding module (as VLTVG). To be more specific
about the pipeline, take TransVG as an example. As shown in Fig. 2, we first extract the visual
and text features from the visual model and the language model, respectively. The visual model is
the backbone and the encoder of DETR and the language model is initialized by BERT. Given an
image I ∈ R3×H0×W0 , the visual model generates a 2D feature map followed by a linear projection
to reduce the channel dimension as the same as the text features. Therefore, the visual encoded
features are extracted and flattened as zv = [p1

v, p2
v, ... , pNv

v ] ∈ RC×Nv , where pv indicates a
single visual token, Nv = H0

32 × W0

32 , C = 256. Position embedding is then added to these features
to be sensitive to the original 2D location. For the text input, we extract its feature as a sequence of
embedding by BERT followed by a linear projection to reduce the channel dimension as the same as
the visual encoded feature. Therefore, the encoded text feature is zt = [p1

t , p
2
t , ..., p

L
t ] ∈ RC×L,

where pt indicates a single text token and L is the max expression length. Then zv and zt are
concatenated by inserting a learnable embedding zr (i.e., the object query) at the beginning of the
concatenated sequence. The whole sequence is formulated as xc = [zr, zt, zv]. TransVG utilizes
many layers of the transformer encoder to fuse the whole sequence and regresses the final bounding
box by processing the output object query through an MLP module. In each layer i, We treat zri as
Qi and zvi as Ki, and compute the attention map between them.

4.2 ATTENTION REGULARIZATION

Rho-modulated Attention Constraint (RAC). Motivated by Conclusion 1), the RAC aims to
strictly supervise the attention map to guide it to totally focus on tokens included in the bbox and
completely reduce the attention on tokens outside the bbox. Notably, we compute the mean value
of the similarity map over heads before the softmax function by default, so that values outside the
bbox will not be squeezed out into a lower value by the softmax function before we get the prob-
ability distribution map, which makes the constraint harsher. This stringent constraint accentuates
the focus on the language-related region after the visual tokens are modulated by the text tokens,
resulting in optimizing the model’s integration of multimodal semantics. Specifically, we formu-
late this constraint into a Binary Cross-Entropy (BCE) loss. As the sum of the values of the entire
probability map is 1, we strive to make the sum of the attention values within the bbox as close to 1
as possible, and the sum of the attention values outside the bbox as close to 0 as possible. To take
into account Conclusion 3), we propose to calculate rho in each iteration and convert the mean of
rho from multiple layers to 1, obtaining the relative rho. This relative rho is then used to scale the
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BCE loss of each layer. As shown in Fig. 2, we denote M as a segmentation mask where the value
of pixels inside the bbox is assigned as 1 and the value of pixels outside the bbox is assigned as 0.
We downsample this mask to the resolution of the visual feature. The RAC, Lrac, is formulated as
below: 

Attentioni = Softmax

(
Eh

(
QiK

T
i√

dk

))
,

rho
′

i = rhoi −

(
n∑

i=0

rhoi/n

)
+ 1,

Lrac =

n∑
i=0

rho
′

i

(
− log

(∑
Attentioni ⊙M

)
− log

(
1−

∑
Attentioni ⊙M

))
,

(1)

where i is the index of layer, n is the number of layer, Eh means averaging over heads, dk is the
number of channels, ⊙ is the Hadamard product and M is the inverse of M .

Momentum Rectification Constraint (MRC). Motivated by Conclusion 2), we introduce the Mo-
mentum Modal (MomModal), an online self-distillation method proposed by ALBEF (Li et al.,
2021). They treat the inaccurate data as noise and use the MomModal, which is updated by tak-
ing the moving-average of parameters, to smooth the dramatic change of the learning curve caused
by the loss from noise data. Similarly, for situations which the model needs to attend to the back-
ground, the training data of the RAC will be treated as noise. Therefore, as shown in Fig. 2, we use
the attention map from the MomModal to rectify the constraint from the RAC, a.k.a, Momentum
Rectification Constraint (MRC) 2. The MRC, Lmrc, is formulated as a KL-divergence:


Lmrci = KL

(
AttentionMom

i || Attentioni
)
,

Lmrc =

n∑
i=0

Lmrci ,
(2)

where AttentionMom
i comes from the MomModal.

We formulate our Attention Regularization as the loss Lar, which combines the above two parts,
i.e., Lar = Lrac + Lmrc.

4.3 DIFFICULTY ADAPTIVE TRAINING (DAT)

Since we introduce an additional loss to the Visual Grounding task, we are also concerned about
the imbalance problem brought by Lar. As depicted on the left of Fig. 3, we partition the attention
values within the ground truth region of VLTVG’s last layer into 8 equal number parts, omitting the
extreme intervals, i.e. those less than 0.1 or greater than 0.9. The result indicates that the majority
of samples are concentrated in intervals with high attention values, leading to an imbalance for
our constraint. Specifically, the model may primarily focus on learning these easy cases, as high
attention values within bbox lead to low values for Lrac, which is the main contributor to the Lar’s
value, as seen from the experimental process. Therefore, in order to direct the model’s attention
towards the hard cases, we propose the Difficulty Adaptive Training (DAT) strategy, which mainly
contributes two weights to dynamically scale up the losses to pay more attention to hard cases related
to the difficulty of optimizing the Lar. Firstly, we formulate an Actual Difficulty Weight (Wadw) as
below, which is directly proportional to the Lar, to indicate the actual difficulty in each iteration for
the object query to notice salient features related to the language expressions:

2Note that there have been many works that leverage the momentum modal to provide supervision, e.g.,
VL Representation Learning (Li et al., 2021), SSL image classification (Tarvainen & Valpola, 2017), SSL
object detection (Liu et al., 2021) and SSL visual grounding (Sun et al., 2023). We, for the first time, show
its effectiveness in balancing the constraints on attention behavior in Visual Grounding. Its non-triviality is
validated in the ablation study.
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Figure 3: Imbalance study of attention value within ground truth region. Left: A histogram analysis
of the attention values within the ground truth region of VLTVG’s last layer. Right: The averaged
attention values within the ground truth region of VLTVG’s last layer under varying box ratios.

Wadw = 0.5 + 1/ (1 + exp (−Lar)) , (3)

where 0.5 ensures the weight remains greater than 1, and Lar is simplified by excluding rho.

Moreover, as shown on the right of Fig. 3, we split the ratios of the bbox to the image size of all data
into 10 splits evenly. It can conclude that a higher bbox ratio naturally leads to higher attention value
inside the bbox, which means that objectively the optimization for the Lar is harder in cases with a
small bbox. Therefore, we scale up the losses based on this factor to solve the imbalance problem,
formulating the Objective Difficulty Weight (Wodw) as below:

Wodw = 0.5 + 1/ (1 + exp (boxRatio− 1)) . (4)

where boxRatio is the proportion of bbox to the size of the image.

Therefore, the total loss function is the summation of Lar and the original losses used in Visual
Grounding but adaptively adjusted by the DAT:

L = αarLar +WodwWadw (α1L1 + αgLgiou) , (5)

where αar, α1 and αg are hyperparameters. L1 is the L1 loss and Lgiou is the GIoU loss (Rezatofighi
et al., 2019).

5 EXPERIMENTS

5.1 DATASET AND EVALUATION

Dataset. We evaluate our method on four widely used datasets including RefCOCO (Yu et al.,
2016), RefCOCO+ (Yu et al., 2016), RefCOCOg-google (Mao et al., 2016), and RefCOCOg-umd
(Mao et al., 2016). Images of these datasets for Visual Grounding are selected from MSCOCO (Lin
et al., 2014). RefCOCO (Yu et al., 2016) has 19,994 images with 50,000 referred objects and 142,210
referring expressions. It is officially split into four datasets: training set with 120,624 expressions,
validation set with 10,834 expressions, testA set with 5,657 expressions, and testB set with 5,095
expressions. RefCOCO+ (Yu et al., 2016) is a harder benchmark since the language of it is not
allowed to include location words but just allowed to contain purely appearance-based descriptions.
It has 19,992 images with 141,564 referring expressions for 49,856 referred objects. It is split
into four datasets: training set with 120,191 expressions, validation set with 10,758 expressions,
testA set with 5,726 expressions and testB set with 4,889 expressions. RefCOCOg (Mao et al.,
2016) is also a harder benchmark as it contains a large number of hard cases for its flowery and
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Table 1: Performance of our AttBalance applied to transformer-based models.

Models RefCOCO RefCOCO+ RefCOCOg-g RefCOCOg-umd
val testA testB val testA testB val val test

Two-stage:
CMN (Hu et al., 2017) - 71.03 65.77 - 54.32 47.76 57.47 - -
VC (Zhang et al., 2018) - 73.33 67.44 - 58.40 53.18 62.30 - -

ParalAttn (Zhuang et al., 2018) - 75.31 65.52 - 61.34 50.86 58.03 - -
MAttNet (Yu et al., 2018) 76.65 81.14 69.99 65.33 71.62 56.02 - 66.58 67.27

LGRANs (Wang et al., 2019) - 76.60 66.40 - 64.00 53.40 61.78 - -
DGA (Yang et al., 2019a) - 78.42 65.53 - 69.07 51.99 - - 63.28

RvG-Tree (Plummer et al., 2018) 75.06 78.61 69.85 63.51 67.45 56.66 - 66.95 66.51
NMTree (Liu et al., 2019) 76.41 81.21 70.09 66.46 72.02 57.52 64.62 65.87 66.44

Ref-NMS (Chen et al., 2021) 80.70 84.00 76.04 68.25 73.68 59.42 - 70.55 70.62
One-stage:

SSG (Chen et al., 2018) - 76.51 67.50 - 62.14 49.27 47.47 58.80 -
FAOA (Yang et al., 2019b) 72.54 74.35 68.50 56.81 60.23 49.60 56.12 61.33 60.36
RCCF (Liao et al., 2020) - 81.06 71.85 - 70.35 56.32 - - 65.73

ReSC-Large (Yang et al., 2020) 77.63 80.45 72.30 63.59 68.36 56.81 63.12 67.30 67.20
LBYL-Net (Huang et al., 2021) 79.67 82.91 74.15 68.64 73.38 59.49 62.70 - -

Transformer-based:
TransVG ResNet50 80.49 83.28 75.24 66.39 70.55 57.66 66.35 67.93 67.44

+AttBalance 82.90 85.87 77.69 70.84 75.96 61.63 70.61 73.69 72.44
+2.41 +2.59 +2.45 +4.45 +5.41 +3.97 +4.26 +5.76 +5.00

TransVG ResNet101 80.83 83.38 76.94 68.00 72.46 59.24 68.03 68.71 67.98

+AttBalance 82.52 85.12 78.55 71.41 75.65 62.65 70.32 74.16 72.79
+1.69 +1.74 +1.61 +3.41 +3.19 +3.41 +2.29 +5.45 +4.81

VLTVG ResNet50 84.53 87.69 79.22 73.60 78.37 64.53 72.53 74.90 73.88

+AttBalance 85.30 88.13 81.50 74.86 80.21 64.68 74.19 76.65 74.89
+0.77 +0.44 +2.28 +1.26 +1.84 +0.15 +1.66 +1.75 +1.01

VLTVG ResNet101 84.77 87.24 80.49 74.19 78.93 65.17 72.98 76.04 74.18

+AttBalance 85.30 88.13 81.50 75.14 80.25 66.34 74.08 77.35 75.61
+0.53 +0.89 +1.01 +0.95 +1.32 +1.17 +1.1 +1.31 +1.43

QRNet 84.01 85.85 82.34 72.94 76.17 63.81 71.89 73.03 72.52

+AttBalance 87.32 89.64 83.87 77.51 82.03 68.64 77.40 79.86 79.63
+3.31 +3.79 +1.53 +4.57 +5.86 +4.83 +5.51 +6.83 +7.11

complex expressions. Especially, the length of language expression regarding RefCOCOg is much
longer than that of other datasets. It has 25,799 images with 49,822 object instances and 95,010
expressions. There are two commonly used splitting conventions. One is RefCOCOg-google (Mao
et al., 2016) with a training set and a validation set, and the other is RefCOCOg-umd (Nagaraja
et al., 2016) with a training set, a validation set, and a test set.

Evaluation. Following the previous setting in the previous work (Deng et al., 2021; Yang et al.,
2022), we use the top-1 accuracy(%) to evaluate our method, where the predicted bounding box will
be regarded as positive if its IoU with the ground-truth bounding box is greater than 0.5.

5.2 IMPLEMENTATION DETAILS

We verify the pluggability and effectiveness of our proposed AttBalance by applying it to five mod-
els: one baseline model (TransVG) with two kinds of backbone (ResNet50 & ResNet101), one
state-of-the-art model (VLTVG) with two kinds of backbone (ResNet50 & ResNet101), and one
state-of-the-art model (QRNet) with one kind of backbone (Swin-S). The details for the constraint
of each model are included in the appendix.

In terms of other configurations, we adhere to the original setup employed by TransVG, VLTVG, and
QRNet, respectively. However, the implementation of RandomSizeCrop augmentation in TransVG
and QRNet seriously cuts off the ground truth region, causing our Lar to be greatly affected. Thus,
we constrain it to save the ground truth region. We set αar = 1, α1 = 1, αg = 1. The momentum
parameter for updating the momentum model is set as 0.9.

5.3 QUANTITATIVE RESULTS

As presented in Table 1, we jointly analyze them and can easily draw the following observations: (i)
Under the guidance of our AttBalance, all transformer-based models consistently obtain an impres-
sive improvement on all benchmarks. TransVG(+AttBalance) achieves an average improvement of
3.55% across all benchmarks; VLTVG(+AttBalance) achieves an average improvement of 1.16%
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across all benchmarks; QRNet(+AttBalance) achieves an average improvement of 4.82% across all
benchmarks. These results indicate that our AttBalance is a general constraint framework which
can be seamlessly transferred to existing methods and brings a notable improvement. (ii) To the
best of our knowledge, QRNet(+AttBalance) achieves a new state-of-the-art performance in the Vi-
sual Grounding task, excluding those pretraining works. (iii) Compared to RefCOCO, RefCOCOg-
google and RefCOCOg-umd are harder benchmarks since the language in them is much longer, with
more flowery and complex expressions. However, the improvements brought by our AttBalance on
them are even more remarkable. Specifically, QRNet(+AttBalance) achieves 5.51%, 6.83%, and
7.11% absolute improvement on gref val, gref val-u, and gref test-u, respectively. The same situa-
tion happens on other hard benchmarks, like RefCOCO+, whose language is not allowed to include
location words and is restricted to purely appearance-based descriptions. We bring 4.45%, 5.41%,
and 3.97% absolute improvements on val, testA, and testB, respectively, to TransVG Res50. (iv)
The improvements on VLTVG are moderate, likely due to the lack of further interaction between
language and visual tokens in the decoding stage. This leads to limited word-level semantics in
visual tokens, restricting our guidance in language-related regions.

5.4 ABLATION STUDY

In this section, to verify the effectiveness of each module, we conduct comprehensive ablation stud-
ies based on TransVG. Specifically, we add the modules we proposed through controlling variates.

Table 2: Ablation study on Momentum Rectification Constraint (MRC), Rho-modulated Attention
Constraint (RAC), and Difficulty Adaptive Training (DAT). The blue downward arrow represents a
decrease, while the red upward arrow represents an increase. ‘Ori’ denotes the performance cited
from the original paper, and ‘Rep’ signifies the reproduced performance.

Ori Rep MRC RAC DAT gref val-u gref test-u unc+ test-A unc+ test-B
✓ 67.93 67.44 70.55 57.66

✓ 67.77 67.52 69.08 56.42
✓ ✓ 67.63 67.35 69.12 55.80
✓ ✓ 71.81 71.04 75.20 60.42
✓ ✓ ✓ 73.35 72.29 75.60 60.71
✓ ✓ ✓ ✓ 73.69 72.44 75.96 61.63

As shown in Table 2, Ori refers to the performance reported in the original paper. Since we slightly
change the augmentation, RandomSizeCrop, we also reproduce the performance influenced by this
factor, denoted as Rep. Based on the table, it is shown that our modification to RandomSizeCrop
does not yield significant changes in the model’s performance. The introduction of the RAC module
leads to a performance improvement. Conversely, the incorporation of only the MRC module results
in a decline on average, suggesting that merely smoothing the attention behavior by MomModal does
not bring benefits. This might be due to the fact that the previous models ensembled in MomModal
are still more underfitting than the current one; therefore, the guidance from their attention map is
not consistently reliable. However, only when the MRC is used to rectify the RAC can it lead to
an increase, since the potential bias of focusing attention on language-related regions is smoothed.
Furthermore, the utilization of DAT yields an improvement as well.

Table 3: Ablation study on the relative rho factor of the Rho-modulated Attention Constraint (RAC).
TransVG Res50 gref val gref val-u gref test-u unc+ testA unc+ testB

AttBalance w/o rho 70.46 73.49 72.39 75.83 60.05
AttBalance 70.61 73.69 72.44 75.96 61.63

Since our RAC module incorporates rho to consider Conclusion 3), we also report the effectiveness
of rho for our AttBalance. Table 3 indicates that rho can consistently lead to improvements.

Table 4: Ablation study regarding the constraint on the number of layers in the TransVG. “1 layer”
refers to the last layer, and “2 layers” refers to the last two layers, and so on.

TransVG Res101 1 layer 2 layers 3 layers 4 layers 5 layers
val-u 74.18 73.63 73.73 74.16 72.71
test-u 72.44 72.80 72.69 72.79 71.11

As shown in Table 4, We also report an ablation study concerning the application of our AttBalance
to the number of layers in TransVG, ultimately choosing to apply it to the last four layers. Since the

8



Under review as a conference paper at ICLR 2024

visual tokens in the 0th layer have not yet interacted with the language tokens, they are not suitable
for our AttBalance.

5.5 SEMI-SUPERVISION STUDY

Semi-supervision for Visual Grounding is dedicated to addressing the situation of scarce labels. The
current state-of-the-art method (Sun et al., 2023) trains on a small number of labels and then gen-
erates pseudo labels of the remaining unlabeled data for continued training. We conduct training of
TransVG(+AttBalance) only on the small amount of labels, without additional pseudo label training,
in comparison with the SOTA semi-supervised method.

Table 5: Comparison on semi-supervision of Visual Grounding.
10% label unc val unc+ val gref val-u

TransVG Sup (Sun et al., 2023) 67.2 43.7 47.9
TransVG ReT (Sun et al., 2023) 70.3 46.4 51.0

TransVG(+AttBalance) 71.86 51.00 58.37

As shown in Table 5, TransVG Sup denotes the baseline performance with supervised learning on
10% of the labels; TransVG ReT represents the state-of-the-art semi-supervised approach, utiliz-
ing 10% of the labels for supervised learning and the remaining 90% for pseudo label learning;
TransVG(+AttBalance) signifies our method, which only conducts supervised learning on 10% of
the labels. Our method significantly outperforms the baseline performance in a semi-supervised set-
ting, even exceeding the performance of the state-of-the-art semi-supervised method by 7.37% on
gref val-u and 4.6% on unc+ val, despite utilizing 90% fewer unlabeled data.

5.6 QUALITATIVE RESULTS

TransVG Layer2

TransVG(+AttBalance) Layer2

TransVG Layer4 TransVG Layer6 Output

OutputTransVG(+AttBalance) Layer4 TransVG(+AttBalance) Layer6

Figure 4: “a fluffy black cat sniffing around a bathroom sink”. We visualize the attention map of
each layer. The white box is the ground truth and the red box is the prediction.
As presented in Fig.5, we visualize the attention map in the 2nd, 4th, and 6th fusion layers of
TransVG and TransVG(+AttBalance). This scenario involves two black cats in a bathroom sink,
one of which is sniffing. This hard case requires models to fully exploit the connection of the text
and the image to locate the left “black cat in a bathroom sink” under reasoning on “sniffing”, even
if the right one is also black and in a bathroom sink. The result of TransVG cannot locate the “cat”
in the early layer, and finally fails to judge which one is “sniffing”. In contrast, under the constraint
of our AttBalance, the model can quickly locate two “black cat” candidates only at layer2, and
correctly infer the left one only at layer4.

6 CONCLUSION

In this paper, we first analyze the correlation between attention behavior and the model’s per-
formance. Based on this analysis, we propose a framework, named AttBalance, to incorporate
language-related region guidance for fully optimized training. Specifically, the framework consists
of Attention Regularization, which balances the constraints on the attention behavior, and the Diffi-
culty Adaptive Training strategy to mitigate the imbalance problem of these constraints.
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A APPENDIX

Implementation Details. Our AttBalance is applied to the final four layers of TransVG for both
backbone models during the first 60 epochs. For QRNet, we apply our AttBalance to all six layers
for the first 60 epochs. For VLTVG, there are two settings for our AttBalance. One is constraining all
six layers of our modified attention map throughout the entire 90 epochs. The other is constraining
the normal attention map of the last layer for the first 60 epochs, then only retaining the box loss of
the final layer’s output. We experimentally select the setting with the best performance. We set the
batch size to 64 for all models, except for QRNet where we set it to 56 due to its high GPU memory
requirements.

TransVG Layer2

TransVG Layer4

VLTVG Layer2 OutputVLTVG Layer4 VLTVG Layer6

VLTVG(+AttBalance) Layer2 VLTVG(+AttBalance) Layer4 VLTVG(+AttBalance) Layer6 Output

Figure 5: “a fluffy black cat sniffing around a bathroom sink”. We visualize the attention map of
each layer. The white box is the ground truth and the red box is the prediction.

In Fig. 5, we visualize the attention map of VLTVG(+AttBalance). Here, we can see that the at-
tention of VLTVG(+AttBalance) does shift a little bit compared to the original one, but it is subtle,
resulting in a wrong prediction. Such qualitative results align with the fact that the improvement on
VLTVG by AttBalance is more subtle than those on TransVG and QRNet.
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